JP3385365B2 - Medium carbon steel with dispersed fine graphite structure - Google Patents

Medium carbon steel with dispersed fine graphite structure

Info

Publication number
JP3385365B2
JP3385365B2 JP2000167401A JP2000167401A JP3385365B2 JP 3385365 B2 JP3385365 B2 JP 3385365B2 JP 2000167401 A JP2000167401 A JP 2000167401A JP 2000167401 A JP2000167401 A JP 2000167401A JP 3385365 B2 JP3385365 B2 JP 3385365B2
Authority
JP
Japan
Prior art keywords
graphite
graphitization
carbon steel
medium carbon
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000167401A
Other languages
Japanese (ja)
Other versions
JP2000319754A (en
Inventor
勝成 及川
利彦 阿部
新一 鷲見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP31412098A external-priority patent/JP3198299B2/en
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000167401A priority Critical patent/JP3385365B2/en
Publication of JP2000319754A publication Critical patent/JP2000319754A/en
Application granted granted Critical
Publication of JP3385365B2 publication Critical patent/JP3385365B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、高い強度と良好
な加工性および被削性を有し、黒鉛化に必要な時間を短
縮化することができ、また必要に応じて黒鉛化熱処理温
度をより低温化することができる分散微細球状黒鉛組織
を備えた中炭素鋼に関する。
TECHNICAL FIELD The present invention has high strength, good workability and machinability, can shorten the time required for graphitization, and, if necessary, can increase the graphitization heat treatment temperature. The present invention relates to a medium carbon steel having a dispersed fine spheroidal graphite structure capable of lowering the temperature.

【0002】[0002]

【従来の技術】従来、快削性を持つ鋼材料として鉛快削
鋼が用いられているが、Pbが含有されているため環境
汚染問題が注視され、最近では使用が規制されるように
なってきた。このようなことから鉛快削鋼の替りとなる
環境問題が発生しない新たな鉄鋼材料の開発が進められ
ている。このような中で快削性を持つ鉄鋼材料として黒
鉛を分散した材料が知られているが、従来考えられてき
た黒鉛鋼は被削性が向上するけれども強度や加工性など
の機械的性質が劣るので、快削鋼として十分な特性をも
つ材料とは言えなかった。このため、快削性と良好な機
械的性質をもつ微細黒鉛が均一に分散した黒鉛鋼の開発
が期待されている。
2. Description of the Related Art Conventionally, lead free-cutting steel has been used as a steel material having free-cutting properties, but since Pb is contained, environmental pollution problems have been closely watched and its use has recently been restricted. Came. For these reasons, the development of new steel materials that do not cause environmental problems, which is an alternative to lead free-cutting steel, is underway. Among these, graphite-dispersed materials are known as free-cutting steel materials. Graphite steel, which has been considered in the past, has improved machinability, but mechanical properties such as strength and workability. Since it is inferior, it cannot be said to be a material having sufficient properties as free-cutting steel. Therefore, development of graphite steel in which fine graphite having free-cutting properties and good mechanical properties is uniformly dispersed is expected.

【0003】一般に、過共析組成の高炭素鋼では黒鉛化
が進行し易くなることが知られている。特に、1%以上
の黒鉛を添加した場合には顕著に黒鉛化が促進するとい
う技術報告がなされている(資料1:佐藤知雄外1名著
「黒鉛鋼の研究(第1報)黒鉛鋼に及ぼすSiの影響」
日本金属学会誌1956年20巻5〜9頁参照)。ま
た、同様に高炭素鋼では焼き入れや冷間加工あるいはA
l,Si,Ni,Ti,Zr,Bなどを添加すると黒鉛
化を促進するという報告もある(資料2:山中直道外1
名著「高炭素鋼の黒鉛化機構についての考察」鉄と鋼1
962年8号946〜953頁参照)。なお、この資料
の中ではTiの添加による作用としては、セメンタイト
に対するTiの固溶量は微量で、特殊炭化物TiCを形
成しやすいため、セメンタイトの安定化作用よりも、T
iによる脱窒作用の影響が大きくあらわれて黒鉛化が促
進されるという説明がなされている。しかし、これらの
例はいずれも高炭素鋼であり、強度と良好な加工性を得
ようとするならばC濃度が1.0%以下の中炭素鋼であ
る必要がある。したがって、上記の例は快削鋼としては
満足いくものではなく、いずれも適合しない。そして、
逆に中炭素鋼、特に亜共析鋼では上記のような黒鉛化が
難しく、熱処理や合金添加による黒鉛化の挙動もよく知
られていないのが現状である。
It is generally known that graphitization is likely to proceed in high carbon steel having a hypereutectoid composition. In particular, it has been reported that a graphitization is remarkably promoted when 1% or more of graphite is added (Data 1: Tomio Sato, 1st person, “Study of Graphite Steel (1st Report): Effect on Graphite Steel”) Effect of Si "
(See The Japan Institute of Metals, 1956, 20: 5-9). Similarly, for high carbon steel, quenching, cold working or A
There is also a report that addition of 1, Si, Ni, Ti, Zr, B, etc. promotes graphitization (Data 2: Naomichi Yamanaka 1
Masterpiece "Consideration on graphitization mechanism of high carbon steel" Iron and steel 1
962, No. 8, pp. 946-953). In this document, the effect of addition of Ti is that the amount of solid solution of Ti with respect to cementite is very small and the special carbide TiC is easily formed.
It has been explained that the effect of denitrification by i appears significantly and promotes graphitization. However, all of these examples are high carbon steels, and in order to obtain strength and good workability, medium carbon steels having a C concentration of 1.0% or less are required. Therefore, the above examples are not satisfactory as free-cutting steel, and none of them are suitable. And
On the contrary, in the medium carbon steel, especially in the hypoeutectoid steel, the above graphitization is difficult, and the behavior of graphitization by heat treatment or alloy addition is not well known at present.

【0004】上記資料1にも示すように、黒鉛化を促進
させる元素としてSiが添加されるが、この添加量が多
くなると固溶硬化により延性が著しく低下するため1.
5%以下の添加に抑えることが望ましいと考えられてい
る。このような中で亜共析鋼にSiとNiまたはSiと
Coを共添加して黒鉛化現象を説明した報告がなされて
いる(資料3:末吉秀一外1名著「亜共析鋼の黒鉛化現
象とこれにおよぼす合金元素の影響」日本金属学会誌1
979年43巻333〜339頁)。しかし、Niまた
はCoを含有する材料はリサイクル性が劣り、またこの
ような添加元素が比較的高価な材料であることを考える
と有効な手段とは言い難く、また安定的かつ再現性よく
微細黒鉛を分散させた亜共析鋼の製造技術が確立してい
るとは言えない。
As shown in Document 1 above, Si is added as an element that promotes graphitization. However, if the amount of Si added is large, the ductility is significantly reduced due to solid solution hardening.
It is considered desirable to limit the addition to 5% or less. Under such circumstances, a report explaining the graphitization phenomenon by co-adding Si and Ni or Si and Co to hypoeutectoid steel has been made (Data 3: Shuichi Sueyoshi et al., “Graphitization of hypoeutectoid steel”). Phenomena and Effects of Alloying Elements on These "Journal of Japan Institute of Metals 1
979, 43, 333-339). However, the material containing Ni or Co is inferior in recyclability, and it cannot be said to be an effective means considering that such an additional element is a relatively expensive material, and it is stable and has good reproducibility. It cannot be said that the manufacturing technology of hypoeutectoid steel in which is dispersed is established.

【0005】高炭素鋼では黒鉛化処理の前に冷間加工を
行なうと黒鉛化が進行するということが知られている。
このような方法の一つとして亜共析鋼を用いて低炭素鋼
並みの柔らかさと延性を持つようにするという報告もあ
る(資料4:ATUKI OKAMOTO著「Graphite Formation in
High-Purity Cold-Rolled Carbon Steels」METALLURGI
CAL TRANSACTIONS A ,VOLUME 20A,OCTOBER 1989, P.191
7-1925 )。この方法はセメンタイトが分断されるまで
冷間圧延を施し、その分断された間隙(ボイド)が黒鉛
化のサイトになると考えられている。しかし、この例で
はセメンタイトを分断させるために冷間加工性が悪い状
態で20%以上の苛酷な冷間加工を必要とするなどの問
題があり、安定した製造方法とは言い難い。
It is known that in high carbon steel, graphitization proceeds when cold working is performed before graphitization.
As one of such methods, there is a report that hypoeutectoid steel is used to make it as soft and ductile as low carbon steel (Document 4: ATUKI OKAMOTO "Graphite Formation in
High-Purity Cold-Rolled Carbon Steels '' METALLURGI
CAL TRANSACTIONS A, VOLUME 20A, OCTOBER 1989, P.191
7-1925). In this method, cold rolling is performed until cementite is divided, and the divided gaps (voids) are considered to be sites for graphitization. However, this example has a problem that it requires severe cold working of 20% or more in a state where cold workability is poor in order to divide cementite, and it cannot be said to be a stable manufacturing method.

【0006】さらに、0.53%C鋼にB,Alおよび
La,Ceなどの希土類金属(REM)を添加し黒鉛化
を進める方法が提案されている(資料5:岩本外3名著
「0.53%C鋼の黒鉛化挙動に及ぼすB,Alおよび
REMの影響」CAMP−ISIJ,Vol.8,19
95年 1378頁)。この方法によれば、黒鉛の平均
粒子径を2.7μmにすることができたと報告されてい
るので、それなりの効果があると思われるが、この技術
においては最も個数の多い黒鉛を実現するためにB−A
lの複合添加を必要としており、単独の添加では資料5
のFig.1に示されているように、黒鉛の生成個数は
さほど多くない。鋼の製造において少量の添加元素をコ
ントロールすることは簡単なことではないし、また複合
添加においてはその影響は大きいので、実用的でないと
いう問題を有している。また、上記の黒鉛化手法の共通
の問題として、黒鉛化が高温でしかも処理時間が著しく
長いということである。通常完全な黒鉛化には700°
Cで10〜50時間程度の長時間が必要であり、製造能
率を著しく低下させるものであった。
[0006] Further, a method of adding B, Al and rare earth metals (REM) such as La and Ce to 0.53% C steel to promote graphitization has been proposed (Data 5: "I. Effect of B, Al and REM on Graphitization Behavior of 53% C Steel "CAMP-ISIJ, Vol. 8, 19
1995, p. 1378). According to this method, it was reported that the average particle size of graphite could be 2.7 μm, so it seems that there is some effect, but in order to realize the largest number of graphite in this technology To BA
It requires multiple additions of 1 and the single addition requires data 5
FIG. As shown in No. 1, the number of graphite produced is not so large. It is not easy to control a small amount of additional elements in the production of steel, and the effect thereof is large in complex addition, so that it is not practical. A common problem with the above graphitization techniques is that the graphitization is at a high temperature and the treatment time is extremely long. 700 ° for complete graphitization
C requires a long time of about 10 to 50 hours, which significantly reduces the production efficiency.

【0007】[0007]

【発明が解決しようとする課題】このようなことから、
本発明は微細ZrCを黒鉛の核生成サイトとして機能さ
せ、再現性よく、高い生産性をもち、かつ高い強度と良
好な加工性および被削性を有し、さらに黒鉛化に必要な
時間を短縮化することができる分散微細球状黒鉛組織を
備えた中炭素鋼を得るものである。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
INDUSTRIAL APPLICABILITY The present invention makes fine ZrC function as a nucleation site for graphite, has good reproducibility, high productivity, high strength, good machinability and machinability, and shortens the time required for graphitization. To obtain a medium carbon steel having a dispersed fine spheroidal graphite structure that can be converted into a carbon.

【0008】[0008]

【課題を解決するための手段】本発明は、 1.実質的にSi0.1〜1.5%、C1.0%以下、
Zr0.01〜0.5%及びFeを含有する(但し、B
及びNの積極的添加を除く)中炭素鋼であって、微細Z
rCが黒鉛の核生成サイトとして機能していることを特
徴とする分散微細球状黒鉛組織を備えた中炭素鋼 2.平均サイズが1μm〜20μmの黒鉛がマトリック
スに分散した組織を持つことを特徴とする上記1記載の
中炭素鋼 3.セメンタイトが消失し、フェライトマトリックス中
に黒鉛が分散した組織を有することを特徴とする上記1
又は2項に記載の中炭素鋼を提供する。なお、本発明の中炭素鋼は、B及びNを積極的に添加し
たものではない。すなわち、積極的に添加されたB及び
Nがない中炭素鋼である。また、本発明の中炭素鋼は、
実質的にSi0.1〜1.5%、C1.0%以下、Zr
0.01〜0.5%及びFeを含有する中炭素鋼成分組
成を意味するものであり、中炭素鋼としての組成に含ま
れる成分は必然的に包含される。
The present invention includes: Substantially Si 0.1-1.5%, C 1.0% or less,
Zr 0.01-0.5% and Fe are contained (however, B
(Except positive addition of N and N) medium carbon steel with fine Z
1. Medium carbon steel with dispersed fine spheroidal graphite structure characterized in that rC functions as a nucleation site for graphite. 2. Medium carbon steel according to the above 1, characterized in that it has a structure in which graphite having an average size of 1 μm to 20 μm is dispersed in a matrix. 1 above, which has a structure in which cementite disappears and graphite is dispersed in a ferrite matrix.
Alternatively, the medium carbon steel according to the item 2 is provided. In addition, the medium carbon steel of the present invention is positively added with B and N.
Not a thing. That is, B and
It is a medium carbon steel without N. Further, the medium carbon steel of the present invention,
Substantially Si 0.1-1.5%, C 1.0% or less, Zr
Medium carbon steel composition set containing 0.01 to 0.5% and Fe
Is included in the composition as medium carbon steel.
Ingredients necessarily included.

【0009】[0009]

【発明の実施の形態】本発明においては、Siの固溶に
よる脆化を防ぐためにSi濃度を1.5%(本明細書で
は全てmass%を意味する。)以下とした。また、鉄
鋼材料のリサイクル性を考慮し、リサイクルに問題とな
らない元素を微量添加し、かつ苛酷な加工を加えること
なく微細な黒鉛を中炭素鋼に析出させると同時に、黒鉛
化に必要な時間を短縮化するものである。通常、鉄鋼材
料中に存在する非金属介在物は材料の性質に悪影響を及
ぼすことが多いため、これらを除去しようとする研究が
行なわれるが、大きさが1μm以下の微細な介在物を凝
固後の固相変態の核生成サイトとして利用することを中
心に研究を進めた。本発明はFeの中で炭化物の形成傾
向が最も強い元素の一つであるZrを選択し、ZrCを
黒鉛の生成サイトとするものである。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, in order to prevent embrittlement due to solid solution of Si, the Si concentration is set to 1.5% (all in the present specification means mass%) or less. In addition, considering the recyclability of steel materials, minute amounts of elements that do not pose a problem for recycling are added, and fine graphite is deposited on medium carbon steel without harsh processing, and at the same time, the time required for graphitization is reduced. It will be shortened. Usually, non-metallic inclusions present in steel materials often adversely affect the properties of the material, so research is being conducted to remove them, but after solidification of fine inclusions with a size of 1 μm or less, The research centered on its use as a nucleation site for solid phase transformation of. The present invention selects Zr, which is one of the elements having the strongest tendency to form carbides in Fe, and uses ZrC as a graphite formation site.

【0010】本発明者らは、先に亜共析鋼成分組成の素
材にTiを添加し、微細TiCを黒鉛の核生成サイトと
して機能させる分散微細黒鉛組織を備えた亜共析鋼およ
びその製造方法を提案した(特願平10−06790
0)。これによれば、黒鉛微細組織の形成に飛躍的な改
善が認められた。本発明は上記Ti添加による微細黒鉛
組織をもつ鋼と同等又はそれ以上の効果をもつものであ
る。特に、本発明において使用するZrはCとの結びつ
きが大で、ZrCのマトリックスに対する溶解度積がT
iCよりも小さく、より微量の添加でZrCを析出させ
ることができる。また、Zrを添加した場合には黒鉛化
速度が速く、熱処理のエネルギー消費の面から著しく有
利であるという特徴を有している。このように、本発明
はZr添加が僅かな量ですみ、より微細な黒鉛組織を迅
速に形成することができるという優れた特徴をもつもの
である。本発明はC濃度が0.3%〜1.0の中炭素鋼
を基本成分とする。Zr濃度はZrCが析出するための
最低量として0.01%が必要であり、また黒鉛の粗大
化を防止し、その量を極端に減少させない量として上限
を0.5%とする。すなわち、本発明の中炭素鋼はZr
0.01〜0.5%を含有する。Si濃度は黒鉛化を促
進させる観点から最低でも0.1%を必要とし、また冷
間加工性を向上させ、かつ被削性を向上させるために上
限は1.5%とする。
The inventors of the present invention have previously added Ti to a material having a composition of hypoeutectoid steel, and have a dispersed fine graphite structure that allows fine TiC to function as a nucleation site of graphite, and a production thereof. Proposed a method (Japanese Patent Application No. 10-06790)
0). According to this, a dramatic improvement was recognized in the formation of the graphite microstructure. The present invention has an effect equal to or higher than that of the steel having the fine graphite structure by the addition of Ti. In particular, Zr used in the present invention has a large bond with C, and the solubility product of ZrC in the matrix is T.
It is smaller than iC, and ZrC can be precipitated with a smaller amount of addition. Further, when Zr is added, the graphitization rate is high, which is a feature that it is extremely advantageous in terms of energy consumption of heat treatment. As described above, the present invention has an excellent feature that a small amount of Zr is added and a finer graphite structure can be rapidly formed. The present invention uses medium carbon steel having a C concentration of 0.3% to 1.0 as a basic component. The Zr concentration is required to be 0.01% as a minimum amount for the precipitation of ZrC, and the upper limit is set to 0.5% as an amount that prevents coarsening of graphite and does not reduce the amount extremely. That is, the medium carbon steel of the present invention is Zr.
It contains 0.01 to 0.5%. The Si concentration needs to be at least 0.1% from the viewpoint of promoting graphitization, and the upper limit is 1.5% in order to improve cold workability and machinability.

【0011】本発明においては、このような中炭素鋼成
分組成の素材を溶製しインゴットとした後、図1〜図3
の3種類の製造工程(熱処理履歴)を経て、分散微細球
状黒鉛組織を備えた中炭素鋼を製造する。図1のパター
ン1は、中炭素鋼成分組成の素材を溶製しインゴットと
した後熱間圧延し、これを空冷後740°C以下の温度
で0.5〜10時間熱処理して、黒鉛を成長させる黒鉛
化処理を施し、分散微細球状黒鉛組織を備えた中炭素鋼
を製造したものである。図2のパターン2は、中炭素鋼
成分組成の素材を溶製しインゴットとした後熱間圧延
し、これを空冷後750°C〜1300°Cで0.5〜
10時間熱処理(溶体化処理)し、その後空冷し、さら
に740°C以下の温度で0.5〜10時間熱処理し
て、黒鉛を成長させる黒鉛化処理を施し、分散微細球状
黒鉛組織を備えた中炭素鋼を製造したものである。図3
のパターン3は、中炭素鋼成分組成の素材を溶製しイン
ゴットとした後熱間圧延し、これを空冷後750°C〜
1300°Cで0.5〜10時間熱処理(溶体化処理)
し、これを水焼入れして微細ZrCをマトリックス中に
析出させ、さらにこの水焼入れ後、740°C以下の温
度で0.5〜10時間熱処理しZrCを核生成サイトと
して黒鉛を成長させる黒鉛化処理を施し、分散微細球状
黒鉛組織を備えた中炭素鋼を製造したものである。
In the present invention, a raw material having such a medium carbon steel composition is melted to form an ingot, and then, as shown in FIGS.
The medium carbon steel having the dispersed fine spheroidal graphite structure is manufactured through the three kinds of manufacturing processes (heat treatment history). Pattern 1 in FIG. 1 is obtained by melting a raw material of medium carbon steel composition into an ingot, followed by hot rolling, and then air cooling and heat treating at a temperature of 740 ° C. or lower for 0.5 to 10 hours to form graphite. A medium carbon steel having a dispersed fine spherical graphite structure was produced by subjecting it to graphitization treatment for growth. Pattern 2 in FIG. 2 is obtained by melting a material of medium carbon steel composition into an ingot, followed by hot rolling, and air-cooling this at 750 ° C. to 1300 ° C.
Heat treatment (solution treatment) for 10 hours, then air cooling, further heat treatment at a temperature of 740 ° C. or less for 0.5 to 10 hours, graphitization treatment for growing graphite, and provision of dispersed fine spherical graphite structure Manufactured medium carbon steel. Figure 3
Pattern 3 of No. 3 is produced by melting a material of medium carbon steel composition into an ingot, followed by hot rolling, and air-cooling this at 750 ° C to
Heat treatment at 1300 ° C for 0.5-10 hours (solution treatment)
Then, this is water-quenched to precipitate fine ZrC in the matrix, and after this water-quenching, heat treatment is performed at a temperature of 740 ° C. or lower for 0.5 to 10 hours to grow graphite using ZrC as a nucleation site. A medium carbon steel having a dispersed fine spheroidal graphite structure was produced by the treatment.

【0012】上記のように、740°C以下の温度で
0.5〜10時間(より低温で熱処理する場合には0.
5〜100時間)熱処理し、ZrCを核生成サイトとし
て黒鉛を成長させる黒鉛化処理を行なう。これによって
セメンタイトが消失し、フェライトマトリックス中に平
均サイズが1μm〜20μmの黒鉛が30〜6500個
/mm分散した組織を持つ中炭素鋼が得られる。黒鉛
のサイズ及び個数は、Zr及びCなどの組成並びに上記
熱処理条件によって変化する。したがって、これらを調
節することによって、分散した黒鉛のサイズと個数をコ
ントロールする。特に、750°C〜1300°Cで
0.5〜10時間熱処理(溶体化処理)した後、水焼入
れしたものは他に比べ黒鉛の核発生が著しく黒鉛の微細
化に有効である。また、上記黒鉛化処理は450°〜7
00°Cの温度で行なうと、より微細化した個数の多い
黒鉛の成長がみられる。中炭素鋼のフェライトマトリッ
クス中に平均サイズが1μm〜20μmの黒鉛が30〜
6500個/mm分散した組織を持つものが冷間加工
性と被削性の向上および強度の向上に最適特性を有す
る。
As described above, at a temperature of 740 ° C. or lower for 0.5 to 10 hours (in the case of heat treatment at a lower temperature, 0.
Heat treatment is performed for 5 to 100 hours, and graphitization is performed to grow graphite using ZrC as a nucleation site. As a result, cementite disappears, and a medium carbon steel having a structure in which 30 to 6500 graphite / mm 2 having an average size of 1 μm to 20 μm are dispersed in a ferrite matrix is obtained. The size and number of graphite vary depending on the composition of Zr and C and the heat treatment conditions. Therefore, the size and number of dispersed graphite are controlled by adjusting these. In particular, after heat treatment (solution treatment) at 750 ° C. to 1300 ° C. for 0.5 to 10 hours and then water quenching, nucleation of graphite is remarkably generated as compared with others, and it is effective for refining graphite. In addition, the graphitization treatment is 450 ° to 7
When it is carried out at a temperature of 00 ° C, the growth of more finely divided graphite is observed. Graphite having an average size of 1 μm to 20 μm is 30 to 30 in a ferrite matrix of medium carbon steel.
Those having a structure in which 6500 pieces / mm 2 are dispersed have optimum properties for improving cold workability and machinability and strength.

【0013】[0013]

【実施例および比較例】続いて、本発明を実施例により
比較例と対比しながら説明する。本発明において使用す
る試料は、Zrを除く基本組成をFe−1%Si−0.
5%C(mass%、本明細書では全てmass%を表
示する)とした。また、この基本組成にZrCが析出す
るように0.05〜0.15%Zrを加え、それぞれマ
グネシアルツボ中で高周波溶解炉を用いて溶製した。な
お、使用した各成分については、Fe(99.99
%),Si(99.999%),C(99.999%)
およびフェロZrを素材とした。溶製後、直径20mm
の棒状インゴットをそれぞれ作製し、これを1000°
Cで10mm厚まで熱間圧延した。さらに、これらから
10mm角の熱処理用の試料を切り出した。本発明にお
いては、以下の3種類の熱処理を実施した。これらの熱
履歴の模式図を図1〜図3に示す。図1は熱間圧延後
(空冷)、450°C〜700°Cで黒鉛化処理した場
合の熱履歴の模式図である(パターン1)。図2は熱間
圧延した(空冷)材料を800°Cでオーステナイト化
(溶体化)処理後、空冷し、その後450°C〜700
°Cで黒鉛化処理した場合の熱履歴の模式図である(パ
ターン2)。図3は熱間圧延した(空冷)材料を800
°Cでオーステナイト化(溶体化)処理後、水焼入れ
し、その後450°C〜700°Cで黒鉛化処理した場
合の熱履歴の模式図である(パターン3)。
EXAMPLES AND COMPARATIVE EXAMPLES Next, the present invention will be described by way of Examples in comparison with Comparative Examples. The samples used in the present invention had the basic composition excluding Zr of Fe-1% Si-0.
5% C (mass%, all mass% are shown in this specification). Further, 0.05 to 0.15% Zr was added to this basic composition so as to precipitate ZrC, and each was melted in a magnesia crucible using a high frequency melting furnace. In addition, regarding each component used, Fe (99.99)
%), Si (99.999%), C (99.999%)
And Ferro Zr was used as the material. Diameter 20mm after melting
Each of the rod-shaped ingots of
It was hot rolled with C to a thickness of 10 mm. Further, a 10 mm square sample for heat treatment was cut out from these. In the present invention, the following three types of heat treatments were performed. Schematic diagrams of these thermal histories are shown in FIGS. FIG. 1 is a schematic diagram of a thermal history when graphitizing at 450 ° C. to 700 ° C. after hot rolling (air cooling) (Pattern 1). FIG. 2 shows that a hot-rolled (air-cooled) material is austenitized (solution-treated) at 800 ° C., air-cooled, and then 450 ° C. to 700 ° C.
It is a schematic diagram of a thermal history when graphitized at ° C (Pattern 2). Figure 3 shows 800 of hot rolled (air cooled) material
FIG. 3 is a schematic diagram of a thermal history when water-quenching is performed after austenitization (solution treatment) at ° C and then graphitization is performed at 450 ° C to 700 ° C (Pattern 3).

【0014】上記熱処理後、光学顕微鏡及びSEMを用
いて組織を観察した。SEM組織の観察に際しては、事
前に鏡面研磨後10%ナイタールで表面を腐食した。黒
鉛を立体的に観察する際には、非金属介在物の腐食法に
適している定電位電解腐食法を用い、電解液として1%
テトラメチルアンモニウム−10%アセチルアセトン−
メチルアルコールを用いて表面を腐食した後、観察を実
施した。
After the above heat treatment, the structure was observed using an optical microscope and SEM. Before observing the SEM structure, the surface was corroded with 10% Nital after mirror polishing in advance. When observing graphite three-dimensionally, use the potentiostatic galvanic corrosion method, which is suitable for the corrosion method of non-metallic inclusions, and use 1% electrolytic solution.
Tetramethylammonium-10% acetylacetone-
Observation was carried out after corroding the surface with methyl alcohol.

【0015】(空冷した試料について)パターン2に示
す履歴で溶体化処理後700°Cで50時間熱処理した
試料の典型的な光学顕微鏡像を図4(a)〜(c)に示す。
図4(a)は上記のFe−1%Si−0.5%Cの基本組
成のみの場合で、Zrは添加されていない。図4(b)は
Fe−1%Si−0.5%C−0.05%Zrの組成の
もの、図4(c)はFe−1%Si−0.5%C−0.1
5%Zrの組成のものである。Zrが添加されていない
図4(a)では黒鉛化が進行せず、フェライトマトリック
ス中にセメンタイトが分散した組織となっている。Zr
が添加されていない場合、400時間熱処理を行なって
も黒鉛化は進行しなかった。Zrをそれぞれ0.05%
及び0.15%添加した図4(b)及び図4(c)では、双
方とも黒鉛化が進行している。0.05%Zr添加の場
合は直径約5μm程度の黒鉛が分散し、0.15%Zr
添加の場合は直径約15μm程度の黒鉛が分散している
のが観察される。なお、パターン1で熱処理した場合に
ついては特に図を示さなかったが、黒鉛化の進行がやや
少ない程度で、上記図4(a)〜(c)と同様な組織が得ら
れた。
(About air-cooled sample) Typical optical microscope images of the sample subjected to solution treatment and heat-treated at 700 ° C. for 50 hours in the history shown in pattern 2 are shown in FIGS.
FIG. 4A shows the case of only the basic composition of Fe-1% Si-0.5% C described above, and Zr is not added. FIG. 4 (b) has a composition of Fe-1% Si-0.5% C-0.05% Zr, and FIG. 4 (c) shows Fe-1% Si-0.5% C-0.1.
It has a composition of 5% Zr. In FIG. 4 (a) where Zr is not added, graphitization does not proceed, and the structure is such that cementite is dispersed in the ferrite matrix. Zr
When was not added, graphitization did not proceed even after heat treatment for 400 hours. Zr 0.05% each
4 (b) and 4 (c) in which 0.15% was added, graphitization proceeds in both cases. When 0.05% Zr is added, graphite with a diameter of about 5 μm is dispersed and 0.15% Zr
In the case of addition, it is observed that graphite having a diameter of about 15 μm is dispersed. Although not shown in the drawing when the heat treatment was performed in the pattern 1, the structure similar to that of FIGS.

【0016】次に、Zrを0.05%添加した試料、す
なわちFe−1%Si−0.5%C−0.05%Zrの
組成の試料について、パターン2の熱履歴で、溶体化処
理後700°Cの黒鉛化熱処理時間を1時間、1.5時
間、2時間及び30時間、と変化させた場合の光学顕微
鏡像をそれぞれ図5(a)、(b)及び図6(c)、(d)に示
す。図5(a)に示すように、黒鉛化処理1時間の時にす
でに黒鉛は一部核生成を始めており、また図6(c)に示
すように2時間で黒鉛化が終了しているのが観察され
る。その後、長時間熱処理しても組織は殆ど変化せず安
定している。したがって、黒鉛化が終了した後、必要以
上に長時間加熱(黒鉛化熱処理)することは経済的に無
駄である。
Next, with respect to the sample to which 0.05% Zr was added, that is, the sample having the composition of Fe-1% Si-0.5% C-0.05% Zr, the heat treatment of pattern 2 was applied to the solution treatment. 5 (a), (b) and 6 (c) are optical microscope images when the graphitization heat treatment time at 700 ° C. was changed to 1 hour, 1.5 hours, 2 hours and 30 hours, respectively. , (D). As shown in FIG. 5 (a), some of the graphite has already started to nucleate one hour after the graphitization treatment, and as shown in FIG. 6 (c), the graphitization is completed within 2 hours. To be observed. After that, the structure is stable with almost no change even after heat treatment for a long time. Therefore, it is economically wasteful to heat the graphitization for a longer time than necessary (graphitization heat treatment) after the graphitization is completed.

【0017】次に、図7(a)〜(c)にFe−1%Si−
0.5%C−0.05%Zrの組成の試料について、パ
ターン2の熱履歴で、溶体化処理後700°Cの黒鉛化
熱処理を1.5時間実施したものについて、定電位電解
腐食法を用いてマトリックスを腐食し、黒鉛を立体的に
観察したSEM像を示す。図7(a)〜(c)のほぼ中央位
置にある1μm程度(1μmよりやや小さ目)の立方体
状のZrCが見えるが、この立方体状のZrCから黒鉛
が成長しているのが観察される。同図において、立方体
状のZrCに近接して存在するのが2μm〜3.5μm
程度の球状物が黒鉛である。このように、ZrCが黒鉛
核生成サイトとして機能していることが、これらの図か
ら明らかである。なお、図示していないがZr濃度が増
加する(例えば0.15%Zrの場合)と、黒鉛が粗大
化する傾向がある。これは、Zrが炭化物形成傾向が強
い元素のため、Zr濃度が増加するとフェライトマトリ
ックス中での炭素原子の拡散を抑制し、セメンタイトを
安定化させる傾向があり、このためZrC上での黒鉛の
核生成と分散が抑制され、かえって黒鉛を粗大化させた
ためと考えられる。このような黒鉛の粗大化は分散微細
黒鉛粒生成の目的に反するので、必要以上のZr含有は
避ける必要がある。したがって、以上からZr含有量の
上限を0.5%とする。
Next, referring to FIGS. 7A to 7C, Fe-1% Si-
Regarding the sample having the composition of 0.5% C-0.05% Zr, the thermal history of pattern 2 was applied to the sample subjected to the graphitization heat treatment at 700 ° C. for 1.5 hours after the solution treatment, and the potentiostatic electrolytic corrosion method was used. Fig. 3 shows an SEM image in which the matrix was corroded by using and the graphite was three-dimensionally observed. Cubic ZrC of about 1 μm (slightly smaller than 1 μm) at almost the central position of FIGS. 7A to 7C can be seen, but graphite is observed to grow from this cubic ZrC. In the figure, it is 2 μm to 3.5 μm that exist in the vicinity of cubic ZrC.
A spherical material is graphite. Thus, it is clear from these figures that ZrC functions as a graphite nucleation site. Although not shown, when the Zr concentration increases (for example, 0.15% Zr), the graphite tends to coarsen. This is because Zr is an element that has a strong tendency to form carbides, so when the Zr concentration increases, it tends to suppress the diffusion of carbon atoms in the ferrite matrix and stabilize cementite, and therefore the core of graphite on ZrC is It is considered that the generation and dispersion were suppressed and the graphite was rather coarsened. Since such coarsening of graphite is against the purpose of producing dispersed fine graphite particles, it is necessary to avoid containing Zr more than necessary. Therefore, from the above, the upper limit of the Zr content is set to 0.5%.

【0018】次に、Fe−1%Si−0.5%C−0.
05%Zrの組成の試料について、上記パターン2の熱
履歴で、溶体化処理後黒鉛化熱処理温度450°C及び
550°Cの2種類の加熱処理(50時間熱処理)を施
し黒鉛化の進行状況を観察した。その結果をそれぞれ図
8(a)及び(b)に示す。図8(a)は450°Cの熱処理
のケースであるが、この場合は黒鉛は確認されていな
い。しかし、図8(b)に示す550°Cの熱処理のケー
スでは黒鉛化が終了しているのが観察される。以上のか
らZrの添加は黒鉛化を進行させ、より低温(上記の結
果から500°C近傍)でも分散微細黒鉛粒の形成が十
分可能であることを示している。このように低温で黒鉛
化が可能であることは、コストの面から大きな効果が認
められる。
Next, Fe-1% Si-0.5% C-0.
With respect to the sample having a composition of 05% Zr, two types of heat treatment (50-hour heat treatment) at a heat treatment temperature of 450 ° C. and a temperature of 550 ° C. after the solution treatment are performed according to the heat history of the pattern 2 and the progress of the graphitization is performed. Was observed. The results are shown in FIGS. 8 (a) and 8 (b), respectively. FIG. 8 (a) shows the case of heat treatment at 450 ° C. In this case, graphite is not confirmed. However, it is observed that graphitization is completed in the case of the heat treatment at 550 ° C. shown in FIG. From the above, it is shown that the addition of Zr promotes graphitization, and it is possible to sufficiently form dispersed fine graphite particles even at a lower temperature (about 500 ° C. from the above results). The fact that graphitization is possible at a low temperature in this way has a great effect in terms of cost.

【0019】(水焼入れした試料について)パターン3
に示す履歴で、溶体化処理後700°Cで50時間熱処
理した試料の光学顕微鏡像を図9(a)、(b)及び(c)に
示す。図9(a)はZrを含有しない基本組成(Fe−1
%Si−0.5%C)の場合、図9(b)はFe−1%S
i−0.5%C−0.05%Zrの組成の場合、図9
(c)はFe−1%Si−0.5%C−0.15%Zrの
組成の場合である。基本組成のZrが添加されていない
ケースについては、図9(a)に示すように、球状のセメ
ンタイトが微細に分散した組織となり黒鉛は生じていな
い。これに対し、図9(b)及び(c)に示すように、0.
05%Zr及び0.15%Zrを添加した場合はフェラ
イトマトリックス中に5〜10μm程度の黒鉛が微細に
分散した組織となっている。特に、0.15%Zrを添
加したものは形のよい(球状の)微細黒鉛が均一に分散
しており、上記図4(c)に示すパターン2で熱処理され
たものに比べ、同一の組成にもかかわらず黒鉛の微細化
がより著しい。通常、焼入れ処理によりマトリックスが
マルテンサイトに変態し、多量に格子欠陥が導入され、
マトリックス中での炭素原子の拡散が容易となるが、こ
れによって黒鉛の核生成サイトとなるZrC近傍への黒
鉛の拡散が容易となり、黒鉛が多数核発生し、微細黒鉛
組織になったと考えられる。以上の結果から、パターン
3に示す水焼き入れは分散微細黒鉛粒の形成に極めて有
効である。
(For water-quenched sample) Pattern 3
9 (a), 9 (b) and 9 (c) are the optical microscope images of the sample heat treated at 700 ° C. for 50 hours after the solution treatment. FIG. 9A shows a basic composition (Fe-1
% Si-0.5% C), FIG. 9 (b) shows Fe-1% S
In the case of the composition of i-0.5% C-0.05% Zr, FIG.
(c) is a composition of Fe-1% Si-0.5% C-0.15% Zr. In the case where Zr of the basic composition was not added, as shown in FIG. 9 (a), the structure was such that spherical cementite was finely dispersed, and no graphite was generated. On the other hand, as shown in FIGS.
When 05% Zr and 0.15% Zr are added, the structure is such that graphite of about 5 to 10 μm is finely dispersed in the ferrite matrix. Particularly, in the case of adding 0.15% Zr, fine graphite having a good shape (spherical) is uniformly dispersed, and has the same composition as that of the heat-treated pattern 2 shown in FIG. 4 (c). Nevertheless, the miniaturization of graphite is more remarkable. Usually, the matrix is transformed into martensite by quenching treatment, a large amount of lattice defects are introduced,
It is considered that diffusion of carbon atoms in the matrix is facilitated, but this facilitates diffusion of graphite in the vicinity of ZrC, which is a nucleation site of graphite, and a large number of nuclei of graphite are generated, resulting in a fine graphite structure. From the above results, the water quenching shown in pattern 3 is extremely effective for forming dispersed fine graphite particles.

【0020】次に、図10(a)及び(b)にFe−1%S
i−0.5%C−0.05%Zrの組成のもつ中炭素鋼
の試料を、パターン3の熱履歴で、溶体化処理後700
°Cで黒鉛化熱処理時間を30分及び1時間と変化させ
た場合の組織の顕微鏡写真を示す。図10(a)から明ら
かなように、黒鉛化熱処理時間が30分を経過した時点
で、すでに黒鉛化がかなり進行しており、また図10
(b)に示すように黒鉛化熱処理時間が1時間を経過した
時点で黒鉛化がほぼ終了している。焼入れ処理をしてい
ない図5と比較し、同一成分の亜共析鋼の試料であるに
もかかわらず、水焼き入れするパターン3の熱履歴を経
た試料は黒鉛化が著しく促進していることがわかる。
Next, as shown in FIGS. 10 (a) and 10 (b), Fe-1% S
A sample of a medium carbon steel having a composition of i-0.5% C-0.05% Zr was subjected to solution treatment by the thermal history of pattern 3 and then 700
The micrograph of the structure at the time of changing the graphitization heat treatment time to 30 minutes and 1 hour at ° C is shown. As is clear from FIG. 10 (a), when the graphitization heat treatment time passed 30 minutes, the graphitization had already progressed considerably, and
As shown in (b), the graphitization is almost completed when the graphitization heat treatment time exceeds 1 hour. Compared to Fig. 5 which was not subjected to quenching treatment, although the sample was a hypoeutectoid steel sample of the same composition, the sample that had undergone the heat history of pattern 3 of water quenching had remarkably accelerated graphitization. I understand.

【0021】[0021]

【発明の効果】以上の説明及び実施例から明らかなよう
に、本発明の組成の中炭素鋼は、黒鉛化のための熱処理
温度及び時間をZrの含有量に応じて適宜コントロール
し、熱間圧延した後、直ちに黒鉛化の熱処理をする方法
により、あるいは熱間圧延した後溶体化処理し、その後
空冷しさらに黒鉛化熱処理を施すことによりマトリック
スに均一に微細分散した黒鉛を析出させることができ
る。特に、Zr含有量が高く高温での黒鉛化熱処理の場
合には、短時間での分散微細球状黒鉛組織を得ることが
できる。また、この場合にはZr濃度及び処理時間の調
節により低温での黒鉛化熱処理も可能である。さらに、
溶体化処理後焼入れすることにより、微細ZrCをマト
リックス中に析出させ、極めて短時間のうちに分散微細
黒鉛粒を形成することができるという優れた特徴を有す
る。このように、本発明は微細ZrCを黒鉛の核生成サ
イトとして機能させ、安定かつ再現性よく微細黒鉛を分
散させて、材料のリサイクル性がよく、高い生産性をも
ち、かつ高い強度と良好な加工性および快削性を持つ分
散微細球状黒鉛組織を備えた中炭素鋼を得ることができ
る。
As is apparent from the above description and the examples, the medium carbon steel of the present invention has a hot work temperature and time for graphitization controlled appropriately according to the Zr content. It is possible to precipitate uniformly finely dispersed graphite in the matrix by a method of performing heat treatment for graphitization immediately after rolling, or by performing solution treatment after hot rolling and then subjecting to air cooling and further heat treatment for graphitization. . In particular, when the Zr content is high and the graphitization heat treatment is performed at a high temperature, a dispersed fine spherical graphite structure can be obtained in a short time. Further, in this case, the graphitization heat treatment at a low temperature is also possible by adjusting the Zr concentration and the treatment time. further,
It has an excellent feature that fine ZrC can be precipitated in the matrix by quenching after solution treatment and dispersed fine graphite particles can be formed in an extremely short time. As described above, the present invention allows fine ZrC to function as a nucleation site of graphite, disperses fine graphite in a stable and reproducible manner, has good material recyclability, high productivity, and high strength. It is possible to obtain a medium carbon steel having a dispersed fine spheroidal graphite structure having workability and free-cutting property.

【図面の簡単な説明】[Brief description of drawings]

【図1】熱間圧延(空冷)後450°C〜700°Cで
黒鉛化処理した場合(パターン1)の黒鉛化処理の熱履
歴を示す模式図である。
FIG. 1 is a schematic diagram showing a heat history of graphitization treatment when the graphitization treatment is performed at 450 ° C. to 700 ° C. after hot rolling (air cooling) (pattern 1).

【図2】熱間圧延(空冷)後溶体化処理し、その後45
0°C〜700°Cで黒鉛化処理した場合(パターン
2)の黒鉛化処理の熱履歴を示す模式図である。
FIG. 2: Solution rolling after hot rolling (air cooling), then 45
It is a schematic diagram which shows the heat history of the graphitization process at the time of graphitizing process at 0 degreeC-700 degreeC (pattern 2).

【図3】熱間圧延(空冷)後溶体化処理し、かつ水焼入
れした後450°C〜700°Cで黒鉛化処理した場合
(パターン3)の析出処理と黒鉛化処理の熱履歴を示す
模式図である。
FIG. 3 shows the heat history of precipitation treatment and graphitization treatment in the case of performing solution treatment after hot rolling (air cooling), water quenching, and then graphitization treatment at 450 ° C. to 700 ° C. (Pattern 3). It is a schematic diagram.

【図4】(a)〜(c) 各種試料をパターン2の熱履歴で、700°C50時間
の黒鉛化熱処理を行なった場合の組織の光学顕微鏡像
(写真)である。 (a)試料Fe−1%Si−0.5%C、(b)試料Fe−
1%Si−0.5%C−0.05%Zr、(c)試料Fe
−1%Si−0.5%C−0.15%Zr
4 (a) to (c) are optical microscope images (photographs) of the structures of various samples subjected to graphitization heat treatment at 700 ° C. for 50 hours with a thermal history of pattern 2. FIG. (a) Sample Fe-1% Si-0.5% C, (b) Sample Fe-
1% Si-0.5% C-0.05% Zr, (c) Sample Fe
-1% Si-0.5% C-0.15% Zr

【図5】(a)(b) 試料Fe−1%Si−0.5%C−0.05%Zrをパ
ターン2の熱履歴で、かつ700°Cで各種の熱処理時
間(1時間、1.5時間)で処理した場合の組織の光学
顕微鏡像(写真)である。
5 (a) (b) Sample Fe-1% Si-0.5% C-0.05% Zr with the thermal history of pattern 2 and at 700 ° C. for various heat treatment times (1 hour, 1 hour, 5 is an optical microscope image (photograph) of the tissue when treated for 5 hours.

【図6】(a)(b) 試料Fe−1%Si−0.5%C−0.05%Zrをパ
ターン2の熱履歴で、かつ700°Cで各種の熱処理時
間(2時間、30時間)で処理した場合の組織の光学顕
微鏡像(写真)である。
(A) (b) Sample Fe-1% Si-0.5% C-0.05% Zr with thermal history of pattern 2 and at 700 ° C for various heat treatment times (2 hours, 30 hours). It is an optical microscope image (photograph) of the tissue at the time of processing.

【図7】(a)〜(c) 試料Fe−1%Si−0.5%C−0.05%Zrをパ
ターン2の熱履歴で、かつ700°Cで1.5時間黒鉛
化処理を行なったSEM像(写真)である。
7 (a) to (c) Sample Fe-1% Si-0.5% C-0.05% Zr was graphitized at 700 ° C. for 1.5 hours with thermal history of pattern 2. It is the SEM image (photograph) performed.

【図8】(a)(b) 試料Fe−1%Si−0.5%C−0.05%Zrをパ
ターン2の熱履歴で、かつ黒鉛化温度450°C及び5
50°Cで、50時間黒鉛化処理した光学顕微鏡像(写
真)である。
8 (a) and (b) Sample Fe-1% Si-0.5% C-0.05% Zr with a thermal history of pattern 2 and at a graphitization temperature of 450 ° C. and 5
It is an optical microscope image (photograph) which graphitized by 50 degreeC for 50 hours.

【図9】(a)〜(c) 各種試料をパターン3の熱履歴で、700°C50時間
の黒鉛化熱処理を行なった場合の組織の光学顕微鏡像
(写真)である。 (a)試料Fe−1%Si−0.5%C、(b)試料Fe−
1%Si−0.5%C−0.05%Zr、(c)試料Fe
−1%Si−0.5%C−0.15%Zr
9 (a) to 9 (c) are optical microscope images (photographs) of the structures of various samples subjected to heat treatment for graphitization at 700 ° C. for 50 hours with the thermal history of pattern 3. (a) Sample Fe-1% Si-0.5% C, (b) Sample Fe-
1% Si-0.5% C-0.05% Zr, (c) Sample Fe
-1% Si-0.5% C-0.15% Zr

【図10】(a)(b) 試料Fe−1%Si−0.5%C−0.05%Zrをパ
ターン3の熱履歴で、かつ700°Cで黒鉛化熱処理を
行なった場合の組織の光学顕微鏡像(写真)である。
10 (a) (b) Microstructure of sample Fe-1% Si-0.5% C-0.05% Zr subjected to graphitization heat treatment at 700 ° C. with the thermal history of pattern 3. It is an optical microscope image (photograph) of.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−188846(JP,A) 特開 平10−72639(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-7-188846 (JP, A) JP-A-10-72639 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 38/00-38/60

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 実質的にSi0.1〜1.5%、C1.
0%以下、Zr0.01〜0.5%及びFeを含有する
(但し、B及びNの積極的添加を除く)中炭素鋼であっ
、微細ZrCが黒鉛の核生成サイトとして機能してい
ることを特徴とする分散微細球状黒鉛組織を備えた中炭
素鋼。
1. Substantially 0.1 to 1.5% Si, C1.
0% or less, containing 0.01 to 0.5% Zr and Fe
(However, except positive addition of B and N) Medium carbon steel
Then , a medium carbon steel having a dispersed fine spheroidal graphite structure, in which fine ZrC functions as a nucleation site of graphite.
【請求項2】 平均サイズが1μm〜20μmの黒鉛が
マトリックスに分散した組織を持つことを特徴とする請
求項1記載の中炭素鋼。
2. The medium carbon steel according to claim 1, which has a structure in which graphite having an average size of 1 μm to 20 μm is dispersed in a matrix.
【請求項3】 セメンタイトが消失し、フェライトマト
リックス中に黒鉛が分散した組織を有することを特徴と
する請求項1又は2項に記載の中炭素鋼。
3. The medium carbon steel according to claim 1 or 2, which has a structure in which cementite disappears and graphite is dispersed in a ferrite matrix.
JP2000167401A 1998-10-15 2000-06-05 Medium carbon steel with dispersed fine graphite structure Expired - Lifetime JP3385365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000167401A JP3385365B2 (en) 1998-10-15 2000-06-05 Medium carbon steel with dispersed fine graphite structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP31412098A JP3198299B2 (en) 1998-10-15 1998-10-15 Medium carbon steel with dispersed fine graphite structure and method for producing the same
JP2000167401A JP3385365B2 (en) 1998-10-15 2000-06-05 Medium carbon steel with dispersed fine graphite structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP31412098A Division JP3198299B2 (en) 1998-10-15 1998-10-15 Medium carbon steel with dispersed fine graphite structure and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000319754A JP2000319754A (en) 2000-11-21
JP3385365B2 true JP3385365B2 (en) 2003-03-10

Family

ID=26567827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000167401A Expired - Lifetime JP3385365B2 (en) 1998-10-15 2000-06-05 Medium carbon steel with dispersed fine graphite structure

Country Status (1)

Country Link
JP (1) JP3385365B2 (en)

Also Published As

Publication number Publication date
JP2000319754A (en) 2000-11-21

Similar Documents

Publication Publication Date Title
JP2019094568A (en) Ultrahigh strength ferritic steel strengthened by cu-rich nanoclusters, and method of manufacturing the same
JP3764715B2 (en) Steel wire for high-strength cold forming spring and its manufacturing method
Liu et al. Effects of V–Nb microalloying on the microstructure and properties of spring steel under different quenching-tempering times
JP4712838B2 (en) High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
JP3527641B2 (en) Steel wire with excellent cold workability
Rubin et al. Graphite formation and dissolution in ductile irons and steels having high silicon contents: solid-state transformations
CN108018494B (en) Annealing process for improving strength and plasticity of low-density steel and production method of low-density steel
Fu et al. Enhancing mechanical properties of dual-phase Al0. 5CoCrFeNiSi0. 25 high entropy alloy via thermomechanical treatment
JP2006336074A (en) High strength and high ductility steel sheet having excellent chemical convertibility
Qin et al. Heterogeneous structure design to strengthen carbon-containing CoCrFeNi high entropy alloy
Fu et al. Enhancing Compressive Stress–Strain of Ti55531 Alloy via La-Rich Nanoscale Structure at Grain Boundaries
Shi et al. Microstructure and mechanical properties of a Fe–30Mn–10Al–1.5 C–xBe (x= 0, 0.5, 1.0, 1.5) Be low-density steels
Li et al. Microstructure and microhardness of H13 and Cr8 die steels in control forging and cooling process
Li Effect of rolling reduction on microstructure, texture and magnetic properties of twin-roll casting non-oriented 6.5 wt% Si electrical steel
JP2939542B1 (en) Hypoeutectoid steel with dispersed fine graphite structure and method for producing the same
JP3198299B2 (en) Medium carbon steel with dispersed fine graphite structure and method for producing the same
JP3385365B2 (en) Medium carbon steel with dispersed fine graphite structure
JP3623656B2 (en) Steel having fine grain structure and method for producing the same
van gen Hassend et al. Study on the austemperability of thin-wall ductile cast iron produced by high-pressure die-casting
JP2005344167A (en) Steel product for carburized parts or carbonitrided parts, and method for manufacturing carburized parts or carbonitrided parts
JP2002275575A (en) High strength spheroidal graphite cast iron and production method therefor
KR100728099B1 (en) Cast iron billet excelling in workability and process for producing the same
JP4196485B2 (en) Machine structural steel with excellent machinability, cold forgeability and hardenability
JP2006299315A (en) High strength and high ductility steel sheet having excellent weldability
Xu et al. Morphological evolution of degenerated pearlite at grain boundary in aged Fe-12Mn-0.8 C steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021126

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term