JPH0441615A - Method and device for austempering - Google Patents

Method and device for austempering

Info

Publication number
JPH0441615A
JPH0441615A JP14706290A JP14706290A JPH0441615A JP H0441615 A JPH0441615 A JP H0441615A JP 14706290 A JP14706290 A JP 14706290A JP 14706290 A JP14706290 A JP 14706290A JP H0441615 A JPH0441615 A JP H0441615A
Authority
JP
Japan
Prior art keywords
gas
fluidized bed
furnace
austempering
gaseous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14706290A
Other languages
Japanese (ja)
Inventor
Naoharu Hamasaka
直治 浜坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP14706290A priority Critical patent/JPH0441615A/en
Publication of JPH0441615A publication Critical patent/JPH0441615A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

PURPOSE:To enhance the cooling power of a fluidized bed and to facilitate austempering by transforming a material to be treated heated to an austenite region by the fluidized bed with gaseous He as the fluidizing gas into bainite. CONSTITUTION:A spheroidal graphite cast iron member 2 heated to 800-900 deg.C is charged into the fluidized-bed furnace 1 of an austempering device. Gaseous He from a gaseous He cylinder 8 accelerated by a turbofan 10 is introduced into the furnace 1 through a pipeline 9. The gaseous He blown up from a diffuser plate 12 forms a fluidized bed along with alumina powder 11 and cools the member 2. The gaseous He is passed through a filter 14, discharged from the upper part of the furnace 1 and cooled by a heat exchanger 15. The gaseous He is circulated in this way to quench the member 2 to the bainite transformation temp. of about 250-400 deg.C. The furnace 1 is kept at this bainite transformation temp. by energizing a heater 16, as required, and bainite transformation is carried out.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はオーステナイト域まで加熱された綱や鋳鉄を
流動層によりベイナイトに変態させるようにしたオース
テンパ処理方法およびその方法に用いる装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an austempering method for transforming steel or cast iron heated to the austenite region into bainite in a fluidized bed, and an apparatus used in the method.

〔従来技術〕[Prior art]

球状黒鉛鋳鉄等のオーステンパ処理はその強度や靭性を
高める熱処理プロセスとして近年注目されてきている。
Austempering of spheroidal graphite cast iron, etc., has been attracting attention in recent years as a heat treatment process that increases the strength and toughness of spheroidal graphite cast iron.

一般にオーステンパ処理は綱や鋳鉄等の被処理材をオー
ステナイト域まで加熱し、それをパーライト変態を阻止
するように急冷した後、250〜400℃程度の温度に
所定時間(約2時間)保持する熱処理法をいう。この保
持中に基地組織がベイナイト化して強度、靭性を向上さ
せることを狙っている。このオーステンパ処理のヒート
パターンを第1図に示す。
Generally, austempering is a heat treatment in which the material to be treated, such as steel or cast iron, is heated to the austenite region, rapidly cooled to prevent pearlite transformation, and then held at a temperature of about 250 to 400 degrees Celsius for a predetermined period of time (approximately 2 hours). refers to the law. The aim is for the base structure to turn into bainite during this retention, improving strength and toughness. The heat pattern of this austempering process is shown in FIG.

このようなオーステナイト域においては■オーステナイ
ト域からの2、冷、および■安定した恒温変態が処理上
のポイントであり、これを具現化する急冷方法および恒
温保持方法として、(1)溶融塩浴中で冷却・恒温保持
、 (2)油槽中で冷却後に恒温槽中で恒温保持、(3)水
と空気をノズル穴から噴出させて行う噴霧冷却後に恒温
槽で恒温保持、 (4〕アルミナとN2ガスによる流動層で冷却・恒温保
持、 する等の方法が実用化されあるいは提案されている。
In such an austenitic region, the key points in the process are (2) cooling from the austenite region, and (2) stable isothermal transformation. (2) After cooling in an oil bath, the temperature is maintained in a constant temperature bath. (3) After cooling by spraying water and air from the nozzle hole, the temperature is maintained in a constant temperature bath. (4) Alumina and N2 Methods such as cooling and constant temperature maintenance using a fluidized bed using gas have been put into practical use or have been proposed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前述した従来の方法にはそれぞれ問題点
がある。
However, each of the conventional methods described above has problems.

まず(1)では硝酸塩等の塩浴材を水洗によって被処理
材から除去するが、廃棄される処理水による環境汚染を
防ぐために処理水のBODおよびPH副調整の環境対策
を施す必要がある。
First, in (1), salt bath materials such as nitrates are removed from the treated material by washing with water, but in order to prevent environmental pollution due to discarded treated water, it is necessary to take environmental measures such as sub-adjustment of BOD and PH of the treated water.

(2)および(3)では、冷却後恒温槽へ移し変える手
間がかかり、冷却装置とは別に恒温装置が必要である等
の設備コストがかかる。
In (2) and (3), it takes time and effort to transfer the material to a constant temperature bath after cooling, and requires equipment costs such as the need for a constant temperature device in addition to the cooling device.

(4)の流動層を用いる方法は温度分布が均一なことか
ら恒温保持には最適であるが従来例のような流動媒体に
アルミナ、流動ガスにN2ガスを用いた流動層では冷却
能が小さく、円部が厚い鋳造部品ではベイナイト組織を
得ることが困難であった。
The method using a fluidized bed (4) is optimal for maintaining constant temperature because the temperature distribution is uniform, but the conventional fluidized bed that uses alumina as the fluidizing medium and N2 gas as the fluidizing gas has a small cooling capacity. However, it was difficult to obtain a bainite structure in cast parts with thick circular parts.

本発明は、前述の問題点に鑑みて、これらを改良すべく
なされたもので、環境汚染対策を必要とせず冷却装置か
ら恒温槽へ被処理材を移し変えるような手間が省は設備
コストの点でも有利とした流動層を用い、さらに、流動
層の冷却能を高めて円部が厚い鋳造部品についてもオー
ステンパ処理を容易とする方法およびその方法に用いる
装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems and to improve them.It does not require any measures against environmental pollution, saves the trouble of transferring the material to be treated from the cooling device to the thermostatic chamber, and reduces equipment costs. It is an object of the present invention to provide a method that uses a fluidized bed, which is advantageous in some respects, and further improves the cooling ability of the fluidized bed to facilitate austempering even for cast parts with thick circular parts, and an apparatus used in the method.

〔課題を解決するための手段〕[Means to solve the problem]

流動層の冷却能を支配する因子として、■流動媒体(粒
子)の大きさや材質、 ■流動ガスの種類、 という2つの観点から検討を重ね、テストを行なった結
果、流動ガスの種類が冷却能に大きく影響することがわ
かった。すなわちHeガスを流動ガスに用いると流動層
の冷却能が高められることを見出して本発明を完成させ
たものである。すなわち本発明は、 オーステナイト域まで加熱された被処理材を流動層中で
ベイナイト変態させるようにしたオーステンパ処理方法
において、前記流動層の流動ガスにHeガスを用いる構
成を特徴としている。
As a result of repeated studies and tests, we found that the factors that govern the cooling ability of a fluidized bed are: ■ size and material of the fluidizing medium (particles), and ■ type of fluidizing gas. was found to have a significant impact on That is, the present invention was completed by discovering that the cooling ability of a fluidized bed can be enhanced by using He gas as a fluidizing gas. That is, the present invention is an austempering method in which a material to be treated that has been heated to an austenite region is transformed into bainite in a fluidized bed, and is characterized in that He gas is used as a fluidizing gas in the fluidized bed.

また本発明ではこのようなオーステンパ処理方法を実施
するに適した装置を提供するものである。すなわち、 オーステナイト域まで加熱された被処理材をベイナイト
変態させるだめの流動層炉を有するオーステンパ処理装
置において、この装置はHeガスを流動ガスとして流動
層炉に供給する手段、この流動層炉から排出されたHe
ガスを前記流動層炉に循環させる手段、この循環手段ま
たは前記流動層炉に結合されていてHeガスを貯蔵する
手段を備える構成を特徴としている。
The present invention also provides an apparatus suitable for carrying out such an austempering method. That is, in an austempering treatment apparatus having a fluidized bed furnace for transforming a material heated to an austenite region into bainite, this apparatus has a means for supplying He gas as a fluidized gas to the fluidized bed furnace, and a means for supplying He gas as a fluidized gas to the fluidized bed furnace, and a means for discharging He gas from the fluidized bed furnace. He was
The present invention is characterized by a configuration comprising means for circulating gas through the fluidized bed furnace, and means coupled to the circulation means or the fluidized bed furnace for storing He gas.

本発明においては冷却能の高いHeガスを冷却時にのみ
使い、恒温保持時には流動ガスにN2ガスを使用するこ
ともできる。すなわち、オーステナイト域まで加熱され
た被処理材をHeガスを流動ガスとする流動層中でベイ
ナイト変態温度まで急冷した後、前記流動層の流動ガス
をHeガスからN2ガスに換えこの流動層中で前記被処
理材をベイナイト変態温度に一定時間保持する構成とす
ることも可能である。したがって、この方法を実施する
ための装置としては、さらに流動層炉へN2ガスを供給
するための供給手段およびこのNtガスを循環させて再
利用するための循環手段が設けられ、オーステナイト域
まで加熱された前記被処理材のパーライト変態温度まで
の急冷を前記Heガスが供給された流動層炉で行ない、
急冷後Heガスを前記貯蔵手段に貯蔵してHeガスの供
給を止める一方、N2ガスを前記供給手段により流動層
炉に供給し、さらに前記循環手段により循環させてこの
流動層炉内において前記被処理材をベイナイト変態温度
に一定時間保持するようにした装置が好適に使用できる
In the present invention, He gas having high cooling ability may be used only for cooling, and N2 gas may be used as a fluidizing gas during constant temperature maintenance. That is, the material to be treated that has been heated to the austenite region is rapidly cooled to the bainite transformation temperature in a fluidized bed using He gas as the fluidizing gas, and then the fluidizing gas in the fluidized bed is changed from He gas to N2 gas. It is also possible to adopt a configuration in which the material to be treated is held at the bainite transformation temperature for a certain period of time. Therefore, the apparatus for carrying out this method is further provided with a supply means for supplying N2 gas to the fluidized bed furnace and a circulation means for circulating and reusing this Nt gas, and is heated to the austenite region. rapidly cooling the treated material to a pearlite transformation temperature in a fluidized bed furnace supplied with the He gas,
After quenching, the He gas is stored in the storage means and the supply of He gas is stopped, while N2 gas is supplied to the fluidized bed furnace by the supply means, and further circulated by the circulation means to collect the gas in the fluidized bed furnace. An apparatus that maintains the treated material at a bainite transformation temperature for a certain period of time can be suitably used.

〔作 用〕[For production]

熱伝導度についてN2ガス、ArガスおよびHeガスを
比較すると、100°CにおいてN2ガスが0.026
9kca 1 / +wh″C,Arガスが0.018
1kcal /a+h’cであるに対してHeガスでは
0.143kcal /mh’cと格段に大きい、これ
から球状黒鉛鋳鉄よりなるφ20moの刃棒の中心部の
冷却曲線を算定すると第2図のようになり、Heガス冷
却の場合では、N、ガス冷却の場合よりも急速に冷却が
行われることがわかる。したがって本発明では流動ガス
にHeガスを用いることにより流動層の冷却能が高めら
れる。
Comparing N2 gas, Ar gas and He gas in terms of thermal conductivity, N2 gas has a thermal conductivity of 0.026 at 100°C.
9kca 1/+wh″C, Ar gas is 0.018
1kcal/a+h'c, whereas for He gas it is much larger at 0.143kcal/mh'c.If we calculate the cooling curve for the center of a φ20mo cutting rod made of spheroidal graphite cast iron, it will be as shown in Figure 2. It can be seen that in the case of He gas cooling, cooling is performed more rapidly than in the case of N gas cooling. Therefore, in the present invention, the cooling ability of the fluidized bed is enhanced by using He gas as the fluidizing gas.

また本発明で使用するHeガスはN2ガスよりも高価で
あるが、本発明の装置によりHeガスを循環させて反復
使用でき、Heガスを使用しない時にはHeガスを貯蔵
しておくことができるのでHeガスを効率よく使用する
ことからランニングコストの上昇を抑止している。
Although the He gas used in the present invention is more expensive than N2 gas, the device of the present invention allows He gas to be circulated and used repeatedly, and can be stored when not in use. Efficient use of He gas prevents increases in running costs.

さらにHeガスを冷却時のみに用い、恒温保持時にはN
2ガスを流動ガスに用いることにより、高い冷却能を維
持する一方でHeガスの使用量が節約でき、製造コスト
を下げることができる。このような意図に従って、本発
明装置では流動層炉を共通に用いるとともに、通常のN
2ガス供給手段とN2ガス循環手段を付加するものとし
た。したがって本発明装置の構造は単純化され設備コス
トも低く抑えられる。
Furthermore, He gas is used only for cooling, and N is used for constant temperature maintenance.
By using two gases as the fluidizing gas, the amount of He gas used can be reduced while maintaining high cooling performance, and manufacturing costs can be reduced. In accordance with this intention, the apparatus of the present invention commonly uses a fluidized bed furnace, and also uses ordinary N
2 gas supply means and N2 gas circulation means were added. Therefore, the structure of the device of the present invention is simplified and the equipment cost can be kept low.

〔効 果〕〔effect〕

以上説明したように、本発明ではHeガスを流動ガスに
用いることにより流動層の冷却能が大巾に高められ、塩
浴や油槽等を用いた場合に匹敵する冷却能が得られるよ
うになった。従来のN2ガスによる流動層では、例えば
非合金球状黒鉛鋳鉄のオーステナイト域を行なった場合
φ10III[Il以下の肉厚しかベイナイト構造を得
られなかったのが、本発明によりφ20mmの肉厚につ
いても内部までベイナイト化させることが可能となった
As explained above, in the present invention, by using He gas as the fluidizing gas, the cooling capacity of the fluidized bed is greatly increased, and a cooling capacity comparable to that obtained when using a salt bath, oil bath, etc. can be obtained. Ta. In the conventional fluidized bed using N2 gas, for example, in the austenitic region of non-alloyed spheroidal graphite cast iron, a bainite structure could only be obtained with a wall thickness of φ10III [Il or less, but with the present invention, even a wall thickness of φ20 mm can be obtained. It is now possible to convert up to bainite.

本発明では溶融塩を使用した場合のような環境汚染対策
を必要としない。また冷却の恒温保持が1つの流動層炉
の中でできるので、冷却と恒温保持を別の装置で行なう
従来法と比べて被処理品を移し変えるような手間がかか
らず、設備コストの点でも有利である。
In the present invention, there is no need for environmental pollution countermeasures as in the case of using molten salt. In addition, since cooling and constant temperature maintenance can be done in one fluidized bed furnace, there is no need for the effort of transferring the processed products compared to the conventional method where cooling and constant temperature maintenance are performed in separate devices, which reduces equipment costs. But it is advantageous.

〔実施例〕〔Example〕

次に、本発明の具体的な実施例を図面を参照しつつ説明
する。
Next, specific embodiments of the present invention will be described with reference to the drawings.

まず実施例■において第3図に示されるオーステンパ処
理装置の流動層炉1内に、被処理材として800〜90
0°Cに加熱された球状黒鉛鋳鉄製部材を被処理材2と
して装入する。バルブ3゜4.5を開き、Heガスボン
ベ8からターボファン10により加速したHeガスを配
管9を通して流動層炉l内に導入する。なおバルブ3は
適当なHe供給量に達した後に閉しる。炉l内には先に
80メソシュ程度の粒径のアルミナ粉11を装入してお
く。分散板12から吹き上げられたHeガスはこのアル
ミナIIと共に流動層を形成し、この流動層の熱交換作
用により被処理材2が冷却される。一方熱交換によりあ
たためられたHeガスはフィルタ14を通って流動層炉
1の上方から排出され、熱交換器15によって冷却され
る。それから配管9を通り再びターボファン10によっ
て加速されて流動層炉1に導入される。
First, in Example (3), 800 to 900 ml of the material to be treated was placed in the fluidized bed furnace 1 of the austempering apparatus shown in FIG.
A spheroidal graphite cast iron member heated to 0°C is charged as the material to be treated 2. The valve 3°4.5 is opened, and He gas accelerated by the turbo fan 10 is introduced from the He gas cylinder 8 into the fluidized bed furnace 1 through the pipe 9. Note that the valve 3 is closed after reaching an appropriate amount of He supply. Alumina powder 11 having a particle size of about 80 mesh is charged into the furnace l first. The He gas blown up from the dispersion plate 12 forms a fluidized bed together with the alumina II, and the material 2 to be treated is cooled by the heat exchange action of this fluidized bed. On the other hand, the He gas heated by the heat exchange is discharged from above the fluidized bed furnace 1 through the filter 14 and is cooled by the heat exchanger 15. Then, it passes through the pipe 9, is accelerated again by the turbo fan 10, and is introduced into the fluidized bed furnace 1.

このようにHeガスを循環させて被処理材2を約250
〜400℃のベイナイト変態温度まで急冷却する。必要
に応じてヒータ16により流動層炉1内を所定恒温温度
に調節することによりこのベイナイト変態温度を保持し
、流動層中においてベイナイト変態を行わせる。所定時
間(2時間程)経過後、バルブ3,4を閉じバルブ6を
開け(バルブ7は閉したままである。)ポンプ17によ
りHeガスを流動層炉1内から抜き出して貯蔵タンク1
8に貯蔵する。貯蔵完了後はまたバルブ6を閉じる。ベ
イナイト変態が終了した球状黒鉛鋳鉄部材としての被処
理材2は炉外へ取り出して放冷する。
By circulating the He gas in this way, the material to be treated 2 is
Rapid cooling to bainitic transformation temperature of ~400°C. If necessary, the inside of the fluidized bed furnace 1 is adjusted to a predetermined constant temperature to maintain this bainite transformation temperature, and the bainite transformation is carried out in the fluidized bed. After a predetermined period of time (approximately 2 hours), valves 3 and 4 are closed and valve 6 is opened (valve 7 remains closed). He gas is extracted from the fluidized bed furnace 1 by the pump 17 and transferred to the storage tank 1.
Store at 8. After storage is completed, valve 6 is closed again. The material 2 to be treated, which is a spheroidal graphite cast iron member that has undergone bainite transformation, is taken out of the furnace and allowed to cool.

別の被処理材2をオーステンパ処理するために再びこの
流動層炉装置を使用する際には、被処理材2を装入後、
バルブ7.4.5を開け、コンプレッサ19により貯蔵
タンク1日から排出されたHeガスを加圧して流動層炉
lに送り出す。
When using this fluidized bed furnace apparatus again to austemper another material 2 to be treated, after charging the material 2 to be treated,
The valve 7.4.5 is opened and the compressor 19 pressurizes the He gas discharged from the storage tank 1 and sends it to the fluidized bed furnace l.

そして前述の操作を繰り返して行なう。この際Heガス
の流量が不足であればバルブ3を開けてHeガスを追加
供給すればよい。
Then, repeat the above operation. At this time, if the flow rate of He gas is insufficient, the valve 3 may be opened to supply additional He gas.

次に別の実施例■を第4図を参照して説明する。この実
施例]において、オーステンパ処理の冷却工程は前述し
た実施例Iと全く同じであり説明を省略する。Heガス
流動による冷却終了後、Heガスはポンプ17によって
貯蔵タンク18内に貯蔵される。そしてHeガス供給お
よび循環にかかわるバルブ4,5,6.7は全て閉じら
れる。続いてバルブ20〜22を開け、N2ガスボンベ
23からN2ガスをターボファン24によって加速して
流動層炉1内に導入する。この時被処理材2である球状
黒鉛鋳鉄は既にベイナイト変態温度まで冷却されている
ので、ヒータ16により炉1内を加熱して変態温度に保
持しベイナイト変態を行わせる。分散板12から吹き上
げられたN2ガスはアルミナ粉11と共に流動層を形成
した後、フィルタ14を通って炉外へ排出される。それ
から再び配管9、ターボファン24、バルブ21を通っ
て流動層炉内を循環させて恒温保持工程を行う。この実
施例ではN2ガスはHeガスに比べて安価なのでN2ガ
スの貯蔵手段は用いていないが、Heガスと同様N2ガ
スについても貯蔵手段により貯蔵して再利用することは
もちろん可能である。またHeガス貯蔵タンクは独立し
て設置して流動層炉から直接Heガスを貯蔵タンクに引
き込むことも可能である。なおここで流動ガスに使用さ
れるHeガスやN2ガスの流量や圧力は流動層を形成し
得る程度であればよく、その他については何ら限定され
るものでない。
Next, another embodiment (2) will be explained with reference to FIG. In this embodiment], the cooling step of the austempering treatment is exactly the same as in the above-mentioned embodiment I, and the explanation thereof will be omitted. After cooling by the He gas flow is completed, the He gas is stored in the storage tank 18 by the pump 17. Then, all valves 4, 5, 6.7 related to He gas supply and circulation are closed. Subsequently, the valves 20 to 22 are opened, and N2 gas from the N2 gas cylinder 23 is accelerated by the turbo fan 24 and introduced into the fluidized bed furnace 1. At this time, since the spheroidal graphite cast iron, which is the material to be treated 2, has already been cooled to the bainite transformation temperature, the inside of the furnace 1 is heated by the heater 16 and maintained at the transformation temperature to cause the bainite transformation to occur. The N2 gas blown up from the dispersion plate 12 forms a fluidized bed with the alumina powder 11, and then passes through the filter 14 and is discharged to the outside of the furnace. Thereafter, the fluid is circulated through the fluidized bed furnace again through the piping 9, the turbo fan 24, and the valve 21 to perform a constant temperature maintenance step. In this embodiment, a storage means for N2 gas is not used because N2 gas is cheaper than He gas, but it is of course possible to store and reuse N2 gas as well as He gas. It is also possible to install the He gas storage tank independently and draw He gas directly into the storage tank from the fluidized bed furnace. Note that the flow rate and pressure of the He gas and N2 gas used as the fluidizing gas may be such that a fluidized bed can be formed, and there are no other limitations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的なオーステンパ処理のヒートパターンを
示すグラフ、第2図はN2ガスとHeガスによる冷却曲
線を比較するためのグラフ、第3図および第4図は本発
明の方法および装置を説明するための装置の構成説明図
である。 8・・・・・・Heガスボンベ 9・・・・・・配 管 10.24・・・・・・ターボファン 11・・・・・・アルミナ粉 12・・・・・・分散板 14・・・・・・フィルタ 15・・・・・・熱交換器 16・・・・・・ヒータ 17・・・・・・ポンプ 】8・・・・・・貯蔵タンク 19・・・・・・コンプレッサ 23・・・・・・N2ガスボンベ
Figure 1 is a graph showing the heat pattern of general austempering treatment, Figure 2 is a graph comparing cooling curves using N2 gas and He gas, and Figures 3 and 4 are graphs showing the method and apparatus of the present invention. FIG. 2 is an explanatory diagram of the configuration of an apparatus for explanation. 8...He gas cylinder 9...Piping 10.24...Turbo fan 11...Alumina powder 12...Dispersion plate 14... ... Filter 15 ... Heat exchanger 16 ... Heater 17 ... Pump] 8 ... Storage tank 19 ... Compressor 23・・・・・・N2 gas cylinder

Claims (1)

【特許請求の範囲】 1、オーステナイト域まで加熱された被処理材を流動層
中でベイナイト変態させるようにしたオーステンパ処理
方法において、 前記流動層の流動ガスにHeガスを用いることを特徴と
するオーステンパ処理方法。 2、オーステナイト域まで加熱された被処理材をHeガ
スを流動ガスとする流動層中でベイナイト変態温度まで
急冷した後、前記流動層の流動ガスをHeガスからN_
2ガスに換えこの流動層中で前記被処理材をベイナイト
変態温度に一定時間保持することを特徴とする請求項1
に記載のオーステンパ処理方法。 3、オーステナイト域まで加熱された被処理材をベイナ
イト変態させるための流動層炉を有するオーステンパ処
理装置において、 この装置はHeガスを流動ガスとして流動層炉に供給す
る手段、 この流動層炉から排出されたHeガスを前記流動層炉に
循環させる手段、 この循環手段または前記流動層炉に結合されていてHe
ガスを貯蔵する手段 を備えることを特徴とするオーステンパ処理方法。 4、前記Heガスを流動層炉に循環させる手段には、流
動層炉へN_2ガスを供給するための供給手段およびこ
のN_2ガスを循環させて再利用するための循環手段が
設けられていることを特徴とする請求項3に記載のオー
ステンパ処理装置。
[Claims] 1. An austempering method in which a material to be treated that has been heated to an austenite region is transformed into bainite in a fluidized bed, characterized in that He gas is used as a fluidizing gas in the fluidized bed. Processing method. 2. After rapidly cooling the treated material heated to the austenite region to the bainite transformation temperature in a fluidized bed using He gas as the fluidizing gas, the fluidizing gas in the fluidized bed is changed from He gas to N_
Claim 1, wherein the treated material is maintained at a bainite transformation temperature for a certain period of time in the fluidized bed in place of two gases.
Austempering method described in. 3. In an austempering apparatus having a fluidized bed furnace for transforming the material to be heated to the austenite region into bainite, this apparatus has a means for supplying He gas as a fluidized gas to the fluidized bed furnace, and a means for discharging He gas from the fluidized bed furnace. means for circulating the helium gas into the fluidized bed furnace;
An austempering method comprising means for storing gas. 4. The means for circulating the He gas into the fluidized bed furnace is provided with a supply means for supplying N_2 gas to the fluidized bed furnace and a circulation means for circulating and reusing this N_2 gas. The austempering apparatus according to claim 3, characterized in that:
JP14706290A 1990-06-04 1990-06-04 Method and device for austempering Pending JPH0441615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14706290A JPH0441615A (en) 1990-06-04 1990-06-04 Method and device for austempering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14706290A JPH0441615A (en) 1990-06-04 1990-06-04 Method and device for austempering

Publications (1)

Publication Number Publication Date
JPH0441615A true JPH0441615A (en) 1992-02-12

Family

ID=15421629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14706290A Pending JPH0441615A (en) 1990-06-04 1990-06-04 Method and device for austempering

Country Status (1)

Country Link
JP (1) JPH0441615A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6323786B1 (en) 1999-02-26 2001-11-27 Mitsubishi Denki Kabushiki Kaisha Absolute-value encoder device
KR100339848B1 (en) * 2000-01-12 2002-06-07 이광래 Heat treatment equipment of austemper spheroidal graphite cast iron
JP2006187777A (en) * 2004-12-29 2006-07-20 Yoichi Hirose Cooling apparatus, strip casting apparatus, and cooling method for cast sheet of alloy for neodymium sintered magnet
JP2008540833A (en) * 2005-05-12 2008-11-20 エープナー インドゥストリーオーフェンバウ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of heat-treating annealed parts in batch operation
GB2497541A (en) * 2011-12-13 2013-06-19 Rolls Royce Plc Method and apparatus of a fluidised bed treatment including seals and a powder screen to prevent loss of powder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565917A (en) * 1979-06-28 1981-01-22 Komatsu Ltd Fluidized bed hardening device
JPS61104020A (en) * 1984-10-25 1986-05-22 Hitachi Metals Ltd Production of spheroidal graphite cast iron
JPS63290218A (en) * 1987-05-22 1988-11-28 Komatsu Ltd Manufacture of spheroidal graphite cast iron
JPH01201418A (en) * 1987-11-10 1989-08-14 Union Carbide Corp Rapid quenching method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565917A (en) * 1979-06-28 1981-01-22 Komatsu Ltd Fluidized bed hardening device
JPS61104020A (en) * 1984-10-25 1986-05-22 Hitachi Metals Ltd Production of spheroidal graphite cast iron
JPS63290218A (en) * 1987-05-22 1988-11-28 Komatsu Ltd Manufacture of spheroidal graphite cast iron
JPH01201418A (en) * 1987-11-10 1989-08-14 Union Carbide Corp Rapid quenching method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6323786B1 (en) 1999-02-26 2001-11-27 Mitsubishi Denki Kabushiki Kaisha Absolute-value encoder device
KR100339848B1 (en) * 2000-01-12 2002-06-07 이광래 Heat treatment equipment of austemper spheroidal graphite cast iron
JP2006187777A (en) * 2004-12-29 2006-07-20 Yoichi Hirose Cooling apparatus, strip casting apparatus, and cooling method for cast sheet of alloy for neodymium sintered magnet
JP2008540833A (en) * 2005-05-12 2008-11-20 エープナー インドゥストリーオーフェンバウ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of heat-treating annealed parts in batch operation
GB2497541A (en) * 2011-12-13 2013-06-19 Rolls Royce Plc Method and apparatus of a fluidised bed treatment including seals and a powder screen to prevent loss of powder
EP2604709A1 (en) * 2011-12-13 2013-06-19 Rolls-Royce plc Fluidised bed treatment
GB2497541B (en) * 2011-12-13 2014-05-14 Rolls Royce Plc Method and apparatus for the treatment of part of a component using a fluidised bed of powder, the apparatus including a powder screen
US9074817B2 (en) 2011-12-13 2015-07-07 Rolls-Royce Plc Fluidised bed treatment

Similar Documents

Publication Publication Date Title
CN1033841A (en) The heat treating method of metal works
US20070125463A1 (en) Fluidized bed cryogenic apparatus and continuous cooling method for quenching of steel parts
CN110423865A (en) A kind of heat treatment method of Austria's iron body ductile iron abrading-ball
JPH0441615A (en) Method and device for austempering
US2516282A (en) Apparatus for heat-treating steel
CN205590750U (en) A quenching groove that is used for in turn thermal treatment ball of water -cooling air cooling
CN112029980A (en) Water-air alternative quenching heat treatment process for casting grinding ball production
CN107436097A (en) Cooling means, sintering process and the sintering furnace of sintering furnace
CN109957639A (en) A kind of surface treatment method of continuous casting billet
US4612065A (en) Method for the heat treatment of workpieces
JPH04173916A (en) Cooling method using fluidized bed
JP3696614B2 (en) Gas carburizing method
JP2002097520A5 (en)
CN109112389B (en) A kind of cooling technique for preparing austenic globe body of control
JP2005163155A (en) Metal heat treatment device
CN88101145A (en) Improved method of heat treating ferrous alloys
JPS63105920A (en) Method for heat treating cast iron
JP2002097520A (en) Method for quick hardening with water and apparatus thereof
US2012165A (en) Heat treating in circulatory gases
JPS63282486A (en) Automatic temperature control fluidized bed device
JPS61104020A (en) Production of spheroidal graphite cast iron
JPS6233754A (en) Gas carburizing heat treatment
KR100372169B1 (en) The cooling device for heat treatment of austenite stainless steel
Schissler et al. Thermal Treatment of Nodular Irons After Hot Shakeout
JP2024054971A (en) Heat treatment method and heat treatment furnace