JP4250306B2 - BN free-cutting steel with excellent cold workability - Google Patents
BN free-cutting steel with excellent cold workability Download PDFInfo
- Publication number
- JP4250306B2 JP4250306B2 JP2000117905A JP2000117905A JP4250306B2 JP 4250306 B2 JP4250306 B2 JP 4250306B2 JP 2000117905 A JP2000117905 A JP 2000117905A JP 2000117905 A JP2000117905 A JP 2000117905A JP 4250306 B2 JP4250306 B2 JP 4250306B2
- Authority
- JP
- Japan
- Prior art keywords
- free
- present
- content
- mass
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、冷間加工性に優れたBN系快削鋼、特に、Pbを添加せずとも、Pb添加快削鋼と同等以上の被削性を有する、伸線加工性、冷鍛性あるいは転造加工性等の冷間加工性に優れたBN系快削鋼に関するものである。
【0002】
【従来の技術】
Pb快削鋼は、使い勝手の良さにより広く使用されている。しかし、昨今の地球環境問題に絡み、Pbの使用を制限しようとする動きがある。これは、Pb快削鋼だけに限らず、ハンダや銃の弾といったものも含まれる。このような背景のもとにPbを含有しない非Pb快削鋼の要望が出て来つつある。
【0003】
そこで、このような要望に対応するために、特開平9−25539号公報には、Pb非添加型の快削非調質鋼が開示されている(以下、従来技術1という)。また、特開平1−219148号公報には、Pb以外の快削性介在物としてBNを使用した非調質鋼が開示されている(以下、従来技術2という)。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来技術1は、特殊な元素であるNdを用いているために、低コスト化面で不利である。また、Pb添加鋼の最大の特徴である切屑処理性に対する記述がない。また、上記従来技術2は、従来技術1と同様に、Pb添加鋼の最大の特徴である切屑処理性に対する記述がない。しかも、冷間加工性に大きく影響を及ぼすフリーN量についての記述がない。
【0005】
従って、この発明の目的は、Pbを添加せずとも、Pb添加快削鋼と同等以上の被削性を有する、伸線加工性、冷鍛性あるいは転造加工性等の冷間加工性に優れたBN系快削鋼を得ることにある。
【0006】
【課題を解決するための手段】
本発明者等は、上記目的を達成するために、鋭意研究を重ねた。この結果、 BおよびNの最適添加によって、切屑処理性を含めた被削性を向上させることができ、しかも、BN生成によるフリーN量を低下させることによって、冷間加工時の歪時効硬化を抑制させることができるといった知見を得た。
【0007】
この発明は、上記知見に基づきなされたものであって、下記を特徴とするものである。
【0008】
請求項1記載の発明は、C:0.03〜0.20%、Si:0.02〜0.10%、Mn:0.15〜0.50%、P:0.005〜0.030%、S:0.005〜0.040%、Al:0.010〜0.050%、B:0.0050〜0.0150%、N:0.01〜0.02%(以上、mass%)、残部:Feおよび不可避的不純物からなり、且つ、N/B比が0.7〜2.5の範囲内にあり、更に、下記(1)式、
N−(B/0.77)・・・・・・(1)
で表されるフリーN量が40ppm以下であることに特徴を有するものである。
【0009】
【発明の実施の形態】
次に、この発明の成分元素の限定理由について説明する。
【0010】
C:0.03〜0.20mass%
Cは、鋼の強度および被削性に大きな影響を及ぼす重要な元素である。しかしながら、C含有量が0.03mass%未満では、十分な強度が得られない。一方、C含有量が0.20mass%を超えると、強度上昇による冷間加工性の劣化およびパーライト量の増加による被削性の劣化を招く。従って、C含有量は、0.03〜0.20mass%の範囲内に限定すべきである。
【0011】
Si:0.02〜0.10mass%
Siは、硬質の酸化物系介在物を形成すると共にフェライトを硬化させるために、冷間加工性および被削性を著しく劣化させる。但し、Si含有量が0.02mass%未満では、硬質のアルミナ系介在物が生成されることから、冷間加工性および被削性が劣化する。また、Si含有量を低下させるほど脱Siコストがかかる。従って、Si含有量は、0.02〜0.10mass%の範囲内に限定すべきである。
【0012】
Mn:0.15〜0.50mass%
Mnは、鋼の強度および延性に大きな影響を及ぼす元素であるが、その含有量が0.15%未満では十分な強度が得られない。一方、Mn含有量が0.50%を超えると、十分な延性が得られず、冷間加工性および被削性が劣化する。従って、Mn含有量は、0.15〜0.50mass%の範囲内に限定すべきである。
【0013】
P:0.005〜0.030mass%
Pは、鋼中に不可避的に混入する元素であり、その含有量が0.030mass%を超えると、十分な冷間加工性が得られない。但し、P含有量が0.005mass%未満では、被削性が劣化し、特に、表面粗さが劣化する傾向がある。また、P含有量を低下させるほど脱Pコストがかかる。従って、P含有量は、0.005〜0.030mass%の範囲内に限定すべきである。
【0014】
S:0.005〜0.040mass%
Sは、被削性を向上させる元素であるが、その含有量が0.005mass%未満では、その効果が十分に得られない。また、S含有量が0.040mass%を超えると、冷間加工性、特に、冷鍛性および転造加工性が劣化する。従って、S含有量は、0.005〜0.040mass%の範囲内に限定すべきである。
【0015】
Al:0.010〜0.050mass%
Alは、脱酸に必要な元素であるが、その含有量が0.010mass%未満では脱酸効果がなく、一方、Al含有量が0.050mass%を超えると効果が飽和してしまう。従って、Al含有量は、0.010〜0.050mass%の範囲内に限定すべきである。
【0016】
B:0.0050〜0.0150mass%
Bは、被削性を向上させるBNを生成させるために必要な元素であり、同時に、フリーN量を低下させることによって、冷間加工時の歪時効硬化を抑制させる、この発明の根幹に関わる重要な元素である。しかしながら、B含有量が0.0050mass%未満では、十分な量のBNを生成することができないと共に、フリーN量が十分に低下しない。一方、B含有量が0.0150mass%を超えると熱間加工性が低下する。従って、B含有量は、0.0050〜0.0150mass%の範囲内に限定すべきである。
【0017】
N:0.01〜0.02mass%
Nは、BNを形成して、被削性を向上させる作用を有する元素である。しかしながら、N含有量が0.01mass%未満では、その効果が十分に得られない。一方、N含有量が0.02mass%を超えると、フリーN量の増大を招き、歪時効指数が大きくなって、冷間加工性を劣化させる。従って、N含有量は、0.01〜0.02mass%の範囲内に限定すべきである。
【0018】
N/B比:0.7〜2.5
N/B比が0.7未満では、被削性に有効なBN量が確保できないことから、被削性が劣化する。一方、N/B比が2.5を超えると、フリーN量の増大を招き、歪時効指数が大きくなって、冷間加工性が劣化する。従って、N/B比は、0.7〜2.5の範囲内に限定すべきである。
【0019】
フリーN量:0.0040mass%以下
フリーNは、冷間加工時の温度上昇により歪時効硬化を引き起こすと共に、強度の上昇および延性の低下を招いて、冷間加工性に悪影響を及ぼす。そして、下記(1)式、
N−(B/0.77) ---(1)
で表わされるフリーN量が0.0040mass%を超えると、その影響を無視できなくなる。従って、フリーN量は、0.0040mass%以下に限定すべきである。
【0020】
【実施例】
次に、この発明を実施例により、更に詳細に説明する。
【0021】
表1に示す、この発明の範囲内の化学成分組成を有する鋼(以下、本発明鋼という)No.1〜13、および、この発明範囲外の化学成分組成を有する鋼(以下、比較鋼という)No.14〜25、ならびに参考例として、No.26の成分系の鋼を溶解炉にて溶製し、鋼塊に鋳造後、10mm径の線材と85mm径の棒鋼とにそれぞれ熱間圧延した。
【0022】
【表1】
【0023】
このようにして製造された、本発明鋼、比較鋼および参考例の鋼の各々からなる線材からJIS2号引張試験片を採取し、引張試験に供した。歪時効指数ΔTSは、圧延ままの線材を歪時効処理し、処理前後の各状態でのTS(引張強さ)から、下記(2)式に基づいて算出した。なお、歪時効処理条件としては、3%予歪後、100℃の油中に4hr保持する条件とした。
【0024】
ΔTS=(歪時効処理後のTS)−(圧延ままのTS) ---(2)
次に、上述のようにして製造した各棒鋼の中間部から8mm(φ)×12mm(h)の円柱片および14mm(φ)×21mm(h)の溝付き円柱片をそれぞれ採取し、各々の円柱片に対して、変形抵抗測定および限界圧縮率測定による冷間加工試験を実施した。
【0025】
変形抵抗測定は、図1に示すように、前記円柱片の高さ(h)方向に圧縮荷重を負荷し、ε=1.0の所定歪における変形抵抗を測定することにより行なった。限界圧縮率測定は、図2に示すように、前記溝付き円柱片の高さ(h)方向に圧縮荷重を負荷し、溝部に割れが発生する圧縮率を求めることにより行なった。
【0026】
また、上述のようにして製造した各棒鋼を500mm長さに切断し、切削試験に供した。切削試験は、表2に示す条件で行ない、外周旋削試験は、超硬工具(材質P20)とハイス工具(材質SKH4)の2種類で行ない、ドリル穴あけ試験は、ハイスドリル(材質SKH4)で行なった。
【0027】
【表2】
【0028】
切削性の評価については、超硬工具での外削試験では、横逃げ面摩耗量(VB)が0.2mmになる切削時間で工具寿命を評価し、ハイス工具での外削試験では、切削不能になるまでの時間で工具寿命の評価を行なった。ドリル切削試験では、穴あけ総深さが1000mmで切削不能となる切削速度を求め、工具寿命の指標とした。なお、これらの試験は、何れも、棒鋼に球状化焼鈍処理を施した後行なった。この球状化焼鈍処理条件は、760℃×6hr→700℃×2hr→炉冷であった。この結果を表3に示す。
【0029】
【表3】
【0030】
設定代表目標値としては、これまでの経験から、歪時効指数ΔTSは、35MPa以下とし、ドリル切削試験不能速度は、20m/min以上とした。図3に、フリーN量と歪時効指数との関係を示し、図4に、被削性の代表値として、ドリル切削試験不能速度と歪時効指数との関係を、目標値と共に示す。
【0031】
表3から明らかなように、No.1〜13の本発明例は、何れも目標値を満足しており、良好な特性を有していることが分かった。特に、本発明例No.9は、参考例No.26のPb添加鋼と比較すると、被削性の観点からは、ほぼ同等であるが、冷間加工性を考えた場合、No.26のPb添加鋼は、冷間加工性に有害なSの含有量を低くおさえても、冷間加工性に限界がある。
【0032】
これに対して、本発明例No.9は、冷間加工性が向上している。換言すれば、現行のPb添加鋼においては、冷間加工性を考えると、被削性に有効なS量を低くおさえざるを得ないが、この発明例では、S添加量を増加しても、同じ冷間加工性を確保することができるために、S量の増加分だけ、被削性の向上を図ることができる。勿論、BN生成による被削性の向上が更に加わる。この例が本発明例No.10である。
【0033】
次に、比較例No.14〜25について説明する。
【0034】
比較例No.14は、C含有量が本発明範囲を外れて少ないので、引張強さが何れの本発明例より小さくなっていた。
【0035】
比較例No.15は、Si含有量が本発明範囲を外れて多いので、何れの本発明例より絞りが小さく、しかも、変形抵抗が大きく、限界圧縮率が小さいので、冷間加工性に劣っていた。また、被削性も劣っていた。
【0036】
比較例No.16、17は、Mn含有量が本発明範囲を外れている。即ち、比較例No.16は、Mn含有量が本発明範囲を外れて少ないので、引張強さが何れの本発明例より小さかった。一方、比較例No.17は、Mn含有量が本発明範囲を外れて多いので、絞りが何れの本発明例より小さく、しかも、被削性に劣っていた。
【0037】
比較例No.18は、P含有量が本発明範囲を外れて多いので、絞りが何れの本発明例より小さく、しかも、限界圧縮率が何れの本発明例より小さいので、冷間加工性に劣っていた。
【0038】
比較例No.19、20は、S含有量が本発明範囲を外れている。即ち、比較例No.19は、S含有量が本発明範囲を外れて少ないので、被削性に劣っていた。一方、比較例No.20は、S含有量が本発明範囲を外れて多いので、絞りが何れの本発明例より小さかった。特に、限界圧縮率が小さいので、冷間加工性に劣っていた。
【0039】
比較例No.21は、B含有量が本発明範囲を外れて少ないので、被削性に劣っていると共に、フリーN量が本発明範囲を外れて多いので、歪時効指数が何れの本発明例より大きく、それによって、変形抵抗が大きく、限界圧縮率が小さく、従って、冷間加工性に劣っていた。
【0040】
比較例No.22、23は、N含有量が本発明範囲を外れている。即ち、比較例No.22は、N含有量が本発明範囲を外れて少ないので、被削性に劣っていた。また、比較例No.23は、N含有量が本発明範囲を外れて多いので、フリーN量が何れの本発明例より多かった。従って、歪時効指数が何れの本発明例より大きく、それによって、変形抵抗が大きく、限界圧縮率が小さかったので、冷間加工性に劣っていた。また、製造面では、N2ガス起因の気泡が発生しやすくなって、鋳塊の表面性状が劣る危険性も出てきた。
【0041】
比較例No.24は、N/B比が本発明範囲を超えて大きいので、歪時効指数が何れの本発明例より大きく、それによって、変形抵抗が大きく、限界圧縮率が小さかったので、冷間加工性に劣っていた。
【0042】
比較例No.25は、フリーN量が本発明範囲を超えて多いので、歪時効指数が何れの本発明例より大きく、それによって、変形抵抗が大きく、限界圧縮率が小さかったので、冷間加工性に劣っていた。
【0043】
比較例No.26は、上述したように、参考例としてのPb添加鋼であるが、被削性の面からは、例えば、本発明例No.9と同等であるが、冷間加工性を考えた場合、現行Pb添加鋼は、冷間加工性に有害なS量を低くおさえても冷間加工性に限界があるのに対して、本発明例は、冷間加工性が向上している。
【0044】
【発明の効果】
以上説明したように、この発明によれば、Pbを添加せずとも、Pb添加快削鋼と同等以上の被削性を有する、伸線加工性、冷鍛性あるいは転造加工性等の冷間加工性に優れたBN系快削鋼を得ることができるといった工業上、有用な効果がもたらされる。
【図面の簡単な説明】
【図1】変形抵抗測定の試験方法を示す説明図である。
【図2】限界圧縮率測定の試験方法を示す説明図である。
【図3】フリーN量と歪時効指数との関係を示すグラフである。
【図4】被削性の代表値として、ドリル切削試験不能速度と歪時効指数との関係を、目標値と共に示したグラフである。[0001]
BACKGROUND OF THE INVENTION
This invention is a BN free-cutting steel excellent in cold workability, in particular, a machinability equal to or higher than that of Pb-added free-cutting steel without adding Pb. The present invention relates to a BN free-cutting steel excellent in cold workability such as rolling workability.
[0002]
[Prior art]
Pb free-cutting steel is widely used because of its ease of use. However, there is a movement to limit the use of Pb due to recent global environmental problems. This includes not only Pb free-cutting steel but also solder and gun bullets. Under such circumstances, there is a demand for non-Pb free-cutting steel containing no Pb.
[0003]
Therefore, in order to meet such a demand, Japanese Patent Laid-Open No. 9-25539 discloses a Pb non-added type free-cutting non-heat treated steel (hereinafter referred to as Prior Art 1). JP-A-1-219148 discloses non-heat treated steel using BN as a free-cutting inclusion other than Pb (hereinafter referred to as Prior Art 2).
[0004]
[Problems to be solved by the invention]
However, the
[0005]
Therefore, the object of the present invention is to achieve cold workability such as wire drawing workability, cold forging workability or rolling workability, which has machinability equivalent to or better than that of Pb-added free cutting steel without adding Pb. The object is to obtain excellent BN-based free-cutting steel.
[0006]
[Means for Solving the Problems]
The inventors of the present invention have made extensive studies to achieve the above object. As a result, machinability including chip disposal can be improved by optimal addition of B and N, and the strain age hardening during cold working can be reduced by reducing the amount of free N due to BN generation. The knowledge that it can be suppressed was obtained.
[0007]
The present invention has been made on the basis of the above findings, and is characterized by the following.
[0008]
The invention according to
N- (B / 0.77) (1)
The amount of free N represented by is characterized by being 40 ppm or less.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, the reasons for limiting the component elements of the present invention will be described.
[0010]
C: 0.03-0.20 mass%
C is an important element that greatly affects the strength and machinability of steel. However, if the C content is less than 0.03 mass%, sufficient strength cannot be obtained. On the other hand, when the C content exceeds 0.20 mass%, the cold workability is deteriorated due to an increase in strength and the machinability is deteriorated due to an increase in the amount of pearlite. Therefore, the C content should be limited to the range of 0.03 to 0.20 mass%.
[0011]
Si: 0.02-0.10 mass%
Since Si forms hard oxide inclusions and hardens ferrite, it significantly deteriorates cold workability and machinability. However, when the Si content is less than 0.02 mass%, hard alumina inclusions are generated, and thus cold workability and machinability deteriorate. Further, the Si removal cost increases as the Si content decreases. Therefore, the Si content should be limited to the range of 0.02 to 0.10 mass%.
[0012]
Mn: 0.15-0.50 mass%
Mn is an element that greatly affects the strength and ductility of steel, but if its content is less than 0.15%, sufficient strength cannot be obtained. On the other hand, if the Mn content exceeds 0.50%, sufficient ductility cannot be obtained, and cold workability and machinability deteriorate. Therefore, the Mn content should be limited to the range of 0.15 to 0.50 mass%.
[0013]
P: 0.005-0.030 mass%
P is an element inevitably mixed in the steel, and if its content exceeds 0.030 mass%, sufficient cold workability cannot be obtained. However, if the P content is less than 0.005 mass%, the machinability deteriorates, and in particular, the surface roughness tends to deteriorate. Moreover, the P removal cost increases as the P content decreases. Therefore, the P content should be limited to the range of 0.005 to 0.030 mass%.
[0014]
S: 0.005-0.040 mass%
S is an element that improves machinability, but if the content is less than 0.005 mass%, the effect cannot be sufficiently obtained. Moreover, when S content exceeds 0.040 mass%, cold workability, especially cold forgeability and rolling workability will deteriorate. Therefore, the S content should be limited to the range of 0.005 to 0.040 mass%.
[0015]
Al: 0.010-0.050 mass%
Al is an element necessary for deoxidation, but if the content is less than 0.010 mass%, there is no deoxidation effect, while if the Al content exceeds 0.050 mass%, the effect is saturated. Therefore, the Al content should be limited to the range of 0.010 to 0.050 mass%.
[0016]
B: 0.0050 to 0.0150 mass%
B is an element necessary for generating BN that improves machinability, and at the same time, by reducing the amount of free N, it suppresses strain age hardening during cold working, and relates to the basis of the present invention. It is an important element. However, if the B content is less than 0.0050 mass%, a sufficient amount of BN cannot be generated, and the free N amount does not decrease sufficiently. On the other hand, when the B content exceeds 0.0150 mass%, the hot workability decreases. Therefore, the B content should be limited to a range of 0.0050 to 0.0150 mass%.
[0017]
N: 0.01-0.02 mass%
N is an element which has the effect | action which forms BN and improves machinability. However, if the N content is less than 0.01 mass%, the effect cannot be obtained sufficiently. On the other hand, if the N content exceeds 0.02 mass%, the free N amount is increased, the strain aging index is increased, and the cold workability is deteriorated. Therefore, the N content should be limited to the range of 0.01 to 0.02 mass%.
[0018]
N / B ratio: 0.7 to 2.5
If the N / B ratio is less than 0.7, the machinability deteriorates because the BN amount effective for machinability cannot be secured. On the other hand, when the N / B ratio exceeds 2.5, the free N amount increases, the strain aging index increases, and the cold workability deteriorates. Therefore, the N / B ratio should be limited to the range of 0.7 to 2.5.
[0019]
Free N amount: 0.0040 mass% or less Free N causes strain age hardening due to an increase in temperature during cold working, and also causes an increase in strength and a decrease in ductility, which adversely affects cold workability. And the following formula (1),
N- (B / 0.77) --- (1)
When the amount of free N expressed by exceeds 0.0040 mass%, the influence cannot be ignored. Accordingly, the amount of free N should be limited to 0.0040 mass% or less.
[0020]
【Example】
Next, the present invention will be described in more detail with reference to examples.
[0021]
Steel having a chemical composition within the scope of the present invention shown in Table 1 (hereinafter referred to as the present invention steel) No. No. 1-13 and steel having a chemical composition outside the scope of the present invention (hereinafter referred to as comparative steel) No. 14-25, and as a reference example, no. 26 component steels were melted in a melting furnace, cast into a steel ingot, and then hot-rolled into a 10 mm diameter wire rod and an 85 mm diameter bar steel, respectively.
[0022]
[Table 1]
[0023]
JIS No. 2 tensile test specimens were collected from the wire rods made of the steel of the present invention, the comparative steel, and the reference example steel thus manufactured and subjected to a tensile test. The strain aging index ΔTS was calculated based on the following formula (2) from the TS (tensile strength) in each state before and after the processing after strain aging treatment of the wire as-rolled. Strain aging treatment conditions were such that after 3% pre-straining, they were kept in oil at 100 ° C. for 4 hours.
[0024]
ΔTS = (TS after strain aging treatment)-(TS as-rolled) --- (2)
Next, an 8 mm (φ) × 12 mm (h) cylindrical piece and a 14 mm (φ) × 21 mm (h) grooved cylindrical piece were respectively collected from the middle part of each steel bar manufactured as described above. A cold working test was performed on the cylindrical piece by measuring deformation resistance and limiting compressibility.
[0025]
As shown in FIG. 1, the deformation resistance was measured by applying a compressive load in the height (h) direction of the cylindrical piece and measuring the deformation resistance at a predetermined strain of ε = 1.0. As shown in FIG. 2, the critical compressibility measurement was performed by applying a compressive load in the height (h) direction of the grooved cylindrical piece and determining the compressibility at which cracks occur in the groove.
[0026]
Moreover, each steel bar manufactured as mentioned above was cut | disconnected to 500 mm length, and it used for the cutting test. The cutting test was performed under the conditions shown in Table 2, the peripheral turning test was performed with two types of carbide tools (material P20) and a high-speed tool (material SKH4), and the drilling test was performed with a high-speed drill (material SKH4). .
[0027]
[Table 2]
[0028]
Regarding the evaluation of machinability, in the external cutting test with carbide tools, the tool life is evaluated by the cutting time when the lateral flank wear amount (VB) is 0.2 mm, and in the external cutting test with high-speed tools, cutting is performed. The tool life was evaluated by the time until it became impossible. In the drill cutting test, the cutting speed at which cutting becomes impossible at a total drilling depth of 1000 mm was obtained and used as an index of tool life. In addition, all of these tests were performed after subjecting the steel bar to spheroidizing annealing. The spheroidizing annealing conditions were 760 ° C. × 6 hr → 700 ° C. × 2 hr → furnace cooling. The results are shown in Table 3.
[0029]
[Table 3]
[0030]
As the set representative target value, from the experience so far, the strain aging index ΔTS is set to 35 MPa or less, and the drill cutting test impossible speed is set to 20 m / min or more. FIG. 3 shows the relationship between the free N amount and the strain aging index, and FIG. 4 shows the relationship between the drill cutting test impossibility speed and the strain aging index as a representative value of machinability together with the target value.
[0031]
As is apparent from Table 3, No. It was found that all of the inventive examples 1 to 13 satisfied the target value and had good characteristics. In particular, Invention Example No. 9 is Reference Example No. Compared to the Pb-added steel of No. 26, it is almost equivalent from the viewpoint of machinability. 26 Pb-added steel has a limited cold workability even if the content of S, which is harmful to the cold workability, is kept low.
[0032]
On the other hand, the present invention example No. No. 9 has improved cold workability. In other words, in the current Pb-added steel, considering the cold workability, the amount of S effective for machinability must be kept low, but in this invention example, even if the amount of S added is increased. Since the same cold workability can be ensured, the machinability can be improved by an increase in the amount of S. Of course, the machinability is further improved by the generation of BN. This example is an example of the present invention. 10.
[0033]
Next, Comparative Example No. 14 to 25 will be described.
[0034]
Comparative Example No. No. 14, since the C content is less than the scope of the present invention, the tensile strength was smaller than any of the present invention examples.
[0035]
Comparative Example No. No. 15 was inferior in cold workability because the Si content was much out of the range of the present invention, and the drawing was smaller than any of the examples of the present invention, and the deformation resistance was large and the critical compression ratio was small. Moreover, machinability was also inferior.
[0036]
Comparative Example No. 16 and 17, the Mn content is outside the scope of the present invention. That is, Comparative Example No. No. 16 had a lower Mn content than the scope of the present invention, and therefore had a lower tensile strength than any of the present invention examples. On the other hand, Comparative Example No. In No. 17, since the Mn content was large outside the range of the present invention, the drawing was smaller than any of the present invention examples, and the machinability was inferior.
[0037]
Comparative Example No. In No. 18, since the P content was much outside the range of the present invention, the drawing was smaller than any of the examples of the present invention, and the critical compressibility was lower than any of the examples of the present invention, so the cold workability was inferior.
[0038]
Comparative Example No. 19 and 20, the S content is outside the scope of the present invention. That is, Comparative Example No. No. 19 was inferior in machinability because the S content was small outside the scope of the present invention. On the other hand, Comparative Example No. In No. 20, since the S content was large outside the range of the present invention, the aperture was smaller than any of the present invention examples. In particular, since the critical compression ratio was small, the cold workability was poor.
[0039]
Comparative Example No. No. 21, since the B content is small outside the scope of the present invention, the machinability is inferior and the free N amount is large outside the scope of the present invention, so the strain aging index is larger than any of the present invention examples, As a result, the deformation resistance was large, the critical compression ratio was small, and therefore the cold workability was poor.
[0040]
Comparative Example No. Nos. 22 and 23 have an N content outside the scope of the present invention. That is, Comparative Example No. No. 22 was inferior in machinability because the N content was small outside the scope of the present invention. Comparative Example No. In No. 23, the N content was larger than the range of the present invention, so the free N amount was higher than any of the present invention examples. Therefore, since the strain aging index was larger than any of the examples of the present invention, thereby the deformation resistance was large and the critical compression ratio was small, the cold workability was poor. On the production side, bubbles due to N 2 gas are likely to be generated, and there is a risk that the surface properties of the ingot are inferior.
[0041]
Comparative Example No. No. 24, because the N / B ratio is larger than the range of the present invention, the strain aging index is larger than any of the present invention examples, thereby the deformation resistance is large and the critical compressibility is small. It was inferior.
[0042]
Comparative Example No. No. 25, since the amount of free N exceeds the range of the present invention, the strain aging index is larger than any of the present invention examples, and thereby the deformation resistance is large and the critical compression ratio is small, so that the cold workability is poor. It was.
[0043]
Comparative Example No. 26 is Pb-added steel as a reference example as described above. From the viewpoint of machinability, for example, the present invention example No. This is equivalent to 9, but when considering cold workability, the current Pb-added steel has a limited cold workability even if the amount of sulfur harmful to cold workability is kept low. Inventive examples have improved cold workability.
[0044]
【The invention's effect】
As described above, according to the present invention, cold work such as wire drawing workability, cold forging workability or rolling workability having machinability equivalent to or better than that of Pb-added free cutting steel without adding Pb. An industrially useful effect that a BN type free-cutting steel excellent in hot workability can be obtained is brought about.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a test method for measuring deformation resistance.
FIG. 2 is an explanatory diagram showing a test method for measuring a critical compression ratio.
FIG. 3 is a graph showing a relationship between a free N amount and a strain aging index.
FIG. 4 is a graph showing, as a representative value of machinability, a relationship between a drill cutting test impossible speed and a strain aging index together with target values.
Claims (1)
Si:0.02〜0.10%、
Mn:0.15〜0.50%、
P:0.005〜0.030%、
S:0.005〜0.040%、
Al:0.010〜0.050%、
B:0.0050〜0.0150%、
N:0.01〜0.02%(以上、mass%)、
残部:Feおよび不可避的不純物
からなり、且つ、N/B比が0.7〜2.5の範囲内にあり、更に、下記(1)式、
N−(B/0.77)・・・・・・(1)
で表されるフリーN量が40ppm以下であることを特徴とする、冷間加工性に優れたBN系快削鋼。C: 0.03 to 0.20%
Si: 0.02-0.10%,
Mn: 0.15 to 0.50%,
P: 0.005-0.030%,
S: 0.005-0.040%,
Al: 0.010 to 0.050%,
B: 0.0050 to 0.0150%,
N: 0.01 to 0.02% (above, mass%),
The balance: Fe and unavoidable impurities , the N / B ratio is in the range of 0.7 to 2.5, and the following formula (1):
N- (B / 0.77) (1)
A BN-based free-cutting steel excellent in cold workability, characterized in that the amount of free N represented by the formula is 40 ppm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000117905A JP4250306B2 (en) | 2000-04-19 | 2000-04-19 | BN free-cutting steel with excellent cold workability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000117905A JP4250306B2 (en) | 2000-04-19 | 2000-04-19 | BN free-cutting steel with excellent cold workability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001303171A JP2001303171A (en) | 2001-10-31 |
JP4250306B2 true JP4250306B2 (en) | 2009-04-08 |
Family
ID=18629146
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000117905A Expired - Fee Related JP4250306B2 (en) | 2000-04-19 | 2000-04-19 | BN free-cutting steel with excellent cold workability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4250306B2 (en) |
-
2000
- 2000-04-19 JP JP2000117905A patent/JP4250306B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001303171A (en) | 2001-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5162954B2 (en) | High-strength nonmagnetic stainless steel, high-strength nonmagnetic stainless steel parts, and method for manufacturing the same | |
JP4986203B2 (en) | BN free-cutting steel with excellent tool life | |
KR20200124294A (en) | Martensitic S free cutting stainless steel | |
JP6427272B2 (en) | bolt | |
KR20190045314A (en) | Surface hardened steel, method of manufacturing the same, and method of manufacturing gear parts | |
JP5142601B2 (en) | High hardness, non-magnetic free-cutting stainless steel | |
JP6631234B2 (en) | Ferritic free-cutting stainless steel and its manufacturing method. | |
JP3954751B2 (en) | Steel with excellent forgeability and machinability | |
JP5474615B2 (en) | Martensitic stainless free-cutting steel bar wire with excellent forgeability | |
JP6477382B2 (en) | Free-cutting steel | |
JP2005336553A (en) | Hot tool steel | |
JP2000026933A (en) | Hot forging steel | |
JP6814655B2 (en) | Ferritic free-cutting stainless steel wire | |
JP2022130746A (en) | Non-heat-treated forged component and non-heat-treated forging steel | |
JP2000144339A (en) | High corrosion resistance free cutting stainless steel | |
JP4250306B2 (en) | BN free-cutting steel with excellent cold workability | |
JP5323369B2 (en) | Case-hardened steel with excellent machinability and grain coarsening prevention properties | |
JP2002038241A (en) | Free cutting stainless steel | |
JP5837837B2 (en) | High-hardness BN free cutting steel with a tool life of 300HV10 or higher | |
JP4250305B2 (en) | BN free cutting steel with excellent soft magnetism | |
JP2011184717A (en) | Ferritic stainless free-cutting steel bar wire having excellent forgeability | |
JP6197467B2 (en) | Steel for machine structure | |
JP3489655B2 (en) | High-strength, high-toughness free-cut non-heat treated steel | |
JP4949100B2 (en) | Austenitic stainless free-cutting steel with excellent cold forgeability and machinability | |
JP4332446B2 (en) | High strength steel with excellent cold workability and delayed fracture resistance, and high strength steel parts with excellent delayed fracture resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070124 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081023 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081028 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081224 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090119 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120123 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130123 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140123 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |