JP2002038241A - Free cutting stainless steel - Google Patents

Free cutting stainless steel

Info

Publication number
JP2002038241A
JP2002038241A JP2000226743A JP2000226743A JP2002038241A JP 2002038241 A JP2002038241 A JP 2002038241A JP 2000226743 A JP2000226743 A JP 2000226743A JP 2000226743 A JP2000226743 A JP 2000226743A JP 2002038241 A JP2002038241 A JP 2002038241A
Authority
JP
Japan
Prior art keywords
free
stainless steel
cutting
ratio
machinability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000226743A
Other languages
Japanese (ja)
Other versions
JP3703008B2 (en
Inventor
Kazuo Nakama
一夫 中間
Tatsuro Isomoto
辰郎 磯本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2000226743A priority Critical patent/JP3703008B2/en
Publication of JP2002038241A publication Critical patent/JP2002038241A/en
Application granted granted Critical
Publication of JP3703008B2 publication Critical patent/JP3703008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a free cutting stainless steel, greatly improved in machinability by clarifying an effect of Se and Te in the S free cutting stainless steel with Mn of low content. SOLUTION: This free cutting stainless steel is composed of, by mass %, below 0.50% C, 0.05-2.0% Si, 0.05-1.00% Mn, 0.05-0.50% S, 0.02-0.20% Se, 0.01-0.10% Te, 10.00-30.00% Cr and the balance Fe with unavoidable impurities, satisfying the component ratio of Mn/S of below 2, Se/S of above 0.2 and Te/S of above 0.04.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、快削ステンレス鋼
に関するものである。
The present invention relates to free-cutting stainless steel.

【0002】[0002]

【従来の技術】従来、OA機器や精密機械部品等には、
SUS430FやSUS303に代表されるSを添加し
た快削ステンレス鋼のみならず、Pb,Te等のいわゆ
る快削元素を複合添加して被削性改善を図った快削鋼が
使用されてきた。しかしより一層の被削性に優れた快削
ステンレス鋼のニーズは極めて強い。近年では、機器の
小型化、高精密化に対応すべく、被削性の要求レベルが
厳しくなっている。特に、ハードディスクドライブ(H
DD)等の精密機器部品用材として多用されている快削
ステンレス鋼には、ステンレス鋼本来の耐食性に優れて
いること、切削加工表面の美麗さや寸法精度を満足する
被削性を有していること、快削鋼中の硫化物が空気中の
水分と反応して発生する硫化水素ガス(アウトガス)が
少ないことが求められている。
2. Description of the Related Art Conventionally, OA equipment, precision machine parts, etc.
Not only free-cutting stainless steels to which S is added, such as SUS430F and SUS303, but also free-cutting steels in which so-called free-cutting elements such as Pb and Te are added in combination to improve machinability have been used. However, the need for free-cutting stainless steel with even better machinability is extremely strong. In recent years, the required level of machinability has become severe in order to respond to miniaturization and high precision of equipment. In particular, hard disk drives (H
Free-cutting stainless steel, which is frequently used as a component for precision equipment parts such as DD), has excellent corrosion resistance inherent in stainless steel, and has machinability that satisfies the beauty and dimensional accuracy of the machined surface. In addition, it is required that the amount of hydrogen sulfide gas (out gas) generated by the reaction of sulfide in free-cutting steel with moisture in the air is small.

【0003】これまでアウトガス対策として特開平10
−46292号公報等に開示されているように、低Mn
化した快削ステンレス鋼が発明されている。しかし、低
Mn化した快削鋼は、Mn含有量が1%前後と高い従来
の快削鋼と比較して被削性が大幅に劣るという問題があ
る。これは低Mn化により硫化物がMnSから(Cr,
Mn)Sに組成変化する結果、硫化物硬さが上昇し、か
つ熱間延伸性に富むようになり、被削性改善効果が薄れ
るためである。
As a countermeasure against outgassing, Japanese Patent Laid-Open
As disclosed in JP-A-46292, etc., low Mn
Free-cutting stainless steel has been invented. However, the free-cutting steel with reduced Mn has a problem that the machinability is significantly inferior to that of a conventional free-cutting steel having a high Mn content of about 1%. This is because sulfide is changed from MnS to (Cr,
This is because, as a result of the composition change to Mn) S, the sulfide hardness increases and the hot stretchability is enhanced, and the effect of improving machinability is reduced.

【0004】[0004]

【発明が解決しようとする課題】高Mnの従来のS快削
鋼の被削性改善方法として、硫化物(MnS)の形態制
御を目的に、SeやTeを添加することが知られてい
る。しかし、低Mn化により硫化物(Cr,Mn)Sが
生成した場合のSeやTeの効果を明らかにした従来知
見はなかった。コンピュターHDD部品のように、耐食
性、硫化水素アウトガス特性が優れ、高い被削性が要求
される部品に対して用いられてきた上記特開平10−4
6292号公報では、近年の精密機器の小型高性能化に
伴い厳しくなる部品の加工寸法精度を満足することが困
難になりつつあり、一層の高被削性が求められている。
本発明では、低MnのS快削鋼におけるSeおよびTe
の効果を明らかにし、これらを利用して大幅に被削鋼を
改善した快削ステンレス鋼を提供することを目的とす
る。
As a method for improving the machinability of a conventional high-Mn S free-cutting steel, it is known to add Se or Te for the purpose of controlling the form of sulfide (MnS). . However, there is no conventional finding that clarifies the effect of Se or Te when sulfide (Cr, Mn) S is generated by reducing Mn. Japanese Unexamined Patent Application Publication No. 10-4, which has been used for components that require excellent corrosion resistance and hydrogen sulfide outgassing properties and high machinability, such as computer HDD components.
In Japanese Patent No. 6292, it is becoming difficult to satisfy the processing dimensional accuracy of a part which becomes strict with the recent miniaturization and high performance of precision equipment, and further higher machinability is required.
In the present invention, Se and Te in a low Mn S free-cutting steel are used.
It is an object of the present invention to clarify the effects of the present invention and to provide a free-cutting stainless steel in which a work steel is greatly improved by utilizing the effects.

【0005】[0005]

【課題を解決するための手段】上述したような問題を解
消するべく、発明者らは鋭意開発を進めた結果、S,S
e,Teを最適なバランスで同時に複合添加することに
より介在物組成を制御した結果、介在物の形状と硬さを
切削加工時の工具摩耗制御に好適なものにできることを
見出したものである。その発明の要旨とするところは、 (1)質量%で、C:0.50%以下、Si:0.05
〜2.00%、Mn:0.05〜1.00%、S:0.
05〜0.50%、Se:0.02〜0.20%、T
e:0.01〜0.10%、Cr:10.00〜30.
00%、かつ、Mn/S比:2以下、Se/S比:0.
2以上、Te/S比:0.04以上の成分比を満たし、
残部がFeおよび不可避的不純物からなる快削ステンレ
ス鋼。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have intensively developed and found that S, S
It has been found that as a result of controlling the composition of the inclusions by simultaneously adding e and Te in an optimum balance in combination, the shape and hardness of the inclusions can be made suitable for controlling the tool wear during cutting. The gist of the invention is as follows: (1) In mass%, C: 0.50% or less, Si: 0.05
2.00%, Mn: 0.05-1.00%, S: 0.
05 to 0.50%, Se: 0.02 to 0.20%, T
e: 0.01 to 0.10%, Cr: 10.00 to 30.
00%, Mn / S ratio: 2 or less, Se / S ratio: 0.
2 or more, satisfying a component ratio of Te / S ratio: 0.04 or more;
Free-cutting stainless steel with the balance being Fe and unavoidable impurities.

【0006】(2)質量%で、O:0.005〜0.0
40%を含有することを特徴とする前記(1)に記載の
快削ステンレス鋼。 (3)質量%で、Al:0.0001〜0.020%、
Ca:0.0005〜0.010%、Mg:0.000
5〜0.010%のうちの1種または2種以上を含有す
ることを特徴とする前記(1)または(2)に記載の快
削ステンレス鋼。 (4)質量%で、Mo:3.00%以下を含有すること
を特徴とする前記(1)〜(3)に記載の快削ステンレ
ス鋼。
(2) In mass%, O: 0.005 to 0.0
The free-cutting stainless steel according to the above (1), which contains 40%. (3) Al: 0.0001 to 0.020% by mass%;
Ca: 0.0005 to 0.010%, Mg: 0.000
The free-cutting stainless steel according to the above (1) or (2), comprising one or more of 5 to 0.010%. (4) The free-cutting stainless steel according to any one of (1) to (3), wherein Mo: 3.00% or less is contained by mass%.

【0007】(5)質量%で、Ni:20.00%以
下、Cu:4.00%以下のうちの1種または2種を含
有することを特徴とする前記(1)〜(4)に記載の快
削ステンレス鋼。 (6)質量%で、Pb:0.03〜0.30%、Bi:
0.03〜0.30%のうちの1種または2種を含有す
ることを特徴とする前記(1)〜(5)に記載の快削ス
テンレス鋼。
(5) The above (1) to (4), wherein one or two of Ni: 20.00% or less and Cu: 4.00% or less are contained by mass%. Free-cutting stainless steel as described. (6) In mass%, Pb: 0.03 to 0.30%, Bi:
The free-cutting stainless steel according to (1) to (5), containing one or two of 0.03 to 0.30%.

【0008】(7)質量%で、Ti:0.02〜1.0
0%、Nb:0.02〜1.00%、V:0.02〜
1.00%、W:0.02〜1.00%のうちの1種ま
たは2種以上を含有することを特徴とする前記(1)〜
(6)に記載の快削ステンレス鋼。 (8)質量%で、N:0.005〜0.10%、B:
0.001〜0.010%のうちの1種または2種を含
有することを特徴とする前記(1)〜(7)に記載の快
削ステンレス鋼にある。
(7) In mass%, Ti: 0.02 to 1.0
0%, Nb: 0.02 to 1.00%, V: 0.02
1.00%, W: 0.02 to 1.00%, wherein (1) to (2) or more are contained.
Free-cutting stainless steel according to (6). (8) By mass%, N: 0.005 to 0.10%, B:
The free-cutting stainless steel according to any one of (1) to (7), containing one or two of 0.001 to 0.010%.

【0009】[0009]

【発明の実施の形態】以下、本発明に係る成分組成の限
定理由について説明する。 C:0.50%以下 Cは、強度を上げるに必要な元素である。しかし、0.
50%を超えると耐食性と靱性を劣化させるので、その
上限を0.50%とした。 Si:0.05〜2.00% Siは、脱酸元素として有用な元素であるが、しかし、
多いと焼なまし硬さが上昇するので、その範囲を0.0
5〜2.00%とした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting the composition of the present invention will be described below. C: 0.50% or less C is an element necessary for increasing the strength. However, 0.
If it exceeds 50%, the corrosion resistance and toughness deteriorate, so the upper limit was made 0.50%. Si: 0.05 to 2.00% Si is a useful element as a deoxidizing element.
If the amount is too high, the annealing hardness will increase.
5 to 2.00%.

【0010】Mn:0.05〜1.00% Mnは、Siと同様に脱酸元素であり、硫化物系介在物
の組成制御に有用である。しかし、0.05%未満では
その効果を達成できず、また、多過ぎてもその効果は飽
和に達し、その範囲を0.05〜1.00%とした。 S:0.05〜0.50% Sは、快削元素である。しかし、0.05%未満ではそ
の効果が得られず、多いと熱間加工性を悪化させるの
で、その範囲を0.05〜0.50%とした。
Mn: 0.05 to 1.00% Mn is a deoxidizing element like Si, and is useful for controlling the composition of sulfide inclusions. However, if the content is less than 0.05%, the effect cannot be achieved, and if the content is too large, the effect reaches saturation, and the range is set to 0.05 to 1.00%. S: 0.05 to 0.50% S is a free-cutting element. However, if the content is less than 0.05%, the effect cannot be obtained, and if the content is large, the hot workability is deteriorated. Therefore, the range is set to 0.05 to 0.50%.

【0011】Se:0.02〜0.20% Seは、Sと同様に快削元素である。しかし、0.02
%未満ではその効果が得られず、多いと熱間加工性を悪
化させるので、その範囲を0.02〜0.20%とし
た。 Te:0.01〜0.10% Teは、Sと同様に快削元素である。しかし、0.01
%未満ではその効果が得られず、多いと熱間加工性を悪
化させるので、その範囲を0.01〜0.10%とし
た。
Se: 0.02 to 0.20% Se, like S, is a free-cutting element. However, 0.02
%, The effect cannot be obtained, and if it is too large, the hot workability deteriorates. Therefore, the range is set to 0.02 to 0.20%. Te: 0.01 to 0.10% Te is a free-cutting element like S. However, 0.01
%, The effect cannot be obtained, and if it is too large, the hot workability is deteriorated. Therefore, the range is set to 0.01 to 0.10%.

【0012】Cr:10.00〜30.00% Crは、耐食性を向上させる基本元素である。しかし、
10.00%未満では効果が少なく、多いと被削性を悪
化させ、かつ脆化しやすくなるので、その範囲を10.
00〜30.00%とした。 O:0.005〜0.040% Oは、硫化物系介在物の熱間変形能を下げ被削性を改善
させる。しかし、多いと不要な酸化物が増加するので、
その範囲を0.005〜0.040%とした。
Cr: 10.00-30.00% Cr is a basic element for improving corrosion resistance. But,
If it is less than 10.00%, the effect is small, and if it is too large, machinability deteriorates and embrittlement easily occurs.
It was set to 00 to 30.00%. O: 0.005 to 0.040% O reduces the hot deformability of the sulfide-based inclusions and improves the machinability. However, a large amount increases unnecessary oxides,
The range was 0.005 to 0.040%.

【0013】Al:0.0001〜0.020% Alは、強力な脱酸元素であり、酸化物組成制御に有効
である。しかし、0.0001%未満ではその効果は少
なく、多いと硬質酸化物が被削性を悪化させる。従っ
て、その範囲を0.0001〜0.020%とした。 Ca:0.0005〜0.010% Caは、強力な脱酸元素であり、酸化物組成制御に有効
である。しかし、0.0005%未満ではその効果は少
なく、0.010%を超える添加は困難である。従っ
て、その範囲を0.0005〜0.010%とした。
Al: 0.0001 to 0.020% Al is a powerful deoxidizing element and is effective for controlling the oxide composition. However, if the content is less than 0.0001%, the effect is small, and if it is too large, the hard oxide deteriorates machinability. Therefore, the range is set to 0.0001 to 0.020%. Ca: 0.0005 to 0.010% Ca is a powerful deoxidizing element and is effective in controlling the oxide composition. However, if the content is less than 0.0005%, the effect is small, and it is difficult to add more than 0.010%. Therefore, the range is set to 0.0005 to 0.010%.

【0014】Mg:0.0005〜0.010% Mgは、強力な脱酸元素であり、酸化物組成制御に有効
である。しかし、0.0005%未満ではその効果は少
なく、多いと硬質非延性酸化物が被削性を悪化させる。
従って、その範囲を0.0005〜0.010%とし
た。 Mo:3.00%以下 Moは、耐食性を向上させる元素である。しかし、多い
と脆化しやすく、しかも高価であるので、その上限を
3.00%とした。
Mg: 0.0005-0.010% Mg is a powerful deoxidizing element and is effective in controlling the oxide composition. However, if it is less than 0.0005%, the effect is small, and if it is too large, the hard non-ductile oxide deteriorates machinability.
Therefore, the range is set to 0.0005 to 0.010%. Mo: 3.00% or less Mo is an element for improving corrosion resistance. However, when the content is too large, the material is easily embrittled and expensive, so the upper limit is set to 3.00%.

【0015】Ni:20.00%以下 Niは、耐食性を向上させる元素であり、また、オース
テナイト相の安定化させる。しかし、多いと延性を増し
被削性を悪化させる。従って、その上限を20.00%
とした。 Cu:4.00%以下 Cuは、冷間加工性を改善する元素であり、また、オー
ステナイト相の安定化させる。しかし、多いと熱間加工
性を悪化させる。従って、その上限を4.00%とし
た。
Ni: 20.00% or less Ni is an element for improving the corrosion resistance and stabilizes the austenite phase. However, if it is too large, the ductility increases and the machinability deteriorates. Therefore, the upper limit is 20.00%
And Cu: 4.00% or less Cu is an element that improves cold workability and also stabilizes the austenite phase. However, when the content is too large, the hot workability deteriorates. Therefore, the upper limit is set to 4.00%.

【0016】Pb:0.03〜0.30% Pbは、快削元素である。しかし、0.03%未満では
その効果が得られず、多過ぎても快削性が飽和すると共
に、熱間加工性が悪化することから、その範囲を0.0
3〜0.30%とした。 Bi:0.03〜0.30% Biは、Pbと同様に、快削元素である。しかし、0.
03%未満ではその効果が得られず、多過ぎても快削性
が飽和すると共に、熱間加工性が悪化することから、そ
の範囲を0.03〜0.30%とした。
Pb: 0.03 to 0.30% Pb is a free-cutting element. However, if the content is less than 0.03%, the effect cannot be obtained. If the content is too large, the free cutting property is saturated and the hot workability is deteriorated.
It was set to 3 to 0.30%. Bi: 0.03 to 0.30% Bi is a free-cutting element like Pb. However, 0.
If the content is less than 03%, the effect cannot be obtained. If the content is too large, the free-cutting property is saturated and the hot workability deteriorates. Therefore, the range is set to 0.03 to 0.30%.

【0017】Ti:0.02〜1.00% Tiは、炭窒化物生成により耐食性を向上させる。しか
し、多いとその効果が飽和することから、その範囲を
0.02〜1.00%とした。 Nb:0.02〜1.00% Nbは、Tiと同様に、炭窒化物生成により耐食性を向
上させる。しかし、多いとその効果が飽和することか
ら、その範囲を0.02〜1.00%とした。
Ti: 0.02 to 1.00% Ti improves corrosion resistance by forming carbonitrides. However, the effect is saturated when the amount is large, so the range is set to 0.02 to 1.00%. Nb: 0.02 to 1.00% Nb improves corrosion resistance by forming carbonitrides, like Ti. However, the effect is saturated when the amount is large, so the range is set to 0.02 to 1.00%.

【0018】V:0.02〜1.00% Vは、Tiと同様に、炭窒化物生成により耐食性を向上
させる。しかし、多いとその効果が飽和することから、
その範囲を0.02〜1.00%とした。 W:0.02〜1.00% Wは、Tiと同様に、炭窒化物生成により耐食性を向上
させる。しかし、多いとその効果が飽和することから、
その範囲を0.02〜1.00%とした。
V: 0.02 to 1.00% V, like Ti, improves the corrosion resistance by forming carbonitrides. However, since the effect is saturated when there are many,
The range was set to 0.02 to 1.00%. W: 0.02 to 1.00% W, like Ti, improves the corrosion resistance by forming carbonitrides. However, since the effect is saturated when there are many,
The range was set to 0.02 to 1.00%.

【0019】N:0.005〜0.10% Nは、強度上昇に役立つ元素である。しかし、多いと靱
性を悪化させるので、その範囲を0.005〜0.10
%とした。 B:0.001〜0.010% Bは、熱間加工性を向上させる元素である。しかし、多
いと逆に熱間加工性が悪化することから、その範囲を
0.001〜0.010%とした。
N: 0.005 to 0.10% N is an element useful for increasing the strength. However, if the content is too large, the toughness is deteriorated.
%. B: 0.001 to 0.010% B is an element that improves hot workability. However, if the content is too large, the hot workability deteriorates conversely, so the range was made 0.001 to 0.010%.

【0020】次に、本発明の特徴とするSeとTeを特
に一定の割合で複合添加したときの効果について説明す
る。一般的に、硫化物系介在物(S,Se,Teのいず
れか、あるいは数種を含有する介在物)は、切削加工時
に応力集中源となって働き脆化させることで被削性を改
善し、中でもサイズが大きく、また球状の介在物である
ほど被削性への寄与が大きいとされている。Seおよび
Teの添加量を変化させた鋼種の介在物を詳細に調査し
た結果、Teは従来から知られているように介在物の延
伸を抑制し、球状あるいは紡錘状に保ち、加えてSeを
添加すると介在物サイズの大型化、および介在物延伸の
抑制傾向がわずかに認められた。
Next, the effect of the combined addition of Se and Te at a specific ratio, which is a feature of the present invention, will be described. Generally, sulfide-based inclusions (any of S, Se, Te, or inclusions containing several types) work as a stress concentration source during cutting to improve the machinability by embrittlement. In particular, it is said that the larger the size and the more spherical inclusions, the greater the contribution to machinability. As a result of a detailed investigation of inclusions of steel grades in which the amounts of Se and Te added were changed, Te suppressed the elongation of inclusions as conventionally known, kept spherical or spindle-shaped, and added Se. When added, the inclusions were slightly increased in size and tended to suppress inclusion stretching.

【0021】さらに、Seは介在物硬さを上昇させる傾
向もみられた。Se添加で硬さが増した介在物は、切削
加工時に受ける剪断応力下で、介在物自体が破壊し、す
べりの助長および亀裂の発生と伝播を容易にする様子が
見られたため、介在物硬さの上昇も被削性改善に効果が
あるのではないかと推察される。このように、SeやT
eの添加により変化する硫化物系介在物の諸性質が、被
削性を改善していると考えられる。
Further, Se also tended to increase the hardness of inclusions. The inclusions increased in hardness by the addition of Se showed that the inclusions themselves were broken under the shear stress applied during cutting, which promoted slip and facilitated the generation and propagation of cracks. It is inferred that the increase in the height may be effective in improving machinability. Thus, Se and T
It is considered that the various properties of the sulfide-based inclusions changed by the addition of e improve the machinability.

【0022】また、硫化物系介在物の組織、硬さおよび
大きさに及ぼすSeとTe添加量の影響について、以下
のような傾向がある。Seの場合、介在物組織は、Se
/S比の増加に伴いSe濃度も一様に増加する。介在物
硬さは、Se/S比増加に伴い上昇し、その後一定とな
り、介在物大きさは、Se/S比が増加すると一様に大
きくなる傾向がある。また、介在物延伸性(アスペクト
比:介在物の長径長さ/短径長さで評価)は、Se/S
比の増加により緩やかに低下する。Teの場合、Te/
S比の増加とともに介在物中のTe濃度が増加してTe
/S比が0.1前後で飽和し、Teによる介在物延伸抑
制効果もTe/S比が0.1前後まで、この比の上昇に
伴って増す。介在物硬さは、わずかに上昇する傾向があ
るが変化は小さくほぼ一定である。
The influence of the amounts of Se and Te added on the structure, hardness and size of the sulfide-based inclusions has the following tendency. In the case of Se, the inclusion structure is Se
As the / S ratio increases, the Se concentration also increases uniformly. Inclusion hardness increases with an increase in the Se / S ratio, and thereafter becomes constant. Inclusion size tends to increase uniformly as the Se / S ratio increases. In addition, the extensibility of the inclusions (aspect ratio: evaluated by the major axis length / minor axis length of the inclusions) is Se / S
Decreases slowly with increasing ratio. In the case of Te, Te /
As the S ratio increases, the Te concentration in inclusions increases,
The / S ratio saturates at around 0.1, and the effect of suppressing the elongation of inclusions by Te also increases with the increase of this ratio until the Te / S ratio reaches around 0.1. Inclusion hardness tends to increase slightly, but changes are small and almost constant.

【0023】SeおよびTeの有効な添加量はSとの比
で決められ、Se/S比は0.2以上(好適な介在物硬
さを得るため、および延伸抑制のため)、Te/S比は
0.04以上(介在物延伸抑制のため)必要である。こ
のようにSeとTeの効果があいまって初めて好適な介
在物が生成し、被削性を著しく改善する効果を奏するも
のである。また、快削鋼の硫化水素アウトガスは、従来
より、Mn/S比の低下による硫化物系介在物の高Cr
化に伴って抑制されることが知られていたが、硫化物系
介在物にSeやTeが固溶するS−Se−Te快削鋼に
おいても同様にMn/S比によりアウトガス特性が決定
されることが分かった。耐食性においても同様である。
The effective addition amounts of Se and Te are determined by the ratio with S, and the Se / S ratio is 0.2 or more (to obtain a suitable inclusion hardness and to suppress stretching), and Te / S The ratio is required to be 0.04 or more (for suppressing inclusion stretching). Thus, only when the effects of Se and Te are combined, a suitable inclusion is generated, and the effect of remarkably improving the machinability is exhibited. In addition, the hydrogen sulfide outgas of free-cutting steel has conventionally been based on a high Cr content of sulfide-based inclusions due to a decrease in the Mn / S ratio.
It has been known that the outgassing characteristics are also suppressed by the Mn / S ratio in S-Se-Te free-cutting steel in which Se or Te is dissolved in sulfide-based inclusions. I found out. The same applies to the corrosion resistance.

【0024】Mn/S比:2以下 SeやTeの添加により硫化物は(Cr,Mn)(S,
Se,Te)組成になるが、この場合でも材料の耐食
性、アウトガス特性(硫化水素発生量)はMn/S比で
決定される。Mn/S比が低いほどこれらの特性は向上
するが、Mn/S比が2以下であれば実際上工業的な使
用に耐えうる場合が多い。 Se/S比:0.2以上 Se/S比の増加に伴って硫化物系介在物中のSe濃度
は増加する。Se含有硫化物系介在物は、切削加工時に
破壊して亀裂の発生・伝播を容易にするとともに剪断変
形をしやすくする。Se/S比が0.2以上で有効であ
る。
Mn / S ratio: 2 or less Sulfide can be converted to (Cr, Mn) (S,
(Se, Te) composition, but also in this case, the corrosion resistance and outgas characteristics (the amount of generated hydrogen sulfide) of the material are determined by the Mn / S ratio. These characteristics are improved as the Mn / S ratio is lower. However, if the Mn / S ratio is 2 or less, it can often be practically used industrially. Se / S ratio: 0.2 or more The Se concentration in the sulfide-based inclusion increases as the Se / S ratio increases. The Se-containing sulfide-based inclusions break during cutting to facilitate the generation and propagation of cracks and to facilitate shear deformation. It is effective when the Se / S ratio is 0.2 or more.

【0025】Te/S比:0.04以上 Te/S比の増加に伴って硫化物系介在物中のTe濃度
は増加し、これに伴って硫化物系介在物が形態制御され
被削性が改善しTe/S比が0.04以上で効果が顕著
である。ただしTe/S比が0.1でTe濃度が飽和す
るまで被削性改善効果は持続するので、望ましくは0.
1以上である。
Te / S ratio: 0.04 or more The Te concentration in the sulfide-based inclusions increases with an increase in the Te / S ratio. And the effect is remarkable when the Te / S ratio is 0.04 or more. However, since the machinability improving effect continues until the Te concentration is saturated at a Te / S ratio of 0.1, it is preferable that the machinability be improved to 0.1.
1 or more.

【0026】[0026]

【実施例】以下、本発明について実施例をもって具体的
に説明する。真空誘導炉で100kg鋼塊を溶製し、表
1に示す化学成分を有する鋼を所定の寸法の棒鋼に鍛伸
した後、熱処理を行った。すなわち、表1に示すNo.
1〜18はフェライト系ステンレス鋼であり、焼なまし
を行い、また、No.19〜23はマルテンサイト系で
あり、介在物形状と被削性調査は焼なまし、アウトガス
試験、耐食性試験は焼入焼戻しを行い、No.24〜2
9はオーステナイト系であり、固溶化熱処理を行った。
その結果を表2に示す。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to examples. A 100 kg steel ingot was melted in a vacuum induction furnace, and a steel having the chemical composition shown in Table 1 was forged into a bar having a predetermined size, and then heat-treated. That is, No. 1 shown in Table 1 was used.
Nos. 1 to 18 are ferritic stainless steels that have been annealed. Nos. 19 to 23 are of martensite type, and the shapes of inclusions and machinability were annealed, the outgas test and the corrosion resistance test were quenched and tempered. 24-2
Reference numeral 9 denotes an austenite system, which was subjected to a solution heat treatment.
Table 2 shows the results.

【0027】表2における、(1)硫化物系介在物形状
は、φ20mm棒鋼の鍛伸方向に平行な面の硫化物系介
在物の形状を画像解析装置にて測定した。解析項目は介
在物大きさ分布と介在物アスペクト比(長/短径)とし
た。 (2)被削性については、φ60mm棒鋼の長手方向に
超硬工具を用い旋削し(周速200m/min、切込み
1.0mm、送り0.2mm/rev、切削油なし)、
10min旋削後の逃げ面およびすくい面の工具摩耗を
測定した。さらに、仕上切削性評価として、φ24mm
棒鋼の端面をサーメット工具を用いて切削し(周速15
0m/min、切込み0.04mm、送り0.03mm
/rev、切削油剤使用)、200mm切削後の被削材
の仕上面の表面粗さ、ムシレの有無から仕上切削性の良
否を評価した。
In Table 2, (1) The shape of the sulfide-based inclusions was measured by using an image analyzer to measure the shape of the sulfide-based inclusions on a plane parallel to the forging direction of a φ20 mm steel bar. The analysis items were inclusion size distribution and inclusion aspect ratio (long / short diameter). (2) Regarding the machinability, turning was performed using a carbide tool in the longitudinal direction of a φ60 mm bar (peripheral speed 200 m / min, depth of cut 1.0 mm, feed 0.2 mm / rev, no cutting oil),
The tool wear on the flank and rake face after 10 minutes turning was measured. Furthermore, as a finish cutability evaluation, φ24 mm
The end face of the bar is cut using a cermet tool (peripheral speed 15
0m / min, depth of cut 0.04mm, feed 0.03mm
/ Rev, using a cutting oil), the surface roughness of the finished surface of the work material after cutting 200 mm, and the presence or absence of wrinkles to evaluate the quality of the finish machinability.

【0028】(3)硫化水素アウトガス特性としては、
φ12mm×L21mmの棒状試験片を80℃の飽和水
蒸気下にAg板と共に20h封入し、Ag板の変色度に
より硫化水素発生量の多寡を評価した。すなわち、硫化
水素アウトガスが多くなるのに従って、Ag板が白色か
ら褐色に変化する。 (4)耐食性については、φ12mm×L21mmの棒
状試験片について、90%RHで(20←→70)℃×
20回のサイクル中に放置し、表面の発銹状態を調査し
た。
(3) Hydrogen sulfide outgas characteristics include:
A rod-shaped test piece of φ12 mm × L21 mm was sealed together with an Ag plate under saturated steam at 80 ° C. for 20 hours, and the amount of hydrogen sulfide generated was evaluated based on the degree of discoloration of the Ag plate. That is, the Ag plate changes from white to brown as the hydrogen sulfide outgas increases. (4) Regarding the corrosion resistance, a rod-shaped test piece of φ12 mm × L21 mm was (20 ← → 70) ° C. × 90% RH.
The substrate was left standing for 20 cycles, and the rust state on the surface was examined.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】表2に示すように、No.1〜14とN
o.15〜18はフェライト系ステンレス鋼、No.1
9〜23はマルテンサイト系ステンレス鋼、No.24
〜29はオーステナイト系ステンレス鋼の例である。N
o.1〜9、No.15〜16(フェライト系)、N
o.19〜21(マルテンサイト系)、No.24〜2
7(オーステナイト系)は本発明例であり、被削性、硫
化水素アウトガス特性、耐食性を兼ね備えた従来にない
優れた材料である。
As shown in Table 2, as shown in FIG. 1-14 and N
o. Nos. 15 to 18 are ferritic stainless steels. 1
9 to 23 are martensitic stainless steels; 24
29 are examples of austenitic stainless steel. N
o. Nos. 1 to 9; 15-16 (ferrite type), N
o. Nos. 19 to 21 (martensite type); 24-2
7 (austenitic) is an example of the present invention, and is an unprecedented excellent material having machinability, hydrogen sulfide outgassing properties, and corrosion resistance.

【0032】比較例である、No.10はSUS430
であり、快削鋼でないため特に被削性が悪い。No.1
1はSUS430Fであり、被削性は良好だがアウトガ
ス特性、耐食性が悪い。No.12は高MnでMn/S
比が大きいためアウトガス特性、耐食性が悪い。No.
13はSe量が少なく、発明鋼と比べて介在物がやや小
さ目であり、被削性が劣っている。No.14はTe量
が少なく、アスペクト比が大きく被削性がやや劣ってい
る。No.17、18はそれぞれSe、Teを全く含ま
ず、被削性が悪い。No.22はSe、Teを両方とも
含まない場合で、介在物形態制御がされていないため被
削性が悪い。No.23は高Mn/S比のためアウトガ
ス特性、耐食性が悪い。No.28は従来鋼のSUS3
03であり、No.11と同様に被削性は良好だがアウ
トガス性、耐食性が悪い。No.29は低Teの場合
で、介在物形態制御が不十分で被削性が劣る。
No. 3 is a comparative example. 10 is SUS430
And the machinability is particularly poor because it is not free-cutting steel. No. 1
No. 1 is SUS430F, which has good machinability but has poor outgassing properties and corrosion resistance. No. 12 is high Mn and Mn / S
Outgassing properties and corrosion resistance are poor due to large ratio. No.
No. 13 has a small amount of Se, the inclusions are slightly smaller than the inventive steel, and the machinability is inferior. No. No. 14 has a small amount of Te, a large aspect ratio, and slightly inferior machinability. No. 17 and 18 do not contain any Se and Te, respectively, and have poor machinability. No. Reference numeral 22 denotes a case where neither Se nor Te is contained, and since the inclusion form control is not performed, the machinability is poor. No. No. 23 has poor outgassing properties and corrosion resistance due to a high Mn / S ratio. No. 28 is SUS3 of conventional steel
03; As with No. 11, the machinability is good, but the outgassing properties and corrosion resistance are poor. No. Reference numeral 29 denotes a case of low Te, in which the inclusion form control is insufficient and the machinability is poor.

【0033】[0033]

【発明の効果】以上述べたように、本発明によるS、S
e、Teを適度なバランスで同時に添加することにより
介在物組成を制御し、これにより介在物の形態と硬さを
好適なものとすることができ、切削部品の要求精度アッ
プに対して、従来より格段に被削性が優れた材料を提供
することが可能となった。
As described above, according to the present invention, S, S
The composition of inclusions can be controlled by simultaneously adding e and Te in an appropriate balance, thereby making the shape and hardness of the inclusions suitable. It has become possible to provide a material with much better machinability.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C:0.50%以下、 Si:0.05〜2.00%、 Mn:0.05〜1.00%、 S:0.05〜0.50%、 Se:0.02〜0.20%、 Te:0.01〜0.10%、 Cr:10.00〜30.00%、 かつ、Mn/S比:2以下、Se/S比:0.2以上、
Te/S比:0.04以上の成分比を満たし、残部がF
eおよび不可避的不純物からなる快削ステンレス鋼。
1. Mass%, C: 0.50% or less, Si: 0.05 to 2.00%, Mn: 0.05 to 1.00%, S: 0.05 to 0.50%, Se: 0.02 to 0.20%, Te: 0.01 to 0.10%, Cr: 10.00 to 30.00%, and Mn / S ratio: 2 or less, Se / S ratio: 0. 2 or more,
Te / S ratio: Satisfies the component ratio of 0.04 or more, and the balance is F
Free-cutting stainless steel consisting of e and unavoidable impurities.
【請求項2】 質量%で、O:0.005〜0.040
%を含有することを特徴とする請求項1に記載の快削ス
テンレス鋼。
2. O: 0.005 to 0.040 by mass%
The free-cutting stainless steel according to claim 1, wherein the stainless steel contains 0.1% by weight.
【請求項3】 質量%で、 Al:0.0001〜0.020%、 Ca:0.0005〜0.010%、 Mg:0.0005〜0.010% のうちの1種または2種以上を含有することを特徴とす
る請求項1または2に記載の快削ステンレス鋼。
3. One or more of Al: 0.0001 to 0.020%, Ca: 0.0005 to 0.010%, and Mg: 0.0005 to 0.010% by mass%. The free-cutting stainless steel according to claim 1 or 2, further comprising:
【請求項4】 質量%で、Mo:3.00%以下を含有
することを特徴とする請求項1〜3に記載の快削ステン
レス鋼。
4. The free-cutting stainless steel according to claim 1, which contains, by mass%, Mo: 3.00% or less.
【請求項5】 質量%で、 Ni:20.00%以下、 Cu:4.00%以下 のうちの1種または2種を含有することを特徴とする請
求項1〜4に記載の快削ステンレス鋼。
5. The free-cutting machine according to claim 1, wherein one or two of Ni: 20.00% or less and Cu: 4.00% or less are contained by mass%. Stainless steel.
【請求項6】 質量%で、 Pb:0.03〜0.30%、 Bi:0.03〜0.30% のうちの1種または2種を含有することを特徴とする請
求項1〜5に記載の快削ステンレス鋼。
6. The composition according to claim 1, wherein one or two of Pb: 0.03 to 0.30% and Bi: 0.03 to 0.30% are contained by mass%. 6. The free-cutting stainless steel according to 5.
【請求項7】 質量%で、 Ti:0.02〜1.00%、 Nb:0.02〜1.00%、 V:0.02〜1.00%、 W:0.02〜1.00% のうちの1種または2種以上を含有することを特徴とす
る請求項1〜6に記載の快削ステンレス鋼。
7. In mass%, Ti: 0.02-1.00%, Nb: 0.02-1.00%, V: 0.02-1.00%, W: 0.02-1. The free-cutting stainless steel according to any one of claims 1 to 6, wherein the steel contains one or two or more of the following components.
【請求項8】 質量%で、 N:0.005〜0.10%、 B:0.001〜0.010% のうちの1種または2種を含有することを特徴とする請
求項1〜7に記載の快削ステンレス鋼。
8. The method according to claim 1, wherein one or two of N: 0.005 to 0.10% and B: 0.001 to 0.010% are contained by mass%. 7. The free-cutting stainless steel according to 7.
JP2000226743A 2000-07-27 2000-07-27 Free-cutting stainless steel Expired - Fee Related JP3703008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000226743A JP3703008B2 (en) 2000-07-27 2000-07-27 Free-cutting stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000226743A JP3703008B2 (en) 2000-07-27 2000-07-27 Free-cutting stainless steel

Publications (2)

Publication Number Publication Date
JP2002038241A true JP2002038241A (en) 2002-02-06
JP3703008B2 JP3703008B2 (en) 2005-10-05

Family

ID=18720308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000226743A Expired - Fee Related JP3703008B2 (en) 2000-07-27 2000-07-27 Free-cutting stainless steel

Country Status (1)

Country Link
JP (1) JP3703008B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004052099A (en) * 2002-05-31 2004-02-19 Jfe Steel Kk Steel member for machine structural
JP2007238981A (en) * 2006-03-07 2007-09-20 Daido Steel Co Ltd Ferritic free-cutting stainless steel
EP1918408A2 (en) * 2006-10-03 2008-05-07 Daido Tokushuko Kabushiki Kaisha Martensitic free cutting stainless steel
JP2008115424A (en) * 2006-11-02 2008-05-22 Daido Steel Co Ltd Austenitic free-cutting stainless steel
JP2018131670A (en) * 2017-02-17 2018-08-23 新日鐵住金ステンレス株式会社 Ferritic free-cutting stainless wire
CN111876689A (en) * 2020-09-08 2020-11-03 鞍钢股份有限公司 Low-carbon selenium-containing free-cutting steel for instruments and manufacturing method thereof
CN114182177A (en) * 2021-12-08 2022-03-15 浙江青山钢铁有限公司 Sulfur-containing tellurium-containing free-cutting ferritic stainless steel and manufacturing method thereof
CN114717470A (en) * 2021-12-01 2022-07-08 上海大学 Tellurium-containing free-cutting die steel and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004052099A (en) * 2002-05-31 2004-02-19 Jfe Steel Kk Steel member for machine structural
JP2007238981A (en) * 2006-03-07 2007-09-20 Daido Steel Co Ltd Ferritic free-cutting stainless steel
EP1918408A2 (en) * 2006-10-03 2008-05-07 Daido Tokushuko Kabushiki Kaisha Martensitic free cutting stainless steel
EP1918408A3 (en) * 2006-10-03 2010-10-27 Daido Tokushuko Kabushiki Kaisha Martensitic free cutting stainless steel
JP2008115424A (en) * 2006-11-02 2008-05-22 Daido Steel Co Ltd Austenitic free-cutting stainless steel
JP2018131670A (en) * 2017-02-17 2018-08-23 新日鐵住金ステンレス株式会社 Ferritic free-cutting stainless wire
CN111876689A (en) * 2020-09-08 2020-11-03 鞍钢股份有限公司 Low-carbon selenium-containing free-cutting steel for instruments and manufacturing method thereof
CN111876689B (en) * 2020-09-08 2022-05-13 鞍钢股份有限公司 Low-carbon selenium-containing free-cutting steel for instruments and manufacturing method thereof
CN114717470A (en) * 2021-12-01 2022-07-08 上海大学 Tellurium-containing free-cutting die steel and preparation method thereof
CN114182177A (en) * 2021-12-08 2022-03-15 浙江青山钢铁有限公司 Sulfur-containing tellurium-containing free-cutting ferritic stainless steel and manufacturing method thereof

Also Published As

Publication number Publication date
JP3703008B2 (en) 2005-10-05

Similar Documents

Publication Publication Date Title
US9238856B2 (en) Lead free free-cutting steel
JP4451808B2 (en) Rolled steel bar for case hardening with excellent fatigue characteristics and grain coarsening resistance and its manufacturing method
JP3703008B2 (en) Free-cutting stainless steel
JP3638828B2 (en) High corrosion-resistant free-cutting stainless steel with excellent surface finish
JP2000034538A (en) Steel for machine structure excellent in machinability
JP3736721B2 (en) High corrosion resistance free-cutting stainless steel
JP4178670B2 (en) Manganese alloy steel and shaft, screw member
JP2011184716A (en) Martensitic stainless free-cutting steel bar wire having excellent forgeability
JP3483800B2 (en) Free-cutting stainless steel with excellent outgassing properties
JP3791664B2 (en) Austenitic Ca-added free-cutting stainless steel
JP7323791B2 (en) Carburized gear steel, carburized gear, and method for manufacturing carburized gear
JP5323369B2 (en) Case-hardened steel with excellent machinability and grain coarsening prevention properties
JP4279041B2 (en) Non-Pb free-cutting stainless steel with excellent outgassing characteristics
JP2006097039A (en) Free-cutting stainless steel with excellent corrosion resistance, cold forgeability and hot workability
JP2989766B2 (en) Case hardened steel with excellent fatigue properties and machinability
JP6197467B2 (en) Steel for machine structure
JP3958193B2 (en) Austenitic free-cutting stainless steel
JP2006097040A (en) Free-cutting stainless steel with excellent machinability
JP7295417B2 (en) Carburized gear steel, carburized gear, and method for manufacturing carburized gear
JP2006299303A (en) Free-cutting stainless steel
JP2759401B2 (en) Free-cutting stainless steel for cold heading
JP2001164340A (en) High corrosion resistant free cutting stainless steel excellent in hot workability
JPH0499249A (en) High strength non-heattreated machinable steel
JP2002194483A (en) Steel for machine structure
JP2005194572A (en) Ferritic stainless steel superior in cold forgeability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050713

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees