JP6631234B2 - Ferritic free-cutting stainless steel and its manufacturing method. - Google Patents

Ferritic free-cutting stainless steel and its manufacturing method. Download PDF

Info

Publication number
JP6631234B2
JP6631234B2 JP2015247973A JP2015247973A JP6631234B2 JP 6631234 B2 JP6631234 B2 JP 6631234B2 JP 2015247973 A JP2015247973 A JP 2015247973A JP 2015247973 A JP2015247973 A JP 2015247973A JP 6631234 B2 JP6631234 B2 JP 6631234B2
Authority
JP
Japan
Prior art keywords
less
mass
stainless steel
machinability
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015247973A
Other languages
Japanese (ja)
Other versions
JP2017110285A (en
Inventor
千紘 古庄
千紘 古庄
宏之 高林
宏之 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2015247973A priority Critical patent/JP6631234B2/en
Priority to PCT/JP2016/077724 priority patent/WO2017104202A1/en
Priority to EP16875188.1A priority patent/EP3392355A4/en
Publication of JP2017110285A publication Critical patent/JP2017110285A/en
Application granted granted Critical
Publication of JP6631234B2 publication Critical patent/JP6631234B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Description

本発明は、フェライト系の快削ステンレス鋼及びその製造方法に関し、特に、細径ドリルに対する被削性及び熱間加工性に優れるフェライト系快削ステンレス鋼及びその製造方法に関する。   The present invention relates to a free-cutting ferritic stainless steel and a method for producing the same, and more particularly, to a free-cutting ferritic stainless steel having excellent machinability and hot workability for a small diameter drill and a method for producing the same.

フェライト系快削ステンレス鋼は、被削性の向上のためにSなどのいわゆる「快削元素」を添加されているが、一方で、その他の性質をも維持又は向上させるように成分設計のバランスがなされる。   Ferritic free-cutting stainless steels contain so-called “free-cutting elements” such as S to improve machinability, but on the other hand, balance the component design to maintain or improve other properties. Is made.

例えば、特許文献1では、耐食性に優れるフェライト系快削ステンレス鋼として、質量%で、C:0.1%以下、Si:2.0%以下、Mn:2.0%以下、Cr:19〜25%及びS:0.20〜0.35%を含有する鋼を開示している。Crの含有量の下限値をより高く設定することで耐食性を向上させるとしている。一方でCrの過剰な添加は熱間加工性を劣化させてしまうためその上限値を規定している。   For example, in Patent Document 1, as a ferritic free-cutting stainless steel excellent in corrosion resistance, C: 0.1% or less, Si: 2.0% or less, Mn: 2.0% or less, Cr: 19 to A steel containing 25% and S: 0.20-0.35% is disclosed. By setting the lower limit of the Cr content higher, the corrosion resistance is improved. On the other hand, excessive addition of Cr degrades hot workability, so the upper limit is defined.

Crによりフェライト系快削ステンレス鋼としての耐食性を高め得る一方で、被削性が低下してしまうことがある。   While Cr can improve the corrosion resistance as a ferritic free-cutting stainless steel, the machinability may be reduced.

特許文献2では、硫化物中のCr量を調整することで、被削性を極端に低下させずに快削ステンレス鋼としての耐食性を向上させ得ることを述べている。かかる鋼として、質量%で、C:0.40%以下、Si:2.0%以下、Mn:0.20〜.090%、S:0.05〜0.40%、Cr:10〜30%を含有し、元素Mの質量%を[M]とすると、exp{(12+0.18[Cr]−36[S])/22}[S]≦[Mn]≦exp{(32+0.18[Cr]−36[S])/22}[S]を満たすものであるとしている。つまり、Mnは硫化物の組成に重要な影響を与えるが、上式においてMnの含有量を最左辺よりも少なくすると、硫化物中のCr濃度が高くなって被削性を低下させてしまう。一方、Mnの含有量を最右辺よりも多くすると、硫化物中のMn濃度が高くなって耐食性を低下させてしまうとともに、マトリクスを固溶強化させて熱間加工性を低下させてしまうとしている。   Patent Literature 2 describes that by adjusting the amount of Cr in a sulfide, the corrosion resistance as a free-cutting stainless steel can be improved without significantly reducing the machinability. As such steel, in mass%, C: 0.40% or less, Si: 2.0% or less, Mn: 0.20 to. 090%, S: 0.05 to 0.40%, Cr: 10 to 30%, and assuming that the mass% of the element M is [M], exp {(12 + 0.18 [Cr] -36 [S] ) / 22 {[S] ≦ [Mn] ≦ exp} (32 + 0.18 [Cr] −36 [S]) / 22} [S]. That is, Mn has an important influence on the sulfide composition, but if the content of Mn in the above formula is smaller than the leftmost side, the Cr concentration in the sulfide increases and the machinability decreases. On the other hand, when the content of Mn is larger than the rightmost side, the Mn concentration in the sulfide becomes high and the corrosion resistance is lowered, and the matrix is solid-solution strengthened and the hot workability is lowered. .

更に、特許文献3では、Pbを含有させずに一般的な快削鋼と同等の被削性を有しながら耐食性にも優れるフェライト系快削ステンレス鋼として、体積%で、C:0.200%以下、Si:0.01〜5.00%、Mn:0.01〜5.00%、Ni:5.00%以下、Cr:7.50〜30.00%、N:0.027%以下、Al:0.300%以下、O:0.0050〜0.1000%、及び、B:0.0020〜0.1000%を含み、B濃度に対するO濃度の比を0.60〜2.50とした鋼を開示している。一般に、フェライト系の快削ステンレス鋼では、被削性を維持する観点からPbを含有させずに代わりにSの含有量を増加させるのであるが一方で耐食性を低下させてしまう。また、Seなどの他の被削性を向上させる元素の含有量を増加させると熱間加工性を低下させてしまう。そこで、同文献では、B及び酸素の量を調整し、Bの酸化物を鋼中に分散させることを提案している。すなわち、Bの酸化物はPbと同様に低融点であるため、切削時の熱でこれを溶融させて溶融脆化効果を得ることができて、Pb含有快削鋼と同等の被削性を得られるとしている。   Further, in Patent Document 3, as a ferritic free-cutting stainless steel having the same machinability as a general free-cutting steel without containing Pb and having excellent corrosion resistance, C: 0.200 by volume% %, Si: 0.01 to 5.00%, Mn: 0.01 to 5.00%, Ni: 5.00% or less, Cr: 7.50 to 30.00%, N: 0.027% In the following, Al: 0.300% or less, O: 0.0050 to 0.1000%, and B: 0.0020 to 0.1000%, and the ratio of the O concentration to the B concentration is 0.60 to 2.0. No. 50 is disclosed. In general, ferritic free-cutting stainless steel increases the content of S instead of not containing Pb from the viewpoint of maintaining machinability, but on the other hand, reduces the corrosion resistance. In addition, when the content of other elements that improve machinability such as Se is increased, hot workability is reduced. Therefore, this document proposes adjusting the amounts of B and oxygen to disperse the oxides of B in the steel. That is, since the oxide of B has a low melting point like Pb, it can be melted by heat at the time of cutting to obtain a melt embrittlement effect, and the machinability equivalent to that of the Pb-containing free-cutting steel can be obtained. It is said that it can be obtained.

特開平11−140597号公報JP-A-11-140597 特開2006−097039号公報JP 2006-097039 A 特開2008−274361号公報JP 2008-274361 A

一般的にCrを多く含むフェライト系のステンレス鋼は耐食性に優れることから精密部品に多用される。ここで、精密部品の製造のための例えば直径2mm以下といった細径のドリル加工では、ドリル径の2倍以上の穴深さを得ようとすると太径のドリル加工に比べて工具寿命が著しく低下し加工面の粗さを劣化させてしまう。そこで、面粗さの高さを要求される精密部品の加工、特に、ボールペンのペン先のような精密部品の加工では、より被削性の高い快削ステンレス鋼を用いて、細径ドリル加工性を良好にするとともに工具寿命を低下させないことが求められる。しかしながら、このような細径ドリル加工性を向上させるS、Se、Pb、Bi、Teなどの元素をより多く含有させようとすると、被削性以外の性質、特に熱間加工性の低下により熱間鍛造が困難となる製造上の問題が生じるのである。   Generally, ferritic stainless steel containing a large amount of Cr is often used for precision parts because of its excellent corrosion resistance. Here, in the drilling of a small diameter, for example, 2 mm or less in diameter for manufacturing precision parts, the tool life is remarkably reduced as compared with the drilling of a large diameter when trying to obtain a hole depth more than twice the drill diameter. And deteriorates the roughness of the machined surface. Therefore, in the processing of precision parts that require high surface roughness, especially in the processing of precision parts such as the tip of a ballpoint pen, small diameter drilling is performed using free-cutting stainless steel with higher machinability. It is required that the properties are improved and the tool life is not reduced. However, when an attempt is made to include more elements such as S, Se, Pb, Bi, and Te that improve the workability of such small-diameter drills, properties other than machinability, in particular, a decrease in hot workability cause a decrease in heat. This causes a manufacturing problem that makes forging difficult.

本発明はかかる状況に鑑みてなされたものであって、その目的とするところは、細径ドリルに対する被削性及び熱間加工性に優れるフェライト系快削ステンレス鋼及びその製造方法を提供することにある。   The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a ferritic free-cutting stainless steel excellent in machinability and hot workability for a small diameter drill and a method for producing the same. It is in.

本発明によるフェライト系快削ステンレス鋼の製造方法は、質量%で、C:0.015%以下、Si:0.02〜0.60%、Mn:0.2〜2.0%、P:0.050%以下、Cu:1.5%以下、Ni:1.5%以下、Cr:10.0〜25.0%、Mo:2.0%以下、Al:0.30〜2.50%、O:0.0030〜0.0400%、N:0.035%以下、S:0.10〜0.45%を含むとともに、更に、Pb:0.03〜0.40%、Bi:0.03〜0.40%、及び、Te:0.01〜0.10%から選択される2種以上を含み、且つ、 元素Mの質量%を[M]とすると、900([C]+[N])+170[Si]+12[Cr]+30[Mo]+10[Al]≦300を満たし、残部をFe及び不可避的不純物とする成分組成の鋼をフェライト単相領域で熱間鍛造し、フェライト断面積率95%以上の鋼を得ることを特徴とする。   The method for producing a ferritic free-cutting stainless steel according to the present invention is as follows: C: 0.015% or less, Si: 0.02 to 0.60%, Mn: 0.2 to 2.0%, P: 0.050% or less, Cu: 1.5% or less, Ni: 1.5% or less, Cr: 10.0 to 25.0%, Mo: 2.0% or less, Al: 0.30 to 2.50 %, O: 0.0030 to 0.0400%, N: 0.035% or less, S: 0.10 to 0.45%, and further, Pb: 0.03 to 0.40%, Bi: When at least two elements selected from 0.03 to 0.40% and Te: 0.01 to 0.10% are included, and the mass% of the element M is [M], 900 ([C] + [N]) + 170 [Si] +12 [Cr] +30 [Mo] +10 [Al] ≦ 300, the remainder being Fe and unavoidable impurities The minute composition the steel was hot forged ferrite single phase region, and wherein the obtaining a ferrite sectional area of 95% or more of the steel.

かかる発明によれば、細径ドリルに対する被削性に優れるフェライト系快削ステンレス鋼を高い製造性をもって与えるのである。   According to this invention, a ferritic free-cutting stainless steel excellent in machinability for a small diameter drill is provided with high productivity.

上記した発明において、([Cr]+[Mo]+1.5[Si]+4[Al])/([Ni]+0.5[Mn]+30[C]+30[N])≧7を更に満たすことを特徴としてもよい。かかる発明によれば、フェライト安定性を高めてフェライト単相温度領域を拡げることができるので、より高い製造性を得られるのである。   In the above invention, ([Cr] + [Mo] +1.5 [Si] +4 [Al]) / ([Ni] +0.5 [Mn] +30 [C] +30 [N]) ≧ 7 is further satisfied. May be characterized. According to the invention, since the ferrite stability can be enhanced and the ferrite single-phase temperature range can be expanded, higher manufacturability can be obtained.

上記した発明において、前記鋼は、B:0.0001〜0.0080%、Mg:0.0005〜0.0100%、及び、Ca:0.0005〜0.0100%から選択される1種又は2種以上を更に含有することを特徴としてもよい。かかる発明によれば、熱間加工性を向上させてより高い製造性を得られるのである。   In the above invention, the steel is one or more selected from B: 0.0001 to 0.0080%, Mg: 0.0005 to 0.0100%, and Ca: 0.0005 to 0.0100%. It may be characterized by further containing two or more kinds. According to the invention, hot workability is improved, and higher manufacturability can be obtained.

本発明によるフェライト系快削ステンレス鋼は、フェライト系快削ステンレス鋼であって、質量%で、C:0.015%以下、Si:0.02〜0.60%、Mn:0.2〜2.0%、P:0.050%以下、Cu:1.5%以下、Ni:1.5%以下、Cr:10.0〜25.0%、Mo:2.0%以下、Al:0.30〜2.50%、O:0.0030〜0.0400%、N:0.035%以下、S:0.10〜0.45%を含むとともに、更に、Pb:0.03〜0.40%、Bi:0.03〜0.40%、及び、Te:0.01〜0.10%から選択される2種以上を含み、且つ、元素Mの質量%を[M]とすると、900([C]+[N])+170[Si]+12[Cr]+30[Mo]+10[Al]≦300を満たし、残部をFe及び不可避的不純物とする成分組成からなるとともに、フェライト断面積率を95%以上としたことを特徴とする。   The ferritic free-cutting stainless steel according to the present invention is a ferritic free-cutting stainless steel, which is expressed by mass%: C: 0.015% or less, Si: 0.02 to 0.60%, Mn: 0.2 to 0.2%. 2.0%, P: 0.050% or less, Cu: 1.5% or less, Ni: 1.5% or less, Cr: 10.0 to 25.0%, Mo: 2.0% or less, Al: 0.30 to 2.50%, O: 0.0030 to 0.0400%, N: 0.035% or less, S: 0.10 to 0.45%, and further, Pb: 0.03 to 0.40%, Bi: 0.03 to 0.40%, and Te: Two or more selected from 0.01 to 0.10%, and the mass% of the element M is [M]. Then, 900 ([C] + [N]) + 170 [Si] +12 [Cr] +30 [Mo] +10 [Al] ≦ 300 is satisfied, and the remainder is F And together consist component composition and inevitable impurities, characterized in that the ferrite sectional area ratio was 95% or more.

かかる発明によれば、フェライト系快削ステンレス鋼として、細径ドリルに対する被削性を高め得るのである。   According to the invention, as a ferritic free-cutting stainless steel, the machinability of a small-diameter drill can be improved.

上記した発明において、([Cr]+[Mo]+1.5[Si]+4[Al])/([Ni]+0.5[Mn]+30[C]+30[N])≧7を更に満たすことを特徴としてもよい。かかる発明によれば、フェライト安定性を高めてフェライト単相温度領域を拡げて製造できるので、より高い製造性のフェライト系快削ステンレス鋼を与え得るのである。   In the above invention, ([Cr] + [Mo] +1.5 [Si] +4 [Al]) / ([Ni] +0.5 [Mn] +30 [C] +30 [N]) ≧ 7 is further satisfied. May be characterized. According to this invention, since the ferrite stability can be enhanced and the ferrite single-phase temperature region can be expanded to produce a ferritic free-cutting stainless steel with higher productivity.

上記した発明において、前記鋼は、B:0.0001〜0.0080%、Mg:0.0005〜0.0100%、及び、Ca:0.0005〜0.0100%から選択される1種又は2種以上を更に含有することを特徴としてもよい。かかる発明によれば、熱間加工性を向上させてより高い製造性のフェライト系快削ステンレス鋼を与え得るのである。   In the above invention, the steel is one or more selected from B: 0.0001 to 0.0080%, Mg: 0.0005 to 0.0100%, and Ca: 0.0005 to 0.0100%. It may be characterized by further containing two or more kinds. According to this invention, it is possible to improve the hot workability and provide a ferritic free-cutting stainless steel with higher productivity.

実施例及び比較例の成分組成の図である。It is a figure of the component composition of an example and a comparative example. 実施例及び比較例の成分組成の図である。It is a figure of the component composition of an example and a comparative example. 実施例及び比較例の評価試験の結果を示す図である。It is a figure which shows the result of the evaluation test of an Example and a comparative example. 式1の値とビッカース硬さとの関係を示す図である。FIG. 3 is a diagram illustrating a relationship between a value of Expression 1 and Vickers hardness. 実施例及び比較例のミクロ組織写真である。It is a microstructure photograph of an example and a comparative example.

本発明者は、細径ドリル加工性を良好にするとともにドリル工具寿命を低下させないようなより被削性の高い快削ステンレス鋼の成分組成についてまず検討した。   The present inventors first studied the component composition of free-cutting stainless steel having higher machinability so as to improve the small-diameter drill workability and not to shorten the life of the drill tool.

ここで、ドリル工具寿命に対しては、鋼のマトリクス強度を低下させ、ドリルのスラスト抵抗を低減させるとともにこれを安定化させることが考慮できる。これには、Si、Cr、Moなどの固溶強化元素の添加量を減少させればよいが、一方でこれらはフェライト相の安定化元素でもあるため、フェライト単相を維持出来る温度が低下してしまう。つまり、熱間鍛造温度域においてフェライト−オーステナイトの2相状態となり易く熱間加工性が低下し、熱間鍛造温度域を低くしようすると変形抵抗が大きくなってやはり熱間加工性が低下するのである。   Here, regarding the tool life of the drill, it is possible to consider reducing the matrix strength of the steel, reducing the thrust resistance of the drill, and stabilizing the same. This can be achieved by reducing the amount of solid solution strengthening elements such as Si, Cr, and Mo. On the other hand, since these are also elements for stabilizing the ferrite phase, the temperature at which the ferrite single phase can be maintained is lowered. Would. That is, in the hot forging temperature range, a two-phase state of ferrite-austenite is easily formed, and the hot workability is reduced. When the hot forging temperature range is reduced, the deformation resistance increases, and the hot workability also decreases. .

次に、細径ドリル加工性に対しては、鋼のマトリクスを脆化させて切屑破砕性を向上させることが考慮できる。これには、Si、P、Vなどの元素を添加すればよいが、他方、固溶強化によりドリル工具寿命を低下させてしまう。   Next, regarding the small-diameter drill workability, it can be considered that the steel matrix is embrittled to improve chip crushability. For this purpose, elements such as Si, P and V may be added, but on the other hand, the life of the drill tool is shortened by solid solution strengthening.

そこで、本発明者は、ドリル工具寿命を低下させないよう固溶強化元素の添加量を減少させてマトリクス強度を低下させつつも、強力なフェライト安定化元素であるAlの含有量を高めてフェライトの相安定性を高めることに想到した。しかも、Alの含有により、脆性−延性遷移温度を高温側にシフトさせることができて、これによりマトリクスを効果的に脆化させ、切屑破砕性を向上させて細径ドリル加工性を向上させ得る。さらにAlは、Si、Vなどに比べて固溶強化量が小さく、マトリクスの強度上昇を抑制できてドリル工具寿命を低下させないのである。   Therefore, the present inventor reduced the amount of the solid solution strengthening element so as not to reduce the life of the drill tool, and lowered the matrix strength, while increasing the content of Al, which is a strong ferrite stabilizing element, to increase the ferrite content. I came up with the idea of increasing the phase stability. In addition, the inclusion of Al can shift the brittle-ductile transition temperature to a higher temperature side, thereby effectively embrittle the matrix, improve chip crushability, and improve small-diameter drill workability. . Further, Al has a small amount of solid solution strengthening as compared with Si, V, etc., and can suppress an increase in the strength of the matrix and does not shorten the life of the drill tool.

そして、Si、Cr、Moなどの固溶強化元素の添加量を減少させてAlの含有量を高めた複数の成分組成のフェライト系快削ステンレス鋼において、マトリクス強度及びフェライト相の相安定性を予測する以下の式1及び式2の値を算出するとともに、熱間加工性や被削性の評価を行った。また、その結果に基づいて、熱間加工性を維持しつつ被削性を向上させ得るAl及びその他の元素の含有量の範囲、及び式1の値(MS値)及び式2の値(FS値)の範囲を見出した。以下にこの評価試験の結果などを示す。   The matrix strength and the phase stability of the ferrite phase in a ferritic free-cutting stainless steel having a plurality of component compositions in which the content of Al is increased by decreasing the amount of solid solution strengthening elements such as Si, Cr, and Mo are reduced. The values of Equations 1 and 2 to be predicted were calculated, and hot workability and machinability were evaluated. Further, based on the results, the ranges of the contents of Al and other elements capable of improving the machinability while maintaining the hot workability, and the value of Formula 1 (MS value) and the value of Formula 2 (FS value) Value). The results of this evaluation test are shown below.

なお、式1及び式2については、元素Mの質量%を[M]とし、以下の通りである。

式1:MS=900([C]+[N])+170[Si]+12[Cr]+30[Mo]+10[Al]

式2:FS=([Cr]+[Mo]+1.5[Si]+4[Al])/([Ni]+0.5[Mn]+30[C]+30[N])

ここで、式1はマトリクス強度を予測する式であり固溶強化元素によるものである。また、式2は熱間鍛造温度域でのフェライト相の相安定性を予測する式であり、分子がフェライト安定化元素、分母がオーステナイト安定化元素によるものである。
In addition, about Formula 1 and Formula 2, let the mass% of the element M be [M], and it is as follows.

Formula 1: MS = 900 ([C] + [N]) + 170 [Si] +12 [Cr] +30 [Mo] +10 [Al]

Formula 2: FS = ([Cr] + [Mo] +1.5 [Si] +4 [Al]) / ([Ni] +0.5 [Mn] +30 [C] +30 [N])

Here, Equation 1 is an equation for estimating the matrix strength and is based on the solid solution strengthening element. Equation 2 predicts the phase stability of the ferrite phase in the hot forging temperature range. The numerator is based on the ferrite stabilizing element, and the denominator is based on the austenite stabilizing element.

評価試験では、図1及び図2の実施例1乃至25及び比較例1乃至16に示す成分組成の鋼塊150kgをそれぞれ溶製し、熱間鍛造した後、一部を熱間鍛造まま材として後述する試験に供し、残りを熱間圧延して直径20mmの丸棒及び60mm角の角材とした。さらに、焼鈍処理として、740〜800℃の温度で4時間保持して空冷した。得られた丸棒及び角材からなる焼鈍材等を用いて、適宜、下記試験片を切り出してそれぞれ試験し結果を評価した。   In the evaluation test, 150 kg of a steel ingot having the component composition shown in Examples 1 to 25 and Comparative Examples 1 to 16 of FIGS. 1 and 2 was respectively melted and hot forged, and a part was used as a hot forged material. It was subjected to the test described below, and the remainder was hot-rolled to obtain a round bar having a diameter of 20 mm and a square bar having a square of 60 mm. Further, as an annealing treatment, the sample was kept at a temperature of 740 to 800 ° C. for 4 hours and air-cooled. Using the obtained round bar and annealed material consisting of square bars, the following test pieces were appropriately cut out and tested, and the results were evaluated.

[ビッカース硬さ]
焼鈍材から、溶製後の鋼塊時に「middle部」に相当する箇所において、ビッカース硬さを測定した。測定は5点で行い、その平均値を図3に示した。
[Vickers hardness]
The Vickers hardness was measured from the annealed material at a position corresponding to the “middle portion” at the time of the ingot after smelting. The measurement was performed at five points, and the average value is shown in FIG.

[熱間加工性]
上記した熱間鍛造まま材からグリーブル試験片を採取して、高温での高速引張試験を行った。試験片の平行部はφ4.5mm×20mmL、つかみ部はM6×10mmLとした。試験片は、100秒で1100℃まで昇温して60秒保持後、それぞれ試験温度まで10℃/sで変化させて60秒保持し、50.8mm/sの速度で引っ張り、破断させた。試験温度は900℃から50℃刻みで1200℃までの7点とする。破断後、破断位置での絞り量を測定し、900〜1200℃での熱間加工性として、7点の試験温度の全てにおいて絞り量50%以上となった場合を良好と評価して「A」を、7点の試験温度のうちいずれかにおいて絞り量50%未満となった場合を不良と評価して「C」を、それぞれ図3に示した。
[Hot workability]
A grease test specimen was collected from the hot forged material and subjected to a high temperature high speed tensile test. The parallel part of the test piece was φ4.5 mm × 20 mmL, and the grip part was M6 × 10 mmL. The test piece was heated to 1100 ° C. in 100 seconds, held for 60 seconds, then changed to the test temperature at 10 ° C./s, held for 60 seconds, pulled at a speed of 50.8 mm / s, and broken. The test temperature is 7 points from 900 ° C to 1200 ° C in 50 ° C increments. After breaking, the amount of drawing at the breaking position was measured, and the hot workability at 900 to 1200 ° C was evaluated as good when the amount of drawing was 50% or more at all seven test temperatures. Was evaluated as defective when any of the seven test temperatures resulted in a reduction of less than 50%, and "C" is shown in FIG.

[フェライト量]
上記した熱間鍛造まま材より、15mm角×2mmTの板状試料を採取し、表面を鏡面研磨してエッチングし、25℃においてミクロ組織観察を行った。かかるミクロ組織観察において、フェライト組織中に断面積率でマルテンサイト組織が5%以下のときを良好と評価して「A」を、5%を越えるときに不良と評価して「C」を、それぞれ図3に示した。すなわち、マルテンサイト組織が形成されるのは、鋼塊溶製後の製造工程で最も高温度となる熱間鍛造時のフェライト−オーステナイトの2相状態に起因し、かかる2相状態は熱間加工性に悪影響を与えると評価しているのである。
[Amount of ferrite]
From the as-forged hot forged material, a plate-like sample of 15 mm square × 2 mmT was sampled, the surface was mirror-polished and etched, and the microstructure was observed at 25 ° C. In such microstructure observation, when the cross-sectional area ratio of the martensite structure in the ferrite structure is 5% or less, it is evaluated as good, and “A” is evaluated as poor when it exceeds 5%, and “C” is evaluated as poor. Each is shown in FIG. That is, the martensitic structure is formed due to the two-phase state of ferrite-austenite during hot forging, which is the highest temperature in the manufacturing process after the ingot smelting. They evaluate it as having an adverse effect on sex.

[細径ドリル被削性]
細径ドリルに対する被削性を評価するため、ドリル工具寿命及び切屑破砕性を評価した。詳細には、焼鈍材に対して、φ1mmのハイスドリルを用いて、送り0.03mm/rev、切削速度70m/minとし、潤滑剤を用いずに穿孔を行ってドリル工具寿命を評価した。ドリルの折損なく4000mmを超えて穿孔の可能な場合を良好と評価して「A」を、2000〜4000mmの穿孔の可能な場合を可と評価して「B」を、2000mm未満の場合を不良と評価して「C」を、それぞれ図3に示した。また、切屑破砕性は、切り屑を観察して80%以上の切り屑が1又は2カール以内で分断されていれば良好と評価して「A」を、3〜5カールで分断されていれば可と評価して「B」を、6カール以上連続していれば不良と評価して「C」を、それぞれ図3に示した。
[Small diameter drill machinability]
In order to evaluate the machinability of a small diameter drill, the life of a drill tool and chip crushability were evaluated. Specifically, a drilling was performed on the annealed material using a φ1 mm high speed steel drill at a feed rate of 0.03 mm / rev and a cutting speed of 70 m / min without using a lubricant to evaluate the drill tool life. A case where drilling is possible beyond 4000 mm without breakage of the drill is evaluated as good and “A” is evaluated. A case where drilling of 2000 to 4000 mm is possible is evaluated as “B” and a case where less than 2000 mm is poor. And "C" is shown in FIG. In addition, the chip crushability is evaluated as good if 80% or more of the chips are separated within 1 or 2 curls by observing the chips, and "A" is divided by 3 to 5 curls. FIG. 3 shows "B", which was evaluated as acceptable, and "C", which was evaluated as defective if continuous for 6 or more curls.

次に、上記した実施例1乃至25及び比較例1乃至16のビッカース硬さ、熱間加工性、フェライト量、ドリル工具寿命、切り屑の破砕性のそれぞれの結果について、図3に基づいて説明する。   Next, the results of Vickers hardness, hot workability, ferrite amount, drill tool life, and chip crushability of Examples 1 to 25 and Comparative Examples 1 to 16 will be described with reference to FIG. I do.

実施例1乃至25は、ビッカース硬さが131〜169HVの範囲内であり、いずれの実施例においてもマトリクス強度を低下せしめ、被削性の向上に寄与していると考えられる。また、ドリル工具寿命及び切屑破砕性のいずれにおいても良好(A)又は可(B)の評価を得ている。また、フェライト量の評価はいずれも良好(A)であり、熱間鍛造においてフェライト単相を維持できたと考えられる。また、熱間加工性の評価においていずれも良好(A)であった通り、この試験温度において高い熱間加工性を維持できている。すなわち、実施例1乃至25によれば熱間加工性を維持しつつ被削性を向上させることができた。また、マトリクス強度を予測する式1の値(MS値)は188〜287であった。さらに、熱間鍛造温度域でのフェライト相の相安定性を予測する式2の値(FS値)は8.2〜27.5であった。   In Examples 1 to 25, the Vickers hardness was in the range of 131 to 169 HV, and it is considered that the matrix strength was reduced in each of the examples, which contributed to the improvement of machinability. In addition, it was evaluated as good (A) or acceptable (B) in both the drill tool life and the chip crushability. The evaluation of the amount of ferrite was all good (A), and it is considered that the ferrite single phase could be maintained in hot forging. In addition, as shown in the evaluation of hot workability, which was good (A), high hot workability was maintained at this test temperature. That is, according to Examples 1 to 25, the machinability was able to be improved while maintaining the hot workability. The value (MS value) of Equation 1 for estimating the matrix intensity was 188 to 287. Furthermore, the value of Formula 2 (FS value) for predicting the phase stability of the ferrite phase in the hot forging temperature range was 8.2 to 27.5.

なお、ドリル工具寿命において、良好(A)の評価を得た実施例に比べ、可(B)の評価だった実施例3、4、6、11〜16、20〜22、25はいずれもMS値が大きく、235以上であった。また、切屑破砕性において、良好(A)の評価を得た実施例に比べ、可(B)の評価だった実施例2及び12はAlの含有量が0.31質量%と少なくなっている。   In addition, in Examples 3, 4, 6, 11, 16, 20, 22, and 25, which were evaluated as acceptable (B), compared to the examples as evaluated as good (A) in terms of drill tool life, The value was large and was 235 or more. In addition, in Examples 2 and 12, which were evaluated as good (B), the content of Al was as low as 0.31% by mass as compared with the examples obtained as good (A) in chip crushing property. .

一方、比較例1は、代表的なフェライト系快削ステンレス鋼であるSUS430Fに相当する成分組成であるが、実施例に比べてCの含有量が0.044質量%と多くなっており、実施例に比べてMS値が316と大きくなっている。つまり、マトリクス強度が高くなっているものと予測された。さらに、Pb、Bi及びTeのいずれも添加されておらず、ドリル工具寿命及び切屑破砕性の評価をいずれも不良(C)としたことからも判るように被削性に劣る。また、FS値が5.4と上記した実施例よりも小さく、熱間鍛造温度域でのフェライト相の相安定性に劣ると予測され、熱間加工性の評価こそ良好(A)であったが、フェライト量の評価では不良(C)であった。   On the other hand, Comparative Example 1 has a component composition corresponding to SUS430F, which is a typical ferritic free-cutting stainless steel, but has a C content of 0.044% by mass as compared with the example. The MS value is as large as 316 as compared with the example. That is, it was predicted that the matrix intensity was high. Furthermore, none of Pb, Bi and Te was added, and the machinability was poor as can be seen from the fact that all of the evaluations of the drill tool life and chip crushing property were poor (C). Further, the FS value was 5.4, which was smaller than that of the above example, and it was predicted that the phase stability of the ferrite phase in the hot forging temperature range was inferior, and the evaluation of hot workability was good (A). However, the evaluation of the amount of ferrite was poor (C).

比較例2は、実施例に比べてCの含有量が0.039質量%と多くなっており、FS値が5.9と実施例に比べて小さくなったように、熱間鍛造温度域でフェライト相の相安定性に劣ると予測され、フェライト量の評価では不良(C)であった。また、熱間加工性の評価でも不良(C)であり、実際に加工不可能であった。そのため、細径ドリル被削性の評価を行っていない。   In Comparative Example 2, the content of C was as large as 0.039% by mass as compared with the Example, and the FS value was as small as 5.9 as compared with the Example. It was predicted that the phase stability of the ferrite phase was inferior, and the evaluation of the amount of ferrite was poor (C). In addition, the hot workability was evaluated as poor (C), and the work was not actually possible. Therefore, evaluation of the machinability of the small diameter drill is not performed.

比較例3は、実施例に比べてSiの含有量が1.22質量%と多くなっており、MS値が404と実施例に比べて大きくなり、マトリクス強度を高くしているものと予測された。細径ドリルでの切削加工時のスラスト抵抗が大きくなったものと思われ、ドリル工具寿命で不良(C)の評価であった。   In Comparative Example 3, the Si content was increased to 1.22% by mass as compared with the Example, and the MS value was 404, which was larger than that of the Example, and it was predicted that the matrix strength was increased. Was. It is considered that the thrust resistance at the time of cutting with a small diameter drill was increased, and the drill tool life was poor (C).

比較例4は、実施例に比べてSの含有量が0.02質量%と少なくなっており、ドリル工具寿命、切屑破砕性において不良(C)の評価であるように、被削性に劣る。   In Comparative Example 4, the S content was as small as 0.02% by mass as compared with the Example, and the machinability was inferior as in the evaluation of poor (C) in drill tool life and chip crushability. .

比較例5は、実施例に比べてSの含有量を0.58質量%と多くなっており、熱間加工性の評価で不良(C)であり、実際に加工不可能であった。そのため、細径ドリル被削性の評価を行っていない。   In Comparative Example 5, the content of S was increased to 0.58% by mass as compared with the Example, and the hot workability was evaluated as poor (C), and the work was not actually possible. Therefore, evaluation of the machinability of the small diameter drill is not performed.

比較例6は、実施例に比べてNiの含有量が2.2質量%と多くなっており、FS値が4.6と実施例に比べて小さくなり、熱間鍛造温度域でのフェライト相の相安定性に劣ると予測され、フェライト量の評価では不良(C)であった。また、熱間加工性の評価でも不良(C)であり、実際に加工不可能であった。そのため、細径ドリル被削性の評価を行っていない。   Comparative Example 6 had a higher Ni content of 2.2% by mass than the Example, a smaller FS value of 4.6 than the Example, and a ferrite phase in the hot forging temperature range. Was predicted to be inferior in phase stability, and the evaluation of the amount of ferrite was poor (C). In addition, the hot workability was evaluated as poor (C), and the work was not actually possible. Therefore, evaluation of the machinability of the small diameter drill is not performed.

比較例7は、実施例に比べてMoの含有量が2.2質量%と多くなっており、MS値が313と実施例に比べて大きくなり、マトリクス強度を高くしているものと予測された。切屑破砕性の評価では可(B)であったものの、ドリル工具寿命の評価で不良(C)であり、スラスト抵抗を大きくしてしまったものと考えられる。   Comparative Example 7 is predicted to have a higher Mo content of 2.2% by mass than the example, an MS value of 313 as compared to the example, and an increased matrix strength. Was. Although the chip crushing property was evaluated as good (B), the evaluation of the drill tool life was poor (C), and it is considered that the thrust resistance was increased.

比較例8は、実施例に比べてAlの含有量が0.03質量%と少なくなっており、FS値が6.2と実施例に比べて小さくなり、熱間鍛造温度域でフェライト相の相安定性に劣ると予測され、フェライト量の評価では不良(C)であった。また、熱間加工性の評価でも不良(C)であり、実際に加工不可能であった。そのため、細径ドリル被削性の評価を行っていない。   In Comparative Example 8, the Al content was as low as 0.03% by mass as compared with the Example, and the FS value was 6.2, which was smaller than that of the Example. The phase stability was predicted to be inferior, and the evaluation of the amount of ferrite was poor (C). In addition, the hot workability was evaluated as poor (C), and the work was not actually possible. Therefore, evaluation of the machinability of the small diameter drill is not performed.

比較例9は、実施例に比べてOの含有量が0.0025質量%と少なくなっており、S系介在物を針状としてしまったものと考えられ、ドリル工具寿命の評価で不良(C)であった。   Comparative Example 9 had a lower O content of 0.0025% by mass than the example, and it is considered that the S-based inclusions had become acicular. )Met.

比較例10は、実施例に比べてPbの含有量が0.45質量%と多くなっており、熱間加工性の評価で不良(C)であったように、実際に加工不可能であった。そのため、細径ドリル被削性の評価を行っていない。   In Comparative Example 10, the content of Pb was as high as 0.45% by mass as compared with the Example, and as a result, the hot workability was poor (C) as in the evaluation of hot workability. Was. Therefore, evaluation of the machinability of the small diameter drill is not performed.

比較例11は、実施例に比べてBiの含有量が0.41質量%と多くなっており、熱間加工性の評価で不良(C)であったように、実際に加工不可能であった。そのため、細径ドリル被削性の評価を行っていない。   In Comparative Example 11, the Bi content was as high as 0.41% by mass as compared with the Example, and as a result, the hot workability was poor (C) as in the evaluation of hot workability. Was. Therefore, evaluation of the machinability of the small diameter drill is not performed.

比較例12は、実施例に比べてAlの含有量が0.03質量%と少なくなっており、代わりにNbを0.35質量%含有させている。Nbの含有により熱間鍛造温度域でのフェライト相の相安定性が確保されるものの、炭窒化物の微細分散による結晶粒の微細化や固溶強化によりマトリクス強度が高くなってしまったものと考えられる。ドリル工具寿命の評価では不良(C)であり、スラスト抵抗を大きくしてしまったものと考えられる。また、切屑破砕性の評価も不良(C)であり、マトリクスの脆化の効果についてNbはAlに劣ると考えられる。   Comparative Example 12 has a smaller Al content of 0.03% by mass than that of the Example, and contains 0.35% by mass of Nb instead. Although the Nb content ensures the phase stability of the ferrite phase in the hot forging temperature range, the matrix strength is increased by the refinement of crystal grains and the solid solution strengthening by fine dispersion of carbonitride. Conceivable. The evaluation of the drill tool life was poor (C), and it is considered that the thrust resistance was increased. In addition, the evaluation of the chip crushing property is also poor (C), and it is considered that Nb is inferior to Al with respect to the effect of matrix embrittlement.

比較例13は、実施例に比べてAlの含有量が0.01質量%と少なくなっており、代わりにTiを0.31質量%含有させている。Tiの含有により熱間鍛造温度域でのフェライト相の相安定性が確保されるものの、炭窒化物の微細分散による結晶粒の微細化や固溶強化によりマトリクス強度が高くなってしまったものと考えられる。ドリル工具寿命の評価では不良(C)であり、スラスト抵抗を大きくしてしまったものと考えられる。また、切屑破砕性の評価も不良(C)であり、マトリクスの脆化の効果についてTiはAlに劣ると考えられる。   In Comparative Example 13, the content of Al was as small as 0.01% by mass as compared with the example, and 0.31% by mass of Ti was contained instead. Although the phase stability of the ferrite phase in the hot forging temperature range is ensured by the inclusion of Ti, the matrix strength has increased due to the refinement of crystal grains due to the fine dispersion of carbonitride and the solid solution strengthening. Conceivable. The evaluation of the drill tool life was poor (C), and it is considered that the thrust resistance was increased. In addition, the evaluation of chip crushing property is also poor (C), and it is considered that Ti is inferior to Al with respect to the effect of matrix embrittlement.

比較例14は、実施例に比べてAlの含有量が0.02質量%と少なくなっており、代わりにVを0.32質量%含有させている。Vの含有により熱間鍛造温度域でのフェライト相の相安定性が確保されるものの、炭窒化物の微細分散による結晶粒の微細化や固溶強化によりマトリクス強度が高くなってしまったものと考えられる。ドリル工具寿命の評価では不良(C)であり、スラスト抵抗を大きくしてしまったものと考えられる。また、切屑破砕性の評価も不良(C)であり、マトリクスの脆化の効果についてVはAlに劣ると考えられる。   In Comparative Example 14, the content of Al was reduced to 0.02% by mass as compared with the Example, and instead, V was contained at 0.32% by mass. Although the phase stability of the ferrite phase in the hot forging temperature range is ensured by the inclusion of V, the matrix strength is increased by the refinement of crystal grains due to the fine dispersion of carbonitrides and the solid solution strengthening. Conceivable. The evaluation of the drill tool life was poor (C), and it is considered that the thrust resistance was increased. In addition, the evaluation of chip friability was also poor (C), and it is considered that V is inferior to Al with respect to the effect of matrix embrittlement.

比較例15は、成分組成を上記した実施例とほぼ同等とするものの、MS値が329と実施例に比べて大きくなり、マトリクス強度が高くなっているものと予測された。切屑破砕性の評価では可(B)であったものの、ドリル工具寿命の評価で不良(C)であり、スラスト抵抗を大きくしてしまったものと考えられる。   In Comparative Example 15, although the component composition was almost the same as that of the above-described example, the MS value was 329, which was larger than that of the example, and it was predicted that the matrix strength was high. Although the chip crushing property was evaluated as good (B), the evaluation of the drill tool life was poor (C), and it is considered that the thrust resistance was increased.

比較例16は、成分組成を上記した実施例とほぼ同等とするものの、FS値が6.1と実施例に比べて小さくなり、熱間鍛造温度域でフェライト相の相安定性に劣ると予測され、フェライト量の評価では不良(C)であった。また、熱間加工性の評価でも不良(C)であり、実際に加工不可能であった。そのため、細径ドリル被削性の評価を行っていない。   In Comparative Example 16, although the component composition was almost equal to that of the above-described example, the FS value was 6.1, which was smaller than that of the example, and it was predicted that the phase stability of the ferrite phase was poor in the hot forging temperature range. The ferrite content was poor (C). In addition, the hot workability was evaluated as poor (C), and the work was not actually possible. Therefore, evaluation of the machinability of the small diameter drill is not performed.

以上の結果と他のいくつかの同様の試験結果に基づき、上記した実施例と同等の成分組成の鋼において、必要とされる細径ドリル被削性を得るためのマトリクス強度を予測する式1の値(MS値)を300以下と定めた。なお、MS値は、上記した実施例のドリル工具寿命の評価から、好ましくは230以下である。   Based on the above results and some other similar test results, Equation 1 for predicting the matrix strength for obtaining the required small diameter drill machinability in steel having the same composition as in the above-described example. (MS value) was determined to be 300 or less. The MS value is preferably 230 or less from the evaluation of the drill tool life of the above-described embodiment.

ここで、図4にMS値(式1の値)とビッカース硬さとの関係を示した。ビッカース硬さは、マトリクス強度に影響を及ぼす主要ファクターであるため、実施例1〜25、比較例1〜11、15及び16のようにMS値と一定の相関があった。このように、本発明の合金系において、MS値によりマトリクス強度を予測できる。なお、比較例12、13、14は、それぞれNb、Ti、Vを含有しており、本発明とは異なる合金系である。そのため、上記した式1ではマトリクス強度を予測できず、実施例及び他の比較例の相関とは異なる。すなわち、本発明に係るフェライト系快削ステンレス鋼は、不可避的不純物レベルで含有される場合を除いて、Nb、Ti及びVを含まない。ここで、各元素の不可避的不純物レベルとは、質量%で、Nb≦0.05%、Ti≦0.05%、V≦0.05%である。また、比較例15のように、実施例とほぼ同等の成分組成であっても、MS値を300より大きくしてしまうと、マトリクス強度を高くしてしまうと予測され、結果として、比較例15ではビッカース硬さも高く、必要とされる細径ドリル被削性を得られなかった。   Here, FIG. 4 shows the relationship between the MS value (the value of Equation 1) and Vickers hardness. Since Vickers hardness is a main factor affecting the matrix strength, it has a certain correlation with the MS value as in Examples 1 to 25 and Comparative Examples 1 to 11, 15, and 16. Thus, in the alloy system of the present invention, the matrix value can be predicted from the MS value. Comparative Examples 12, 13, and 14 contain Nb, Ti, and V, respectively, and are alloy systems different from the present invention. For this reason, the matrix intensity cannot be predicted in the above equation 1, and the correlation is different from the correlation between the embodiment and other comparative examples. That is, the free-cutting ferritic stainless steel according to the present invention does not contain Nb, Ti and V, except when it is contained at an unavoidable impurity level. Here, the unavoidable impurity level of each element is Nb ≦ 0.05%, Ti ≦ 0.05%, and V ≦ 0.05% in mass%. Also, as in Comparative Example 15, even if the component composition is almost the same as that of the Example, it is predicted that if the MS value is larger than 300, the matrix strength will be increased. As a result, Comparative Example 15 However, the Vickers hardness was high and the required small-diameter drill machinability could not be obtained.

また、熱間加工性を維持するためには、上記したように、フェライト単相領域で熱間鍛造を行うことを必要とする。そのためにフェライト相の好ましい相安定性とするための式2の値(FS値)を7以上と定めた。すなわち、FS値を7以上とすることで、フェライト相の相安定性を高めてフェライト単相温度領域の上限温度を上昇させ、フェライト単相温度領域での鍛造を容易とするのである。   In addition, in order to maintain hot workability, it is necessary to perform hot forging in a ferrite single phase region as described above. Therefore, the value (FS value) of Equation 2 for obtaining a preferable phase stability of the ferrite phase is determined to be 7 or more. That is, by setting the FS value to 7 or more, the phase stability of the ferrite phase is increased, the upper limit temperature of the ferrite single phase temperature region is increased, and forging in the ferrite single phase temperature region is facilitated.

また、図5に実施例13及び比較例16の25℃におけるミクロ組織を示した。実施例13は代表的な実施例の組織を示しており、25℃におけるフェライト断面積率を95%以上とする組織を呈する。つまり、フェライト単相領域で熱間鍛造をできたと推定される。なお、本発明に係るフェライト系快削ステンレス鋼は、25℃におけるフェライト断面積率を95%以上とする組織であればよく、断面積率5%未満であれば他の相を含んでいてもよい。一方、比較例16では、実施例とほぼ同等の成分組成であっても、FS値(式2の値)が7未満となっており、熱間鍛造温度域でのフェライト相の相安定性に劣ると予測された。そして、ミクロ組織ではマルテンサイトが多く観察され、実施例と同条件の熱間鍛造を行ったにもかかわらず熱間鍛造時にはフェライト−オーステナイトの2相状態になっていたものと考えられる。   FIG. 5 shows the microstructures of Example 13 and Comparative Example 16 at 25 ° C. Example 13 shows a structure of a typical example, and shows a structure in which the ferrite cross-sectional area ratio at 25 ° C. is 95% or more. That is, it is estimated that hot forging was performed in the ferrite single phase region. The ferritic free-cutting stainless steel according to the present invention may have a structure in which the ferrite cross-sectional area ratio at 25 ° C. is 95% or more, and may include other phases as long as the cross-sectional area ratio is less than 5%. Good. On the other hand, in Comparative Example 16, the FS value (the value of Equation 2) was less than 7 even if the component composition was almost the same as that of the Example, indicating that the phase stability of the ferrite phase in the hot forging temperature range was low. It was predicted to be inferior. Then, a large amount of martensite was observed in the microstructure, and it is considered that the two-phase state of ferrite-austenite was obtained at the time of hot forging although hot forging was performed under the same conditions as in the example.

ところで、上記した評価試験とほぼ同等の熱間加工性及び被削性を与え得る合金の組成範囲は以下のように定められる。   By the way, the composition range of the alloy which can provide the hot workability and the machinability almost equivalent to the above evaluation test is determined as follows.

Cは、代表的な固溶強化元素であり、マトリクス強度を上昇させ被削性を低下させ得る。そこで、Cは、質量%で、0.015%以下であり、好ましくは0.012%以下である。   C is a typical solid solution strengthening element, and can increase the matrix strength and reduce the machinability. Therefore, C is 0.015% or less, preferably 0.012% or less by mass%.

Siは、脱酸剤として必要な元素である。一方、Siは代表的な固溶強化元素でもあり、過剰に添加するとマトリクス強度を上昇させ被削性を低下させる可能性がある。そこで、Siは、質量%で、0.02〜0.60%の範囲内、好ましくは0.02〜0.40%の範囲内である。   Si is an element necessary as a deoxidizing agent. On the other hand, Si is also a typical solid solution strengthening element, and if added in excess, may increase the matrix strength and reduce the machinability. Therefore, Si is in a range of 0.02 to 0.60% by mass, preferably in a range of 0.02 to 0.40%.

Mnは、Sと化合物を生成し、被削性の向上に必要な元素である。また、Sの粒界偏析を抑制し熱間加工性を向上させる。一方、Mnはオーステナイト安定化元素であり、過剰に添加すると熱間鍛造温度域でフェライト相を不安定にする。そこで、Mnは、質量%で、0.2〜2.0%の範囲内である。   Mn forms a compound with S and is an element necessary for improving machinability. Further, it suppresses grain boundary segregation of S and improves hot workability. On the other hand, Mn is an austenite stabilizing element, and when added in excess, makes the ferrite phase unstable in the hot forging temperature range. Thus, Mn is in the range of 0.2 to 2.0% by mass.

Pは、固溶強化元素であり、マトリクス強度を上昇させ被削性を低下させる可能性がある。そこで、Pは、質量%で、0.050%以下であり、好ましくは0.040%以下である。   P is a solid solution strengthening element and may increase the matrix strength and reduce the machinability. Therefore, P is 0.050% or less, preferably 0.040% or less by mass%.

Cuは、オーステナイト安定化元素であり、熱間鍛造温度域でフェライト相を不安定にする。そこで、Cuは、質量%で、1.5%以下である。   Cu is an austenite stabilizing element and makes the ferrite phase unstable in the hot forging temperature range. Therefore, Cu is 1.5% or less by mass%.

Niは、オーステナイト安定化元素であり、熱間鍛造温度域でフェライト相を不安定にする。そこで、Niは、質量%で、1.5%以下である。   Ni is an austenite stabilizing element and makes the ferrite phase unstable in the hot forging temperature range. Therefore, Ni is not more than 1.5% by mass%.

Crは、耐食性を向上させるために必要な元素である。一方、Crは過剰に添加するとマトリクス強度を上昇させ、被削性を低下させる可能性がある。そこで、Crは、質量%で、10.0〜25.0%の範囲内、好ましくは10.0〜17.0%の範囲内である。   Cr is an element necessary for improving corrosion resistance. On the other hand, if Cr is added excessively, the matrix strength may be increased and the machinability may be reduced. Therefore, Cr is in a range of 10.0 to 25.0% by mass, preferably in a range of 10.0 to 17.0%.

Moは、耐食性の向上に寄与する元素であり必要に応じて添加し得るが、代表的な固溶強化元素でもあり、マトリクス強度を上昇させ、被削性を低下させる可能性がある。そこで、Moは、質量%で、2.0%以下である。   Mo is an element that contributes to the improvement of corrosion resistance and can be added as needed. However, Mo is also a typical solid solution strengthening element, and may increase the matrix strength and decrease the machinability. Therefore, Mo is 2.0% or less by mass%.

Alは、本発明において最も重要な元素である。Alは脆性延性遷移温度を高温側にシフトさせ、マトリクスの脆化を促し切屑破砕性の向上に必要な元素である。また、鍛造温度域における強力なフェライト相の安定化元素であり、熱間加工性の維持に必要である。一方、Alは過剰に添加すると鋼塊の冷却割れの要因となり製造性に悪影響を及ぼす可能性がある。そこで、Alは、質量%で、0.30〜2.50%の範囲内、好ましくは0.35〜2.50%の範囲内である。   Al is the most important element in the present invention. Al is an element that shifts the brittle-ductile transition temperature to a higher temperature side, promotes the embrittlement of the matrix, and is necessary for improving the chip crushability. Further, it is a strong ferrite phase stabilizing element in the forging temperature range, and is necessary for maintaining hot workability. On the other hand, if Al is added in excess, it may cause cooling cracks of the steel ingot, which may adversely affect the productivity. Therefore, Al is in the range of 0.30 to 2.50% by mass%, preferably in the range of 0.35 to 2.50%.

Oは、S系介在物の針状比を小さくするために必要な元素である。一方、Oは過剰に添加すると酸化物の生成を促し被削性を低下させてしまう。そこで、Oは、質量%で、0.0030〜0.0400%の範囲内である。   O is an element necessary for reducing the acicular ratio of S-based inclusions. On the other hand, if O is added excessively, it promotes the formation of oxides and lowers machinability. Therefore, O is in the range of 0.0030 to 0.0400% by mass%.

Nは、代表的な固溶強化元素でありマトリクス強度を上昇させ、また、硬質な窒化物を生成して被削性を低下させてしまう。そこで、Nは、質量%で、0.035%以下であり、好ましくは0.025%以下である。   N is a typical solid-solution strengthening element, which increases the matrix strength, and also generates hard nitride to lower the machinability. Therefore, N is not more than 0.035% by mass%, and preferably not more than 0.025%.

Sは、硫化物を生成し被削性の向上に必要な元素である。一方、Sは過剰に添加すると熱間加工性を著しく悪化させてしまう。そこで、Sは、質量%で、0.10〜0.45%の範囲内、好ましくは0.10〜0.40%の範囲内である。   S is an element that generates sulfide and is necessary for improving machinability. On the other hand, if S is added excessively, the hot workability will be significantly deteriorated. Therefore, S is in the range of 0.10 to 0.45% by mass, preferably in the range of 0.10 to 0.40%.

Pbは、切削加工中の熱による溶融脆化作用により被削性の向上に寄与する元素である。一方、Pbは過剰に添加すると熱間加工性を著しく悪化させてしまう。そこで、Pbは、質量%で、0.03〜0.40%の範囲内であり、好ましくは0.03〜0.30%の範囲内である。   Pb is an element that contributes to improvement in machinability due to a melt embrittlement effect due to heat during cutting. On the other hand, if Pb is added excessively, the hot workability will be significantly deteriorated. Therefore, Pb is in the range of 0.03 to 0.40% by mass%, and preferably in the range of 0.03 to 0.30%.

Biは、切削加工中の熱による溶融脆化作用により被削性の向上に寄与する元素である。一方、Biは過剰に添加すると熱間加工性を著しく悪化させてしまう。そこで、Biは、質量%で、0.03〜0.40%の範囲内であり、好ましくは0.03〜0.30%の範囲内である。   Bi is an element that contributes to the improvement of machinability due to the melt embrittlement due to heat during cutting. On the other hand, when Bi is excessively added, the hot workability is remarkably deteriorated. Therefore, Bi is in the range of 0.03 to 0.40% by mass%, and preferably in the range of 0.03 to 0.30%.

Teは、切削加工中の熱による溶融脆化作用と硫化物の針状比低下作用とにより被削性の向上に寄与する元素である。一方、Teは過剰に添加すると熱間加工性を著しく悪化させてしまう。そこで、Teは、質量%で、0.01〜0.10%の範囲内であり、好ましくは0.01〜0.08%の範囲内である。   Te is an element that contributes to the improvement of machinability by the action of melting embrittlement due to heat during cutting and the action of lowering the needle ratio of sulfide. On the other hand, if Te is added excessively, the hot workability will be significantly deteriorated. Therefore, Te is in the range of 0.01 to 0.10% by mass, preferably in the range of 0.01 to 0.08%.

なお、上記したPb、Bi、Teは3種のうち2種以上を添加すればよい。また、以下では選択的に添加してもよい元素について説明する。   The above-mentioned Pb, Bi, and Te may be added in two or more of the three types. Hereinafter, elements which may be selectively added will be described.

Bは、熱間加工性の確保に有効な元素である。一方、Bは過剰に添加すると却って熱間加工性を悪化させてしまう。そこで、Bは、質量%で、0.0001〜0.0080%の範囲内、好ましくは0.0003〜0.0060%の範囲内で含有させ得る。   B is an element effective for ensuring hot workability. On the other hand, if B is excessively added, the hot workability is rather deteriorated. Therefore, B may be contained in a range of 0.0001 to 0.0080% by mass, preferably in a range of 0.0003 to 0.0060%.

Mgは、熱間加工性の確保に有効な元素である。一方、Mgは過剰に添加すると熱間加工性を向上させる効果を飽和させてしまう。そこで、Mgは、質量%で、0.0005〜0.0100%の範囲内、好ましくは0.0010〜0.0100%の範囲内で含有させ得る。   Mg is an element effective for ensuring hot workability. On the other hand, if Mg is added excessively, the effect of improving hot workability is saturated. Therefore, Mg can be contained in a range of 0.0005 to 0.0100% by mass, preferably in a range of 0.0010 to 0.0100%.

Caは、熱間加工性の確保に有効な元素である。一方、Caは過剰に添加すると熱間加工性を向上させる効果を飽和させてしまう。そこで、Caは、質量%で、0.0005〜0.0100%の範囲内、好ましくは0.0010〜0.0100%の範囲内で含有させ得る。   Ca is an element effective for ensuring hot workability. On the other hand, when Ca is excessively added, the effect of improving hot workability is saturated. Therefore, Ca can be contained in a range of 0.0005 to 0.0100% by mass, preferably in a range of 0.0010 to 0.0100%.

ここまで本発明による代表的実施例について説明したが、本発明は必ずしもこれらに限定されるものではない。当業者であれば、添付した特許請求の範囲を逸脱することなく、種々の代替実施例及び改変例を見出すことができるだろう。   The representative embodiments according to the present invention have been described so far, but the present invention is not necessarily limited to these. Those skilled in the art will be able to find various alternative embodiments and modifications without departing from the scope of the appended claims.

Claims (6)

フェライト系快削ステンレス鋼の製造方法であって、
質量%で、
C:0.015%以下、
Si:0.02〜0.60%、
Mn:0.2〜2.0%、
P:0.050%以下、
Cu:1.5%以下、
Ni:1.5%以下、
Cr:10.0〜25.0%、
Mo:2.0%以下、
Al:0.30〜2.50%、
O:0.0030〜0.0400%、
N:0.035%以下、
S:0.10〜0.45%を含むとともに、
更に、
Pb:0.03〜0.40%、
Bi:0.03〜0.40%、及び、
Te:0.01〜0.10%から選択される2種以上を含み、且つ、
元素Mの質量%を[M]とすると、
900([C]+[N])+170[Si]+12[Cr]+30[Mo]+10[Al]≦300を満たし、残部をFe及び不可避的不純物とする成分組成の鋼をフェライト単相領域で熱間鍛造し、フェライト断面積率95%以上の鋼を得ることを特徴とするフェライト系快削ステンレス鋼の製造方法。
A method for producing a ferritic free-cutting stainless steel,
In mass%,
C: 0.015% or less,
Si: 0.02 to 0.60%,
Mn: 0.2-2.0%,
P: 0.050% or less,
Cu: 1.5% or less,
Ni: 1.5% or less,
Cr: 10.0 to 25.0%,
Mo: 2.0% or less,
Al: 0.30 to 2.50%,
O: 0.0030 to 0.0400%,
N: 0.035% or less,
S: 0.10 to 0.45%
Furthermore,
Pb: 0.03 to 0.40%,
Bi: 0.03 to 0.40%, and
Te: contains two or more kinds selected from 0.01 to 0.10%, and
When the mass% of the element M is [M],
900 ([C] + [N]) + 170 [Si] + 12 [Cr] + 30 [Mo] + 10 [Al] ≤ 300, and the balance is Fe and unavoidable impurities. A method for producing a free-cutting ferritic stainless steel, comprising hot forging to obtain a steel having a ferrite cross-sectional area ratio of 95% or more.
([Cr]+[Mo]+1.5[Si]+4[Al])/([Ni]+0.5[Mn]+30[C]+30[N])≧7を更に満たすことを特徴とする請求項1記載のフェライト系快削ステンレス鋼の製造方法。   ([Cr] + [Mo] +1.5 [Si] +4 [Al]) / ([Ni] +0.5 [Mn] +30 [C] +30 [N]) ≧ 7. Item 4. The method for producing a ferritic free-cutting stainless steel according to Item 1. 前記鋼は、
B:0.0001〜0.0080%、
Mg:0.0005〜0.0100%、及び、
Ca:0.0005〜0.0100%
から選択される1種又は2種以上を更に含有することを特徴とする請求項2記載のフェライト系快削ステンレス鋼の製造方法。
The steel is
B: 0.0001 to 0.0080%,
Mg: 0.0005 to 0.0100%, and
Ca: 0.0005 to 0.0100%
The method for producing a ferritic free-cutting stainless steel according to claim 2, further comprising one or more selected from the group consisting of:
フェライト系快削ステンレス鋼であって、
質量%で、
C:0.015%以下、
Si:0.02〜0.60%、
Mn:0.2〜2.0%、
P:0.050%以下、
Cu:1.5%以下、
Ni:1.5%以下、
Cr:10.0〜25.0%、
Mo:2.0%以下、
Al:0.30〜2.50%、
O:0.0030〜0.0400%、
N:0.035%以下、
S:0.10〜0.45%を含むとともに、
更に、
Pb:0.03〜0.40%、
Bi:0.03〜0.40%、及び、
Te:0.01〜0.10%から選択される2種以上を含み、且つ、
元素Mの質量%を[M]とすると、
900([C]+[N])+170[Si]+12[Cr]+30[Mo]+10[Al]≦300を満たし、残部をFe及び不可避的不純物とする成分組成からなるとともに、
フェライト断面積率を95%以上としたことを特徴とするフェライト系快削ステンレス鋼。
Ferritic free-cutting stainless steel,
In mass%,
C: 0.015% or less,
Si: 0.02 to 0.60%,
Mn: 0.2-2.0%,
P: 0.050% or less,
Cu: 1.5% or less,
Ni: 1.5% or less,
Cr: 10.0 to 25.0%,
Mo: 2.0% or less,
Al: 0.30 to 2.50%,
O: 0.0030 to 0.0400%,
N: 0.035% or less,
S: 0.10 to 0.45%
Furthermore,
Pb: 0.03 to 0.40%,
Bi: 0.03 to 0.40%, and
Te: contains two or more kinds selected from 0.01 to 0.10%, and
When the mass% of the element M is [M],
900 ([C] + [N]) + 170 [Si] +12 [Cr] +30 [Mo] +10 [Al] ≦ 300, and the balance is composed of Fe and unavoidable impurities.
A ferritic free-cutting stainless steel having a ferrite cross-sectional area ratio of 95% or more.
([Cr]+[Mo]+1.5[Si]+4[Al])/([Ni]+0.5[Mn]+30[C]+30[N])≧7を更に満たすことを特徴とする請求項4記載のフェライト系快削ステンレス鋼。   ([Cr] + [Mo] +1.5 [Si] +4 [Al]) / ([Ni] +0.5 [Mn] +30 [C] +30 [N]) ≧ 7. Item 4. A ferritic free-cutting stainless steel according to item 4. 前記鋼は、
B:0.0001〜0.0080%、
Mg:0.0005〜0.0100%、及び、
Ca:0.0005〜0.0100%
から選択される1種又は2種以上を更に含有することを特徴とする請求項5記載のフェライト系快削ステンレス鋼。
The steel is
B: 0.0001 to 0.0080%,
Mg: 0.0005 to 0.0100%, and
Ca: 0.0005 to 0.0100%
The ferritic free-cutting stainless steel according to claim 5, further comprising one or more selected from the group consisting of:
JP2015247973A 2015-12-18 2015-12-18 Ferritic free-cutting stainless steel and its manufacturing method. Active JP6631234B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015247973A JP6631234B2 (en) 2015-12-18 2015-12-18 Ferritic free-cutting stainless steel and its manufacturing method.
PCT/JP2016/077724 WO2017104202A1 (en) 2015-12-18 2016-09-20 Ferrite-based free-machining stainless steel and method for producing same
EP16875188.1A EP3392355A4 (en) 2015-12-18 2016-09-20 Ferrite-based free-machining stainless steel and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015247973A JP6631234B2 (en) 2015-12-18 2015-12-18 Ferritic free-cutting stainless steel and its manufacturing method.

Publications (2)

Publication Number Publication Date
JP2017110285A JP2017110285A (en) 2017-06-22
JP6631234B2 true JP6631234B2 (en) 2020-01-15

Family

ID=59055953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015247973A Active JP6631234B2 (en) 2015-12-18 2015-12-18 Ferritic free-cutting stainless steel and its manufacturing method.

Country Status (3)

Country Link
EP (1) EP3392355A4 (en)
JP (1) JP6631234B2 (en)
WO (1) WO2017104202A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7283271B2 (en) 2019-06-28 2023-05-30 大同特殊鋼株式会社 Free-cutting ferritic stainless steel and method for producing the same
CN113584392B (en) * 2021-08-03 2022-07-08 山西太钢不锈钢股份有限公司 Casting method of free-cutting ferritic stainless steel
CN115216693A (en) * 2022-07-13 2022-10-21 山西太钢不锈钢股份有限公司 Lead-free-cutting stainless steel and preparation method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442557A (en) * 1987-08-07 1989-02-14 Kawasaki Steel Co Mild ferritic stainless steel having superior machinability
JPH0931603A (en) * 1995-07-20 1997-02-04 Daido Steel Co Ltd Free cutting ferritic stainless steel
JP3601749B2 (en) * 1996-10-24 2004-12-15 大同特殊鋼株式会社 High strength, free cutting ferritic stainless steel
JPH10237603A (en) * 1997-02-20 1998-09-08 Daido Steel Co Ltd Free cutting ferritic stainless steel excellent in corrosion resistance
JP2001123251A (en) * 1999-10-26 2001-05-08 Sanyo Special Steel Co Ltd Corrosion resistant soft magnetic material excellent in machinability
JP2001198605A (en) * 2000-01-12 2001-07-24 Daido Steel Co Ltd Hot working method for ferritic free cutting stainless steel
JP4253101B2 (en) * 2000-03-23 2009-04-08 日本鋳造株式会社 High vibration damping cast steel with excellent machinability and manufacturing method thereof
US20070196160A1 (en) * 2004-03-18 2007-08-23 Sakura Color Products Corporation Tips for ball-point pens, roller ball pens or gel ink roller ball pens
JP2006131972A (en) * 2004-11-08 2006-05-25 Daido Steel Co Ltd Ferritic stainless steel with excellent machinability, and its manufacturing method
JP2006299303A (en) * 2005-04-15 2006-11-02 Sanyo Special Steel Co Ltd Free-cutting stainless steel
JP4765679B2 (en) * 2006-03-07 2011-09-07 大同特殊鋼株式会社 Ferritic free-cutting stainless steel
JP2009091655A (en) * 2007-09-19 2009-04-30 Daido Steel Co Ltd Ferritic free-cutting stainless steel
JP5742446B2 (en) * 2011-05-09 2015-07-01 大同特殊鋼株式会社 Electromagnetic stainless steel

Also Published As

Publication number Publication date
EP3392355A1 (en) 2018-10-24
EP3392355A4 (en) 2019-08-07
JP2017110285A (en) 2017-06-22
WO2017104202A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
JP5135918B2 (en) Martensitic free-cutting stainless steel
JP3918787B2 (en) Low carbon free cutting steel
JP3758581B2 (en) Low carbon free cutting steel
JP7283271B2 (en) Free-cutting ferritic stainless steel and method for producing the same
JP4986203B2 (en) BN free-cutting steel with excellent tool life
JP2004018925A (en) Steel of excellent machinability
JP2008274380A (en) High strength nonmagnetic stainless steel, and high strength nonmagnetic stainless steel component using the same and its production method
JP5842769B2 (en) Duplex stainless steel and manufacturing method thereof
JP6631234B2 (en) Ferritic free-cutting stainless steel and its manufacturing method.
JP6427272B2 (en) bolt
JP2015061932A (en) Maraging steel having excellent fatigue characteristic
JP6529234B2 (en) High speed tool steel with high toughness and softening resistance
JP5737801B2 (en) Ferritic free-cutting stainless steel and manufacturing method thereof
SE528454C3 (en) Extractable curable martensitic stainless steel including titanium sulfide
JP6965938B2 (en) Austenitic Stainless Steel Welded Metals and Welded Structures
JP3954751B2 (en) Steel with excellent forgeability and machinability
JP3736721B2 (en) High corrosion resistance free-cutting stainless steel
JP6814655B2 (en) Ferritic free-cutting stainless steel wire
JP2019011515A (en) Maraging steel excellent in fatigue characteristic
JP5576895B2 (en) BN free-cutting steel with excellent tool life
JP3791664B2 (en) Austenitic Ca-added free-cutting stainless steel
JP6265048B2 (en) Case-hardened steel
JP5583986B2 (en) Austenitic stainless free-cutting steel rod with excellent forgeability
JP6197467B2 (en) Steel for machine structure
JP4332446B2 (en) High strength steel with excellent cold workability and delayed fracture resistance, and high strength steel parts with excellent delayed fracture resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191125

R150 Certificate of patent or registration of utility model

Ref document number: 6631234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150