JP7174853B2 - Low Cr ferritic stainless steel excellent in formability and high temperature properties and method for producing the same - Google Patents
Low Cr ferritic stainless steel excellent in formability and high temperature properties and method for producing the same Download PDFInfo
- Publication number
- JP7174853B2 JP7174853B2 JP2021532855A JP2021532855A JP7174853B2 JP 7174853 B2 JP7174853 B2 JP 7174853B2 JP 2021532855 A JP2021532855 A JP 2021532855A JP 2021532855 A JP2021532855 A JP 2021532855A JP 7174853 B2 JP7174853 B2 JP 7174853B2
- Authority
- JP
- Japan
- Prior art keywords
- stainless steel
- ferritic stainless
- low
- formability
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/02—Hardening by precipitation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、成形性及び高温特性に優れた低Crフェライト系ステンレス鋼びその製造方法に係り、より詳しくは、高温強度及び高温耐酸化性に優れており、かつ成形性を確保できる低Crフェライト系ステンレス鋼及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to a low Cr ferritic stainless steel having excellent formability and high temperature characteristics and a method for producing the same. The present invention relates to stainless steel and its manufacturing method.
フェライト系ステンレス鋼材は、高価な合金元素の添加が少ないにもかかわらず耐食性に優れ、オーステナイト系ステンレス鋼材に比べて価格競争力が高い。特にCr含量が9~14%の低Crフェライト系ステンレス鋼材は、原価競争力がさらに優れ、常温から800℃の排ガス温度範囲に対応する排気系部品など(Muffler、Ex-manifold、Collector coneなど)に用いられている。
しかし、高温強度と高温耐酸化性が高Cr及びNb添加鋼に比べて劣位であるため用途拡大に制約があった。高温強度と高温耐酸化性を向上させるため、Cr含量を上方調整するか、またはNbを添加することは、製造原価を上昇させる原因となるので、低Crフェライト系ステンレス鋼にNbを添加せずに高温特性を向上させることができる開発研究が必要である。
Ferritic stainless steel materials have excellent corrosion resistance despite the addition of few expensive alloying elements, and are highly price competitive compared to austenitic stainless steel materials. In particular, low-Cr ferritic stainless steel materials with a Cr content of 9-14% are more cost competitive, and are used in exhaust system parts (Muffler, Ex-manifold, Collector cone, etc.) that are compatible with the temperature range of exhaust gas from room temperature to 800°C. used for
However, its high-temperature strength and high-temperature oxidation resistance are inferior to those of high-Cr and Nb-added steels, which limits the expansion of its applications. In order to improve high-temperature strength and high-temperature oxidation resistance, adjusting the Cr content upward or adding Nb causes an increase in manufacturing costs, so Nb is not added to low-Cr ferritic stainless steel. Development research is required to improve high temperature characteristics.
本発明の目的とするところは、Ci、Si、Snの含量を最適化して固溶強化及び析出強化を活用することにより、Cr含量の増加またはNbを添加せずに高Crフェライト系ステンレス鋼に対応する高温強度及び高温耐酸化性に優れ、かつ成形性を確保した低Crフェライト系ステンレス鋼及びその製造方法を提供することにある。 An object of the present invention is to optimize the contents of Ci, Si, and Sn to utilize solid solution strengthening and precipitation strengthening to produce high Cr ferritic stainless steel without increasing the Cr content or adding Nb. An object of the present invention is to provide a low Cr ferritic stainless steel which is excellent in corresponding high-temperature strength and high-temperature oxidation resistance and which secures formability, and a method for producing the same.
本発明の成形性及び高温特性に優れた低Crフェライト系ステンレス鋼は、重量%で、C:0.005~0.015%、N:0.005~0.015%、Si:0.5~1.5%、Mn:0.1~0.5%、Cr:9~14%、Ti:0.1~0.3%、Cu:0.3~0.8%、Al:0.01~0.05%、Sn:0.005~0.15%、残りのFe及び不可避な不純物からなり、下記式(1)及び(2)を満たすことを特徴とする。
(1)Cu+Si≧1.3
(2)Si+Cu+10*Sn≦3.0
ここで、Si、Cu、Snは、各元素の含量(重量%)を意味する。
The low Cr ferritic stainless steel excellent in formability and high temperature properties of the present invention has C: 0.005 to 0.015%, N: 0.005 to 0.015%, and Si: 0.5% by weight. ~1.5%, Mn: 0.1-0.5%, Cr: 9-14%, Ti: 0.1-0.3%, Cu: 0.3-0.8%, Al: 0.5%. 01 to 0.05%, Sn: 0.005 to 0.15%, the rest of Fe and unavoidable impurities, and is characterized by satisfying the following formulas (1) and (2).
(1) Cu+Si≧1.3
(2) Si+Cu+10*Sn≦3.0
Here, Si, Cu, and Sn mean the content (% by weight) of each element.
上記低Crフェライト系ステンレス鋼は、重量%で、Ni:0.3%以下、P:0.04%以下及びS:0.002%以下をさらに含むことができる。
また、上記低Crフェライト系ステンレス鋼は、基地組織内の1~500nmサイズのCu析出相を0.03重量%以上含むことがよい。
さらに、上記低Crフェライト系ステンレス鋼は、900℃の高温強度が12MPa以上であうことが好ましい。
The low Cr ferritic stainless steel may further contain Ni: 0.3% or less, P: 0.04% or less, and S: 0.002% or less in weight percent.
In addition, the low Cr ferritic stainless steel preferably contains 0.03% by weight or more of Cu precipitates with a size of 1 to 500 nm in the matrix structure.
Furthermore, the low Cr ferritic stainless steel preferably has a high temperature strength of 12 MPa or more at 900°C.
上記低Crフェライト系ステンレス鋼の延伸率は30%以上であることがよい。
上記低Crフェライト系ステンレス鋼は、下記式(3)を満たすことができる。
(3)(Si+5*Sn)/Ti≧5.0
ここで、Si、Sn、Tiは、各元素の含量(重量%)を意味する。
The elongation ratio of the low Cr ferritic stainless steel is preferably 30% or more.
The low Cr ferritic stainless steel can satisfy the following formula (3).
(3) (Si+5*Sn)/Ti≧5.0
Here, Si, Sn and Ti mean the content (% by weight) of each element.
本発明の成形性及び高温特性に優れた低Crフェライト系ステンレス鋼の製造方法は、重量%で、C:0.005~0.015%、N:0.005~0.015%、Si:0.5~1.5%、Mn:0.1~0.5%、Cr:9~14%、Ti:0.1~0.3%、Cu:0.3~0.8%、Al:0.01~0.05%、Sn:0.005~0.15%、残りのFe及び不可避な不純物からなり、下記式(1)及び(2)を満たすフェライト系ステンレス鋼冷延鋼板を冷延焼鈍熱処理する段階と、450~550℃の温度範囲まで急冷して5分以上維持する段階と、を含むことを特徴とする。
(1)Cu+Si≧1.3
(2)Si+Cu+10*Sn≦3.0
ここで、Si、Cu、Snは、各元素の含量(重量%)を意味する。
The method for producing a low Cr ferritic stainless steel excellent in formability and high-temperature properties according to the present invention comprises, in weight percent, C: 0.005 to 0.015%, N: 0.005 to 0.015%, Si: 0.5-1.5%, Mn: 0.1-0.5%, Cr: 9-14%, Ti: 0.1-0.3%, Cu: 0.3-0.8%, Al : 0.01 to 0.05%, Sn: 0.005 to 0.15%, the rest of Fe and inevitable impurities, and a ferritic stainless steel cold-rolled steel sheet that satisfies the following formulas (1) and (2): It is characterized by including a step of cold rolling annealing heat treatment, and a step of quenching to a temperature range of 450 to 550° C. and maintaining it for 5 minutes or more.
(1) Cu+Si≧1.3
(2) Si+Cu+10*Sn≦3.0
Here, Si, Cu, and Sn mean the content (% by weight) of each element.
前記冷延焼鈍鋼板は、基地組織内の1~500nmサイズのCu析出相を0.09重量%以上含むことがよい。
前記冷延焼鈍鋼板の900℃の高温強度は、14.5MPa以上であることが好ましい。
また、前記冷延鋼板は、下記式(3)を満たすことができる。
(3)(Si+5*Sn)/Ti≧5.0
ここで、Si、Sn、Tiは、各元素の含量(重量%)を意味する。
The cold-rolled and annealed steel sheet preferably contains 0.09% by weight or more of Cu precipitates with a size of 1 to 500 nm in the matrix structure.
The high-temperature strength at 900° C. of the cold-rolled and annealed steel sheet is preferably 14.5 MPa or more.
In addition, the cold-rolled steel sheet can satisfy the following formula (3).
(3) (Si+5*Sn)/Ti≧5.0
Here, Si, Sn and Ti mean the content (% by weight) of each element.
本発明によると、本発明の実施例による低Crフェライト系ステンレス鋼は、Si及びCuの固溶強化効果とともに微細Cu析出相を分布させて高温強度を既存鋼に対して30%以上増加させることができ、Si及びSnの表面濃化により高温耐酸化性も向上させることができる。
また、合金元素の含量の相違による成形性の劣位を防止でき、本発明による製造方法を適用する場合、高温強度特性がより優秀になる効果を有する。
According to the present invention, the low Cr ferritic stainless steel according to the embodiment of the present invention has a solid-solution strengthening effect of Si and Cu and distributes a fine Cu precipitate phase to increase the high-temperature strength by 30% or more compared to the existing steel. high-temperature oxidation resistance can be improved by concentrating Si and Sn on the surface.
In addition, it is possible to prevent deterioration of formability due to the difference in content of alloying elements, and when the manufacturing method according to the present invention is applied, high-temperature strength characteristics are improved.
本発明の一実施例による成形性及び高温特性に優れた低Crフェライト系ステンレス鋼は、重量%で、C:0.005~0.015%、N:0.005~0.015%、Si:0.5~1.5%、Mn:0.1~0.5%、Cr:9~14%、Ti:0.1~0.3%、Cu:0.3~0.8%、Al:0.01~0.05%、Sn:0.005~0.15%、残りのFe及び不可避な不純物からなり、下記式(1)及び(2)を満たす。
(1)Cu+Si≧1.3
(2)Si+Cu+10*Sn≦3.0
ここで、Si、Cu、Snは、各元素の含量(重量%)を意味する。
The low Cr ferritic stainless steel excellent in formability and high temperature properties according to one embodiment of the present invention has a weight percent of C: 0.005 to 0.015%, N: 0.005 to 0.015%, Si : 0.5-1.5%, Mn: 0.1-0.5%, Cr: 9-14%, Ti: 0.1-0.3%, Cu: 0.3-0.8%, Al: 0.01 to 0.05%, Sn: 0.005 to 0.15%, the rest of Fe and unavoidable impurities, satisfying the following formulas (1) and (2).
(1) Cu+Si≧1.3
(2) Si+Cu+10*Sn≦3.0
Here, Si, Cu, and Sn mean the content (% by weight) of each element.
以下、本発明の実施例について添付図面を参照して詳細に説明する。
以下の実施例は、本発明が属する技術分野で通常の知識を有する者に本発明の思想を十分に伝達するために提示するものである。本発明は、ここで提示した実施例に限定されず、他の形態で具体化されてもよい。図面は、本発明を明確にするため、説明とは関係のない部分の図示を省略し、理解を助けるため、構成要素のサイズを多少誇張して表現することがある。
また、どの部分がどのような構成要素を「含む」とするとき、これは特に反対の記載のない限り、他の構成要素を除外するのではなく、他の構成要素をさらに含むことができることを意味する。
単数の表現は、文脈上明らかに例外がない限り、複数の表現を含む。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
The following examples are presented to fully convey the spirit of the invention to those of ordinary skill in the art to which the invention pertains. The present invention is not limited to the embodiments presented herein, but may be embodied in other forms. In order to clarify the present invention, the drawings may omit illustration of parts that are not related to the description, and may exaggerate the sizes of components to facilitate understanding.
In addition, when referring to which part "includes" which component, this does not exclude other components, unless specifically stated to the contrary, indicating that it can further include other components. means.
Singular references include plural references unless the context clearly dictates otherwise.
本発明者らは、低原価である低Crフェライト系ステンレス鋼の高温強度及び高温耐酸化性を向上させるため、様々な検討を行った結果、以下の知見を得た。
一般的に、排気系用のフェライト系ステンレス鋼には、高温強度のためにNbが添加されるが、Nbは、相対的に原料費が高価で製造原価を上昇させる原因となるので、Nbの添加は好ましい開発方向ではない。高温強度を増大させるためには、置換型固溶強化元素が効率的であることが広く知られている。特に置換型固溶強化元素を添加するとき、Fe、Crに対して重量及び原子半径において差が大きいほど、固溶強化効果は、さらに大きくなる。元素周期表においてSi、Cu、Snなどの合金元素は、Fe、Crと位置がかなり離れており、重量及び原子半径において差があるため、既存のNbを置き換えることができると判断し、高温強度増加のために成分の最適化を行った。
The present inventors have made various studies to improve the high-temperature strength and high-temperature oxidation resistance of a low-cost, low-Cr ferritic stainless steel, and have obtained the following findings.
Nb is generally added to ferritic stainless steel for exhaust systems for high-temperature strength. Addition is not the preferred direction of development. It is widely known that substitutional solid-solution strengthening elements are effective in increasing high-temperature strength. In particular, when a substitution type solid solution strengthening element is added, the greater the difference in weight and atomic radius with respect to Fe and Cr, the greater the solid solution strengthening effect. In the periodic table of elements, alloy elements such as Si, Cu, and Sn are far apart from Fe and Cr, and there is a difference in weight and atomic radius. Component optimization was performed for augmentation.
一方、高温耐酸化性のためには、一般的にCr含量を高めるが、Crも原料費が高価で製造原価を上昇させる原因となるので、好ましい開発の方向ではない。高温耐酸化性のためには、高温に長時間さらされる場合、特定の元素が表面に緻密に濃化されてFe酸化膜の生成を抑制しなければならない。本発明では、表面に濃化されてもよい元素としてSi、Cu、Sn候補を選定し、高温耐酸化性のために成分の最適化を行った。
上記事項を含めて本発明では、以下のように成分系の条件及び数式を満たさなければならない。
On the other hand, although the Cr content is generally increased for high-temperature oxidation resistance, Cr is also expensive in terms of raw materials and causes an increase in manufacturing costs, which is not a desirable development direction. For high-temperature oxidation resistance, when exposed to high temperatures for a long time, specific elements must be densely concentrated on the surface to suppress the formation of Fe oxide films. In the present invention, candidates for Si, Cu, and Sn were selected as elements that may be concentrated on the surface, and the components were optimized for high-temperature oxidation resistance.
Including the above matters, the present invention must satisfy the following component system conditions and formulas.
本発明の一実施例による成形性及び高温特性に優れた低Crフェライト系ステンレス鋼は、重量%で、C:0.005~0.015%、N:0.005~0.015%、Si:0.5~1.5%、Mn:0.1~0.5%、Cr:9~14%、Ti:0.1~0.3%、Cu:0.3~0.8%、Al:0.01~0.05%、Sn:0.005~0.15%、残りのFe及び不可避な不純物からなる。
以下、本発明の実施例における合金成分元素の含量の数値限定理由について説明する。以下では、特に言及がない限り、単位は重量%である。
The low Cr ferritic stainless steel excellent in formability and high temperature properties according to one embodiment of the present invention has a weight percent of C: 0.005 to 0.015%, N: 0.005 to 0.015%, Si : 0.5-1.5%, Mn: 0.1-0.5%, Cr: 9-14%, Ti: 0.1-0.3%, Cu: 0.3-0.8%, Al: 0.01 to 0.05%, Sn: 0.005 to 0.15%, and the balance of Fe and unavoidable impurities.
The reasons for limiting the numerical values of the contents of the alloying elements in the examples of the present invention will be described below. Below, the unit is % by weight unless otherwise specified.
Cの含量は、0.005~0.015%である。
C含量が0.015%を超える場合、Crと結合してCr23C6析出物が生成されて基地内の局部的なCrの枯渇により高温耐酸化性が低下する。また、0.005%未満でCの含量を制御するためには、製鋼VOD工程費が増加して好ましくない。したがって、Cの含量を0.005~0.015%の範囲に制限する。
The content of C is 0.005-0.015%.
If the C content exceeds 0.015%, it combines with Cr to form Cr 23 C 6 precipitates, which locally depletes Cr in the matrix, thereby degrading high-temperature oxidation resistance. Also, in order to control the C content to be less than 0.005%, the steelmaking VOD process cost increases, which is undesirable. Therefore, the C content is limited to the range of 0.005-0.015%.
Nの含量は、0.005~0.015%である。
鋼中のNは、0.015%を超える場合、固溶Nの濃度は、限界に達し、Crと結合してCr2N析出物が生成されて基地内の局部的なCrの枯渇により高温耐酸化性が低下する。また、0.005%未満でNの含量を制御するためには、製鋼VOD工程比が増加して好ましくない。したがって、Nの含量を0.005~0.015%の範囲に制限する。
The content of N is 0.005-0.015%.
When N in the steel exceeds 0.015%, the concentration of solute N reaches its limit and combines with Cr to form Cr 2 N precipitates. Oxidation resistance is lowered. In addition, in order to control the N content to be less than 0.005%, the steelmaking VOD process ratio is unfavorably increased. Therefore, the N content is limited to the range of 0.005-0.015%.
Siの含量は、0.5~1.5%である。
Siは、高温強度増加のための固溶強化元素であるとともに、表層部にSi濃化酸化膜を形成し、高温耐酸化性も増加させる。上記の二つの効果のために、少なくともSi含量が0.5%以上必要とされ、1.5%を超える場合、素材の加工性が大きく劣位となるため、Si含量を上記のとおり制限する。
The Si content is 0.5-1.5%.
Si is a solid-solution strengthening element for increasing high-temperature strength, forms a Si-concentrated oxide film on the surface layer, and increases high-temperature oxidation resistance. For the above two effects, the Si content is required to be at least 0.5% or more. If the Si content exceeds 1.5%, the workability of the material is significantly inferior, so the Si content is limited as described above.
Mnの含量は、0.1~0.5%である。
Mnは、鋼中に不可避に含まれる不純物であり、オーステナイトを安定化させる役割を果たす。低Crフェライト系ステンレス鋼においてMn含量が0.5%を超える場合、熱延または冷延後の焼鈍熱処理時にオーステナイトの逆変態が発生し、延伸率に悪影響を及ぼす。したがって、Mnの含量を上記のとおり制限する。
The content of Mn is 0.1-0.5%.
Mn is an impurity that is inevitably contained in steel and plays a role in stabilizing austenite. When the Mn content exceeds 0.5% in the low Cr ferritic stainless steel, reverse transformation of austenite occurs during annealing heat treatment after hot rolling or cold rolling, which adversely affects elongation. Therefore, the content of Mn is limited as described above.
Crの含量は、9~14%である。
Crは、ステンレス鋼において酸化を抑制する不動態皮膜の形成のために添加される必須元素である。安定した不動態皮膜を形成するためにCr含量を9%以上添加しなければならない。しかし、本発明は、Crを低減した低原価の鋼を開発することが目的であるため、上限を14%に制限する。より好ましくは、10.5~12.5%の範囲である。
The Cr content is 9-14%.
Cr is an essential element added to form a passive film that suppresses oxidation in stainless steel. A Cr content of 9% or more must be added to form a stable passive film. However, since the purpose of the present invention is to develop a low-cost steel with reduced Cr, the upper limit is limited to 14%. More preferably, it is in the range of 10.5-12.5%.
Tiの含量は、0.1~0.3%である。
Tiは、溶接部の耐食性の増大のために0.1%以上添加されることが必須である。Tiは、C、Nと結合してTi(C、N)析出物を形成して固溶C、Nの量を下げ、Cr枯渇層の形成を抑制する役割を果たす。しかし、Tiの含量が0.3%を超える場合、表層部のTi成分が酸素と反応して黄色く変色する。したがって、Ti含量を上記のとおり制限する。
The content of Ti is 0.1-0.3%.
Ti must be added in an amount of 0.1% or more in order to increase the corrosion resistance of the weld zone. Ti combines with C and N to form Ti(C, N) precipitates, thereby reducing the amounts of dissolved C and N and suppressing the formation of a Cr-depleted layer. However, when the Ti content exceeds 0.3%, the Ti component in the surface layer reacts with oxygen and turns yellow. Therefore, the Ti content is limited as above.
Cuの含量は、0.3~0.8%である。
Cuは、固溶強化元素であって、Nbに代って高温強度に寄与する元素である。また、Cuは、適切な熱処理により微細析出物を生成させると、析出強化の効果により、さらに高温強度の増大を期待できる。したがって、0.5%以上添加する。しかし、Cuを添加しすぎた場合、高温熱間加工性が阻害される虞があるので、その量を0.8%以下に制限する。
The Cu content is 0.3-0.8%.
Cu is a solid-solution strengthening element that contributes to high-temperature strength in place of Nb. In addition, Cu can be expected to further increase the high-temperature strength due to the effect of precipitation strengthening when fine precipitates are generated by appropriate heat treatment. Therefore, 0.5% or more is added. However, if too much Cu is added, the high-temperature hot workability may be impaired, so the amount is limited to 0.8% or less.
Alの含量は、0.01~0.05%である。
Alは、製鋼操業中に脱酸のために添加される元素である。Al含量が0.05%を超える場合には、表層部のAlが酸素と反応して不均一な酸化層を形成し、高温耐酸化性に悪影響を及ぼす。したがって、Al含量を上記のとおり制限する。
The content of Al is 0.01-0.05%.
Al is an element added for deoxidation during steelmaking operations. If the Al content exceeds 0.05%, Al in the surface layer reacts with oxygen to form a non-uniform oxidized layer, which adversely affects the high-temperature oxidation resistance. Therefore, the Al content is limited as above.
Snの含量は、0.005~0.15%である。
Snは、高温強度増加のための固溶強化元素であるとともに、表層部にSn濃化酸化膜を形成し、高温耐酸化性を増加させる。上記の二つの効果のために少なくともSnの含量が0.005%以上添加されなければならない。しかし、0.15%を超える場合、熱間圧延時にSnが結晶粒界面に偏析されて結晶粒間の結合力を弱め、表層部に微細クラックを誘発させる。したがって、Sn含量の上限を0.15%以下に制限する。
The Sn content is 0.005-0.15%.
Sn is a solid-solution strengthening element for increasing high-temperature strength, and forms a Sn-concentrated oxide film on the surface layer to increase high-temperature oxidation resistance. At least 0.005% of Sn should be added for the above two effects. However, if it exceeds 0.15%, Sn segregates at grain boundaries during hot rolling, weakening the bonding force between grains, and induces fine cracks in the surface layer. Therefore, the upper limit of Sn content is limited to 0.15% or less.
また、本発明の一実施例によれば、Ni:0.3%以下、P:0.04%以下及びS:0.002%以下をさらに含んでもよい。
Niの含量は、0.3%以下である。Niは、鋼中に不可避に含まれる不純物で、0.01%以上含まれてもよく、オーステナイトを安定化させる役割を果たす。低Crフェライト系ステンレス鋼においてNi含量が0.3%を超える場合、熱延または冷延後の焼鈍熱処理時にオーステナイトの逆変態が発生して延伸率に悪影響を及ぼす。したがって、Niの含量を上記のとおり制限する。
Pの含量は、0.04%以下である。Pは、鋼中に含まれる不可避な不純物であり、酸洗時に粒界腐食を起こしたり、熱間加工性を阻害させるため、その含量を0.04%以下に調節する。
Sの含量は、0.002%以下である。Sは、鋼中に含まれる不可避な不純物であり、結晶粒界に偏析されて熱間加工性を阻害するので、その含量を0.002%以下に制限する。
Also, according to an embodiment of the present invention, Ni: 0.3% or less, P: 0.04% or less, and S: 0.002% or less may be further included.
The Ni content is 0.3% or less. Ni is an impurity that is unavoidably contained in steel, and may be contained in an amount of 0.01% or more, and plays a role of stabilizing austenite. When the Ni content exceeds 0.3% in the low-Cr ferritic stainless steel, reverse transformation of austenite occurs during annealing heat treatment after hot rolling or cold rolling, which adversely affects elongation. Therefore, the Ni content is limited as described above.
The content of P is 0.04% or less. P is an unavoidable impurity contained in steel and causes intergranular corrosion during pickling and impairs hot workability, so its content is adjusted to 0.04% or less.
The S content is 0.002% or less. S is an unavoidable impurity contained in steel and is segregated at grain boundaries to impair hot workability, so its content is limited to 0.002% or less.
上記の合金元素を除いたフェライト系ステンレス鋼の残りは、Fe及びその他の不可避な不純物からなる。 The remainder of the ferritic stainless steel, excluding the above alloying elements, consists of Fe and other unavoidable impurities.
一方、本発明の一実施例による成形性及び高温特性に優れた低Crフェライト系ステンレス鋼は、下記式(1)~(3)を満たすことができる。
(1)Cu+Si≧1.3
高温強度は、通常、固溶強化と析出強化によって影響を受ける。Cu、Siは、代表的な固溶強化元素であるので、高温強度の増加のために添加することが好ましい。CuがCu析出相として析出すると、析出強化効果により高温強度がより効果的に増加することになる。また、Siの含量が増加する場合、Cuは、固溶限界度が低くなるため、Cu析出相の析出がより容易になる。これにより、基地組織内の1~500nmサイズのCu析出相は0.03重量%以上の析出が可能となる。したがって、Cu+Si含量を1.3%以上の範囲で制御することがよい。
上記固溶強化及び析出強化の効果により、本発明による低Crフェライト系ステンレス鋼は、900℃における高温強度が12MPa以上を示すことができる。
On the other hand, a low Cr ferritic stainless steel having excellent formability and high temperature properties according to an embodiment of the present invention can satisfy the following formulas (1) to (3).
(1) Cu+Si≧1.3
High temperature strength is usually affected by solid solution strengthening and precipitation strengthening. Cu and Si are typical solid-solution strengthening elements, and are preferably added to increase high-temperature strength. When Cu precipitates as a Cu precipitate phase, the high-temperature strength increases more effectively due to the precipitation strengthening effect. In addition, when the content of Si increases, the solid solubility limit of Cu decreases, so that the precipitation of the Cu precipitate phase becomes easier. This makes it possible to deposit 0.03% by weight or more of the Cu precipitation phase with a size of 1 to 500 nm in the matrix structure. Therefore, it is preferable to control the Cu+Si content within a range of 1.3% or more.
Due to the solid solution strengthening and precipitation strengthening effects, the low Cr ferritic stainless steel according to the present invention can exhibit a high temperature strength of 12 MPa or more at 900°C.
(2)Si+Cu+10*Sn≦3.0
Si、Cu、Sn合金元素は、それぞれ高温強度や高温耐酸化性を助勢する影響を及ぼすが、素材をあまりにも硬質化させると延伸率が劣位となり、成形性が低下する。本発明では、Si、Cuを添加し、高温強度を向上させるとともに、式(3)を同時に満たす場合、延伸率30%以上を確保して成形性の劣位を防止することができる。したがって、素材加工性を確保するために、Si、Cu、Snの含量の関係を上記の範囲に制御する。
(2) Si+Cu+10*Sn≦3.0
Si, Cu, and Sn alloying elements have the effect of enhancing high-temperature strength and high-temperature oxidation resistance, respectively. In the present invention, Si and Cu are added to improve the high-temperature strength, and when the formula (3) is satisfied at the same time, the elongation rate of 30% or more can be ensured to prevent inferior formability. Therefore, in order to ensure material workability, the content relationship of Si, Cu, and Sn is controlled within the above range.
(3)(Si+5*Sn)/Ti≧5.0
高温酸化において、低Crフェライト系ステンレス鋼でSi、Snが添加される場合には、Si、Snの均一な酸化皮膜が先に形成されて異常酸化を抑制させる。しかし、Ti添加の場合には、Ti酸化皮膜が不均一に形成され、Ti酸化皮膜そのものが黄色を示すため、高温変色が現れる。したがって、Si、Sn、Tiの含量を上記の範囲に制御し、高温耐酸化性を向上させることが好ましい。
(3) (Si+5*Sn)/Ti≧5.0
In high-temperature oxidation, when Si and Sn are added to the low-Cr ferritic stainless steel, a uniform oxide film of Si and Sn is first formed to suppress abnormal oxidation. However, when Ti is added, the Ti oxide film is unevenly formed, and the Ti oxide film itself exhibits a yellow color, resulting in discoloration at high temperatures. Therefore, it is preferable to control the contents of Si, Sn, and Ti within the above ranges to improve the high-temperature oxidation resistance.
次に、本発明の一実施例による成形性及び高温特性に優れた低Crフェライト系ステンレス鋼の製造方法について説明する。
本発明の成形性及び高温特性に優れた低Crフェライト系ステンレス鋼の製造方法は、通常の製造工程を経て冷延鋼板に製造でき、上記の合金成分の組成を含み、式(1)~(3)を満たすフェライト系ステンレス鋼の冷延鋼板を冷延焼鈍熱処理する段階と、450~550℃の温度範囲まで急冷して5分以上維持する段階と、を含む。
Next, a method for producing a low Cr ferritic stainless steel excellent in formability and high temperature properties according to one embodiment of the present invention will be described.
The method for producing a low Cr ferritic stainless steel excellent in formability and high temperature properties according to the present invention can be produced into a cold-rolled steel sheet through a normal production process, including the composition of the above alloy components, and formulas (1) to ( The cold-rolled steel plate of ferritic stainless steel satisfying 3) is cold-rolled and annealed, and quenched to a temperature range of 450-550° C. and maintained for 5 minutes or longer.
例えば、上記の合金成分の組成を含むスラブを熱間圧延し、熱間圧延された熱延鋼板を焼鈍熱処理し、冷間圧延して冷延鋼板に製造できる。
冷延鋼板は、冷延焼鈍工程において通常の再結晶熱処理以後、450~550℃の温度範囲まで急冷し、5分以上保つことができる。上記冷却及び維持により同じ成分系においてCu析出相の析出を増加させることができ、高温強度をさらに向上させることができる。
これによる冷延焼鈍鋼板は、基地組織内の1~500nmサイズのCu析出相を0.09重量%以上含んでもよく、900℃の高温強度は、14.5MPa以上であってもよい。
For example, a slab containing the above alloy composition is hot-rolled, the hot-rolled hot-rolled steel sheet is subjected to annealing heat treatment, and cold-rolled to produce a cold-rolled steel sheet.
The cold-rolled steel sheet can be rapidly cooled to a temperature range of 450 to 550° C. after normal recrystallization heat treatment in the cold-rolling annealing process and kept for 5 minutes or longer. The above cooling and maintenance can increase the precipitation of the Cu precipitation phase in the same component system, and can further improve the high-temperature strength.
The resulting cold-rolled annealed steel sheet may contain 0.09% by weight or more of Cu precipitates with a size of 1 to 500 nm in the matrix structure, and may have a high-temperature strength of 14.5 MPa or more at 900°C.
以下、本発明の好適な実施例について、より詳細に説明する。
実施例
ステンレス鋼lab scale溶解及びIngot生産設備を活用し、以下の表1に記載した合金成分系で20mmのバーサンプルを製造した。その後、1,200℃で再加熱して6mmの熱間圧延後、1,100℃で熱延焼鈍を行い、2.0mmで冷間圧延後、1,100℃で焼鈍熱処理した。一部の発明に対してのみ熱処理後、500℃まで急冷して7分ほど維持した後、空冷して冷延焼鈍鋼板を製造し、残りの発明例及び比較例は、焼鈍熱処理後に空冷した。
Preferred embodiments of the present invention will now be described in more detail.
EXAMPLE A stainless steel lab scale melting and Ingot production facility was utilized to produce 20 mm bar samples with the alloy composition system set forth in Table 1 below. Thereafter, the steel was reheated at 1,200°C, hot rolled to 6 mm, hot rolled and annealed at 1,100°C, cold rolled to 2.0 mm, and annealed at 1,100°C. After heat treatment, only some of the inventions were rapidly cooled to 500° C., maintained for about 7 minutes, and then air-cooled to produce cold-rolled annealed steel sheets.
各冷延焼鈍鋼板に対してCu析出相の分率を測定し、500℃で1時間経過後に変色が発生するかどうかを確認した。また、900℃の高温強度及び常温における延伸率を測定し、表2に示した。 The fraction of Cu precipitation phase was measured for each cold-rolled and annealed steel sheet, and it was confirmed whether discoloration occurred after 1 hour at 500°C. In addition, the high temperature strength at 900° C. and the elongation ratio at normal temperature were measured and shown in Table 2.
比較例1~4は、Cuの含量が0.3%に満たないため、式(1)の値が1.3未満であり、これによって微細Cu析出相の量が低くなった。固溶強化及び析出強化の効果に乏しく、高温強度が12MPa未満で低くなることが確認できた。
比較例1~3は、Si及びSnの含量がTiの含量に比べて少ないので、式(3)を満たすことができず、表層のSi及びSn濃化酸化皮膜が十分に形成されず、高温変色が発生した。比較例4は、Cuの含量が低いだけで、Siの含量が高く式(3)を満たすので、変色は発生せず、式(3)による高温耐酸化性の確保を確認できた。
比較例5及び6は、Snの含量が高いので、式(2)の値が3.0を超えており、これによって延伸率が他の比較例に対して5.0%近く減少することが確認できた。
In Comparative Examples 1 to 4, since the Cu content was less than 0.3%, the value of formula (1) was less than 1.3, thereby reducing the amount of fine Cu precipitates. It was confirmed that the effects of solid solution strengthening and precipitation strengthening were poor, and the high-temperature strength decreased below 12 MPa.
In Comparative Examples 1 to 3, the content of Si and Sn is less than the content of Ti, so the formula (3) cannot be satisfied, the Si and Sn concentrated oxide film on the surface layer is not sufficiently formed, and the high temperature Discoloration occurred. Comparative Example 4 has a low Cu content but a high Si content, which satisfies the formula (3), so discoloration does not occur, and it was confirmed that the high-temperature oxidation resistance according to the formula (3) is ensured.
Comparative Examples 5 and 6 have a high Sn content, so the value of formula (2) exceeds 3.0, which reduces the draw ratio by nearly 5.0% compared to other comparative examples. It could be confirmed.
発明例1は、本発明の成分系の組成と式(1)及び(2)を満たす。高温における変色は発生したが、式(1)を満たしてCu析出物が0.05重量%析出され、高温強度が12MPa以上を示した。また、式(2)を満たして高温強度を確保するとともに、延伸率が33.3%測定されて成形性も優れていることが確認できた。
発明例2~4は、Si、Cu、Snの含量を最適化して式(1)~(3)をすべて満たし、これによって高温強度13.5MPa以上及び延伸率30.8%以上を示し、高温変色も発生しなかった。
発明例5~7は、Si、Cu、Snの含量を最適化して式(1)~(3)をすべて満たすだけではなく、本発明による熱処理後の冷却スケジュールを適用したことを示す。延伸率は、30.3%以上を確保し、熱処理後の急冷及び維持時間を満たした結果、微細Cu析出相が0.09重量%以上観察され、高温強度は、14.6MPa以上でさらに高かった。特に、発明例5及び6は、15MPa以上の高温強度を示した。
Invention Example 1 satisfies the composition of the component system of the present invention and formulas (1) and (2). Although discoloration occurred at high temperatures, 0.05% by weight of Cu precipitates were deposited, satisfying the formula (1), and the high temperature strength was 12 MPa or more. In addition, it was confirmed that the formula (2) was satisfied to secure the high-temperature strength, and the elongation ratio was measured to be 33.3%, indicating that the moldability was excellent.
Invention Examples 2 to 4 optimized the contents of Si, Cu, and Sn to satisfy all of the formulas (1) to (3), thereby exhibiting a high temperature strength of 13.5 MPa or more and an elongation of 30.8% or more. No discoloration occurred.
Inventive Examples 5-7 show that the contents of Si, Cu, and Sn are optimized to satisfy all of Equations (1)-(3), and the cooling schedule after heat treatment according to the present invention is applied. As a result of securing an elongation ratio of 30.3% or more and satisfying the rapid cooling and maintenance time after heat treatment, 0.09% by weight or more of fine Cu precipitation phase was observed, and the high-temperature strength was even higher at 14.6 MPa or more. rice field. In particular, Inventive Examples 5 and 6 exhibited a high temperature strength of 15 MPa or higher.
図1は、本発明による実施例の式(1)及び式(3)の値を示したグラフである。図1によって高温強度及び高温耐酸化性に関する式(1)及び(3)の相関関係を確認できる。 FIG. 1 is a graph showing the values of equations (1) and (3) for an example according to the invention. FIG. 1 confirms the correlation between equations (1) and (3) regarding high temperature strength and high temperature oxidation resistance.
以上、本発明の例示的な実施例を説明したが、本発明は、これに限定されず、当該技術分野における通常の知識を有する者であれば、以下に記載する請求範囲の概念と範囲を逸脱しない範囲内で、様々な変更及び変形が可能であることを理解できるだろう。 While illustrative embodiments of the invention have been described above, the invention is not so limited and any person of ordinary skill in the art will appreciate the concept and scope of the claims set forth below. It will be understood that various modifications and variations are possible without departing from the scope of the invention.
本発明によるフェライト系ステンレス鋼は、Cr含量の増加及びNb添加なしで既存の鋼種の高温特性を30%以上増大させることができるため、原料費の削減が可能である。
The ferritic stainless steel according to the present invention can increase the high-temperature properties of existing steels by 30% or more without increasing the Cr content and adding Nb, thereby reducing raw material costs.
Claims (10)
下記式(1)及び(2)を満たすことを特徴とする成形性及び高温特性に優れた低Crフェライト系ステンレス鋼。
(1)Cu+Si≧1.3
(2)Si+Cu+10*Sn≦3.0
(ここで、Si、Cu、Snは、各元素の含量(質量%)を意味する) % by mass , C: 0.005 to 0.015%, N: 0.005 to 0.015%, Si: 0.5 to 1.5%, Mn: 0.1 to 0.5%, Cr: 9-14%, Ti: 0.1-0.3%, Cu: 0.3-0.8%, Al: 0.01-0.05%, Sn: 0.005-0.15%, rest of Fe and unavoidable impurities,
A low Cr ferritic stainless steel excellent in formability and high temperature properties, characterized by satisfying the following formulas (1) and (2).
(1) Cu+Si≧1.3
(2) Si+Cu+10*Sn≦3.0
(Here, Si, Cu, and Sn mean the content (% by mass ) of each element)
(3)(Si+5*Sn)/Ti≧5.0
(ここで、Si、Sn、Tiは、各元素の含量(質量%)を意味する) A low Cr ferritic stainless steel excellent in formability and high temperature properties according to claim 1, characterized by satisfying the following formula (3).
(3) (Si+5*Sn)/Ti≧5.0
(Here, Si, Sn, and Ti mean the content (% by mass ) of each element)
前記冷延焼鈍熱処理した冷延焼鈍鋼板を450~550℃の温度範囲まで冷却して5分以上維持する段階と、を含むことを特徴とする成形性及び高温特性に優れた低Crフェライト系ステンレス鋼の製造方法。
(1)Cu+Si≧1.3
(2)Si+Cu+10Sn≦3.0
(ここで、Si、Cu、Snは、各元素の含量(質量%)を意味する) % by mass , C: 0.005 to 0.015%, N: 0.005 to 0.015%, Si: 0.5 to 1.5%, Mn: 0.1 to 0.5%, Cr: 9-14%, Ti: 0.1-0.3%, Cu: 0.3-0.8%, Al: 0.01-0.05%, Sn: 0.005-0.15%, rest a step of subjecting a ferritic stainless steel cold-rolled steel sheet consisting of Fe and inevitable impurities and satisfying the following formulas (1) and (2) to a cold rolling annealing heat treatment;
A low Cr ferritic stainless steel excellent in formability and high temperature characteristics, comprising: A method of making steel.
(1) Cu+Si≧1.3
(2) Si+Cu+10Sn≦3.0
(Here, Si, Cu, and Sn mean the content (% by mass ) of each element)
基地組織内の1~500nmサイズのCu析出相を0.09質量%以上含むことを特徴とする請求項7に記載の成形性及び高温特性に優れた低Crフェライト系ステンレス鋼の製造方法。 The cold-rolled and annealed steel sheet is
8. The method for producing a low Cr ferritic stainless steel excellent in formability and high temperature properties according to claim 7, characterized in that the base structure contains 0.09% by mass or more of Cu precipitates with a size of 1 to 500 nm.
(3)(Si+5*Sn)/Ti≧5.0
(ここで、Si、Sn、Tiは、各元素の含量(質量%)を意味する)
8. The method for producing low Cr ferritic stainless steel excellent in formability and high-temperature properties according to claim 7, wherein the cold-rolled steel sheet satisfies the following formula (3).
(3) (Si+5*Sn)/Ti≧5.0
(Here, Si, Sn, and Ti mean the content (% by mass ) of each element)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2018-0158651 | 2018-12-10 | ||
KR1020180158651A KR102168829B1 (en) | 2018-12-10 | 2018-12-10 | LOW-Cr FERRITIC STAINLESS STEEL WITH EXCELLENT FORMABILITY AND HIGH TEMPERATURE PROPERTIES AND MANUFACTURING METHOD THEREOF |
PCT/KR2019/002017 WO2020122320A1 (en) | 2018-12-10 | 2019-02-20 | Low-cr ferritic stainless steel with excellent formability and high temperature properties, and manufacturing method therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022513747A JP2022513747A (en) | 2022-02-09 |
JP7174853B2 true JP7174853B2 (en) | 2022-11-17 |
Family
ID=71076099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021532855A Active JP7174853B2 (en) | 2018-12-10 | 2019-02-20 | Low Cr ferritic stainless steel excellent in formability and high temperature properties and method for producing the same |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3875627A4 (en) |
JP (1) | JP7174853B2 (en) |
KR (1) | KR102168829B1 (en) |
CN (1) | CN113166891A (en) |
WO (1) | WO2020122320A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102326046B1 (en) * | 2019-12-19 | 2021-11-15 | 주식회사 포스코 | LOW-Cr FERRITIC STAINLESS STEEL WITH IMPROVED HIGH TEMPERATURE CHARACTERISTICS AND FORMABILITY AND MANUFACTURING METHOD THEREOF |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010159487A (en) | 2008-12-09 | 2010-07-22 | Nippon Steel & Sumikin Stainless Steel Corp | High-purity ferritic stainless steel having excellent corrosion resistance, and method for producing the same |
JP2014162964A (en) | 2013-02-26 | 2014-09-08 | Nippon Steel & Sumikin Stainless Steel Corp | Low alloy type ferritic stainless steel for automotive exhaust system member excellent in oxidation resistance and corrosion resistance |
US20150345361A1 (en) | 2012-12-24 | 2015-12-03 | Posco | Ferritic Stainless Steel for Automotive Exhaust System, Which Have Excellent Corrosion Resistance Against Condensate, Moldability, and High-Temperature Oxidation Resistance, and Method for Manufacturing Same |
WO2016117458A1 (en) | 2015-01-19 | 2016-07-28 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel for exhaust system member having excellent corrosion resistance after heating |
JP2016183400A (en) | 2015-03-26 | 2016-10-20 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel sheet excellent in corrosion resistance of burring processing part end surface and manufacturing method therefor |
JP2017179480A (en) | 2016-03-30 | 2017-10-05 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel sheet for exhaust component excellent in processability, steel tube and manufacturing method therefor |
JP2017206725A (en) | 2016-05-17 | 2017-11-24 | Jfeスチール株式会社 | Ferritic stainless steel and manufacturing method therefor |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100385032C (en) * | 2006-02-17 | 2008-04-30 | 山西太钢不锈钢股份有限公司 | Middle content chromium copper, iron-containing antiseptic anticreas rustless steel sheet belt and its production method |
CN102277538B (en) * | 2011-07-27 | 2013-02-27 | 山西太钢不锈钢股份有限公司 | Tin-containing ferrite stainless steel plate and manufacturing method thereof |
KR101485641B1 (en) * | 2012-12-24 | 2015-01-22 | 주식회사 포스코 | Ferritic stainless steel for automotive exhaust system with excellent corrosion resistance for water condensation and formability and the method of manufacturing the same |
KR101485643B1 (en) * | 2012-12-26 | 2015-01-22 | 주식회사 포스코 | Al coated stainless steel for automotive exhaust system with excellent high temperature oxidation resistance and excellent corrosion resistance for water condensation, and the method of manufacturing the same |
CN104046917B (en) * | 2013-03-13 | 2016-05-18 | 香港城市大学 | Superhigh intensity ferritic steel and the manufacture method thereof of rich Cu nanocluster strengthening |
CN104109809B (en) * | 2014-06-20 | 2018-11-06 | 宝钢不锈钢有限公司 | A kind of high formability low chrome ferritic stainless steel and manufacturing method |
JP6602112B2 (en) * | 2015-08-31 | 2019-11-06 | 日鉄ステンレス株式会社 | High purity ferritic stainless steel sheet for deep drawing with excellent secondary work brittleness resistance and method for producing the same |
KR101676193B1 (en) * | 2015-10-22 | 2016-11-15 | 주식회사 포스코 | Pickling method for low-chromium ferritic stainless cold steel strip |
-
2018
- 2018-12-10 KR KR1020180158651A patent/KR102168829B1/en active IP Right Grant
-
2019
- 2019-02-20 CN CN201980081706.6A patent/CN113166891A/en active Pending
- 2019-02-20 WO PCT/KR2019/002017 patent/WO2020122320A1/en unknown
- 2019-02-20 JP JP2021532855A patent/JP7174853B2/en active Active
- 2019-02-20 EP EP19897222.6A patent/EP3875627A4/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010159487A (en) | 2008-12-09 | 2010-07-22 | Nippon Steel & Sumikin Stainless Steel Corp | High-purity ferritic stainless steel having excellent corrosion resistance, and method for producing the same |
US20150345361A1 (en) | 2012-12-24 | 2015-12-03 | Posco | Ferritic Stainless Steel for Automotive Exhaust System, Which Have Excellent Corrosion Resistance Against Condensate, Moldability, and High-Temperature Oxidation Resistance, and Method for Manufacturing Same |
JP2014162964A (en) | 2013-02-26 | 2014-09-08 | Nippon Steel & Sumikin Stainless Steel Corp | Low alloy type ferritic stainless steel for automotive exhaust system member excellent in oxidation resistance and corrosion resistance |
WO2016117458A1 (en) | 2015-01-19 | 2016-07-28 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel for exhaust system member having excellent corrosion resistance after heating |
JP2016183400A (en) | 2015-03-26 | 2016-10-20 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel sheet excellent in corrosion resistance of burring processing part end surface and manufacturing method therefor |
JP2017179480A (en) | 2016-03-30 | 2017-10-05 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel sheet for exhaust component excellent in processability, steel tube and manufacturing method therefor |
JP2017206725A (en) | 2016-05-17 | 2017-11-24 | Jfeスチール株式会社 | Ferritic stainless steel and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
KR102168829B1 (en) | 2020-10-22 |
EP3875627A4 (en) | 2022-03-16 |
CN113166891A (en) | 2021-07-23 |
KR20200071212A (en) | 2020-06-19 |
WO2020122320A1 (en) | 2020-06-18 |
JP2022513747A (en) | 2022-02-09 |
EP3875627A1 (en) | 2021-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10260134B2 (en) | Hot rolled ferritic stainless steel sheet for cold rolling raw material | |
JP5794945B2 (en) | Heat resistant austenitic stainless steel sheet | |
EP2557189B1 (en) | Ferrite stainless steel sheet having high thermal resistance and processability, and method for manufacturing the same | |
JP5709875B2 (en) | Heat-resistant ferritic stainless steel sheet with excellent oxidation resistance | |
JP5362582B2 (en) | Ferritic stainless steel with excellent corrosion resistance and stretch formability and method for producing the same | |
JP2019002053A (en) | Ferritic stainless steel sheet, steel tube, ferritic stainless member for exhaust system component, and manufacturing method of ferritic stainless steel sheet | |
KR20040075981A (en) | Cr-CONTAINING HEAT-RESISTANT STEEL SHEET EXCELLENT IN WORKABILITY AND METHOD FOR PRODUCTION THEREOF | |
CN111433382B (en) | Ferritic stainless steel having excellent high-temperature oxidation resistance and method for producing same | |
US9816163B2 (en) | Cost-effective ferritic stainless steel | |
JP7174853B2 (en) | Low Cr ferritic stainless steel excellent in formability and high temperature properties and method for producing the same | |
JP2022064692A (en) | Austenitic stainless steel and method for producing austenitic stainless steel | |
KR102326046B1 (en) | LOW-Cr FERRITIC STAINLESS STEEL WITH IMPROVED HIGH TEMPERATURE CHARACTERISTICS AND FORMABILITY AND MANUFACTURING METHOD THEREOF | |
JPH0717946B2 (en) | Method for producing duplex stainless steel with excellent resistance to concentrated sulfuric acid corrosion | |
KR101607011B1 (en) | Steel sheet and method of manufacturing the same | |
KR100544506B1 (en) | Cold rolled high strength steel with the excellent anti-corrosion resistance to sufferic acid and method for manufaxturing thereof | |
CN114364820B (en) | Ferritic stainless steel with improved high temperature creep resistance and method for manufacturing same | |
KR101991000B1 (en) | High corrosion resistant austenitic stainless steel and method of manufacturing the same | |
JP2024028047A (en) | Ferritic stainless steel plate | |
EP4249623A1 (en) | High-strength austenitic stainless steel having excellent hot workability | |
KR20190077672A (en) | Ferritic stainless steel excellent in ridging property |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210609 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220627 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220705 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221004 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221025 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221107 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7174853 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |