JPS63282486A - Automatic temperature control fluidized bed device - Google Patents

Automatic temperature control fluidized bed device

Info

Publication number
JPS63282486A
JPS63282486A JP11555987A JP11555987A JPS63282486A JP S63282486 A JPS63282486 A JP S63282486A JP 11555987 A JP11555987 A JP 11555987A JP 11555987 A JP11555987 A JP 11555987A JP S63282486 A JPS63282486 A JP S63282486A
Authority
JP
Japan
Prior art keywords
temperature
fluidized bed
heat
treated
temperature control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11555987A
Other languages
Japanese (ja)
Inventor
服部 寿
竹野下 秀満
花田 洋一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP11555987A priority Critical patent/JPS63282486A/en
Publication of JPS63282486A publication Critical patent/JPS63282486A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野: 本発明は流動Δ中で*体の熱処理全行つに際し、該物体
の層温度に基づく流動層温度の擾乱を減少させる自動温
度調節流動増長直に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application: The present invention provides an automatic thermostatic flow enhancement system for reducing disturbances in the fluidized bed temperature based on the bed temperature of the body during the entire heat treatment of the body in the flow delta. Regarding.

本装置は例えば球状黒鉛鋳鉄のオースチンバー冷却(ベ
ーナイト組織を形成させる符殊冷却)などの精密な温度
調整を必要とする場合に有効な装置である。
This device is effective in cases where precise temperature control is required, such as in Austin bar cooling of spheroidal graphite cast iron (special cooling to form a bainite structure).

従来の技術: アルミナ、焼砂など、粉粒体の流動Δを用いて、ダイス
鋼・高速度鋼金型、さらには、球状黒鉛鋳鉄などのオー
ステンパー冷却が行われている(特願昭60−2786
26号など)。この際、周知のよつに、被処理物の冷却
は厳密な温度スケジュールにしたがって行われなければ
ならず、なかんずく、高温域のパーライト組織、低温域
θマルテンサイト組織の間隙を縫って、ベーナイト組織
に到達式せる之めに、ほぼ定温を維持しなければならな
い調温工程が含まれる。本発明は、オーステンパー処理
に限らず一般に、流動層の温度と異なる被処理物体を、
該流動層で、調温(冷却または加温)する場合に吏用可
能な装置である。
Conventional technology: Austemper cooling of die steel, high-speed steel molds, and spheroidal graphite cast iron is carried out using the flow Δ of powder and granular materials such as alumina and burnt sand (Japanese Patent Application No. 1983). -2786
26 etc.). At this time, as is well known, cooling of the workpiece must be carried out according to a strict temperature schedule, and above all, the cooling of the processed material must be carried out according to a strict temperature schedule. In order to reach this temperature, a temperature control process is involved in which a nearly constant temperature must be maintained. The present invention is not limited to austempering treatment, but generally applies to objects to be treated which have a temperature different from that of a fluidized bed.
This is a device that can be used when controlling the temperature (cooling or heating) in the fluidized bed.

第8図に従来の流!IC!1層冷却器の1例金示す。流
動層(1)d、ブロク−(2)により圧入され、ガス分
散板(3) VCより分散された気体(空気・窒素・燃
焼ガスなどを含む。)によシ、例えば、アルミナ・熱砂
などの粉粒体を流動させることにより形成される。周知
のように流動層の温度は、位置的にほぼ均一で、かつ粉
粒体と気体との温度差は極めて少い特徴き待つ。流@層
(1)を上方に通過し之気体は、フィルター(4)を通
り、粉粒体エントレーンメントが除去される(粉粒体の
性状、気体の上昇速度などにより、フィルターが不必要
なこともある。
Figure 8 shows the conventional method! IC! An example of a single-layer cooler is shown below. The gas (including air, nitrogen, combustion gas, etc.) that is pressurized into the fluidized bed (1) d and the block (2) and dispersed by the gas distribution plate (3) VC, such as alumina, hot sand, etc. It is formed by fluidizing powder and granules. As is well known, the temperature of a fluidized bed is almost uniform in position, and the temperature difference between the powder and the gas is extremely small. The gas passing upward through the flow layer (1) passes through the filter (4), where entrainment of the granular material is removed (a filter may not be necessary depending on the properties of the granular material, the rate of rise of the gas, etc.). Sometimes.

)。フィルター(4)?上方に通過した気体は、気体配
管(9)を通り、ブロワ−(2)により、ガス分散板(
3)の下へ送入され、循環使用される。気体配管(9)
に設けt排出弁(5ンから、循環気体の一部を排出する
こと、装入弁(6ンから新入気体を導入することが可能
である。被処理物体を出し入れするため、蓋体(8)は
、取外し移動が可能なことは言うまでもないが、慣用手
段なので図示しない。流動層の@度維持用に、加熱ま之
は冷却装置(第8図では加熱装置tcl(1,1を設け
ることが望ましいが、これに代わって、または、これに
加えて、気体配管(9)0適宜位置に加熱器または冷却
器を置くことも可能でおる。
). Filter (4)? The gas that has passed upward passes through the gas pipe (9) and is moved by the blower (2) to the gas distribution plate (
3) and used for circulation. Gas piping (9)
It is possible to discharge a part of the circulating gas from the discharge valve (5) and to introduce new gas from the charging valve (6). ) is obviously removable and can be moved, but it is not shown because it is a conventional means.In order to maintain the temperature of the fluidized bed, a cooling device (heating device tcl (1, 1) is provided in Fig. 8) is used for heating the fluidized bed. However, instead of or in addition to this, it is also possible to place a heater or a cooler at an appropriate position in the gas pipe (9).

被処理物体A(m14バスケツト内に納置しである。〕
は、取出し自由に、流・妨層内に浸漬される。
Object to be processed A (stored in m14 basket)
is immersed in the flow/interference layer with free removal.

解決しようとする問題点: 上記例のような流@装置においては、例えば、被処理A
材の冷却を行う場合、高温の被迅埋物全流動層内に装入
することになり、流動、憎は被処理物により7io熱さ
れて、温度上昇を起こす。この温度上昇・と防止する念
めに、例えば炉啼外部から、空気・水などの冷媒により
l1j1接冷却する方法、第8図の装入弁(6)から冷
気体?導入する方法などが可能である。しかしながら、
これらの方法では、プロセスとしてυ応答速度がdい乏
め、定温度になるまでに長時間ft要するか、ハンティ
ング現象を起こすなどのために、良好な@度制御7バ期
待できない。被処理物体と加熱rる場合にも、同様の4
清は存在することv′i言うまでもない。
Problem to be solved: In the flow @ apparatus like the above example, for example,
When cooling the material, the material to be quickly buried at a high temperature is charged into a fully fluidized bed, and the fluidized material is heated by the material to be treated, causing a rise in temperature. In order to prevent this temperature rise, for example, there is a method of directly cooling the furnace with a refrigerant such as air or water from outside the furnace, or by introducing cold gas from the charging valve (6) in Fig. 8. It is possible to introduce such methods. however,
In these methods, good degree control cannot be expected because the response speed of the process is poor, it takes a long time to reach a constant temperature, or a hunting phenomenon occurs. When heating the object to be processed, the same 4.
It goes without saying that Kiyoshi exists.

問題点を解決する手段: 本発明では流動層、、14温装置の流動]に、被処理物
体とともに、熱補償物体を装入する。熱補償物体とは、
被処理物が流動層温度に到達するまでに、放出(吸収)
する熱量と、ほぼ同じ熱量をほぼ同じ時間内に吸収(放
出)する第8物体金意味し、シ友がって、被処理物体の
温度と熱補償物体の温度は、流L@層の温度を基準とし
て、温度目盛について反対方向になる。
Means for solving the problem: In the present invention, a heat compensating object is charged into a fluidized bed, a fluidizing device of a 14-temperature apparatus, together with an object to be treated. What is a heat compensation object?
By the time the treated material reaches the fluidized bed temperature, the release (absorption)
The temperature of the object to be treated and the temperature of the heat compensation object are the temperature of the flow L@ layer. is the reference, and the temperature scale is in the opposite direction.

作用; 周知のとかり、流動層内の伝熱速度は極めて大で、実質
的に、温度均一と考えて良い。被処理物体の温度が高く
、熱量・漬物体の温度が低い場合を考えると、被処理物
本から流動、1への伝熱と、流動層から熱補償物体への
伝熱が、同時進行することにより、流動層では、ぶ熱と
放熱とが同時に起こる。その結果、流d層の温度変化は
小さくなる。被処理物体の温度が低く熱補償物体の温度
が高い場合においても、流動層の温度変化が少ないこと
は言うまでもない。
Effect: As is well known, the heat transfer rate in a fluidized bed is extremely high, and it can be considered that the temperature is substantially uniform. Considering the case where the temperature of the object to be treated is high and the amount of heat/temperature of the pickled object is low, heat transfer from the object to be treated to the fluidized layer 1 and heat transfer from the fluidized bed to the heat compensation object proceed simultaneously. As a result, heat generation and heat radiation occur simultaneously in the fluidized bed. As a result, the temperature change in the flow d layer becomes smaller. Needless to say, even when the temperature of the object to be treated is low and the temperature of the heat compensator is high, the temperature change in the fluidized bed is small.

しかして、この4温度調節では、仮りにtfHG埋物体
と、熱補償物体との熱害t(heat capacit
y)が同一でなく、また、流動層の温度に達するまでに
、放出し、または吸収する熱量に小差があっても、望ま
しい温度制御可拒である。
Therefore, in this four-temperature adjustment, if the heat damage t (heat capacit) between the tfHG buried object and the heat compensation object is
Even if y) are not the same and there is a small difference in the amount of heat released or absorbed until the temperature of the fluidized bed is reached, desirable temperature control is still possible.

上記温度調整法は、高温物体から低温物体へ熱が移動す
るという自然法則を、最も素直に具現したもので、周知
のフィードバックコントロールで代表さ几る人為的調整
法)こ比べて、調整ミスがまったくなく、絶対的な安定
性が6る。
The temperature adjustment method described above most directly embodies the natural law that heat moves from a high-temperature object to a low-temperature object, and compared to the artificial adjustment method (typified by the well-known feedback control), it is less prone to adjustment errors. Absolute stability is 6.

実施例: 本発明の説1が、第3図に例示し九従来のものと異なる
所は、第1図に示すように、流動PJJ(1)内に綱バ
スケット(6)内lこ納置さA>taA理物体Aととも
に、熱補償物体BK−1014に納置する点である。被
石垣物体Aと熱補償物体Bとで炉体(7)かり出入れす
るVCは、例えば、第1図において、蓋体(8)を除去
した後、吊支部材四を吊り上げることにより、熱補償物
体を取り出す。図示しない吊支部材によジ同様に被処理
物本を取り出す(熱補償物体Bと被処理物体Aと全係着
してひいて、熱補償物体と被処理物体とks  1回の
吊り上げ操作で取出しても良い。)。被処理物体と熱補
償物体と金流勤71に装入するときは、取出しのとさと
逆nliに操作する。
Embodiment: The difference between the theory 1 of the present invention and the conventional one illustrated in FIG. 3 is that, as shown in FIG. A > taA It is stored in the heat compensation object BK-1014 together with the physical object A. For example, as shown in Fig. 1, the VC that moves in and out of the furnace body (7) with the stone wall object A and the heat compensation object B is heated by lifting the hanging support member 4 after removing the lid body (8). Take out the compensation object. Take out the object to be processed in the same way as the hanging support member (not shown) (the heat compensation object B and the object to be processed A are fully engaged, and then the heat compensation object and the object to be processed are connected in one lifting operation. You can take it out.) When loading the object to be processed, the heat compensating object, and the metal transfer 71, the operation is performed in the reverse direction of the removal process.

オーステンパー冷却のように、流動層温度より高温の被
処理物体を冷却する場合には、計算されたri憧の室温
の熱補償物体を使用して、流@層温度まで被処理物体が
冷却する際に放出する熱量と室温の熱補償物体が流4J
層温度に達する際に吸収する熱量とと同じにすることが
望ましい(被処理物体と熱補償物体との熱的バランスを
とるため、麦者の点tt町変にすることが望ましい。)
When cooling a processed object at a temperature higher than the fluidized bed temperature, such as in austempering cooling, a heat compensation object at room temperature with calculated RI is used to cool the processed object to the fluidized bed temperature. The amount of heat released at the time and the heat compensation object at room temperature are 4J
It is desirable to set the amount of heat to be the same as the amount of heat absorbed when reaching the layer temperature.
.

次に、流動層によるオーステンパー冷却の場合を例にと
って、熱補償物体を使用しない場合と使用した場合の流
動層の温度を比較すると第2図のよっである。この場合
、流動NJ層温度達する゛までに、被処理物体の放出す
る熱が、熱補償物本の1吸収する熱より若干大である。
Next, taking the case of austempering cooling using a fluidized bed as an example, the temperature of the fluidized bed when a heat compensator is not used and when it is used is compared as shown in FIG. In this case, by the time the fluidized NJ bed temperature is reached, the heat emitted by the object to be treated is slightly greater than the heat absorbed by one of the heat-compensating objects.

そのため、流動層温はわずかに上昇するが、その後、装
置の他部分で起こる冷却のため、短時間で均一温度に達
する。
Therefore, the fluidized bed temperature rises slightly, but then reaches a uniform temperature in a short time due to cooling that occurs in other parts of the apparatus.

熱補償物体の装入による温度上昇の激減に注目され之い
Attention has been paid to the drastic reduction in temperature rise due to the addition of a heat compensating object.

発明の効果: 本発明の流動層装置の流動層温度装置は、フィードバッ
クコントロールに碩らず、熱は高温物体から低温物体i
C移動するという自然法則θみを利用して、実質的:(
フィードフォワード制卸している。そのため、制@装置
を必要とせず、したがって、制御装置によるトラブル金
−切生ぜず、最も安全かつ安定し之作動を示す自動温度
調節流動装置で、熱補償物体の形状と工夫することによ
り安価にすることができる。
Effects of the invention: The fluidized bed temperature device of the fluidized bed device of the present invention does not rely on feedback control, and heat is transferred from a high temperature object to a low temperature object i.
Utilizing the natural law θ that C moves, practically: (
Feed forward control is in place. Therefore, it is an automatic temperature regulating flow device that does not require a control device and therefore does not cause any trouble or expense due to a control device, and exhibits the safest and most stable operation. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の構成全例示した自動温度調節流動装
置の断面図である。 第2図は、本発明の説ゴと従来の装置に2ける、流動層
温度の経時変化を比較したグラフでらる。 第3図は、従来の流動層装置の構造と例示し之装濾の断
面図である。 (1)・・・流動層        (2)・・・ブロ
ワ−(3)・・・ガス分散板     (4)・・フィ
ルター(5)・・・排出弁       (6)・・・
装入外(7)・・・炉体   (8)・・・蓋体(9ン
・・・気体配管      四・・・調温装置出 願 
人   株式会社小松製作所 A 、を処譚俸装X後時欄癲ル 第2図 口 第3図  17ワソー
FIG. 1 is a sectional view of an automatic temperature-controlled flow device showing an example of the entire configuration of the present invention. FIG. 2 is a graph comparing the changes in fluidized bed temperature over time between the device according to the present invention and the conventional device. FIG. 3 is a cross-sectional view of the structure and illustrative filter of a conventional fluidized bed apparatus. (1)...Fluidized bed (2)...Blower (3)...Gas distribution plate (4)...Filter (5)...Discharge valve (6)...
Outside charging (7)...Furnace body (8)...Lid (9)...Gas piping 4...Temperature control device application
Person Komatsu Ltd.

Claims (1)

【特許請求の範囲】 1 流動層の温度と異なる温度の被処理物体を該流動層
に浸漬して、熱処理を行う流動層装置において: 被処理物体とともに熱補償物体を、該流動層に浸漬し; 被処理物体が該流動層温度に達するまでに放出(吸収)
する熱量と、熱補償物体が該流動層温度に達するまでに
吸収(放出)する熱量とを、ほぼ同一ならしめ; かくして、流動層温度をほぼ一定に保持することを特徴
とする自動温度調節流動層装置。
[Claims] 1. In a fluidized bed apparatus that performs heat treatment by immersing an object to be treated at a temperature different from that of the fluidized bed in the fluidized bed: A heat compensation object is immersed together with the object to be treated in the fluidized bed. ; Released (absorbed) before the object to be treated reaches the fluidized bed temperature
and the amount of heat absorbed (released) by the heat compensating body until the fluidized bed temperature is reached; thus, the temperature of the fluidized bed is maintained approximately constant. Layer device.
JP11555987A 1987-05-12 1987-05-12 Automatic temperature control fluidized bed device Pending JPS63282486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11555987A JPS63282486A (en) 1987-05-12 1987-05-12 Automatic temperature control fluidized bed device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11555987A JPS63282486A (en) 1987-05-12 1987-05-12 Automatic temperature control fluidized bed device

Publications (1)

Publication Number Publication Date
JPS63282486A true JPS63282486A (en) 1988-11-18

Family

ID=14665537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11555987A Pending JPS63282486A (en) 1987-05-12 1987-05-12 Automatic temperature control fluidized bed device

Country Status (1)

Country Link
JP (1) JPS63282486A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2497541A (en) * 2011-12-13 2013-06-19 Rolls Royce Plc Method and apparatus of a fluidised bed treatment including seals and a powder screen to prevent loss of powder
CN105969947A (en) * 2016-05-26 2016-09-28 安徽省宁国诚信耐磨材料有限公司 Method of isothermal quenching thermal treatment production line

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2497541A (en) * 2011-12-13 2013-06-19 Rolls Royce Plc Method and apparatus of a fluidised bed treatment including seals and a powder screen to prevent loss of powder
GB2497541B (en) * 2011-12-13 2014-05-14 Rolls Royce Plc Method and apparatus for the treatment of part of a component using a fluidised bed of powder, the apparatus including a powder screen
US9074817B2 (en) 2011-12-13 2015-07-07 Rolls-Royce Plc Fluidised bed treatment
CN105969947A (en) * 2016-05-26 2016-09-28 安徽省宁国诚信耐磨材料有限公司 Method of isothermal quenching thermal treatment production line

Similar Documents

Publication Publication Date Title
US4410373A (en) Process for heat treatment of a metal workpiece
US3197346A (en) Heat treatment of ferrous metals with fluidized particles
US4717433A (en) Method of cooling a heated workpiece utilizing a fluidized bed
US4379725A (en) Process for hot isostatic pressing of a metal workpiece
US3718024A (en) Apparatus including a fluidized bed for cooling steel rod through transformation
JPS63282486A (en) Automatic temperature control fluidized bed device
DE69401431D1 (en) METHOD FOR CONTROLLING THE HEATING DEGREE OF A SOLID IN A HEAT EXCHANGER WITH RING SHAPED TUBES
JP7324270B2 (en) Heat transfer method and related equipment
JP5222146B2 (en) Method and apparatus for dry bainite transformation of semi-finished material structure
JPS63199817A (en) Method for cooling casting product
JPH0441615A (en) Method and device for austempering
JPH04173916A (en) Cooling method using fluidized bed
JPS6043410B2 (en) Metal heat treatment method using fluidized bed furnace
Glasser Heat treating aluminum with fluid-bed quenching
JPS61517A (en) Vacuum heat-treating apparatus using fluidized-bed cooling device
JPS642645B2 (en)
US2778755A (en) Method for the controlled cooling of steel forgings
JP5064624B2 (en) Fluidized bed heat treatment furnace
JPH05132711A (en) Cooler
JPS63100124A (en) Heat treatment device
JPS6122006B2 (en)
JP2548095B2 (en) Heat treatment method for metallic materials using fluidized bed furnace
JPH0377847B2 (en)
SU691654A1 (en) Method of thermal treatment of grain
JPS63286696A (en) Fluidized bed furnace