JP6197467B2 - Steel for machine structure - Google Patents

Steel for machine structure Download PDF

Info

Publication number
JP6197467B2
JP6197467B2 JP2013167356A JP2013167356A JP6197467B2 JP 6197467 B2 JP6197467 B2 JP 6197467B2 JP 2013167356 A JP2013167356 A JP 2013167356A JP 2013167356 A JP2013167356 A JP 2013167356A JP 6197467 B2 JP6197467 B2 JP 6197467B2
Authority
JP
Japan
Prior art keywords
steel
content
comparative example
cutting
fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013167356A
Other languages
Japanese (ja)
Other versions
JP2015036427A (en
Inventor
紘樹 寺田
紘樹 寺田
誠 針谷
誠 針谷
宮▲崎▼ 貴大
貴大 宮▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2013167356A priority Critical patent/JP6197467B2/en
Publication of JP2015036427A publication Critical patent/JP2015036427A/en
Application granted granted Critical
Publication of JP6197467B2 publication Critical patent/JP6197467B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、主としてフェライト・パーライト組織からなる機械構造用鋼に関し、特に、加工性に優れるとともに疲労強度にも優れる機械構造用鋼に関する。   The present invention relates to a steel for machine structure mainly composed of a ferrite / pearlite structure, and more particularly to a steel for machine structure having excellent workability and fatigue strength.

機械構造用のJIS合金鋼として、クロム鋼のSCr420やクロムモリブデン鋼のSCM420などが知られている。これらの合金鋼は、一般的に、鍛造材を熱処理し切削加工のような機械加工を施した後に、必要に応じて疲労強度を高める目的で浸炭などの表面処理を与えて供される。ここで、切削加工における被削性を高めるには、MnSのような介在物を析出させることが有効とされているが、一方で、介在物による疲労強度の低下も指摘される。そこで、介在物の析出を抑制しつつ、被削性を高めることのできる機械構造用鋼も提案されている。   Known JIS alloy steels for machine structures include chromium steel SCr420 and chromium molybdenum steel SCM420. In general, these alloy steels are subjected to surface treatment such as carburizing for the purpose of increasing fatigue strength as necessary after heat-treating the forged material and performing machining such as cutting. Here, in order to improve the machinability in cutting, it is effective to precipitate inclusions such as MnS. On the other hand, a decrease in fatigue strength due to inclusions is also pointed out. Accordingly, a steel for machine structure that can improve the machinability while suppressing the precipitation of inclusions has also been proposed.

ところで、機械構造用鋼の被削性については、切削加工時の切り屑を細かく分断して切削工具と被切削物との間にこれを貯留させず、排出し易くして切削抵抗を低く抑え、平滑な切削面を与えることが重要とされる。   By the way, regarding machinability of steel for machine structural use, it is easy to discharge and keep cutting resistance low by dividing finely the chips at the time of cutting and not storing them between the cutting tool and the workpiece. It is important to provide a smooth cutting surface.

例えば、特許文献1では、被削性のうち特に切り屑処理性に優れる機械構造用鋼を開示している。切り屑を分断し易くするためには、フェライト及び球状化セメンタイトからなる組織であって、該フェライトのうちで球状化セメンタイトを含まないフェライトを一定とすることが好ましいことを述べている。かかる鋼は、質量%で、C:0.15〜0.25%、Si:0.30〜0.70%、Mn:0.7〜1.3%、S:0.002〜0.012%、Cr:1.20〜1.70%、Al:0.005〜0.035%、及び、N:0.010〜0.025%を含み、不純物としてのPとOの上限を規定し、Sの量を極力抑えつつSiの量を所定量以上与えると述べている。ここでSiについては、せん断強度特性における降伏比の上昇を抑制し、切り屑形成におけるせん断歪みを低い応力で発生させ、被切削物(機械構造用鋼)の硬さが同等、あるいは高くなる場合にあっても、切削抵抗を減少させ得ると述べている。   For example, Patent Document 1 discloses steel for machine structural use that is particularly excellent in chip disposal among machinability. In order to make it easy to divide the chips, it is stated that it is preferable to make the structure of ferrite and spheroidized cementite constant and not including spheroidized cementite. Such steel is, in mass%, C: 0.15 to 0.25%, Si: 0.30 to 0.70%, Mn: 0.7 to 1.3%, S: 0.002 to 0.012 %, Cr: 1.20 to 1.70%, Al: 0.005 to 0.035%, and N: 0.010 to 0.025%, specifying the upper limit of P and O as impurities The amount of Si is given to a predetermined amount or more while suppressing the amount of S as much as possible. Here, for Si, when the yield ratio in the shear strength characteristics is suppressed, shear strain in chip formation is generated with low stress, and the hardness of the workpiece (machine structural steel) is equal or high Even so, it states that cutting resistance can be reduced.

更に、被削性について、切削加工時の切り屑を細かく分断して安定して平滑な切削面を与えることと関連し、切削工具に突発的な欠け(チッピング)を生じさせてしまうと、被切削物の切削面の平滑性が急激に損なわれることになる。   Furthermore, regarding machinability, it is related to cutting the chips at the time of cutting finely to give a stable and smooth cutting surface, and sudden chipping (chipping) occurs in the cutting tool. The smoothness of the cut surface of the cut article is abruptly lost.

例えば、特許文献2では、切削工具のチッピングは切削加工中における切削抵抗の主分力の変動幅を小さくすることで抑制し得て、これには被切削物(機械構造用鋼)がフェライト・パーライト組織を有し、その組織に占めるフェライトの割合を一定として、引張特性における降伏比(0.2%耐力/引張強さ)を小さくすることが有効であることを開示している。かかる鋼は、質量%で、C:0.15〜0.25%、Si:0.15〜0.50%、Mn:0.70〜1.30%、S:0.015%以下、Cr:1.25〜1.80、Al:0.005〜0.035%、及び、N:0.010〜0.025%を含み、SiとCrを合わせた量及び不純物としてのPとOの上限を規定し、フェライト強化元素であるSi量を増やす一方、熱処理条件を選択することで降伏比を低下させ得るとしている。   For example, in Patent Document 2, chipping of a cutting tool can be suppressed by reducing the fluctuation range of the main component force of cutting resistance during the cutting process. It is disclosed that it is effective to reduce the yield ratio (0.2% proof stress / tensile strength) in the tensile properties with a pearlite structure and a constant proportion of ferrite in the structure. Such steel is, in mass%, C: 0.15 to 0.25%, Si: 0.15 to 0.50%, Mn: 0.70 to 1.30%, S: 0.015% or less, Cr : 1.25 to 1.80, Al: 0.005 to 0.035%, and N: 0.010 to 0.025%, and the combined amount of Si and Cr and of P and O as impurities While defining the upper limit and increasing the amount of Si that is a ferrite strengthening element, the yield ratio can be lowered by selecting the heat treatment conditions.

特開2012−126953号公報JP 2012-126953 A 特開2011−89189号公報JP 2011-89189 A

上記したように、MnSのような介在物を析出させずに疲労強度の低下を抑制した機械構造用鋼において、成分組成のうちの主にSiやCr量や組織を制御することで、被削性、特に、切削工具のチッピングを抑制出来る。一方で、この成分組成の制御において、疲労強度を低下させてしまうことが考慮された。   As described above, in the steel for mechanical structure that suppresses the decrease in fatigue strength without precipitating inclusions such as MnS, by controlling mainly the amount of Si and Cr and the structure of the component composition, Performance, especially chipping of cutting tools can be suppressed. On the other hand, in controlling the component composition, it was considered that the fatigue strength was lowered.

本発明は、上記したような状況に鑑みてなされたものであって、その目的とするところは、高い疲労強度を有するとともに、被削性、特に、切削工具のチッピングを抑制出来て、安定して平滑な切削面を与え得る機械構造用鋼の提供にある。   The present invention has been made in view of the situation as described above, and its object is to have high fatigue strength and to suppress machinability, in particular, chipping of a cutting tool, so that it is stable. It is to provide a steel for machine structure that can provide a smooth cutting surface.

本発明による機械構造用鋼は、質量%で、C:0.15〜0.25%、Si:0.04〜0.15%、Mn:0.6〜1.0%、P:≦0.030%、S:0.015〜0.030%、Cu:≦0.30%、Ni:≦1.00%、Cr:1.0〜2.0%、Mo:≦1.00%、s−Al:0.010〜0.050%、及び、N:0.005〜0.030%を含み、残部Fe及び不純物からなり、元素Mの質量%を[M]とすると、10.0×[Si]+[Mn]+[Cr]≦3.90、5.44×[Si]+34.6×[S]≧1.06、[Ni]+[Mo]≦1.00を満たし、主としてフェライト・パーライト組織からなることを特徴とする。   The steel for machine structural use according to the present invention is in mass%, C: 0.15 to 0.25%, Si: 0.04 to 0.15%, Mn: 0.6 to 1.0%, P: ≦ 0. 0.030%, S: 0.015-0.030%, Cu: ≤0.30%, Ni: ≤1.00%, Cr: 1.0-2.0%, Mo: ≤1.00%, s-Al: 0.010 to 0.050% and N: 0.005 to 0.030%, consisting of the balance Fe and impurities, and the mass% of the element M is [M] is 10.0. X [Si] + [Mn] + [Cr] ≦ 3.90, 5.44 × [Si] + 34.6 × [S] ≧ 1.06, [Ni] + [Mo] ≦ 1.00, It is mainly composed of a ferrite / pearlite structure.

かかる発明によれば、高い疲労強度を有するとともに、これを切削加工するために使用される切削工具のチッピングを抑制出来て、結果として、安定して平滑な切削面を得ることができる。   According to this invention, while having high fatigue strength, the chipping of the cutting tool used for cutting this can be suppressed, and as a result, a stable and smooth cutting surface can be obtained.

実施例及び比較例の成分組成の図である。It is a figure of the component composition of an Example and a comparative example. (a)旋削試験片の斜視図及び(b)疲労試験片の正面図である。(A) Perspective view of a turning test piece and (b) Front view of a fatigue test piece. 実施例及び比較例の試験結果を示す図である。It is a figure which shows the test result of an Example and a comparative example. 式1に対する疲労限応力比の関係を示す図である。FIG. 3 is a diagram showing the relationship of fatigue limit stress ratio to Equation 1. 式2に対する逃げ面欠損寿命比の関係を示す図である。FIG. 6 is a diagram illustrating a relationship of a flank defect life ratio with respect to Formula 2.

本発明者は、JIS G4053に規定されるクロム鋼又はクロムモリブデン鋼をベースにこの成分組成に変更を加えて、焼準後(焼きならし後)において主としてフェライト・パーライト組織からなる機械構造用鋼の評価を重ねた。その結果、(1)Si、Mn及びCrの含有量が浸炭処理などの表面硬化熱処理された表層近傍の粒界酸化に影響を与え、曲げ疲労強度を大きく変化させること、(2)Si及びSの含有量がこれを切削加工するときに使用される切削工具の寿命、特にチッピング寿命に影響を与えることを見出した。以下にこの評価試験の結果などを示す。   The present inventor changed the composition of this component based on chromium steel or chromium molybdenum steel specified in JIS G4053, and after normalization (after normalization), the steel for mechanical structure mainly composed of ferrite and pearlite structure. Repeated evaluation. As a result, (1) the contents of Si, Mn and Cr affect the grain boundary oxidation in the vicinity of the surface layer subjected to surface hardening heat treatment such as carburizing treatment, and greatly change the bending fatigue strength, (2) Si and S It has been found that the content of has an effect on the life of the cutting tool used when cutting it, in particular the chipping life. The results of this evaluation test are shown below.

機械構造用鋼の評価試験として、疲労強度を評価するための回転曲げ疲労試験と、これを切削加工するときに使用される切削工具のチッピング寿命から機械構造用鋼の被削性を評価するための旋削試験とを行った。まず、これらの試験に用いた試験片について説明する。   In order to evaluate the machinability of machine structural steel from the rotating bending fatigue test to evaluate the fatigue strength and the chipping life of the cutting tool used when cutting this as an evaluation test for machine structural steel A turning test was conducted. First, the test piece used for these tests is demonstrated.

まず、図1の実施例1乃至3、5乃至8及び参考例4、並びに比較例1乃至10に示すような成分組成を有する150kg鋼塊を真空誘導炉によって造塊し、熱間鍛造を行った後、焼準のために910℃にて1.5時間保持し空冷する熱処理を行った。これにより、主としてフェライト・パーライト組織からなる焼きならし鋼を得られる。ここでは、断面の面積率で10%以下のベイナイト組織を含み得る。続いて、機械加工により、回転曲げ疲労試験に用いる疲労試験片と、旋削試験に用いる旋削試験片とを切り出す。図2(a)に示すように、旋削試験片20はφ60×200Lの段付き丸棒であって、長さ186mmの試験部21と、その長手方向の一端側の径の小さなチャック部22とからなる。また、図2(b)に示すように、疲労試験片10は平滑なφ8の平行部を有する小野式回転曲げ疲労試験片である。前述したように切り出された試験片に表面硬化熱処理として、表層近傍における炭素の含有量の目標値を0.8質量%となるように浸炭処理を施して疲労試験片10を得る。 First, 150 kg steel ingots having the composition shown in Examples 1 to 3, 5 to 8 and Reference Example 4 and Comparative Examples 1 to 10 in FIG. 1 are ingoted by a vacuum induction furnace, and hot forging is performed. Then, for normalization, heat treatment was performed by holding at 910 ° C. for 1.5 hours and air cooling. Thereby, a normalized steel mainly composed of a ferrite / pearlite structure can be obtained. Here, a bainite structure having a cross-sectional area ratio of 10% or less may be included. Subsequently, a fatigue test piece used for the rotating bending fatigue test and a turning test piece used for the turning test are cut out by machining. As shown in FIG. 2 (a), the turning test piece 20 is a stepped round bar of φ60 × 200L, a test part 21 having a length of 186 mm, a chuck part 22 having a small diameter on one end side in the longitudinal direction, Consists of. Further, as shown in FIG. 2B, the fatigue test piece 10 is an Ono type rotating bending fatigue test piece having a smooth parallel portion of φ8. The fatigue test piece 10 is obtained by subjecting the test piece cut out as described above to carburizing treatment as a surface hardening heat treatment so that the target value of the carbon content in the vicinity of the surface layer is 0.8 mass%.

次に、回転曲げ疲労試験及び旋削試験の方法について説明する。   Next, methods for the rotating bending fatigue test and the turning test will be described.

回転曲げ疲労試験では、小野式回転曲げ疲労試験機に疲労試験片10を取り付け、室温、大気中にて回転数を3600rpmとして完全両振り(応力比R=−1)で繰り返し疲労を与えた。複数の疲労試験片10からSN曲線を求め、10回の繰り返し数で破断しない限界応力を測定し、これを疲労限応力とした。さらに、従来材であるSCM420相当材(ハーフMo)を用いた比較例1の疲労限応力を1としたきの比で疲労限応力比を表す。なお、本発明としての疲労限応力比の基準値は、基準となる比較例1における疲労限応力比の105%以上、すなわち1.05以上とした。 In the rotational bending fatigue test, the fatigue test piece 10 was attached to an Ono-type rotational bending fatigue tester, and fatigue was repeatedly given by full swing (stress ratio R = -1) at room temperature and in the atmosphere at a rotational speed of 3600 rpm. An SN curve was obtained from the plurality of fatigue test pieces 10, and the critical stress that did not break was measured with 10 7 repetitions, and this was defined as the fatigue limit stress. Further, the fatigue limit stress ratio is expressed as a ratio where the fatigue limit stress of Comparative Example 1 using the conventional material SCM420 equivalent material (half Mo) is 1. The reference value of the fatigue limit stress ratio according to the present invention was 105% or more of the fatigue limit stress ratio in Comparative Example 1 serving as a reference, that is, 1.05 or more.

旋削試験では、まず、旋削試験片20のチャック部22を旋盤にチャッキングして、試験部21をφ58となるまで予加工する。かかる予加工においては、切削工具として予加工用バイトを用い、試験部21の偏心を少なくするとともに、表面を所定の機械加工肌にする。続いて、切削工具を新品のチップ(試験用バイト)に取り替え、旋削試験加工を開始する。旋削試験加工では、切削速度250m/min、送り速度0.35mm/rev、切り込み深さ1.0mmとし、水溶性切削油剤を用いて試験部21がφ28となるまで加工を行う。試験用バイトのチップが後述する寿命と判定されるまでは、旋削試験片20を交換しつつ、予加工及び旋削試験加工とを切削工具を予加工用バイト及び試験用バイトに都度交換しながら旋削加工を継続する。   In the turning test, first, the chuck portion 22 of the turning test piece 20 is chucked on a lathe, and the test portion 21 is pre-machined until φ58. In such pre-processing, a pre-processing tool is used as a cutting tool to reduce the eccentricity of the test portion 21 and to make the surface a predetermined machined skin. Subsequently, the cutting tool is replaced with a new chip (test bit), and a turning test process is started. In the turning test processing, the cutting speed is 250 m / min, the feed speed is 0.35 mm / rev, the cutting depth is 1.0 mm, and the processing is performed using the water-soluble cutting fluid until the test portion 21 becomes φ28. Until the cutting tool tip 20 is determined to have a life described later, the turning test piece 20 is replaced, and the pre-processing and the turning test are performed while the cutting tool is replaced with the pre-processing tool and the testing tool each time. Continue processing.

試験用バイトのチップの寿命は、試験用バイトのチップの横逃げ面において、刃先から工具切れ刃に対して垂直方向に250μm幅の欠損を生じたときとする。このチップの逃げ面欠損寿命は、チップの寿命に達するまでの旋削試験加工に要した時間の合計とした。さらに、従来材であるSCM420相当材を用いた比較例1の寿命を1としたときの比で逃げ面欠損寿命比を表す。なお、本発明としての逃げ面欠損寿命比の基準値は、基準となる比較例1における逃げ面欠損寿命比以上、すなわち1.00以上とした。   The life of the test tool tip is assumed to be when a chip having a width of 250 μm is generated in the direction perpendicular to the tool cutting edge from the cutting edge on the side clearance surface of the test tool tip. The chip flank defect life was defined as the total time required for the turning test processing to reach the chip life. Further, the flank defect life ratio is expressed as a ratio when the life of Comparative Example 1 using a conventional material equivalent to SCM420 is 1. The reference value of the flank defect life ratio according to the present invention was set to be equal to or greater than the flank defect life ratio in Comparative Example 1 serving as a reference, that is, 1.00 or more.

次に、上記した実施例1乃至3、5乃至8及び参考例4、並びに比較例1乃至10の機械構造用鋼における回転曲げ疲労試験及び旋削試験の結果を図3にまとめた。これらの試験結果について説明する。 Next, FIG. 3 summarizes the results of the rotating bending fatigue test and the turning test on the mechanical structural steels of Examples 1 to 3, 5 to 8 and Reference Example 4 and Comparative Examples 1 to 10 described above. These test results will be described.

実施例1乃至3及び5乃至8は、従来材であるSCM420相当材を用いた比較例1に対して、Siの含有量を減じて、Sの含有量を増加させた焼きならし鋼である(図1参照)。かかる実施例では、疲労限応力比は1.05〜1.13となって上記した基準値を満たした。また、逃げ面欠損寿命比は1.02〜1.67となって、上記した基準値を満たした。すなわち、実施例1乃至3及び5乃至8の機械構造用鋼によれば、従来材による機械構造用鋼に比較して高い疲労強度を有するとともに、これを切削加工するために使用される切削工具のチッピングを従来材と少なくとも同等以下に抑制出来て切削性にも優れる。 Examples 1 to 3 and 5 to 8 are normalized steels in which the Si content is decreased and the S content is increased compared to Comparative Example 1 using the conventional SCM420 equivalent material. (See FIG. 1). In this example, the fatigue limit stress ratio was 1.05 to 1.13, which satisfied the above-described reference value. Further, the flank defect life ratio was 1.02 to 1.67, which satisfied the above-described reference value. That is, according to the machine structural steels of Examples 1 to 3 and 5 to 8, the cutting tool used has a high fatigue strength as compared with the conventional machine structural steel and is used for cutting the steel. The chipping can be suppressed to at least equal to or less than that of the conventional material, and the machinability is also excellent.

一方、比較例1に対し、Siの含有量を0.05質量%まで減じた比較例2(図1参照)では、疲労限応力比は1.10と基準値を満たしたものの、逃げ面欠損寿命比が0.14と基準値を大幅に下回った。   On the other hand, in Comparative Example 2 (see FIG. 1) in which the Si content was reduced to 0.05% by mass with respect to Comparative Example 1, the fatigue limit stress ratio was 1.10, which satisfied the standard value, but the flank defect The life ratio was 0.14, which was significantly lower than the standard value.

比較例1に対し、Si及びSの含有量を減じた比較例3(図1参照)では、疲労限応力比は0.99、逃げ面欠損寿命比は0.37と、ともに基準値を満たさなかった。   In Comparative Example 3 (see FIG. 1) in which the contents of Si and S are reduced compared to Comparative Example 1, the fatigue limit stress ratio is 0.99 and the flank defect life ratio is 0.37, both of which satisfy the standard values. There wasn't.

比較例1に対し、Siの含有量を減じてMnの含有量を増加させた比較例4(図1参照)では、逃げ面欠損寿命比は1.04と基準値を満たしたものの、疲労限応力比は0.96と基準値を満たさなかった。   In Comparative Example 4 (see FIG. 1) in which the Si content was decreased and the Mn content was increased compared to Comparative Example 1, the flank defect life ratio was 1.04, which met the standard value, but the fatigue limit. The stress ratio was 0.96, which did not satisfy the standard value.

比較例1に対し、Siの含有量を減じてCrの含有量を増加させた比較例5(図1参照)では、疲労限応力比は0.99と比較例1よりも低く基準値を満たさず、また、逃げ面欠損寿命比は0.39と基準値を満たさなかった。   Compared to Comparative Example 1, in Comparative Example 5 (see FIG. 1) in which the Cr content was increased by decreasing the Si content, the fatigue limit stress ratio was 0.99, which was lower than Comparative Example 1 and met the reference value. Further, the flank defect life ratio was 0.39, which did not satisfy the standard value.

比較例1に対し、Pの含有量を増加させた比較例6、及び、Sの含有量を増加させた比較例7(図1参照)では、逃げ面欠損寿命比はそれぞれ1.14及び1.47と基準値を満たすものの、疲労限応力比はそれぞれ0.98及び0.91と比較例1よりも低く基準値を満たさなかった。   In Comparative Example 6 in which the P content is increased compared to Comparative Example 1 and in Comparative Example 7 (see FIG. 1) in which the S content is increased, the flank defect life ratio is 1.14 and 1 respectively. The fatigue limit stress ratio was 0.98 and 0.91, which were lower than those of Comparative Example 1, respectively, but did not satisfy the standard value.

比較例1に対し、Crの含有量を増加させた比較例8(図1参照)では、逃げ面欠損寿命比は1.18と基準値を満たすものの、疲労限応力比は1.00と比較例1と同等の値となり基準値を満たさなかった。   In Comparative Example 8 (see FIG. 1) in which the Cr content is increased compared to Comparative Example 1, the flank defect life ratio is 1.18, which satisfies the standard value, but the fatigue limit stress ratio is 1.00. The value was the same as in Example 1 and did not satisfy the standard value.

比較例1に対し、比較例2と同様にSiの含有量を0.05質量%まで減じた比較例9(図1参照)では、疲労限応力比は1.10と基準値を満たしたものの、逃げ面欠損寿命比が0.10と基準値を大幅に下回った。   In Comparative Example 9 (see FIG. 1) in which the Si content was reduced to 0.05 mass% as in Comparative Example 2, compared with Comparative Example 1, the fatigue limit stress ratio was 1.10, which met the standard value. The flank defect life ratio was 0.10, significantly below the standard value.

比較例1に対し、s−Al及びNの含有量を減じた比較例10(図1参照)では、逃げ面欠損寿命比は1.47と基準値を満たすものの、疲労限応力比は1.01と比較例1よりは大きいものの基準値を満たさなかった。   In Comparative Example 10 (see FIG. 1) in which the contents of s-Al and N are reduced compared to Comparative Example 1, the flank defect life ratio is 1.47, which satisfies the standard value, but the fatigue limit stress ratio is 1. Although it was larger than 01 and Comparative Example 1, the reference value was not satisfied.

更に、実施例1乃至3、5乃至8及び参考例4、並びに比較例1乃至10の鋼における疲労限応力比と逃げ面欠損寿命比の傾向について、図4及び図5を用いて説明する。 Furthermore, the tendency of the fatigue limit stress ratio and the flank defect life ratio in the steels of Examples 1 to 3, 5 to 8 and Reference Example 4 and Comparative Examples 1 to 10 will be described with reference to FIGS.

酸素との結合力の強い元素、例えば、Si、Mn、Crなどの元素を含む鋼において、浸炭処理で曲げ疲労強度が低下してしまう原因の1つとして、結晶粒界の酸化(粒界酸化)がある。浸炭雰囲気中の酸素が結晶粒界を経由して鋼内部へと浸入し、結晶粒界近傍のSi、Mn、Crなどと反応して酸化物を生成する。一方、結晶粒界の近傍では、合金中に固溶したこれらSi、Mn、Crなどが局所的に欠乏することになる。故に、焼入れ性が低下しマルテンサイトの生成が阻害され、不完全焼入れ層を起因として曲げ疲労強度が低下してしまうのである。   One of the causes that bending fatigue strength is reduced by carburizing treatment in steels containing elements having a strong binding force with oxygen, for example, elements such as Si, Mn, and Cr, is the oxidation of grain boundaries (intergranular oxidation). ) Oxygen in the carburizing atmosphere enters the steel through the grain boundaries and reacts with Si, Mn, Cr, etc. near the grain boundaries to generate oxides. On the other hand, in the vicinity of the crystal grain boundary, these Si, Mn, Cr and the like dissolved in the alloy are locally deficient. Therefore, the hardenability is lowered, the formation of martensite is inhibited, and the bending fatigue strength is lowered due to the incompletely hardened layer.

そこで、このような粒界酸化の進行に対する尺度としての粒界酸化パラメータNgoについて、実施例1乃至8を含む一連の機械構造用鋼のSi、Mn、Crの含有量と疲労限応力比とについて回帰計算を行って求めた。すなわち、元素Mの質量%を[M]とすると、粒界酸化パラメータNgoは、
go=10×[Si]+[Mn]+[Cr]
である。
Therefore, the intergranular oxidation parameters N go as a measure for the progression of such a grain boundary oxidation, Si series of mechanical structural steel containing Examples 1 to 8, Mn, and Cr content and fatigue limit stress ratio Was obtained by performing regression calculation. That is, when the mass% of the element M is [M], the grain boundary oxidation parameter N go is
N go = 10 × [Si] + [Mn] + [Cr]
It is.

図4に示すように、粒界酸化パラメータNgoが3.90以下の範囲内ならば、疲労限応力比は基準値を上回る。つまり、粒界酸化パラメータNgoを3.90以下の範囲内となるように鋼に含まれるSi、Mn、Crの成分を調整することで、疲労限応力比を基準値である1.05以上の範囲内に制御し得る。すなわち、以下の式1を満たす場合である。
go=10×[Si]+[Mn]+[Cr]≦3.90 (式1)
As shown in FIG. 4, if the grain boundary oxidation parameter N go is in the range of 3.90 or less, the fatigue limit stress ratio exceeds the reference value. That is, by adjusting the Si, Mn, and Cr components contained in the steel so that the grain boundary oxidation parameter N go is in the range of 3.90 or less, the fatigue limit stress ratio is 1.05 or more which is a reference value. Can be controlled within the range. That is, it is a case where the following formula 1 is satisfied.
N go = 10 × [Si] + [Mn] + [Cr] ≦ 3.90 (Formula 1)

なお、比較例6、比較例7及び比較例10は、粒界酸化パラメータNgoがそれぞれ3.80、3.75及び3.60であって、式1を満たしている。しかしながら、疲労限応力比はそれぞれ0.98、0.91及び1.01であり、基準値を下回っている。比較例6及び比較例7は、P又はSの含有量が多く、介在物を多く生成し、結晶粒界の強度を低下させたためと考えられる。また、比較例10は、s−Al及びNの含有量が少なく、結晶粒の微細化をもたらすAlNの析出が少ないため結晶粒が粗くなったと考える。 In Comparative Example 6, Comparative Example 7, and Comparative Example 10, the grain boundary oxidation parameter N go is 3.80, 3.75, and 3.60, respectively, and satisfies Equation 1. However, the fatigue limit stress ratios are 0.98, 0.91, and 1.01, respectively, which are below the standard value. It is considered that Comparative Example 6 and Comparative Example 7 had a high P or S content, produced a lot of inclusions, and reduced the strength of the crystal grain boundaries. In Comparative Example 10, the content of s-Al and N is small, and the precipitation of AlN that causes refinement of crystal grains is small, so that the crystal grains become rough.

また、上記したように、被削材を加工する切削工具の逃げ面の欠損による寿命は、被削材のSi及びSの含有量に影響を受ける。すなわち、Siは、切削加工中に切削工具の表面に酸化皮膜を形成させて、切削工具のチッピングを低減させ得る。かかる酸化皮膜については、潤滑性を向上させて切削抵抗を減少させるものと推測される。また、Sは、介在物としてMnSを形成し、切り屑を細かく分断しやすくさせて、切削抵抗を減少させ得るのである。   In addition, as described above, the lifetime due to the flank defect of the cutting tool that processes the work material is affected by the Si and S contents of the work material. That is, Si can reduce the chipping of the cutting tool by forming an oxide film on the surface of the cutting tool during the cutting process. Such an oxide film is presumed to improve lubricity and reduce cutting resistance. Further, S forms MnS as inclusions, makes it easy to finely cut off chips and reduce cutting resistance.

そこで、このような切削工具の逃げ面の欠損寿命に対する尺度としての逃げ面欠損パラメータNvbについて、実施例1乃至3及び5乃至8を含む一連の機械構造用鋼のSi、Sの含有量と逃げ面欠損寿命比とについて回帰計算を行って求めた。すなわち、元素Mの質量%を[M]とすると、逃げ面欠損パラメータNvbは、
vb=5.44×[Si]+34.6×[S]−0.71
である。
Therefore, with respect to the flank defect parameter N vb as a measure for the flank defect life of such a cutting tool, the Si and S contents of a series of mechanical structural steels including Examples 1 to 3 and 5 to 8 The flank defect life ratio and the regression calculation were performed. That is, when the mass% of the element M is [M], the flank defect parameter N vb is
N vb = 5.44 × [Si] + 34.6 × [S] −0.71
It is.

図5に示すように、逃げ面欠損パラメータNvbが0.35以上の範囲内ならば、逃げ面欠損寿命比は基準値を上回る。つまり、逃げ面欠損パラメータNvbを0.35以上の範囲内となるように鋼に含まれるSi、Sの成分を調整することで、逃げ面欠損寿命比を基準値である1.00以上の範囲内に制御し得る。すなわち、以下の式2を満たす場合である。
vb=5.44×[Si]+34.6×[S]−0.71≧0.35 (式2)
つまり、
5.44×[Si]+34.6×[S]≧1.06 (式3)
を満たすことが必要である。
As shown in FIG. 5, if the flank defect parameter Nvb is within a range of 0.35 or more, the flank defect life ratio exceeds the reference value. That is, by adjusting the Si and S components contained in the steel so that the flank defect parameter Nvb is in the range of 0.35 or more, the flank defect life ratio is 1.00 or more which is a reference value. Can be controlled within range. That is, it is a case where the following formula 2 is satisfied.
N vb = 5.44 × [Si] + 34.6 × [S] −0.71 ≧ 0.35 (Formula 2)
That means
5.44 × [Si] + 34.6 × [S] ≧ 1.06 (Formula 3)
It is necessary to satisfy.

なお、逃げ面欠損寿命は旋削加工の条件によっても変化し、例えば、切削速度の比較的高い領域において従来材に比べて逃げ面欠損寿命が長くなる傾向も観察されている。   Note that the flank defect life varies depending on the turning conditions. For example, it has been observed that the flank defect life tends to be longer than that of the conventional material in a region where the cutting speed is relatively high.

以上、述べてきたように、従来材に対して、Siの含有量を減じつつSの含有量を増加させ、さらに、Si、Mn及びCrの含有量を(式1)を満たすように調整し、浸炭処理などの表面硬化熱処理における粒界酸化を抑制することで、従来材よりも高い曲げ疲労強度を確保できる。加えて、Si及びSの含有量を(式2)を満たすように調整することで、従来材と同等以上の逃げ面欠損寿命を得ることができる。つまり、高い疲労強度を有するとともに、これを切削加工するために使用される切削工具のチッピングを抑制出来て、安定して平滑な切削面を与え得る機械構造用鋼を提供できる。   As described above, with respect to the conventional material, the content of S is increased while reducing the content of Si, and further, the contents of Si, Mn and Cr are adjusted to satisfy (Equation 1). By suppressing grain boundary oxidation in surface hardening heat treatment such as carburizing treatment, higher bending fatigue strength than that of conventional materials can be ensured. In addition, by adjusting the Si and S contents so as to satisfy (Equation 2), a flank defect life equal to or greater than that of the conventional material can be obtained. That is, it is possible to provide a steel for machine structure that has high fatigue strength, can suppress chipping of a cutting tool used for cutting the steel, and can provide a stable and smooth cutting surface.

これらの結果に基づいて、上記した実施例1乃至3及び5乃至8に示す成分組成の鋼によって得られる機械構造用鋼としての特性を損なわない範囲において、その各々の組成成分の範囲を以下のような指針で定めた。 Based on these results, the ranges of the respective compositional components are set as follows within a range not impairing the characteristics as the steel for machine structural use obtained by the steels having the component compositions shown in Examples 1 to 3 and 5 to 8 described above. It was determined by such guidelines.

Cは、表面硬化熱処理後に機械構造用鋼として必要とされる機械的強度、特に心部の強度を確保するために必須の添加元素である。すなわち、Cの添加量が少なすぎると、心部強度を確保できない。一方、Cの添加量が多すぎると、熱間鍛造性や機械加工性といった製造性を低下させてしまう。そこで、Cの含有量は、質量%で、0.15〜0.25%の範囲内である。   C is an additive element indispensable for ensuring the mechanical strength, particularly the strength of the core, required for the steel for machine structure after the surface hardening heat treatment. That is, if the amount of C added is too small, the core strength cannot be secured. On the other hand, when there is too much addition amount of C, manufacturability, such as hot forgeability and machinability, will fall. Therefore, the C content is in mass% and is in the range of 0.15 to 0.25%.

Siは、溶鋼の脱酸剤であり、更に、鋼の焼入れ性を高める。また、切削加工中には切削工具の表面に酸化皮膜を形成させ、切削工具の寿命を向上させ得る。しかし、Siの添加量が多すぎると、表面硬化熱処理時に粒界酸化を進行させ、機械構造用鋼として必要とされる疲労強度を確保できなくなる。そこで、Siの含有量は、質量%で、0.04〜0.15%の範囲内である。   Si is a deoxidizer for molten steel and further enhances the hardenability of the steel. Further, an oxide film can be formed on the surface of the cutting tool during the cutting process to improve the life of the cutting tool. However, if the amount of Si added is too large, the grain boundary oxidation proceeds during the surface hardening heat treatment, and the fatigue strength required for the steel for machine structure cannot be ensured. Therefore, the Si content is in mass% and is in the range of 0.04 to 0.15%.

Mnは、鋼の焼入れ性を高め、機械構造用鋼として必要とされる機械的強度の確保に必要である。Mnの添加量が少なすぎると、焼入れが不足し、機械構造用鋼として必要とされる機械的強度を確保できない。一方、上記したように、Mnの添加量が多すぎると、表面硬化熱処理時に粒界酸化が進行し、機械構造用鋼として必要とされる曲げ疲労強度が確保できない。そこで、Mnの含有量は、質量%で、0.6〜1.0%の範囲内である。   Mn is necessary for enhancing the hardenability of steel and ensuring the mechanical strength required as steel for machine structural use. If the amount of Mn added is too small, quenching is insufficient, and the mechanical strength required for machine structural steel cannot be ensured. On the other hand, as described above, if the amount of Mn added is too large, the grain boundary oxidation proceeds during the surface hardening heat treatment, and the bending fatigue strength required for the machine structural steel cannot be ensured. Therefore, the content of Mn is mass% and is in the range of 0.6 to 1.0%.

Pは、結晶粒界を脆化させて機械的強度を低下させるとともに疲労強度を低下させ得る。しかし、一定の含有量以下であればこの疲労強度の低下は軽微でもある。また、含有量を極度に低減させると精錬プロセスが長くなってしまうことから、コストを増大させる原因ともなり得る。そこで、Pの含有量は、質量%で0.030%以下とした。   P can embrittle the crystal grain boundary to lower the mechanical strength and reduce the fatigue strength. However, if the content is below a certain level, this decrease in fatigue strength is slight. Moreover, since refining process will become long when content is reduced extremely, it may become a cause which increases cost. Therefore, the content of P is set to 0.030% or less by mass%.

Sは、不可避的に鋼中に存在するが、Mnと結合してMnS介在物を生成し、切り屑を細かく分断しやすくさせる。すなわち切り屑の破砕性を向上させ得る。Sの含有量が少なすぎると、切り屑の破砕性が低下し、加工性を低下させ得る。一方、Sの含有量が多すぎると、応力集中の起点となる介在物を増加させ、機械構造用鋼として必要とされる疲労強度の確保が困難となる。そこで、Sの含有量は質量%で0.015〜0.030%の範囲内である。   S is inevitably present in the steel, but combines with Mn to generate MnS inclusions, and makes it easy to break up the chips finely. That is, the chip fragility can be improved. When there is too little content of S, the crushability of a chip will fall and workability may be reduced. On the other hand, if the content of S is too large, the inclusions that are the starting points of stress concentration are increased, and it becomes difficult to ensure the fatigue strength required as steel for mechanical structures. Therefore, the S content is in the range of 0.015 to 0.030% by mass%.

Cuは、鋼の焼入れ性を向上させ得る。しかし、添加量に対する効果は徐々に飽和し、またコストの増大要因ともなり得る。そこで、Cuの含有量は、質量%で0.30%以下の範囲内である。   Cu can improve the hardenability of steel. However, the effect on the amount of addition gradually saturates and may increase the cost. Therefore, the Cu content is within a range of 0.30% or less in terms of mass%.

Niは、鋼の焼入れ性を向上させ、鋼の耐摩耗性を向上させ得る。しかし、添加量に対する効果は徐々に飽和し、またコストの増大要因ともなり得る。そこで、Niの含有量は、質量%で1.00%以下の範囲内である。   Ni improves the hardenability of steel and can improve the wear resistance of steel. However, the effect on the amount of addition gradually saturates and may increase the cost. Therefore, the Ni content is within a range of 1.00% or less by mass.

Moは、鋼の焼入れ性を向上させ、鋼の耐摩耗性を向上させ得る。しかし、添加量に対する効果は徐々に飽和し、またコストの増大要因ともなり得る。そこで、Moの含有量は、質量%で1.00%以下の範囲内である。   Mo improves the hardenability of the steel and can improve the wear resistance of the steel. However, the effect on the amount of addition gradually saturates and may increase the cost. Therefore, the Mo content is within a range of 1.00% or less by mass.

なお、Ni及びMoは、ほぼ等価に鋼の耐摩耗性を向上させ得るため、Ni及びMoの含有量の合計を質量%で1.00%以下の範囲内、すなわち、元素Mの質量%を[M]とすると、[Ni]+[Mo]≦1.00とされる。   In addition, since Ni and Mo can improve the wear resistance of steel almost equivalently, the total content of Ni and Mo is within a range of 1.00% or less by mass%, that is, the mass% of element M is reduced. Assuming [M], [Ni] + [Mo] ≦ 1.00.

Crは、鋼の焼入れ性を向上させ、機械的強度を向上させ得る。つまり、Crの添加量が少なすぎると焼入れ性が不足し曲げ疲労強度を低下させ得る。一方、Crの添加量が多すぎると、上記したように、表面硬化熱処理時に粒界酸化が進行し、機械構造用鋼として必要とされる曲げ疲労強度が確保できない。そこで、Crの含有量は、質量%で、1.0〜2.0%の範囲内である。   Cr can improve the hardenability of steel and improve the mechanical strength. That is, if the amount of Cr added is too small, the hardenability is insufficient and the bending fatigue strength can be reduced. On the other hand, if the amount of Cr added is too large, as described above, grain boundary oxidation proceeds during the surface hardening heat treatment, and the bending fatigue strength required for steel for machine structures cannot be ensured. Therefore, the Cr content is in mass% and is in the range of 1.0 to 2.0%.

s−Alは、溶鋼の脱酸作用を有する。また、Nと結合して結晶粒を微細化させるAlNを形成し、機械構造用鋼として必要とされる曲げ疲労強度を向上させ得る。しかし、s−Alの含有量が多すぎると、介在物を増加させ、機械構造用鋼として必要とされる曲げ疲労強度が確保できない。そこで、s−Alの含有量は、質量%で0.010〜0.050%の範囲内である。   s-Al has a deoxidizing action of molten steel. Moreover, AlN which combines with N and refines crystal grains can be formed, and the bending fatigue strength required as mechanical structural steel can be improved. However, when there is too much content of s-Al, an inclusion will increase and the bending fatigue strength required as steel for machine structure cannot be ensured. Therefore, the content of s-Al is in the range of 0.010 to 0.050% by mass.

Nは、Al、Nb、Ti等と結合して結晶粒を微細化させる窒化物を形成し、機械構造用鋼として必要とされる曲げ疲労強度を向上させ得る。しかし、Nの含有量が多すぎると、曲げ疲労強度の向上能は飽和してしまう。そこで、Nの含有量は、0.005〜0.030%の範囲内である。   N combines with Al, Nb, Ti and the like to form a nitride that refines the crystal grains, and can improve the bending fatigue strength required as a steel for mechanical structures. However, when there is too much content of N, the improvement ability of bending fatigue strength will be saturated. Therefore, the N content is in the range of 0.005 to 0.030%.

以上、本発明による実施例及びこれに基づく変形例を説明したが、本発明は必ずしもこれに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、様々な代替実施例及び改変例を見出すことができるであろう。   As mentioned above, although the Example by this invention and the modification based on this were demonstrated, this invention is not necessarily limited to this, A person skilled in the art will deviate from the main point of this invention, or the attached claim. Various alternative embodiments and modifications could be found without doing so.

10 疲労試験片
20 旋削試験片
21 試験部
22 チャック部
10 Fatigue test piece 20 Turning test piece 21 Test part 22 Chuck part

Claims (1)

質量%で、C:0.15〜0.25%、Si:0.04〜0.15%、Mn:0.6〜0.8%、P:≦0.030%、S:0.015〜0.030%、Cu:≦0.30%、Ni:≦1.00%、Cr:1.0〜2.0%、Mo:≦1.00%、s−Al:0.010〜0.050%、及び、N:0.005〜0.030%を含み、残部Fe及び不純物からなり、元素Mの質量%を[M]とすると、
10.0×[Si]+[Mn]+[Cr]≦3.90
5.44×[Si]+34.6×[S]≧1.06
[Ni]+[Mo]≦1.00
を満たし、主としてフェライト・パーライト組織からなることを特徴とする機械構造用鋼。
By mass%, C: 0.15~0.25%, Si : 0.04~0.15%, Mn: 0.6~ 0.8%, P: ≦ 0.030%, S: 0.015 -0.030%, Cu: ≤0.30%, Ni: ≤1.00%, Cr: 1.0-2.0%, Mo: ≤1.00%, s-Al: 0.010-0 .050% and N: 0.005 to 0.030%, which consists of the balance Fe and impurities, and the mass% of the element M is [M].
10.0 × [Si] + [Mn] + [Cr] ≦ 3.90
5.44 × [Si] + 34.6 × [S] ≧ 1.06
[Ni] + [Mo] ≦ 1.00
Satisfying the requirements, and mainly composed of ferrite and pearlite structure.
JP2013167356A 2013-08-12 2013-08-12 Steel for machine structure Active JP6197467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013167356A JP6197467B2 (en) 2013-08-12 2013-08-12 Steel for machine structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013167356A JP6197467B2 (en) 2013-08-12 2013-08-12 Steel for machine structure

Publications (2)

Publication Number Publication Date
JP2015036427A JP2015036427A (en) 2015-02-23
JP6197467B2 true JP6197467B2 (en) 2017-09-20

Family

ID=52687045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013167356A Active JP6197467B2 (en) 2013-08-12 2013-08-12 Steel for machine structure

Country Status (1)

Country Link
JP (1) JP6197467B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959462B (en) * 2022-05-08 2023-04-18 江阴兴澄特种钢铁有限公司 Steel for new energy automobile motor shaft and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5487778B2 (en) * 2009-07-29 2014-05-07 愛知製鋼株式会社 Carburizing steel with high strength without addition of Mo and carburized parts using the same
JP5632659B2 (en) * 2010-06-17 2014-11-26 株式会社神戸製鋼所 Case-hardened steel with low heat treatment distortion
JP5699940B2 (en) * 2012-01-05 2015-04-15 新日鐵住金株式会社 Hot rolled steel bar or wire rod

Also Published As

Publication number Publication date
JP2015036427A (en) 2015-02-23

Similar Documents

Publication Publication Date Title
JP5231101B2 (en) Machine structural steel with excellent fatigue limit ratio and machinability
JP2009030160A (en) Steel for mechanical structure excellent in machinability and process for producing the same
JP4986203B2 (en) BN free-cutting steel with excellent tool life
JP6741060B2 (en) Gear component and manufacturing method thereof
JP6620490B2 (en) Age-hardening steel
JP2021008647A (en) Ferritic free cutting stainless steel and method for manufacturing the steel material
KR102165228B1 (en) Case hardening steel, method of producing case hardening steel, and method of producing gear part
JP5237696B2 (en) Steel for machine structure
JP6477382B2 (en) Free-cutting steel
JP5474615B2 (en) Martensitic stainless free-cutting steel bar wire with excellent forgeability
JP5576895B2 (en) BN free-cutting steel with excellent tool life
JP6197467B2 (en) Steel for machine structure
JP4600988B2 (en) High carbon steel plate with excellent machinability
JP5141313B2 (en) Steel material with excellent black skin peripheral turning and torsional strength
JP4964060B2 (en) Mechanical structural steel and mechanical structural parts with excellent strength anisotropy and machinability
JP5323369B2 (en) Case-hardened steel with excellent machinability and grain coarsening prevention properties
JP6477383B2 (en) Free-cutting steel
CN117888030A (en) Case hardening steel, method for producing same, and method for producing gear member
JP2002038241A (en) Free cutting stainless steel
WO2011155605A1 (en) High-machinability high-strength steel and manufacturing method therefor
JP5837837B2 (en) High-hardness BN free cutting steel with a tool life of 300HV10 or higher
JP2021028414A (en) Steel for carburized gear, carburized gear, and manufacturing method of carburized gear
JP4900251B2 (en) Manufacturing method of nitrided parts
JP5217486B2 (en) Steel material with excellent black skin peripheral turning and torsional strength
JP4250306B2 (en) BN free-cutting steel with excellent cold workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170807

R150 Certificate of patent or registration of utility model

Ref document number: 6197467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150