JP6925037B2 - Rust resistant low thermal expansion alloy - Google Patents

Rust resistant low thermal expansion alloy Download PDF

Info

Publication number
JP6925037B2
JP6925037B2 JP2017208260A JP2017208260A JP6925037B2 JP 6925037 B2 JP6925037 B2 JP 6925037B2 JP 2017208260 A JP2017208260 A JP 2017208260A JP 2017208260 A JP2017208260 A JP 2017208260A JP 6925037 B2 JP6925037 B2 JP 6925037B2
Authority
JP
Japan
Prior art keywords
thermal expansion
alloy
low thermal
coefficient
expansion alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017208260A
Other languages
Japanese (ja)
Other versions
JP2019077940A (en
Inventor
晴康 大野
晴康 大野
浩太郎 小奈
浩太郎 小奈
直輝 坂口
直輝 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinhokoku Steel Corp
Original Assignee
Shinhokoku Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinhokoku Steel Corp filed Critical Shinhokoku Steel Corp
Priority to JP2017208260A priority Critical patent/JP6925037B2/en
Publication of JP2019077940A publication Critical patent/JP2019077940A/en
Application granted granted Critical
Publication of JP6925037B2 publication Critical patent/JP6925037B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は低熱膨張合金に関し、特に、耐錆性に優れた低熱膨張合金に関する。 The present invention relates to a low thermal expansion alloy, and more particularly to a low thermal expansion alloy having excellent rust resistance.

エレクトロニクスや半導体関連機器、レーザー加工機、超精密加工機器の部品材料として、熱的に安定なインバー合金が広く使用されている。 Thermally stable Invar alloys are widely used as component materials for electronics, semiconductor-related equipment, laser processing machines, and ultra-precision processing equipment.

インバー合金を用いて作製されるカラー受像管用シャドウマスクやICリードフレームなどの電子部品は、非常に微細な加工を施され、黒化処理され、製品化される。この微細加工においては、インバー合金の薄板にフォトレジストを塗布し、感光及び現像を施してレジストパターンをマスクとして選択的にエッチングする。 Electronic components such as shadow masks for color receivers and IC lead frames manufactured using Invar alloy are subjected to extremely fine processing, blackened, and commercialized. In this microfabrication, a photoresist is applied to a thin plate of an Invar alloy, subjected to photosensitization and development, and selectively etched using the resist pattern as a mask.

インバー合金を電子部品の素材として使用する場合には、フォトレジストの密着性やエッチング性が良好であることに加えて、エッチングメーカーにおいて、エッチング工程に入るまでの期間に薄板の表面が錆の発生により変化しないことが求められる。 When Invar alloy is used as a material for electronic parts, in addition to the good adhesion and etching properties of the photoresist, the etching maker causes rust on the surface of the thin plate during the period until the etching process is started. It is required that it does not change.

特許文献1は、電子部品用素材として好適な耐発錆性に優れた電子部品用低熱膨張性合金薄板を開示している。特許文献1の低熱膨張性合金薄板は、Ni:30〜52mass%、Cu:0.01〜0.1mass%、S:10〜20mass ppmを含有することを特徴とする。 Patent Document 1 discloses a low thermal expansion alloy thin plate for electronic parts, which is suitable as a material for electronic parts and has excellent rust resistance. The low thermal expansion alloy thin plate of Patent Document 1 is characterized by containing Ni: 30 to 52 mass%, Cu: 0.01 to 0.1 mass%, and S: 10 to 20 mass ppm.

特開2002−327249号公報JP-A-2002-327249

前記特許文献に開示されているインバー合金の熱膨張係数は、近年の要求に対しては、まだ十分とはいえない。 The coefficient of thermal expansion of the Invar alloy disclosed in the patent document is not yet sufficient for recent demands.

本発明は、室温における熱膨張係数がさらに低く、耐錆性に優れた低熱膨張合金を提供することを課題とする。 An object of the present invention is to provide a low thermal expansion alloy having a further low coefficient of thermal expansion at room temperature and excellent rust resistance.

本発明者らは、低い熱膨張係数を有し、さらに耐錆性に優れた低熱膨張合金を得る方法を鋭意検討した。その結果、一般的にインバー合金に添加されるCoの一部をCuに置き換えることに寄って、熱膨張係数の増加を抑えつつ、発錆を大幅に減少させることができることを知見した。 The present inventors have diligently studied a method for obtaining a low thermal expansion alloy having a low coefficient of thermal expansion and further excellent in rust resistance. As a result, it was found that rusting can be significantly reduced while suppressing an increase in the coefficient of thermal expansion by replacing a part of Co generally added to the Invar alloy with Cu.

本発明は上記の知見に基づきなされたものであって、その要旨は以下のとおりである。 The present invention has been made based on the above findings, and the gist thereof is as follows.

(1)質量%で、C:0〜0.04%、Si:0.15〜0.35%、Mn:0.20〜0.45%、Cu:1.5〜3.0%、Ni:31.0〜34.0%、及びCo:2.5〜4.5%を含有し、残部がFe及び不可避的不純物であることを特徴とする低熱膨張合金。 (1) In terms of mass%, C: 0 to 0.04%, Si: 0.15 to 0.35%, Mn: 0.25 to 0.45%, Cu: 1.5 to 3.0%, Ni A low thermal expansion alloy containing 31.0 to 34.0% and Co: 2.5 to 4.5%, the balance of which is Fe and unavoidable impurities.

(2)25〜100℃における平均熱膨張係数が2.0×10-6/℃以下であることを特徴とする前記(1)に記載の低熱膨張合金。 (2) The low thermal expansion alloy according to (1) above, wherein the average coefficient of thermal expansion at 25 to 100 ° C. is 2.0 × 10 -6 / ° C. or less.

本発明によれば、低い熱膨張係数を有し、さらに耐錆性に優れた低熱膨張合金を得ることができる。 According to the present invention, it is possible to obtain a low thermal expansion alloy having a low coefficient of thermal expansion and further having excellent rust resistance.

実施例における浸漬試験後の外観を示す図である。It is a figure which shows the appearance after the immersion test in an Example.

以下、本発明について詳細に説明する。以下、成分組成に関する「%」は特に断りのない限り「質量%」を表すものとする。はじめに、本発明の鋳物の成分組成について説明する。 Hereinafter, the present invention will be described in detail. Hereinafter, "%" regarding the component composition shall represent "mass%" unless otherwise specified. First, the component composition of the casting of the present invention will be described.

Niは、熱膨張係数を低下させる、必須の元素である。Ni量は多すぎても少なすぎても熱膨張係数が十分に小さくならない。熱膨張係数を十分に小さくするために、Ni量は31.0〜34.0%、好ましくは32.0〜32.8%の範囲とする。 Ni is an essential element that lowers the coefficient of thermal expansion. If the amount of Ni is too large or too small, the coefficient of thermal expansion will not be sufficiently small. In order to sufficiently reduce the coefficient of thermal expansion, the amount of Ni is set in the range of 31.0 to 34.0%, preferably 32.0 to 32.8%.

Coは、Niとの組み合わせにより熱膨張係数の低下に寄与する。所望の熱膨張係数を得るため、Coの範囲は2.5〜4.5%、好ましくは3.2〜3.8%とする。 Co contributes to a decrease in the coefficient of thermal expansion in combination with Ni. In order to obtain a desired coefficient of thermal expansion, the range of Co is 2.5 to 4.5%, preferably 3.2 to 3.8%.

Cuは、不純物として含有されるSにより形成される硫化物の形態を微細に制御し耐錆性を向上させる元素である。本発明の低熱膨張合金においては、一般的に知られるスーパーインバー合金のCoの一部をCuに置き換えることにより、耐錆性が大幅に増加する。この効果を得るために、Cu量は1.5%以上とする。一方、Cu量が多すぎると熱膨張係数が増加するため、Cu量は3.0%以下とする。 Cu is an element that finely controls the form of sulfide formed by S contained as an impurity and improves rust resistance. In the low thermal expansion alloy of the present invention, the rust resistance is significantly increased by replacing a part of Co of the generally known superinvar alloy with Cu. In order to obtain this effect, the amount of Cu is set to 1.5% or more. On the other hand, if the amount of Cu is too large, the coefficient of thermal expansion increases, so the amount of Cu is set to 3.0% or less.

Cは、オーステナイトに固溶し強度の上昇に寄与する。Cの含有量が多くなると、熱膨張係数が大きくなる。さらに、延性が低下して、鋳造割れが生じやすくなるので、含有量は0.04%以下、好ましくは0.01%以下とする。本発明の低熱膨張合金においては、Cは必須の元素ではなく、含有量は0でもよい。 C dissolves in austenite and contributes to an increase in strength. As the C content increases, the coefficient of thermal expansion increases. Further, the ductility is lowered and casting cracks are likely to occur. Therefore, the content is set to 0.04% or less, preferably 0.01% or less. In the low thermal expansion alloy of the present invention, C is not an essential element and the content may be 0.

Siは、脱酸材として有効であり、かつ、耐錆性を高める元素である。この効果を得るために、Si量は0.15%以上とする。Si量が0.35%を超えると熱膨張係数が増加するので、Si量は0.35%以下、好ましくは0.30%以下とする。 Si is an element that is effective as a deoxidizing material and enhances rust resistance. In order to obtain this effect, the amount of Si is 0.15% or more. Since the coefficient of thermal expansion increases when the amount of Si exceeds 0.35%, the amount of Si is set to 0.35% or less, preferably 0.30% or less.

Mnは、脱酸材として添加される。また、固溶強化による強度向上にも寄与する。この効果を得るためには、Mn量を0.20%以上とする。一方、Mnは硫化物を形成して耐錆性を阻害する元素でもある。耐錆性の低下を抑制するため、Mn量は0.45%以下とする。 Mn is added as a deoxidizing material. It also contributes to the improvement of strength by strengthening the solid solution. In order to obtain this effect, the amount of Mn is set to 0.20% or more. On the other hand, Mn is also an element that forms sulfide and inhibits rust resistance. The amount of Mn is set to 0.45% or less in order to suppress a decrease in rust resistance.

成分組成の残部は、Fe及び不可避的不純物である。不可避的不純物とは、本発明で規定する成分組成を有する鋼を工業的に製造する際に、原料や製造環境等から不可避的に混入するものをいう。具体的には、0.02%以下のP、N、S、O、Caなどが挙げられる。 The rest of the composition is Fe and unavoidable impurities. The unavoidable impurities refer to those that are unavoidably mixed from the raw materials, the manufacturing environment, etc. when the steel having the component composition specified in the present invention is industrially manufactured. Specifically, P, N, S, O, Ca and the like of 0.02% or less can be mentioned.

以上の化学成分を有する合金を、公知の鋳造方法により製造することにより、耐錆性に優れた低熱膨張合金を得ることができる。 By producing an alloy having the above chemical components by a known casting method, a low thermal expansion alloy having excellent rust resistance can be obtained.

本発明の低熱膨張合金の製造に用いる鋳型や、鋳型への溶鋼の注入装置、注入方法は特に限定されるものではなく、公知の装置、方法を用いればよい。製造された鋳造合金を直接切削加工等で加工し、あるいは鍛造後加工し、鋼部品を得ることができる。 The mold used for producing the low thermal expansion alloy of the present invention, the apparatus for injecting molten steel into the mold, and the injection method are not particularly limited, and known apparatus and methods may be used. Steel parts can be obtained by directly processing the produced cast alloy by cutting or the like, or by processing after forging.

得られた鋳造合金に直接、あるいは、鍛造後に、溶体化処理を施す。溶体化処理は、合金を600〜1000℃、好ましくは750〜850℃に加熱し、0.5〜5hr保持した後、急冷する。冷却速度は10℃/min以上が好ましく、100℃/min以上がより好ましい。溶体化により、鋳造時に析出した析出物が固溶して、延性、靭性が向上する。 The obtained cast alloy is subjected to solution treatment directly or after forging. In the solution treatment, the alloy is heated to 600 to 1000 ° C., preferably 750 to 850 ° C., held for 0.5 to 5 hr, and then rapidly cooled. The cooling rate is preferably 10 ° C./min or higher, more preferably 100 ° C./min or higher. Due to the solution formation, the precipitates precipitated during casting are solid-solved, and the ductility and toughness are improved.

溶体化処理の後に、必要に応じて、300〜350℃で1〜5hr保持し、その後空冷する応力除去焼きなまし等の公知の熱処理を施してもよい。 After the solution treatment, if necessary, a known heat treatment such as stress relief annealing, which is held at 300 to 350 ° C. for 1 to 5 hours and then air-cooled, may be performed.

本発明の低熱膨張合金は、優れた耐錆性を有している。この効果は、たとえば、湿潤試験による発錆個数により確認することができる。 The low thermal expansion alloy of the present invention has excellent rust resistance. This effect can be confirmed, for example, by the number of rusts obtained by the wet test.

[実施例1]
表1の合金番号1の成分組成を有する本発明の低熱膨張合金、Niを32.5%、Coを5.2%含有する従来のスーパーインバー合金、及びステンレス鋼(SUS 403)を供試材とし、表面に幅0.5mmのカットを入れ、水道水に1か月間浸漬した。
[Example 1]
Test materials used are the low thermal expansion alloy of the present invention having the component composition of alloy number 1 in Table 1, the conventional super Invar alloy containing 32.5% Ni and 5.2% Co, and stainless steel (SUS 403). Then, a cut having a width of 0.5 mm was made on the surface, and the surface was immersed in tap water for 1 month.

図1に、1か月経過後の外観を示す。(a)は本発明の低熱膨張合金、(b)は従来のスーパーインバー合金、(c)はSUS 403である。従来のスーパーインバー合金ではカット周辺の広範囲に発錆が見られたが、本発明の低熱膨張合金は、SUS 403と同様、発錆が抑えられていることが確認できた。 FIG. 1 shows the appearance after one month has passed. (A) is a low thermal expansion alloy of the present invention, (b) is a conventional super Invar alloy, and (c) is SUS 403. In the conventional Super Invar alloy, rust was observed in a wide range around the cut, but it was confirmed that the low thermal expansion alloy of the present invention suppressed rust as in SUS 403.

[実施例2]
高周波溶解炉を用いて、表1に示す成分組成となるように調整したYブロックとインゴットを溶製した。その後、Yブロックは溶体化処理を行い鋳造物として、インゴットは、熱間鍛造、溶体化処理を行い鍛造物として、それぞれ発錆確認用試験片、及び熱膨張係数測定用試験片を採取した。
[Example 2]
Using a high-frequency melting furnace, Y blocks and ingots adjusted to have the component compositions shown in Table 1 were melted. After that, the Y block was subjected to solution treatment and used as a casting, and the ingot was subjected to hot forging and solution treatment to obtain a rust confirmation test piece and a thermal expansion coefficient measurement test piece, respectively.

発錆確認試験は、エメリー紙で研磨した35×25×厚さ10mmの試験片を温度80℃、湿度100%に保った恒温槽に40分間保持した後取り出し、表面が乾燥したら再び恒温槽に戻すことを10回繰り返し、その時の表面に現れた錆の個数を発錆個数とし、30個以下となることで耐錆性があると判断した。 In the rust confirmation test, a 35 x 25 x 10 mm thick test piece polished with emery paper is held in a constant temperature bath kept at a temperature of 80 ° C. and a humidity of 100% for 40 minutes, then taken out, and when the surface dries, it is put back in the constant temperature bath. The return was repeated 10 times, and the number of rusts appearing on the surface at that time was defined as the number of rusts, and when the number was 30 or less, it was judged to have rust resistance.

熱膨張係数測定は、830℃で2hr保持し、平均冷却速度200℃/minの溶体化処理、さらに350℃で5hr保持後空冷の応力除去焼きなましを施し、25〜100℃の平均熱膨張係数を測定した。 For the measurement of the coefficient of thermal expansion, the coefficient of thermal expansion was maintained at 830 ° C. for 2 hours, solution treatment with an average cooling rate of 200 ° C./min was performed, and after holding for 5 hours at 350 ° C., air-cooled stress relief annealing was performed to obtain an average coefficient of thermal expansion of 25 to 100 ° C. It was measured.

本発明の合金は、熱膨張係数が2×10−6/℃以下、発錆個数30個以下であったが、これに対し比較例では、熱膨張係数または発錆個数において少なくとも一方で目標の特性が得られなかった。 The alloy of the present invention had a coefficient of thermal expansion of 2 × 10 -6 / ° C. or less and a number of rusts of 30 or less. No characteristics were obtained.

Figure 0006925037
Figure 0006925037

Claims (2)

質量%で、
C :0〜0.04%、
Si:0.15〜0.35%、
Mn:0.20〜0.45%、
Cu:1.5〜3.0%、
Ni:31.0〜34.0%、及び
Co:2.5〜4.5%
を含有し、残部がFe及び不可避的不純物であることを特徴とする低熱膨張合金。
By mass%
C: 0-0.04%,
Si: 0.15-0.35%,
Mn: 0.25 to 0.45%,
Cu: 1.5-3.0%,
Ni: 31.0 to 34.0%, and Co: 2.5 to 4.5%
A low thermal expansion alloy containing Fe and the balance being Fe and unavoidable impurities.
25〜100℃における平均熱膨張係数が2.0×10-6/℃以下であることを特徴とする請求項1に記載の低熱膨張合金。 The low thermal expansion alloy according to claim 1, wherein the average coefficient of thermal expansion at 25 to 100 ° C. is 2.0 × 10 -6 / ° C. or less.
JP2017208260A 2017-10-27 2017-10-27 Rust resistant low thermal expansion alloy Active JP6925037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017208260A JP6925037B2 (en) 2017-10-27 2017-10-27 Rust resistant low thermal expansion alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017208260A JP6925037B2 (en) 2017-10-27 2017-10-27 Rust resistant low thermal expansion alloy

Publications (2)

Publication Number Publication Date
JP2019077940A JP2019077940A (en) 2019-05-23
JP6925037B2 true JP6925037B2 (en) 2021-08-25

Family

ID=66628330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017208260A Active JP6925037B2 (en) 2017-10-27 2017-10-27 Rust resistant low thermal expansion alloy

Country Status (1)

Country Link
JP (1) JP6925037B2 (en)

Also Published As

Publication number Publication date
JP2019077940A (en) 2019-05-23

Similar Documents

Publication Publication Date Title
TWI655301B (en) Low thermal expansion cast steel and manufacturing method thereof
JP2007197784A (en) Alloy steel
CN107208191B (en) Copper alloy material and method for producing same
JP2008163452A (en) Martensitic stainless steel excellent in corrosion resistance
JP6628902B2 (en) Low thermal expansion alloy
TW201713785A (en) Steel for mold and mold
JP6656013B2 (en) Low thermal expansion cast steel product and method of manufacturing the same
JP6188643B2 (en) Extremely low thermal expansion alloy and manufacturing method thereof
JP2009215570A (en) Copper alloy sheet superior in dicing workability for use in qfn package
JP2009007625A (en) Method for producing high strength copper alloy for electric/electronic component
JP7035478B2 (en) Molding material for casting
JP6925037B2 (en) Rust resistant low thermal expansion alloy
JP6793583B2 (en) Low thermal expansion alloy
JP7267566B2 (en) Low thermal expansion casting
JP2007063576A (en) Alloy for nonferrous molten metal
JP2005163176A (en) Martensitic stainless steel having no pinhole defect and its production method
JP5426764B2 (en) Stainless steel plate and metal mask for metal mask
JP6949352B2 (en) Low thermal expansion alloy
JP6793574B2 (en) Low thermal expansion alloy
JP6872786B2 (en) Low thermal expansion cast steel and forged steel with low anisotropy and little aging
JPS6321728B2 (en)
JP7322611B2 (en) Zinc alloy and its manufacturing method
WO2024014484A1 (en) Low thermal expansion alloy
JP6692466B2 (en) Low thermal expansion alloy
JP2008297581A (en) Manganese-based twin-crystal-type damping alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200923

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210727

R150 Certificate of patent or registration of utility model

Ref document number: 6925037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350