JP7389909B2 - Bearing wire rod and its manufacturing method - Google Patents
Bearing wire rod and its manufacturing method Download PDFInfo
- Publication number
- JP7389909B2 JP7389909B2 JP2022538318A JP2022538318A JP7389909B2 JP 7389909 B2 JP7389909 B2 JP 7389909B2 JP 2022538318 A JP2022538318 A JP 2022538318A JP 2022538318 A JP2022538318 A JP 2022538318A JP 7389909 B2 JP7389909 B2 JP 7389909B2
- Authority
- JP
- Japan
- Prior art keywords
- wire
- wire rod
- heat treatment
- bearing
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 37
- 238000010438 heat treatment Methods 0.000 claims description 83
- 238000001816 cooling Methods 0.000 claims description 38
- 238000005098 hot rolling Methods 0.000 claims description 33
- 238000005096 rolling process Methods 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 23
- 229910001567 cementite Inorganic materials 0.000 claims description 20
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 claims description 20
- 229910001566 austenite Inorganic materials 0.000 claims description 17
- 229910052804 chromium Inorganic materials 0.000 claims description 12
- 229910052748 manganese Inorganic materials 0.000 claims description 12
- 239000012535 impurity Substances 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 11
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 230000009467 reduction Effects 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 229910001562 pearlite Inorganic materials 0.000 claims description 7
- 239000011229 interlayer Substances 0.000 claims description 2
- 230000000052 comparative effect Effects 0.000 description 20
- 239000011572 manganese Substances 0.000 description 18
- 239000011651 chromium Substances 0.000 description 15
- 239000013078 crystal Substances 0.000 description 14
- 238000009826 distribution Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 230000009466 transformation Effects 0.000 description 6
- 239000006104 solid solution Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000001887 electron backscatter diffraction Methods 0.000 description 4
- 238000005242 forging Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000001953 recrystallisation Methods 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- 238000005491 wire drawing Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 239000010410 layer Substances 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 230000002902 bimodal effect Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010273 cold forging Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000011866 long-term treatment Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
- C21D8/065—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/16—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
- C21D1/32—Soft annealing, e.g. spheroidising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/525—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/003—Cementite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/009—Pearlite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Description
本発明はベアリング用線材及びその製造方法に関する。 The present invention relates to a bearing wire and a method for manufacturing the same.
線材の炭素含有量が高くなるほど素材の強度が急激に増加するので、直接的な成形及び加工が難しく、冷却時に旧オーステナイト結晶粒界によって析出される初析セメンタイトにより素材の軟性又は靭性が急激に低下する。
線材の軟質化のために一般的に球状化熱処理を行う。球状化熱処理は、冷間成形時に冷間加工性を向上させるためにセメンタイトを球形化し、均質な粒子分布を誘導する。また、加工ダイスの寿命を向上させるために加工される素材の硬度を低下させる。
一方、冷間圧造用線材(CHQ)は、球状化の加速のために先に伸線加工を実施するが、炭素含有量が相対的に高いベアリング用線材は、伸線加工を先に導入する場合、内部欠陥による断線が発生する虞がある。
As the carbon content of the wire increases, the strength of the material increases rapidly, making direct forming and processing difficult, and the softness or toughness of the material rapidly decreases due to pro-eutectoid cementite precipitated by prior austenite grain boundaries during cooling. descend.
Generally, a spheroidizing heat treatment is performed to soften the wire. Spheroidizing heat treatment spheroidizes cementite to improve cold workability during cold forming and induces homogeneous particle distribution. It also reduces the hardness of the material being processed to improve the life of the processing die.
On the other hand, wire rods for cold heading (CHQ) are first subjected to wire drawing to accelerate spheroidization, but wire rods for bearings, which have a relatively high carbon content, are subjected to wire drawing first. In this case, there is a risk of wire breakage due to internal defects.
通常、ベアリング鋼用線材を鋼線で製造するためには、1回以上の軟質化熱処理を行う。その後、冷間鍛造性を向上させるために伸線及び熱処理工程を追加で行うことになり、冷間鍛造性は、軟質化熱処理後に引張強度及び球状化率により確保される。
しかし、ベアリング用線材の軟質化のためには、700~800℃の高温で30時間以上の長期間処理が所要とされるため、多くの熱処理費用及び生産時間が必要となり製品の製造原価を上昇させる原因となる。したがって、追加軟質化熱処理工程を短縮又は省略することができるベアリング用線材及びその製造方法に対する開発が要求されている。
Normally, in order to manufacture bearing steel wire from steel wire, it is subjected to softening heat treatment one or more times. Thereafter, wire drawing and heat treatment steps are additionally performed to improve cold forgeability, and cold forgeability is ensured by tensile strength and spheroidization rate after softening heat treatment.
However, in order to soften bearing wire rods, long-term treatment of 30 hours or more is required at high temperatures of 700 to 800 degrees Celsius, which requires a lot of heat treatment cost and production time, which increases the manufacturing cost of the product. cause it to happen. Therefore, there is a need to develop a bearing wire and a method for manufacturing the same that can shorten or omit an additional softening heat treatment process.
本発明の目的とするところは、自動者、建設用部品などの冷間加工時に必要な軟質化熱処理を短縮するか省略することができるベアリング用線材及びその製造方法を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a wire rod for bearings and a method for manufacturing the same, which can shorten or omit the softening heat treatment required during cold working of parts for automobiles, construction, etc.
本発明のベアリング用線材は、重量%で、C:0.8~1.2%、Si:0.01~0.6%、Mn:0.1~0.6%、Cr:1.0~2.0%、Al:0.01~0.06%、N:0.02%以下(0は除外)、残りはFe及び不可避な不純物からなり、微細組織の旧オーステナイト結晶粒サイズは、3~10μmであり、方位差角度(Misorientation angle)が15°以上である高傾角粒界長さの和が単位面積当たり1,000~4,000mm/mm2であることを特徴とする。 The wire rod for a bearing of the present invention has a weight percentage of C: 0.8 to 1.2%, Si: 0.01 to 0.6%, Mn: 0.1 to 0.6%, and Cr: 1.0. ~2.0%, Al: 0.01~0.06%, N: 0.02% or less (0 is excluded), the remainder consists of Fe and unavoidable impurities, and the prior austenite grain size of the microstructure is: It is characterized in that the sum of high-angle grain boundary lengths of 3 to 10 μm and a misorientation angle of 15° or more is 1,000 to 4,000 mm/mm 2 per unit area.
方位差角度が15°以下である低傾角粒界長さの和が単位面積当たり250~800mm/mm2であり、前記低傾角粒界のうち方位差角度が5°以下である粒界の割合は、40~80%であることがよい。
前記微細組織は、粒界には網状型初析セメンタイトで構成され、粒内にはパーライトで構成されることが好ましい。
パーライト内の層状間隔は、0.05~0.2μmであることができる。
The sum of the lengths of low-angle grain boundaries with a misorientation angle of 15° or less is 250 to 800 mm/mm 2 per unit area, and the proportion of grain boundaries with a misorientation angle of 5° or less among the low-angle grain boundaries. is preferably 40 to 80%.
Preferably, the microstructure is composed of reticular pro-eutectoid cementite at the grain boundaries and pearlite within the grains.
The interlayer spacing within the pearlite can be between 0.05 and 0.2 μm.
引張強度は、1,200MPa以上、断面積減少率(RA)は、20%以上であることがよい。
1回軟質化熱処理後のセメンタイトの平均縦横比が2.5以下であることが好ましい。
1回軟質化熱処理後の引張強度が750MPa以下であることができる。
The tensile strength is preferably 1,200 MPa or more, and the cross-sectional area reduction rate (RA) is preferably 20% or more.
It is preferable that the average aspect ratio of cementite after one softening heat treatment is 2.5 or less.
The tensile strength after one-time softening heat treatment can be 750 MPa or less.
本発明のベアリング用線材の製造方法は、重量%で、C:0.8~1.2%、Si:0.01~0.6%、Mn:0.1~0.6%、Cr:1.0~2.0%、Al:0.01~0.06%、N:0.02%以下(0は除外)、残りはFe及び不可避な不純物からなるビレットを950~1,050℃の温度範囲で加熱する段階、Ae1~Acm℃の温度範囲で、下記式(1)で表現される臨界変形量以上の変形量で仕上げ熱間圧延して線材を製造する段階、及び前記線材を3℃/sec以上の速度で500~600℃温度範囲まで冷却した後、1℃/sec以下の速度で冷却する段階、を含むことを特徴とする。
式(1):-1.6Ceq2+3.11Ceq-0.48
ここで、Ceq=C+Mn/6+Cr/5であり、C、Mn、Crは、各元素の重量%を意味する。
The method for producing a wire rod for a bearing according to the present invention includes, in weight percent, C: 0.8 to 1.2%, Si: 0.01 to 0.6%, Mn: 0.1 to 0.6%, Cr: A billet consisting of 1.0 to 2.0%, Al: 0.01 to 0.06%, N: 0.02% or less (0 is excluded), and the rest is Fe and unavoidable impurities is heated at 950 to 1,050°C. heating in a temperature range of Ae1 to Acm°C, producing a wire rod by finishing hot rolling with a deformation amount equal to or greater than the critical deformation amount expressed by the following formula (1); It is characterized by including the step of cooling at a rate of 3° C./sec or more to a temperature range of 500 to 600° C., and then cooling at a rate of 1° C./sec or less.
Formula (1): -1.6Ceq 2 +3.11Ceq -0.48
Here, Ceq=C+Mn/6+Cr/5, and C, Mn, and Cr mean the weight percent of each element.
前記線材は、下記式(2)を満足することができる。
式(2):Tpf-Tf≦50℃
ここで、Tpfは、仕上げ熱間圧延前の線材の平均表面温度であり、Tfは、仕上げ熱間圧延後の線材の平均表面温度である。
加熱時間は、90分以下であることがよい。
The wire rod can satisfy the following formula (2).
Formula (2): Tpf-Tf≦50°C
Here, Tpf is the average surface temperature of the wire rod before finish hot rolling, and Tf is the average surface temperature of the wire rod after finish hot rolling.
The heating time is preferably 90 minutes or less.
仕上げ熱間圧延前のオーステナイト結晶粒の平均サイズ(AGS)は、5~20μmであることが好ましい。
冷却後、前記線材をAe1~Ae1+40℃で加熱して5~8時間維持する軟質化熱処理段階をさらに含むことができる。
軟質化熱処理後、20℃/hr以下の速度で660℃まで冷却する段階をさらに含むことがよい。
The average size (AGS) of austenite grains before finish hot rolling is preferably 5 to 20 μm.
After cooling, the method may further include a softening heat treatment step of heating the wire at Ae1 to Ae1+40° C. and maintaining it for 5 to 8 hours.
After the softening heat treatment, the method may further include cooling to 660° C. at a rate of 20° C./hr or less.
本発明によると、本発明の実施例によるベアリング用線材及びその製造方法は、軟質化熱処理時間を短縮するか省略することができるので、製造工程上の費用を節減することができる。 According to the present invention, the wire rod for a bearing and the manufacturing method thereof according to the embodiments of the present invention can shorten or omit the softening heat treatment time, thereby reducing costs in the manufacturing process.
本発明の一実施例によるベアリング用線材は、重量%で、C:0.8~1.2%、Si:0.01~0.6%、Mn:0.1~0.6%、Cr:1.0~2.0%、Al:0.01~0.06%、N:0.02%以下(0は除外)、残りはFe及び不可避な不純物からなり、微細組織の旧オーステナイト結晶粒サイズは、3~10μmであり、方位差角度(Misorientation angle)が15°以上である高傾角粒界長さの和が単位面積当たり1,000~4,000mm/mm2である。 The wire rod for a bearing according to an embodiment of the present invention has a weight percentage of C: 0.8 to 1.2%, Si: 0.01 to 0.6%, Mn: 0.1 to 0.6%, and Cr. : 1.0 to 2.0%, Al: 0.01 to 0.06%, N: 0.02% or less (0 is excluded), the rest consists of Fe and unavoidable impurities, and has a fine structure of prior austenite crystals. The grain size is 3 to 10 μm, and the sum of the lengths of high-angle grain boundaries with a misorientation angle of 15° or more is 1,000 to 4,000 mm/mm 2 per unit area.
以下、本発明の実施例について添付図面を参照して詳細に説明する。以下の実施例は、本発明が属する技術分野において通常の知識を有する者に本発明の思想を十分に伝達するために提示するものである。本発明は、ここで提示した実施例に限定されず、他の形態で具体化できる。図面は、本発明を明確にするために説明と関係ない部分の図示を省略し、理解を助けるために構成要素のサイズを多少誇張して表現した。
明細書全体で、ある部分がある構成要素を「含む」と記載するとき、これは特に反対する記載のない限り、他の構成要素を除外するものではなく、他の構成要素をさらに含み得ることを意味する。
単数の表現は、文脈上明白に例外がない限り、複数の表現を含む。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The following examples are provided so that the spirit of the invention will be fully conveyed to those skilled in the art to which the invention pertains. The invention is not limited to the embodiments presented here, but can be embodied in other forms. In the drawings, parts unrelated to the description are omitted to clarify the present invention, and the sizes of components are somewhat exaggerated to facilitate understanding.
Throughout the specification, when a part is described as "containing" a certain component, unless there is a statement to the contrary, this does not exclude other components, and may further include other components. means.
References to the singular include the plural unless the context clearly dictates otherwise.
以下では、本発明による実施例を添付した図面を参照して詳しく説明する。
ベアリング用線材は、加工性を確保するために球状化熱処理を経る場合がある。球状化熱処理は、追加的な工程であって、多くの熱処理費用と時間が必要とされるので、製造原価を上昇させる原因となる。
本発明者らは、ベアリング用線材の製造において、球状化軟化熱処理を短縮又は省略し得る方策について鋭意研究を重ねた。その結果、合金組成及び製造条件を最適化し、結晶粒界の特徴を導き出すことにより、軟質化熱処理時間を短縮又は省略することができることを確認して、本発明を完成するに至った。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
Wire rods for bearings may undergo spheroidization heat treatment to ensure workability. The spheroidization heat treatment is an additional process and requires a lot of heat treatment cost and time, which causes an increase in manufacturing costs.
The present inventors have conducted extensive research into ways to shorten or omit the spheroidizing and softening heat treatment in the production of bearing wire rods. As a result, the present invention was completed by confirming that the softening heat treatment time could be shortened or omitted by optimizing the alloy composition and manufacturing conditions and deriving the characteristics of grain boundaries.
本発明の一実施例によるベアリング用線材は、重量%で、C:0.8~1.2%、Si:0.01~0.6%、Mn:0.1~0.6%、Cr:1.0~2.0%、Al:0.01~0.06%、N:0.02%以下(0は除外)、残りはFe及び不可避な不純物からなる。
本発明によるベアリング用線材に含まれる各成分の役目及びその含量に対して説明すると次のとおりである。下記成分に対する%は、重量%を意味する。
The wire rod for a bearing according to an embodiment of the present invention has a weight percentage of C: 0.8 to 1.2%, Si: 0.01 to 0.6%, Mn: 0.1 to 0.6%, and Cr. : 1.0 to 2.0%, Al: 0.01 to 0.06%, N: 0.02% or less (0 is excluded), and the remainder consists of Fe and unavoidable impurities.
The role and content of each component contained in the bearing wire according to the present invention will be explained as follows. % for the following components means % by weight.
Cの含量は、0.8~1.2%である。
C(炭素)は、製品の強度を確保するために添加される元素である。Cの含量が0.8%未満である場合には、母材の強度低下によって軟質化熱処理及び鍛造加工工程後に行われる焼入れ、焼戻し熱処理後に十分な強度を確保しにくい。一方、その含量が過多の場合、M7C3などのような新しい析出物が形成されてブルーム又はビレットなどの鋳片の凝固時に中心偏析が発生する虞があるので、その上限を1.2%に限定する。好ましく、Cの含量は、0.8~1.1%である。
The content of C is 0.8-1.2%.
C (carbon) is an element added to ensure the strength of the product. If the C content is less than 0.8%, it is difficult to ensure sufficient strength after the softening heat treatment and the quenching and tempering heat treatments performed after the forging process due to a decrease in the strength of the base material. On the other hand, if the content is too large, new precipitates such as M 7 C 3 may be formed and center segregation may occur during solidification of slabs such as blooms or billets, so the upper limit should be set at 1.2. %. Preferably, the content of C is 0.8-1.1%.
Siの含量は、0.01~0.6%である。
Si(シリコン)は、代表的な置換型元素であって、固溶強化を通じた強度確保に有利な元素である。Siの含量が0.01%未満である場合には、線材の強度及び十分な焼入れ性を確保しにくい。一方、その含量が過多の場合、軟質化熱処理後の鍛造時に強度が上昇して冷間鍛造性を確保しにくくなる虞があるので、その上限を0.6%に限定する。
The content of Si is 0.01 to 0.6%.
Si (silicon) is a typical substitutional element, and is an element advantageous in ensuring strength through solid solution strengthening. If the Si content is less than 0.01%, it is difficult to ensure the strength and sufficient hardenability of the wire. On the other hand, if the content is too large, the strength may increase during forging after softening heat treatment, making it difficult to ensure cold forgeability, so the upper limit is limited to 0.6%.
Mnの含量は、0.1~0.6%である。
Mn(マンガン)は、基地組織内に置換型固溶体を形成して固溶強化する元素であって、軟性の低下なしに目標とする強度を確保するために添加するオーステナイト形成元素である。Mnの含量が0.1%未満である場合には、線材の固溶強化による強度及び靭性を確保しにくい。一方、オーステナイト形成元素であるMnの含量が過多の場合、軟質化熱処理後の鍛造時に冷間Acm変態点が低くなり、中心偏析が発生して線材組織が不均一になる虞があるので、その上限を0.6%に限定する。
The content of Mn is 0.1-0.6%.
Mn (manganese) is an element that forms a substitutional solid solution in the base structure to strengthen the base structure, and is an austenite-forming element that is added to ensure the target strength without reducing softness. If the Mn content is less than 0.1%, it is difficult to ensure the strength and toughness of the wire through solid solution strengthening. On the other hand, if the content of Mn, which is an austenite-forming element, is excessive, the cold Acm transformation point will be low during forging after softening heat treatment, and there is a risk that center segregation will occur and the wire structure will become non-uniform. The upper limit is limited to 0.6%.
Crの含量は、1.0~2.0%である。
Cr(クロム)は、Mnと同様に線材の焼入れ性を向上させてマルテンサイト組織を確保するのに有利な元素である。Crの含量が1.0%未満である場合には、軟質化熱処理及び鍛造加工工程後に行われる焼入れ(Quenching)、焼戻し(Tempering)熱処理時にマルテンサイト微細組織を得にくい。一方、その含量が過多の場合、中心偏析が発生して線材内に低温組織が多量形成される虞があるので、その上限を2.0%に限定する。
The content of Cr is 1.0 to 2.0%.
Cr (chromium), like Mn, is an element that is advantageous in improving the hardenability of the wire and ensuring a martensitic structure. If the Cr content is less than 1.0%, it is difficult to obtain a martensitic microstructure during the quenching and tempering heat treatments performed after the softening heat treatment and forging processes. On the other hand, if the content is too large, center segregation may occur and a large amount of low-temperature structure may be formed within the wire, so the upper limit is limited to 2.0%.
Alの含量は、0.01~0.06%である。
アルミニウム(Al)は、脱酸効果だけでなく、Al系炭窒化物を析出させてオーステナイト結晶粒の成長を抑制し、初析フェライト分率を平衡相に近く確保するために0.01%以上添加する。一方、その含量が過多の場合、Al2O3などの硬質介在物の発生が増加し、特に、連鋳時に介在物によるノズル閉塞が発生する虞があるので、その上限を0.06%に限定する。
The content of Al is 0.01-0.06%.
Aluminum (Al) not only has a deoxidizing effect, but also suppresses the growth of austenite grains by precipitating Al-based carbonitrides, and the content is 0.01% or more to ensure a pro-eutectoid ferrite fraction close to the equilibrium phase. Added. On the other hand, if the content is excessive, the generation of hard inclusions such as Al 2 O 3 will increase, and there is a risk that the inclusions will block the nozzle during continuous casting, so the upper limit should be set at 0.06%. limit.
Nの含量は、0.02%以下(0は除外)である。
窒素(N)は、固溶強化効果があるが、その含量が過多になると、窒化物で結合しない固溶窒素により素材の靭性及び軟性が劣位する虞があるので、本発明では不純物として管理し、その上限を0.02%に限定する。
The N content is 0.02% or less (0 is excluded).
Nitrogen (N) has a solid solution strengthening effect, but if its content is excessive, the toughness and softness of the material may deteriorate due to solid solution nitrogen that is not bonded with nitrides, so in the present invention, it is managed as an impurity. , its upper limit is limited to 0.02%.
本発明の残り成分は、鉄(Fe)である。但し、通常の製造過程では原料又は周囲の環境から意図しない不純物が不可避に混入されることがあるので、これを排除できない。不可避な不純物としては、例えば、P(リン)、S(硫黄)などが挙げられる。これら不純物は、通常の製造過程の技術者であれば、誰でも分かるものなので、その全ての内容について本明細書では特に言及しない。
一方、本発明の一実施例によるベアリング用線材の微細組織は、旧オーステナイト結晶粒によって、粒界には網状型初析セメンタイトが存在し、粒内には完全パーライトが存在する。
また、本発明の一実施例によると、微細組織の旧オーステナイト結晶粒のサイズは、3~10μmである。
The remaining component of the present invention is iron (Fe). However, in normal manufacturing processes, unintended impurities may inevitably be mixed in from raw materials or the surrounding environment, and this cannot be excluded. Examples of unavoidable impurities include P (phosphorus) and S (sulfur). These impurities are known to anyone skilled in the art of ordinary manufacturing processes, so all details thereof will not be specifically mentioned herein.
On the other hand, the microstructure of the bearing wire according to an embodiment of the present invention is composed of prior austenite crystal grains, with network-type pro-eutectoid cementite present at the grain boundaries and complete pearlite present within the grains.
Further, according to an embodiment of the present invention, the size of prior austenite grains in the microstructure is 3 to 10 μm.
軟質化熱処理時、パーライト組織内のセメンタイトは、板状から球状にその形態が変化し、球状化の進行程度によって線材の強度は徐徐に低下する。
軟質化熱処理時、金属原子は、材料内の欠陥空間を通じて多様な拡散経路に移動するようになるが、原子単位の欠陥である空孔(vacancy)と線欠陥の一種である転位(dislocation or pipe)と結晶粒界(grain boundary)を通じて拡散する。原子欠陥に比べて転位と結晶粒界は空間が相対的に広いので、速い速度の拡散が可能である。
一方、軟質化熱処理時の熱処理時間は、各原子の拡散速度によって決定され、このような拡散速度を律速する最も主な因子は結晶粒界である。
During the softening heat treatment, the cementite in the pearlite structure changes its shape from a plate-like shape to a spherical shape, and the strength of the wire gradually decreases depending on the degree of spheroidization.
During the softening heat treatment, metal atoms move to various diffusion paths through the defect spaces in the material. ) and grain boundaries. Dislocations and grain boundaries have relatively large spaces compared to atomic defects, so they can diffuse at a high rate.
On the other hand, the heat treatment time during the softening heat treatment is determined by the diffusion rate of each atom, and the main factor that determines the diffusion rate is the grain boundary.
本発明では、粒界構造(grain boundary structure)で粒界を間に置いた結晶粒間の方位差(misorientation)を通じて高傾角粒界と低傾角粒界を区分し、それぞれの分布を制御しようとした。具体的に、隣接結晶粒との相互関係を方位差角度(Misorientation angle)値で定量化し、15°を基準として15°以上の高傾角粒界と15°以下の低傾角粒界に区分した。本発明で特定する各結晶粒の分布は、線材の表層部だけでなく中心部までの全ての領域で対象とする。
軟質化熱処理時間を効果的に短縮するためには、結晶粒を最大限微細化して相対的な粒界面積を増加させることによって高傾角粒界を多量確保することが理想的であるが、結晶粒を微細化するためには、圧延負荷が増加して設備寿命が短縮され、生産性が低下するという問題が発生する。
In the present invention, we attempt to separate high-angle grain boundaries and low-angle grain boundaries through misorientation between grains with grain boundaries in between, and control the distribution of each. did. Specifically, the mutual relationship with adjacent crystal grains was quantified by the misorientation angle value, and the grain boundaries were divided into high-angle grain boundaries of 15° or more and low-angle grain boundaries of 15° or less, based on 15°. The distribution of each crystal grain specified in the present invention is targeted not only in the surface layer of the wire but also in all regions up to the center.
In order to effectively shorten the softening heat treatment time, it is ideal to ensure a large amount of high-angle grain boundaries by making the grains as fine as possible and increasing the relative grain boundary area. In order to make the grains finer, problems arise in that the rolling load increases, equipment life is shortened, and productivity is reduced.
そこで、本発明では、旧オーステナイト結晶粒のサイズを制御すると共に、方位差角度が15°以上である高傾角粒界の単位面積当たり総長さを制御しようとした。具体的に、開示された実施例によるベアリング用線材の旧オーステナイト結晶粒サイズ(AGS)は、3~10μmであり、方位差角度が15°以上である高傾角粒界の長さの和が単位面積当たり1,000~4,000mm/mm2である。
一方、高傾角粒界内に分布する方位差角度が15°以下である低傾角粒界は、熱間圧延時に変形により生成された転位が集まる所であって、軟質化熱処理時に球状化の挙動を助けて冷間鍛造性の向上に寄与することができる。本発明で方位差角度が15°以下である低傾角粒界の長さの和が単位面積当たり250~800mm/mm2である。
Therefore, in the present invention, an attempt was made to control the size of prior austenite crystal grains and the total length per unit area of high-angle grain boundaries where the misorientation angle is 15° or more. Specifically, the prior austenite grain size (AGS) of the bearing wire according to the disclosed embodiment is 3 to 10 μm, and the unit is the sum of the lengths of high-angle grain boundaries where the misorientation angle is 15° or more. It is 1,000 to 4,000 mm/mm 2 per area.
On the other hand, low-angle grain boundaries with a misorientation angle of 15° or less distributed within high-angle grain boundaries are places where dislocations generated by deformation during hot rolling gather, and exhibit spheroidization behavior during softening heat treatment. This can contribute to improving cold forgeability. In the present invention, the sum of the lengths of low-angle grain boundaries where the misorientation angle is 15° or less is 250 to 800 mm/mm 2 per unit area.
低傾角粒界の長さ分布が250mm/mm2未満である場合には、軟質化熱処理時間の短縮効果が低く、低傾角粒界の長さ分布が800mm/mm2超過である場合には、圧延中転位密度が高くなることによって部分的に再結晶が発生して転位密度がむしろ減少するか、結晶粒サイズが不均一で互いに異なるサイズのbimodal形態に発展する問題がある。
一方、方位差角度が小さいほど多量の転位を含んでいることを意味するが、本発明で低傾角粒界のうち方位差角度が5°以下である粒界の割合は、40~80%である。
When the length distribution of low-angle grain boundaries is less than 250 mm/mm 2 , the effect of reducing the softening heat treatment time is low, and when the length distribution of low-angle grain boundaries exceeds 800 mm/mm 2 , As the dislocation density increases during rolling, recrystallization occurs partially and the dislocation density decreases, or the crystal grain size becomes non-uniform and bimodal with different sizes develops.
On the other hand, the smaller the misorientation angle, the more dislocations it contains; however, in the present invention, the proportion of grain boundaries with a misorientation angle of 5° or less among low-angle grain boundaries is 40 to 80%. be.
次に、本発明の他の一側面であるベアリング用線材を製造する方法について詳しく説明する。
本発明の線材は、上記の合金組成を有するビレット(Billet)を製作した後、これを再加熱-線材圧延-多段冷却過程を経て製造することができる。
Next, a method for manufacturing a bearing wire, which is another aspect of the present invention, will be described in detail.
The wire rod of the present invention can be manufactured by manufacturing a billet having the above-mentioned alloy composition, and then subjecting the billet to a process of reheating, wire rod rolling, and multistage cooling.
具体的に、本発明の他の一側面によるベアリング用線材の製造方法は、重量%で、C:0.8~1.2%、Si:0.01~0.6%、Mn:0.1~0.6%、Cr:1.0~2.0%、Al:0.01~0.06%、N:0.02%以下(0は除外)、残りはFe及び不可避な不純物からなるビレットを950~1,050℃の温度範囲で加熱する段階、Ae1~Acm℃の温度範囲で、下記式(1)で表現される臨界変形量以上の変形量で仕上げ熱間圧延して線材を製造する段階、及び前記線材を3℃/sec以上の速度で500~600℃温度範囲まで冷却した後、1℃/sec以下の速度で冷却する段階、を含む。
式(1):-1.6Ceq2+3.11Ceq-0.48
ここで、Ceq=C+Mn/6+Cr/5であり、C、Mn、Crは、各元素の重量%を意味する。
合金元素含量の数値限定理由に対する説明は上記のとおりである。
Specifically, in the method for manufacturing a bearing wire according to another aspect of the present invention, C: 0.8 to 1.2%, Si: 0.01 to 0.6%, Mn: 0. 1 to 0.6%, Cr: 1.0 to 2.0%, Al: 0.01 to 0.06%, N: 0.02% or less (0 is excluded), the rest from Fe and unavoidable impurities. The step of heating the billet in the temperature range of 950 to 1,050°C, finish hot rolling in the temperature range of Ae1 to Acm°C with a deformation amount equal to or greater than the critical deformation amount expressed by the following formula (1) to produce a wire rod. and cooling the wire at a rate of 3° C./sec or more to a temperature range of 500 to 600° C., and then cooling the wire at a rate of 1° C./sec or less.
Formula (1): -1.6Ceq 2 +3.11Ceq -0.48
Here, Ceq=C+Mn/6+Cr/5, and C, Mn, and Cr mean the weight percent of each element.
The reason for the numerical limitation of the alloying element content is as described above.
まず、本発明は、上記の組成成分を有するビレットを950~1,050℃の温度範囲で加熱する段階を経る。
前記加熱温度が950℃未満である場合、圧延ロールに印加される負荷が大きくなり、これによって、ロール交替周期が短くなる虞がある。一方、前記加熱温度が1,050℃を超過する場合には、圧延のために急激な冷却が必要なので、冷却制御が難しいだけでなく亀裂などが発生して良好な製品品質が確保できない虞がある。
また、前記加熱は、90分以内に行うことが好ましい。90分を超過して加熱を行う場合には、線材表面の脱炭層の深さが厚くなって圧延終了後に脱炭層が残存する虞がある。
First, the present invention goes through the step of heating a billet having the above-mentioned composition components in a temperature range of 950 to 1,050°C.
If the heating temperature is less than 950° C., the load applied to the rolling rolls will increase, which may shorten the roll replacement cycle. On the other hand, if the heating temperature exceeds 1,050°C, rapid cooling is required for rolling, which not only makes it difficult to control the cooling, but also creates the risk of cracking, making it impossible to ensure good product quality. be.
Moreover, it is preferable that the heating is performed within 90 minutes. When heating is performed for more than 90 minutes, the depth of the decarburized layer on the surface of the wire becomes thick, and there is a possibility that the decarburized layer remains after rolling.
加熱されたビレットに粗圧延/中間粗圧延/仕上げ圧延及び仕上げ圧延の構成を順次行う熱間圧延を施して線材を製造する。熱間圧延は、ビレットが線材の形態を有するようにする孔型圧延であることが好ましく、具体的に、ビレットをAe1~Acm℃の温度範囲で、下記式(1)で表現される臨界変形量以上の変形量で仕上げ熱間圧延して線材を製造する。
線材の製造時、圧延速度は、非常に速いため動的再結晶領域に該当する。動的再結晶領域では、オーステナイト結晶粒サイズ(AGS)が変形速度と変形温度にのみ依存する。本発明では、圧延中に発生する動的再結晶を通じて結晶粒を微細化し、その後、速い速度の冷却を通じて圧延中に確保された微細な結晶粒を常温までそのまま維持することを特徴とする。
The heated billet is subjected to hot rolling in which rough rolling, intermediate rough rolling, finish rolling, and finish rolling are sequentially performed to produce a wire rod. The hot rolling is preferably groove rolling which makes the billet have the shape of a wire rod, and specifically, the billet is subjected to critical deformation expressed by the following formula (1) in a temperature range of Ae1 to Acm°C. The wire rod is manufactured by finishing hot rolling with a deformation amount greater than the amount of deformation.
During the production of wire rods, the rolling speed is so high that it falls under the dynamic recrystallization region. In the dynamic recrystallization regime, austenite grain size (AGS) depends only on deformation rate and deformation temperature. The present invention is characterized in that crystal grains are refined through dynamic recrystallization that occurs during rolling, and then the fine grains obtained during rolling are maintained as they are until room temperature through rapid cooling.
最終仕上げ圧延時に結晶粒を微細化するためには、ロールとロールの間のインターパス(interpass)時間を1分以内に制御して仕上げ圧延直前のオーステナイト結晶粒サイズ(AGS)を5~20μm範囲に確保し、その後、仕上げ圧延時に仕上げ圧延温度をAe1~Acm℃に制御することが好ましい。
前記仕上げ熱間圧延時の温度がAe1℃未満であると、圧延負荷が増加して設備寿命が短縮される虞があり、一方、Acm℃を超過すると、高い温度により速い冷却にも関わらず相変態終了までの維持時間が長くなり、本発明の狙いである結晶粒微細化効果が大きく減少する虞がある。
In order to refine grains during final finish rolling, the interpass time between the rolls is controlled to within 1 minute, and the austenite grain size (AGS) immediately before finish rolling is controlled within a range of 5 to 20 μm. It is preferable to maintain the finish rolling temperature at Ae1 to Acm° C. during finish rolling.
If the temperature during the finish hot rolling is Ae less than 1°C, the rolling load may increase and the equipment life may be shortened, while if it exceeds Acm°C, the temperature may not be maintained despite rapid cooling due to the high temperature. The maintenance time until the end of transformation becomes longer, and there is a possibility that the crystal grain refinement effect, which is the aim of the present invention, will be greatly reduced.
また、上記温度範囲で熱間圧延時の変形量を下記式(1)で表現される臨界変形量以上に制御することができる。
式(1):-1.6Ceq2+3.11Ceq-0.48
ここで、Ceq=C+Mn/6+Cr/5であり、C、Mn、Crは、各元素の重量%を意味する。
Moreover, the amount of deformation during hot rolling can be controlled to be greater than the critical amount of deformation expressed by the following formula (1) within the above temperature range.
Formula (1): -1.6Ceq 2 +3.11Ceq -0.48
Here, Ceq=C+Mn/6+Cr/5, and C, Mn, and Cr mean the weight percent of each element.
本発明者らは、Ceqと変形量間の相関関係を考慮して、式(1)で表現される臨界変形量を導き出した。
変形量は、-ln(1-RA)で定義され、このとき、RAは圧延パスによる減兔率(RA<1)である。変形量が臨界変形量に達していない場合、圧下量が十分ではないため線材の中心部での結晶粒を十分に微細化させにくく、これによって、軟質化熱処理時の線材の球状化挙動に悪影響を及ぼす。
The present inventors took into account the correlation between Ceq and the amount of deformation and derived the critical amount of deformation expressed by equation (1).
The amount of deformation is defined as -ln(1-RA), where RA is the reduction rate due to the rolling pass (RA<1). If the deformation amount has not reached the critical deformation amount, the reduction amount is not sufficient and it is difficult to sufficiently refine the crystal grains in the center of the wire, which has a negative effect on the spheroidization behavior of the wire during softening heat treatment. effect.
一方、熱間圧延時の線材は、下記式(2)を満足する。
式(2):Tpf-Tf≦50℃
ここで、Tpfは、仕上げ熱間圧延前の線材の平均表面温度であり、Tfは、仕上げ熱間圧延後の線材の平均表面温度である。
On the other hand, the wire rod during hot rolling satisfies the following formula (2).
Formula (2): Tpf-Tf≦50°C
Here, Tpf is the average surface temperature of the wire rod before finish hot rolling, and Tf is the average surface temperature of the wire rod after finish hot rolling.
Tpf-Tf値が50℃を超過する場合には、線材微細組織の偏差が非常に大きくなって均一な微細組織を確保できず、線材表面に過冷が起きて硬質相が発生するか結晶粒が粗大化する虞がある。
上記の温度範囲で熱間圧延した後、3℃/sec以上の速度で500~600℃温度範囲まで冷却した後、1℃/sec以下の速度で冷却する段階を経て本発明のベアリング用線材を製造することができる。
If the Tpf-Tf value exceeds 50°C, the deviation of the wire microstructure becomes so large that a uniform microstructure cannot be ensured, and the wire surface is overcooled and a hard phase is generated or crystal grains are formed. There is a risk that the area may become coarse.
After hot rolling in the above temperature range, cooling at a rate of 3°C/sec or more to a temperature range of 500 to 600°C, and then cooling at a rate of 1°C/sec or less to produce the bearing wire of the present invention. can be manufactured.
上記の冷却段階は、微細な結晶粒の分布を確保するために必須的な工程であって、本発明では、冷却終了温度及び冷却速度を制御して拡散加速化を通じて熱処理時間の短縮が可能な微細組織を確保しようするものである。
500~600℃温度範囲までの冷却速度が3℃/sec未満である場合には、熱間圧延を通じて確保した微細な結晶粒を変態点以下まで維持しにくく、方位差角度が15°以下である低傾角粒界の分率が大きく減少する虞がある。一方、500~600℃温度範囲に到達した後の冷却速度が1℃/secを超過する場合には、ベイナイトなどの低温組織が発生して球状化熱処理にも関わらず軟質化が十分に進まない虞がある。
次に、冷却段階を経た線材を巻取した後、軟質化熱処理する段階、をさらに含むことができる。
The above cooling step is an essential step to ensure fine grain distribution, and in the present invention, the heat treatment time can be shortened through accelerated diffusion by controlling the cooling end temperature and cooling rate. This is to ensure a fine structure.
If the cooling rate to the temperature range of 500 to 600°C is less than 3°C/sec, it is difficult to maintain the fine grains obtained through hot rolling below the transformation point, and the misorientation angle is 15° or less. There is a possibility that the fraction of low-angle grain boundaries will decrease significantly. On the other hand, if the cooling rate after reaching the 500-600°C temperature range exceeds 1°C/sec, low-temperature structures such as bainite will occur and softening will not proceed sufficiently despite the spheroidizing heat treatment. There is a possibility.
Next, the method may further include a step of winding the wire rod after the cooling step and then subjecting the wire rod to a softening heat treatment.
軟質化熱処理過程は、線材のAe1℃付近の温度で要求する軟質化程度によって多様な熱処理パターンを適用することができる。本発明では、冷却後、前記線材をAe1~Ae1+40℃に加熱して5~8時間維持する軟質化熱処理を行った。
前記加熱温度がAe1℃未満である場合、軟質化熱処理時間が長くなる問題点がある。一方、前記加熱温度がAe1+40℃を超過する場合には、球状化炭化物シードが減って十分な軟質化熱処理効果を得ることができない。また、前記加熱は、5時間~8時間の間行うことが好ましい。8時間を超過して加熱する場合には、製造工程費用が増加する問題がある。一方、5時間未満で加熱する場合には、熱処理が十分に進行されないためセメンタイトの縦横比が大きくなる問題点がある。
In the softening heat treatment process, various heat treatment patterns can be applied depending on the degree of softening required at a temperature around Ae 1° C. of the wire. In the present invention, after cooling, the wire was subjected to a softening heat treatment in which the wire was heated to Ae1 to Ae1+40°C and maintained for 5 to 8 hours.
When the heating temperature is Ae less than 1° C., there is a problem that the softening heat treatment time becomes long. On the other hand, if the heating temperature exceeds Ae1+40°C, the number of spheroidized carbide seeds decreases, making it impossible to obtain a sufficient softening heat treatment effect. Further, the heating is preferably performed for 5 to 8 hours. When heating for more than 8 hours, there is a problem that the cost of the manufacturing process increases. On the other hand, when heating for less than 5 hours, the heat treatment does not proceed sufficiently, resulting in a problem that the aspect ratio of cementite increases.
軟質化熱処理段階後、20℃/hr以下の速度で660℃まで冷却する段階を経る。このとき、冷却速度が20℃/hrを超過する場合には、過度な冷却速度によりパーライトが再形成される虞がある。
軟質化熱処理を行った後、線材の引張強度は、750MPa以下であり、線材内のセメンタイトの平均縦横比は、2.5以下であることがよい。具体的に、線材の表層部だけでなく中心部までの全領域でセメンタイト平均縦横比が2.5以下である炭化物を80%以上確保することができる。
After the softening heat treatment step, a cooling step is performed to 660° C. at a rate of 20° C./hr or less. At this time, if the cooling rate exceeds 20° C./hr, pearlite may be reformed due to the excessive cooling rate.
After the softening heat treatment, the tensile strength of the wire is preferably 750 MPa or less, and the average aspect ratio of cementite in the wire is preferably 2.5 or less. Specifically, it is possible to secure 80% or more of carbide having an average cementite aspect ratio of 2.5 or less not only in the surface layer of the wire but also in the entire area up to the center.
本発明では、1回の軟質化熱処理だけでも線材の引張強度を740MPa以下に低く制御することができるので、最終製品の製造のための冷間圧造又は冷間鍛造加工が容易である。これによって、線材の製造後の追加工程である球状化熱処理時間を短縮するか、または省略することができるので、費用の節減が可能である。
以下、実施例を通じて本発明をより詳細に説明する。一方、下記の実施例は、本発明を例示してより詳細に説明するためのものであって、本発明の権利範囲を限定するためのものではないという点に留意する必要がある。本発明の権利範囲は、特許請求の範囲に記載した事項とそれから合理的に類推される事項によって決定されるものである。
実施例
In the present invention, the tensile strength of the wire can be controlled to be as low as 740 MPa or less with just one softening heat treatment, so cold heading or cold forging for manufacturing the final product is easy. This makes it possible to shorten or omit the time for spheroidization heat treatment, which is an additional step after wire rod manufacturing, and thus enables cost savings.
Hereinafter, the present invention will be explained in more detail through Examples. On the other hand, it should be noted that the following examples are intended to illustrate and explain the present invention in more detail, and are not intended to limit the scope of the present invention. The scope of rights to the present invention is determined by the matters stated in the claims and matters reasonably inferred therefrom.
Example
下記表1の組成を有する鋼材を鋳造してビレットを製造した後、下記表2に記載した条件で熱間圧延及び冷却して直径が10mmである線材を製造した。表2で、仕上げ圧延前のオーステナイト結晶粒平均サイズ(Austenite Grain Size、以下「AGS」)は、仕上げ熱間圧延前に行う切断面(crop)を通じて測定した。また、Tpfは、仕上げ圧延前の線材の平均表面温度であり、Tfは、仕上げ圧延後の線材の平均表面温度である。 A billet was produced by casting a steel material having the composition shown in Table 1 below, and then hot rolled and cooled under the conditions shown in Table 2 below to produce a wire rod having a diameter of 10 mm. In Table 2, the average austenite grain size (hereinafter referred to as "AGS") before finish rolling was measured through a cut plane (crop) performed before finish hot rolling. Moreover, Tpf is the average surface temperature of the wire rod before finish rolling, and Tf is the average surface temperature of the wire rod after finish rolling.
その後、製造されたそれぞれの実施例と比較例の微細組織及び結晶粒界の特徴と機械的特性(引張強度、断面減少率)を測定して下記表3に示した。
引張強度は、熱間圧延された線材をASTM E8規格によって引張試験片を加工した後、上記の鋼線の製造方法によった製造した後に引張試験を実施して測定した。
RAは、断面減少率(Reduction Ratio)を意味し、素材の引張試験時に破断された引張試験片で断面積の変化を測定したものであって、素材の軟性を数値で表現したものである。
Thereafter, the microstructure, grain boundary characteristics, and mechanical properties (tensile strength, area reduction rate) of each of the manufactured examples and comparative examples were measured and are shown in Table 3 below.
The tensile strength was measured by processing a hot-rolled wire rod into a tensile test piece according to ASTM E8 standard, manufacturing the steel wire according to the above method, and then performing a tensile test.
RA stands for Reduction Ratio, which is a measure of the change in cross-sectional area of a tensile test piece that was broken during a tensile test of the material, and is a numerical expression of the softness of the material.
結晶粒平均サイズ(AGS)は、ASTM E112法を用いて測定した。熱間圧延して線材を製造した後、非水冷部を除去して採取した試験片に対してそれぞれ表面、直径から1/4地点、直径から1/2地点で任意の3地点を測定した後に平均値で示した。
結晶粒界の特徴は、結晶粒サイズ(AGS)測定方法と同じ方法で試験片を採取した後、SEM-EBSDを用いて表面、直径から1/4地点、直径から1/2地点でx700の倍率で130x130μm2の面積を0.1μm Step-sizeで測定して平均値で示した。Confidence Indexの平均値は、0.57以上であった。
Average grain size (AGS) was measured using the ASTM E112 method. After producing a wire rod by hot rolling, the non-water-cooled part was removed and the specimen was taken, and measurements were taken at three arbitrary points on the surface, at a point 1/4 from the diameter, and at a point 1/2 from the diameter. Shown as average value.
The characteristics of grain boundaries can be determined by taking a specimen using the same method as the grain size (AGS) measurement method, and using SEM-EBSD to measure the surface, 1/4 point from the diameter, and 1/2 point from the diameter at x700. An area of 130×130 μm 2 was measured at a magnification of 0.1 μm step-size, and the average value is shown. The average value of Confidence Index was 0.57 or more.
一方、それぞれの実施例と比較例の線材を下記表4の条件で1回球状化熱処理した後、セメンタイトの平均縦横比と引張強度を測定してその結果を下記表4に示した。このとき、球状化熱処理は、製造された線材の試験片を1次軟質化処理及び1次伸線加工の工程なしに行い、球状化の有無を判断した。
このとき、球状化熱処理後の線材のセメンタイト平均縦横比は、線材の直径方向に1/4~1/2領域に3000倍SEMを3視野撮影し、イメージ測定プログラムを用いて視野内のセメンタイトの長軸/短縮を自動測定後に統計処理をして表示したものである。
球状化有無の判断は、ランダムに10箇所以上でSEM電子顕微鏡を用いて撮影した後、×5,000視野で観察した全ての炭化物のうち縦横比(Aspect ratio)が2.5以下である球状化炭化物の占有率が80%以上である場合を、球状化が行われたと判断した。
On the other hand, the wire rods of each example and comparative example were subjected to a spheroidization heat treatment once under the conditions shown in Table 4 below, and then the average aspect ratio and tensile strength of cementite were measured, and the results are shown in Table 4 below. At this time, the spheroidization heat treatment was performed on the manufactured wire test piece without the steps of primary softening treatment and primary wire drawing, and the presence or absence of spheroidization was determined.
At this time, the average aspect ratio of the cementite in the wire after the spheroidization heat treatment is determined by photographing three fields of view with a 3000x SEM in the 1/4 to 1/2 area in the diameter direction of the wire, and using an image measurement program to determine the cementite within the field of view. The long axis/shortening is automatically measured and then statistically processed and displayed.
The presence or absence of spheroidization is determined by randomly photographing 10 or more locations using an SEM electron microscope and then observing the carbides in a 5,000x field of view. Spheroidization was determined to have occurred when the occupancy rate of carbonized carbide was 80% or more.
比較例1~4は、合金組成が本発明で特定する規格を満足するが、下記製造工程正条件が本発明を逸脱する例で、比較例として表記した。 Comparative Examples 1 to 4 are examples in which the alloy composition satisfies the specifications specified in the present invention, but the positive manufacturing process conditions described below deviate from the present invention, and are described as comparative examples.
図1と図2は、それぞれ本発明の実施例1、比較例1の線材を仕上げ熱間圧延前、光学顕微鏡(Optical Microscope、OM)で撮影した微細組織写真であり、図3と図4は、それぞれ本発明の実施例1、比較例1の線材を仕上げ熱間圧延及び冷却した後、走査電子顕微鏡(Scanning Electron Microscope、SEM)で撮影した微細組織写真である。
図1~図4に示したとおり、実施例1は、比較例1に比べて仕上げ熱間圧延前の旧オーステナイト結晶粒サイズ(AGS)が相対的に微細であり、これによって、仕上げ熱間圧延及び冷却後にも結晶粒が微細であることが確認できる。
1 and 2 are microstructure photographs taken using an optical microscope (OM) of the wire rods of Example 1 of the present invention and Comparative Example 1, respectively, before finishing and hot rolling. , are microstructure photographs taken using a scanning electron microscope (SEM) after finishing hot rolling and cooling the wire rods of Example 1 and Comparative Example 1 of the present invention, respectively.
As shown in FIGS. 1 to 4, in Example 1, the prior austenite grain size (AGS) before finish hot rolling is relatively fine compared to Comparative Example 1. It can be confirmed that the crystal grains are fine even after cooling.
表3に示したとおり、本発明が提案する合金組成及び製造条件を満足する実施例1~3の線材は、旧オーステナイト結晶粒サイズ(AGS)が3~10μmであり、方位差角度(Misorientation angle)が15°以上である高傾角粒界の長さ分布が1,000~4,000mm/mm2であって微細な結晶粒を確保することができた。また、実施例1~3の線材は、比較例に比べて1,200MPa以上の高い引張強度を確保すると共に、断面積減少率が20%以上であった。 As shown in Table 3, the wire rods of Examples 1 to 3 that satisfy the alloy composition and manufacturing conditions proposed by the present invention have prior austenite grain sizes (AGS) of 3 to 10 μm, and misorientation angles of 3 to 10 μm. ) was 15° or more, and the length distribution of high-angle grain boundaries was 1,000 to 4,000 mm/mm 2 , making it possible to secure fine crystal grains. Further, the wire rods of Examples 1 to 3 ensured a high tensile strength of 1,200 MPa or more compared to the comparative example, and the cross-sectional area reduction rate was 20% or more.
図5と図6は、それぞれ本発明の実施例1、比較例1の線材を仕上げ熱間圧延及び冷却後、SEM-EBSDを通じて結晶粒界の特性を観察した写真である。
図5及び図6に示したとおり、実施例1は、比較例1に比べて緑色と赤色で表示されている方位差角度(Misorientation angle)が15°以下である低傾角結晶粒界の分布度が高いことが確認できる。
表4に示したとおり、本発明が提案する合金組成と製造条件を満足する実施例1~3の線材は、1回軟質化熱処理後、引張強度が740MPa以下と低値になるだけでなく、微細な結晶粒を確保することによって、従来30時間以上であった熱処理を、より短い球状化熱処理だけでも平均縦横比が2.5以下である球状化セメンタイトを確保することができた。
5 and 6 are photographs of the characteristics of grain boundaries observed through SEM-EBSD after finishing hot rolling and cooling the wire rods of Example 1 of the present invention and Comparative Example 1, respectively.
As shown in FIGS. 5 and 6, Example 1 has a higher degree of distribution of low-angle grain boundaries where the misorientation angle shown in green and red is 15° or less compared to Comparative Example 1. It can be confirmed that the
As shown in Table 4, the wire rods of Examples 1 to 3 that satisfy the alloy composition and manufacturing conditions proposed by the present invention not only have a low tensile strength of 740 MPa or less after one softening heat treatment, but also have a low tensile strength of 740 MPa or less. By securing fine crystal grains, it was possible to secure spheroidized cementite with an average aspect ratio of 2.5 or less even with a shorter spheroidization heat treatment than the conventional heat treatment of 30 hours or more.
図7と図8は、それぞれ本発明の実施例1、比較例1の線材を球状化熱処理した後、走査電子顕微鏡(Scanning Electron Microscope、SEM)で撮影した微細組織写真である。
図7及び図8に示したとおり、実施例1は、比較例1に比べて球状セメンタイトが均一に分布されているので、速い速度で球状化が行われたことを確認することができる。
比較例1の場合、Mn含量が過多でありAcm変態点が上昇するに従って圧延時に結晶粒の十分な微細化が行われなかった。これによって、軟質化熱処理後にも、セメンタイト平均縦横比が8.5となって球状化された組織を得ることができず、引張強度値が820MPaと高値であった。
FIG. 7 and FIG. 8 are microstructure photographs taken with a scanning electron microscope (SEM) after subjecting the wire rods of Example 1 of the present invention and Comparative Example 1 to spheroidization heat treatment, respectively.
As shown in FIGS. 7 and 8, in Example 1, the spheroidal cementite was more uniformly distributed than in Comparative Example 1, so it can be confirmed that spheroidization was performed at a faster rate.
In the case of Comparative Example 1, the Mn content was excessive, and as the Acm transformation point rose, the crystal grains were not sufficiently refined during rolling. As a result, even after the softening heat treatment, the cementite average aspect ratio was 8.5, making it impossible to obtain a spheroidized structure, and the tensile strength value was as high as 820 MPa.
比較例2の場合、仕上げ熱間圧延温度が850℃とAcm℃変態点以上の温度を超過して相変態終了まで必要な冷却時間が長くなることによって、結晶粒の微細化効果が大きく減少した。これによって、軟質化熱処理後にも、セメンタイト平均縦横比が6.2となり、球状化された組織を得ることができず、引張強度値が790MPaと高値であった。
比較例3の場合、本発明が特定する成分範囲を満足するが、Tpf-Tf値が85℃と50℃を大きく超過して、圧延時に素材内/外部の温度偏差が大きく増加し、中心部では平均結晶粒サイズが15μmである粗大な微細組織が形成された。これによって、軟質化熱処理後にも、セメンタイト平均縦横比が7.5となって球状化された組織を得ることができず、引張強度値が810MPaと高値であった。
In the case of Comparative Example 2, the finish hot rolling temperature exceeded 850°C, which is higher than the Acm°C transformation point, and the cooling time required to complete the phase transformation became longer, resulting in a significant reduction in the grain refinement effect. . As a result, even after the softening heat treatment, the cementite average aspect ratio was 6.2, a spheroidized structure could not be obtained, and the tensile strength value was as high as 790 MPa.
In the case of Comparative Example 3, the component range specified by the present invention is satisfied, but the Tpf-Tf value greatly exceeds 85°C and 50°C, and the temperature deviation between the inside and outside of the material increases greatly during rolling, and the center part A coarse microstructure with an average grain size of 15 μm was formed. As a result, even after the softening heat treatment, the cementite average aspect ratio was 7.5, making it impossible to obtain a spheroidized structure, and the tensile strength value was as high as 810 MPa.
比較例4の場合、本発明が特定する成分範囲を満足するが、変形量が0.32と臨界変形量である0.69に大きく足りないため十分な圧下量を確保することができず、結晶粒の十分な微細化が行われなかった。これによって、軟質化熱処理後にも、セメンタイト平均縦横比が5.5となって球状化された組織を得ることができず、引張強度値が770MPaと高値であった。
このように本発明の実施例によると、合金成分及び製造方法を制御して微細な結晶粒分布を生成した。これによって、線材の製造後に軟質化のために隋伴される球状化熱処理工程を短縮するか省略することができるので、製品の価格競争力を確保することができる。
In the case of Comparative Example 4, the component range specified by the present invention is satisfied, but the amount of deformation is 0.32, which is far short of the critical amount of 0.69, so a sufficient reduction amount cannot be secured. Sufficient grain refinement was not performed. As a result, even after the softening heat treatment, the cementite average aspect ratio was 5.5, making it impossible to obtain a spheroidized structure, and the tensile strength value was as high as 770 MPa.
As described above, according to the embodiments of the present invention, a fine grain distribution was produced by controlling the alloy components and manufacturing method. Accordingly, it is possible to shorten or omit the spheroidizing heat treatment process that is carried out to soften the wire after manufacturing the wire, thereby ensuring the price competitiveness of the product.
以上、本発明の例示的な実施例を説明したが、本発明はこれに限定されず、該当技術分野において通常の知識を有する者であれば、次に記載する特許請求の範囲の概念と範囲を脱しない範囲内で多様に変更及び変形が可能であることを理解すべきである。 Although the exemplary embodiments of the present invention have been described above, the present invention is not limited thereto, and a person having ordinary knowledge in the relevant technical field will understand the concept and scope of the following claims. It should be understood that various changes and modifications can be made within the scope of the invention.
本発明によるベアリング用線材及びその製造方法は、軟質化熱処理時間を短縮するか省略し得るので、製造工程上の費用節減が可能である。
The bearing wire rod and the manufacturing method thereof according to the present invention can shorten or omit the softening heat treatment time, thereby reducing costs in the manufacturing process.
Claims (12)
微細組織の旧オーステナイト結晶粒サイズは、3~10μmであり、
方位差角度(Misorientation angle)が15°以上である高傾角粒界長さの和が単位面積当たり1,000~4,000mm/mm2であることを特徴とするベアリング用線材。 In weight%, C: 0.8 to 1.2%, Si: 0.01 to 0.6%, Mn: 0.1 to 0.6%, Cr: 1.0 to 2.0%, Al: 0.01 to 0.06%, N: 0.02% or less (0 is excluded), the rest consists of Fe and unavoidable impurities,
The prior austenite grain size of the microstructure is 3 to 10 μm,
A wire rod for a bearing, characterized in that the sum of the lengths of high-angle grain boundaries with a misorientation angle of 15° or more is 1,000 to 4,000 mm/mm 2 per unit area.
重量%で、C:0.8~1.2%、Si:0.01~0.6%、Mn:0.1~0.6%、Cr:1.0~2.0%、Al:0.01~0.06%、N:0.02%以下(0は除外)、残りはFe及び不可避な不純物からなるビレットを950~1,050℃の温度範囲で加熱する段階、
Ae1~Acm℃の温度範囲で、下記式(1)で表現される臨界変形量以上の変形量で仕上げ熱間圧延して線材を製造する段階、及び
前記線材を3℃/sec以上の速度で500~600℃温度範囲まで冷却した後、1℃/sec以下の速度で冷却する段階、を含み、
前記ベアリング用線材は、
微細組織の旧オーステナイト結晶粒サイズは、3~10μmであり、方位差角度(Misorientation angle)が15°以上である高傾角粒界長さの和が単位面積当たり1,000~4,000mm/mm 2 であることを特徴とするベアリング用線材の製造方法。
式(1):-1.6Ceq2+3.11Ceq-0.48
(ここで、Ceq=C+Mn/6+Cr/5であり、C、Mn、Crは、各元素の重量%を意味する。) A method for manufacturing a wire rod for bearings, the method comprising:
In weight%, C: 0.8 to 1.2%, Si: 0.01 to 0.6%, Mn: 0.1 to 0.6%, Cr: 1.0 to 2.0%, Al: heating a billet consisting of 0.01 to 0.06%, N: 0.02% or less (0 is excluded), the remainder being Fe and unavoidable impurities in a temperature range of 950 to 1,050 ° C.;
A step of producing a wire rod by finish hot rolling at a temperature range of Ae1 to Acm°C with a deformation amount equal to or more than the critical deformation amount expressed by the following formula (1), and rolling the wire rod at a speed of 3°C/sec or more. After cooling to a temperature range of 500 to 600°C, cooling at a rate of 1°C/sec or less ,
The bearing wire rod is
The prior austenite grain size of the microstructure is 3 to 10 μm, and the sum of high-angle grain boundary lengths with a misorientation angle of 15° or more is 1,000 to 4,000 mm/mm per unit area. 2. A method for producing a bearing wire material, characterized in that :
Formula (1): -1.6Ceq 2 +3.11Ceq -0.48
(Here, Ceq=C+Mn/6+Cr/5, and C, Mn, and Cr mean the weight percent of each element.)
式(2):Tpf-Tf≦50℃
(ここで、Tpfは、仕上げ熱間圧延前の線材の平均表面温度であり、Tfは、仕上げ熱間圧延後の線材の平均表面温度である。) 8. The method for manufacturing a bearing wire rod according to claim 7 , wherein the wire rod satisfies the following formula (2).
Formula (2): Tpf-Tf≦50°C
(Here, Tpf is the average surface temperature of the wire rod before finish hot rolling, and Tf is the average surface temperature of the wire rod after finish hot rolling.)
The method for manufacturing a bearing wire according to claim 11 , further comprising the step of cooling to 660°C at a rate of 20°C/hr or less after the softening heat treatment.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190172410A KR102421642B1 (en) | 2019-12-20 | 2019-12-20 | Wire rod for bearing and methods for manufacturing thereof |
KR10-2019-0172410 | 2019-12-20 | ||
PCT/KR2020/001721 WO2021125435A1 (en) | 2019-12-20 | 2020-02-06 | Bearing wire rod and manufacturing method therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023508022A JP2023508022A (en) | 2023-02-28 |
JP7389909B2 true JP7389909B2 (en) | 2023-11-30 |
Family
ID=76478657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022538318A Active JP7389909B2 (en) | 2019-12-20 | 2020-02-06 | Bearing wire rod and its manufacturing method |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230020054A1 (en) |
EP (1) | EP4060073A4 (en) |
JP (1) | JP7389909B2 (en) |
KR (2) | KR102421642B1 (en) |
CN (1) | CN114981464B (en) |
WO (1) | WO2021125435A1 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003129176A (en) | 2001-10-16 | 2003-05-08 | Kobe Steel Ltd | Steel wire or rod superior in wire drawability capable of omitting heat treatment prior to wire drawing, and bearing parts |
JP2003171737A (en) | 2001-12-07 | 2003-06-20 | Kobe Steel Ltd | Rolled wire rod for bearing |
JP2008202136A (en) | 2007-02-22 | 2008-09-04 | Jfe Steel Kk | Steel component for bearing, and method for producing the same |
JP2009108354A (en) | 2007-10-29 | 2009-05-21 | Sumitomo Metal Ind Ltd | Method for manufacturing rough-formed bearing |
JP2012233254A (en) | 2011-04-20 | 2012-11-29 | Kobe Steel Ltd | High carbon steel wire rod and method for producing high carbon steel wire rod |
JP2013505366A (en) | 2009-09-23 | 2013-02-14 | ポスコ | High carbon flexible wire capable of omitting softening treatment and method for producing the same |
WO2015105187A1 (en) | 2014-01-10 | 2015-07-16 | 新日鐵住金株式会社 | Bearing component |
WO2016063867A1 (en) | 2014-10-20 | 2016-04-28 | 新日鐵住金株式会社 | Steel wire for bearing with excellent wire drawability and coil formability after wiredrawing |
JP2016172888A (en) | 2015-03-16 | 2016-09-29 | 新日鐵住金株式会社 | Steel wire excellent in cold working and manufacturing method therefor |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3215891B2 (en) * | 1991-06-14 | 2001-10-09 | 新日本製鐵株式会社 | Manufacturing method of steel rod for cold working |
JP3291068B2 (en) * | 1993-04-12 | 2002-06-10 | 新日本製鐵株式会社 | Manufacturing method of bearing steel with excellent spheroidizing annealing characteristics |
JPH09279240A (en) * | 1996-04-12 | 1997-10-28 | Sumitomo Metal Ind Ltd | Production of steel wire |
JP4631617B2 (en) * | 2005-08-31 | 2011-02-16 | Jfeスチール株式会社 | Manufacturing method of steel parts for bearings with excellent fatigue characteristics |
JP5380001B2 (en) * | 2008-05-15 | 2014-01-08 | 新日鐵住金株式会社 | Manufacturing method of bearing steel |
JP5425736B2 (en) * | 2010-09-15 | 2014-02-26 | 株式会社神戸製鋼所 | Bearing steel with excellent cold workability, wear resistance, and rolling fatigue properties |
WO2013108828A1 (en) * | 2012-01-20 | 2013-07-25 | 新日鐵住金株式会社 | Rolled wire rod, and method for producing same |
KR101639886B1 (en) * | 2014-11-10 | 2016-07-15 | 주식회사 포스코 | Bearing steel having high fatigue life and manufacturing method for the same |
KR101676109B1 (en) * | 2014-11-20 | 2016-11-15 | 주식회사 포스코 | Wire rod having good drawability and high strength, steel wire having high strength and manufacturing method of wire rod |
WO2016088803A1 (en) * | 2014-12-05 | 2016-06-09 | 新日鐵住金株式会社 | High-carbon-steel wire rod having excellent wire drawing properties |
JP6193842B2 (en) * | 2014-12-11 | 2017-09-06 | 株式会社神戸製鋼所 | Steel wire rod for bearing |
-
2019
- 2019-12-20 KR KR1020190172410A patent/KR102421642B1/en active IP Right Grant
-
2020
- 2020-02-06 CN CN202080092967.0A patent/CN114981464B/en active Active
- 2020-02-06 WO PCT/KR2020/001721 patent/WO2021125435A1/en unknown
- 2020-02-06 EP EP20903915.5A patent/EP4060073A4/en active Pending
- 2020-02-06 US US17/784,727 patent/US20230020054A1/en active Pending
- 2020-02-06 JP JP2022538318A patent/JP7389909B2/en active Active
-
2022
- 2022-07-12 KR KR1020220085761A patent/KR20220101598A/en not_active Application Discontinuation
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003129176A (en) | 2001-10-16 | 2003-05-08 | Kobe Steel Ltd | Steel wire or rod superior in wire drawability capable of omitting heat treatment prior to wire drawing, and bearing parts |
JP2003171737A (en) | 2001-12-07 | 2003-06-20 | Kobe Steel Ltd | Rolled wire rod for bearing |
JP2008202136A (en) | 2007-02-22 | 2008-09-04 | Jfe Steel Kk | Steel component for bearing, and method for producing the same |
JP2009108354A (en) | 2007-10-29 | 2009-05-21 | Sumitomo Metal Ind Ltd | Method for manufacturing rough-formed bearing |
JP2013505366A (en) | 2009-09-23 | 2013-02-14 | ポスコ | High carbon flexible wire capable of omitting softening treatment and method for producing the same |
JP2012233254A (en) | 2011-04-20 | 2012-11-29 | Kobe Steel Ltd | High carbon steel wire rod and method for producing high carbon steel wire rod |
WO2015105187A1 (en) | 2014-01-10 | 2015-07-16 | 新日鐵住金株式会社 | Bearing component |
WO2016063867A1 (en) | 2014-10-20 | 2016-04-28 | 新日鐵住金株式会社 | Steel wire for bearing with excellent wire drawability and coil formability after wiredrawing |
JP2016172888A (en) | 2015-03-16 | 2016-09-29 | 新日鐵住金株式会社 | Steel wire excellent in cold working and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
EP4060073A1 (en) | 2022-09-21 |
CN114981464A (en) | 2022-08-30 |
KR20220101598A (en) | 2022-07-19 |
JP2023508022A (en) | 2023-02-28 |
CN114981464B (en) | 2024-02-06 |
KR102421642B1 (en) | 2022-07-18 |
US20230020054A1 (en) | 2023-01-19 |
WO2021125435A1 (en) | 2021-06-24 |
KR20210080043A (en) | 2021-06-30 |
EP4060073A4 (en) | 2024-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6119924B1 (en) | Steel sheet and manufacturing method thereof | |
JP6160783B2 (en) | Steel sheet and manufacturing method thereof | |
JP6226086B2 (en) | Rolled steel bar or wire rod for cold forging parts | |
JP6226085B2 (en) | Rolled steel bar or wire rod for cold forging parts | |
JP7159445B2 (en) | Soft heat treatment time shortened cold forging wire and its manufacturing method | |
JP2009024218A (en) | Method for manufacturing rough-formed product of bearing | |
TWI557239B (en) | High-carbon hot rolled steel sheet and manufacturing method thereof | |
TWI544086B (en) | High carbon hot-rolled steel sheet and manufacturing method thereof | |
JP4008320B2 (en) | Rolled and drawn wire rods for bearings | |
JP2022512514A (en) | Wire rod that can omit softening heat treatment and its manufacturing method | |
KR101977499B1 (en) | Wire rod without spheroidizing heat treatment, and method for manufacturing thereof | |
JP7389909B2 (en) | Bearing wire rod and its manufacturing method | |
JP3950682B2 (en) | Manufacturing method of hot rolled wire rod for bearing | |
JP7221478B2 (en) | Cold heading wire rod for shortening soft heat treatment time and its manufacturing method | |
US20240254588A1 (en) | Wire rod having excellent drawability, and manufacturing method therefor | |
CN114829663B (en) | Steel wire rod having excellent spheroidizing heat treatment characteristics and method for producing the same | |
CN114829661B (en) | Steel wire rod having excellent spheroidizing heat treatment characteristics and method for manufacturing the same | |
JP2002060841A (en) | Method for producing bar or wire rod | |
JP2022506231A (en) | Wire rod that can omit softening heat treatment and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220620 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230613 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230627 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230927 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231117 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7389909 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |