JP2004018925A - Steel of excellent machinability - Google Patents

Steel of excellent machinability Download PDF

Info

Publication number
JP2004018925A
JP2004018925A JP2002174645A JP2002174645A JP2004018925A JP 2004018925 A JP2004018925 A JP 2004018925A JP 2002174645 A JP2002174645 A JP 2002174645A JP 2002174645 A JP2002174645 A JP 2002174645A JP 2004018925 A JP2004018925 A JP 2004018925A
Authority
JP
Japan
Prior art keywords
steel
machinability
cutting
effect
mns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002174645A
Other languages
Japanese (ja)
Other versions
JP4267260B2 (en
Inventor
Masayuki Hashimura
橋村 雅之
Atsushi Mizuno
水野 淳
Hiroshi Hirata
平田 浩
Kenichiro Naito
内藤 賢一郎
Hiroshi Hagiwara
萩原 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002174645A priority Critical patent/JP4267260B2/en
Priority to KR1020047020308A priority patent/KR100683923B1/en
Priority to CNB038134446A priority patent/CN100355927C/en
Priority to PCT/JP2003/007502 priority patent/WO2003106724A1/en
Priority to TW92116112A priority patent/TWI306476B/en
Publication of JP2004018925A publication Critical patent/JP2004018925A/en
Application granted granted Critical
Publication of JP4267260B2 publication Critical patent/JP4267260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide low-carbon steel of excellent machinability which is improved in service life of a tool and surface roughness, and to provide structural steel and high-strength steel having mechanical properties (including anisotropy) and machinability in combination. <P>SOLUTION: Steel of excellent machinability has a composition consisting of, by mass, 0.001-1.5% C, ≤ 3% Si, 0.01-3% Mn, 0.001-0.2% P, 0.0001-1.2% S, 0.001-0.5% Zn, 0.0001-0.02% N, and 0.0005-0.05% O. In addition, the steel contains 0.002-0.5% Sn and/or 0.0005-0.05% B which are machinable elements as necessary. A cost is reduced, and the production efficiency is improved thereby. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は自動車や一般機械などの部品に用いられる鋼に関するものであり、特に切削時の工具寿命、切削表面粗さおよび切り屑処理性等の被削性に優れた鋼に関するものである。
【0002】
【従来の技術】
一般機械や自動車は多種の部品を組み合わせて製造されているが、その部品は要求精度と製造効率の観点から、多くの場合、切削工程を経て製造されている。その際、コスト低減と生産能率の向上が求められ、鋼にも被削性の向上が求められている。
【0003】
C添加量が0.2%未満の低炭快削鋼と呼ばれるSUM23やSUM24Lは被削性を重要視して開発されてきた。これまで被削性を向上させるためにS、Pbなどの被削性向上元素を添加するのが有効であることが知られている。しかし、近年、Pbは環境負荷として使用を避ける傾向に有り、その使用量を低減する方向にある。
【0004】
これまでもPbを添加しない場合にはSのようにMnSのような切削環境下で軟質となる介在物を形成して被削性を向上させる手法が使われている。しかしいわゆる低炭鉛快削鋼SUM24Lには低炭硫黄快削鋼SUM23と同量のSが添加されている。したがって従来以上のS量を添加する必要がある。しかし多量S添加ではMnSを単に粗大にするだけで、被削性向上に有効なMnS分布にならないだけでなく、圧延、鍛造等において破壊起点になって圧延疵等の製造上の問題を多く引き起こす。さらにSUM23をベースとする硫黄快削鋼では構成刃先が付着しやすく、構成刃先の脱落および切り屑分離現象に伴う、切削表面に凹凸が生じ、表面粗さが劣化する。従って被削性の観点からも表面粗さが劣化による精度低下が問題である。切り屑処理性においても、切り屑が短く分断しやすい方が良好とされているが、単なるS添加だけではマトリックスの延性が大きいため、十分に分断されず、大きく改善できなかった。
S以外の元素、Te、Bi、P等も被削性向上元素として知られているが、ある程度被削性を向上させることができても、圧延や熱間鍛造時に割れを生じ易くなるため、極力少ない方が望ましいとされている。
【0005】
また0.2%以上のCを含有する鋼ではC、Cr、Mo等の合金元素を多く含み、比較的高強度を有する。このような構造用鋼の場合、構成刃先生成とそれによって生じる切削表面の凹凸(粗さ)の問題は小さく、元来が硬い材料なので、表面粗さは比較的良好である。しかし、基本的な強度が高いために被削性向上元素のSを多く添加すると、生成されるMnSが圧延や鍛造で伸延するために機械的性質に異方性を生じるため、部品への適用には大きく制約をうける。実質高強度鋼には被削性向上のためのS添加は行われず、被削性を犠牲にすることがほとんどである。
【0006】
【発明が解決しようとする課題】
上記のような情況から、本発明は、圧延や鍛造および製品性能上の不具合を避けつつ、C含有量が0.15%に満たないいわゆる低炭素鋼に関しては工具寿命と表面粗さの両者を改善した優れた被削性を有する鋼を供給することであり、また、0.15%以上のCを含有する構造用鋼、高強度鋼の場合には機械的性質(異方性も含む)と被削性が両立する鋼を提供することを課題とする。
【0007】
【課題を解決するための手段】
切削は切り屑を分離する破壊現象であり、それを促進させることが一つのポイントとなる。しかし、前述したごとく、Sを単純に増量するだけでは限界がある。
【0008】
そこで、本発明者らは実験を重ね鋭意研究した結果、Sを増量するだけでなく、基本成分としてZnを含有させることによりマトリックスを脆化させ、破壊を容易にして工具寿命を延長すると共に切削表面の凹凸を抑制できることを知見した。
【0009】
本発明は以上の知見に基づいてなされたものであって、その要旨は以下のとおりである。
【0010】
(1) 質量%で(以下、同じ)、
C:0.001〜1.5%、
Si:3%以下、
Mn:0.01〜3%、
P:0.001〜0.2%、
S:0.0001〜1.2%、
Zn:0.001〜0.5%、
N:0.0001〜0.02%、
O:0.0005〜0.05%
を含有することを特徴とする被削性に優れた鋼。
【0011】
(2) さらに、
Sn:0.002〜0.5%
を含有することを特徴とする上記(1)記載の被削性に優れた鋼。
(3) さらに、
B:0.0005〜0.05%、
を含有することを特徴とする上記(1)または(2)記載の被削性に優れた鋼。
【0012】
(4) さらに、
Cr:0.01〜7%、
Mo:0.01〜3%、
V:0.01〜3.0%、
Nb:0.001〜0.2%、
Ti:0.001〜0.5%、
W:0.01〜3%
の内の1種または2種以上を含有することを特徴とする上記(1)乃至(3)の内のいずれかに記載の被削性に優れた鋼。
【0013】
(5) さらに、
Ni:0.05〜7%、
Cu:0.02〜3%
の内の1種または2種を含有すると共に、Cuが0.3%以上を含む場合はNi%≧Cu%を満足することを特徴とする上記(1)乃至(4)の内のいずれかに記載の被削性に優れた鋼。
【0014】
(6) さらに、
Al:0.001〜2%、
Ca:0.0002〜0.01%、
Zr:0.0003〜0.5%、
Mg:0.0002〜0.02%
の内の1種または2種以上を含有することを特徴とする上記(1)乃至(5)の内のいずれかに記載の被削性に優れた鋼。
【0015】
(7) さらに、
Te:0.001〜0.5%、
Pb:0.01〜0.7%、
Bi:0.01〜0.7%
の内の1種または2種以上を含有することを特徴とする上記(1)乃至(6)の内のいずれかに記載の被削性に優れた鋼。
【0016】
【発明の実施の形態】
本発明の基本思想は、鋼の必須成分としてSの他にZnを含有させることにより、機械的性質を損なうことなく、被削性を向上させることにある。
【0017】
即ち、Znは、本発明で特に重要な元素である。Znには鋼を脆化させる効果があり、被削性を向上させる効果を持つ。特に切削表面粗さを改善する効果がある。また従来から知られているMnSのような粗大な介在物の形態をとらず、マトリックス中に存在するために機械的性質の劣化は最低限に抑制することができる。この効果は特に異方性として顕著に認められる。逆に同程度の機械的性質を有していても、Znが添加されている場合には良好な被削性を得ることができる。これは切削熱によって温度上昇したときにZnの脆化効果が顕著になるためと考えられる。さらに切削中には工具/被削材界面で潤滑効果を生み出すと考えられる。Zn:0.001%未満ではその効果が小さい。一方、Znは溶製時に非常に気化しやすいことから、Znを溶鋼中に残留させ、凝固後も0.5%を超えるZn量を維持するには、多量のZnの投入が必要であり、コストの点から工業的に成立しないため0.5%を上限とした。従って、本発明鋼のZnの成分範囲を0.001〜0.5%に限定した。
【0018】
Znに加えて、さらに、Sn、B、Te等の被削性向上元素を含有させることができるが、Snは単独では被削性は向上せず、Znとの相互作用により被削性が向上する。
【0019】
以下に、Zn以外の鋼成分を限定した理由を説明する。
【0020】
C:0.001〜1.5%
Cは、鋼材の基本強度と鋼中の酸素量に関係するので被削性に大きな影響を及ぼす。Cを多く添加して強度を高めると被削性を低下させるのでその上限を1.5%とした。一方、被削性を低下させる硬質酸化物生成を防止しつつ、凝固過程でのピンホール等の高温での固溶酸素の弊害を抑制するため、酸素量を適量に制御する必要がある。単純に吹錬によってC量を低減させすぎるとコストがかさむだけでなく、鋼中酸素量が多量に残留してピンホール等の不具合の原因となる。従って、ピンホール等の不具合を容易に防止できるC量0.001%を下限とした。
【0021】
Si:3%以下
Siの過度な添加は熱間延性が低下して圧延等が困難になるが、適度な添加は機械的性質を付与したり、酸化物を軟質化させ、被削性を向上させる。その上限は3%であり、それ以上では熱間延性が低下して圧延等が困難になり工業生産が困難になる。また、硬質酸化物を生じて被削性を低下させるなどの弊害も生じる。
【0022】
Mn:0.01〜3.0%
Mnは、脱酸元素として、また鋼中硫黄をMnSとして固定・分散させるために必要である。また鋼中酸化物を軟質化させ、酸化物を無害化させるために必要である。その効果は添加するS量にも依存するが、0.01%未満では添加SをMnSとして十分に固定できず、SがFeSとなり脆くなる。Mn量が大きくなると素地の硬さが大きくなり被削性や冷間加工性が低下するので、3.0%を上限とした。
【0023】
P:0.001〜0.2%
Pは、鋼中において素地の硬さが大きくなり、冷間加工性だけでなく、熱間加工性や鋳造特性が低下するので、その上限を0.2%にしなければならない。一方、脆化させることで切削を容易にして被削性向上に効果がある元素で下限値を0.001%とした。
【0024】
S:0.0001〜1.2%
Sは、Mnと結合してMnS介在物として存在する。MnSは被削性を向上させるが、伸延したMnSは鍛造時の異方性を生じる原因の一つである。大きなMnSは避けるべきであるが、被削性向上の観点からは多量の添加が好ましい。従ってMnSを微細分散させることが好ましい。被削性向上には0.0001%以上の添加が必要で、好ましくは0.001%以上の添加がよい。一方、1.2%を越えると粗大MnSの生成が避けられないだけでなく、FeS等による鋳造特性、熱間変形特性の劣化から製造中に割れを生じるので、これを上限とした。
【0025】
N:0.0001〜0.02%
Nは、固溶Nの場合、鋼を硬化させる。特に切削においては動的ひずみ時効によって刃先近傍で硬化し、工具の寿命を低下させるが、切削表面粗さを改善する効果もある。またBと結びついてBNを生成して被削性を向上させる。N含有量が0.0001%未満では固溶窒素による表面粗さ向上効果やBNによる被削性改善効果が認められないので、これを下限とした。またN含有量が0.02%を越えると固溶窒素が多量に存在するためかえって工具寿命を低下させる。また鋳造途中に気泡を生成し、疵などの原因となる。従って本発明ではそれらの弊害が顕著になる0.02%を上限とした。
【0026】
O:0.0005〜0.05%
Oは、freeで存在する場合には冷却時に気泡となり、ピンホールの原因となる。また酸化物を軟質化し、被削性に有害な硬質酸化物を抑制するためにも制御が必要である。さらにMnSの微細分散させる際にも析出核として酸化物を利用する。O含有量が0.0005%未満では十分にMnSを微細分散させることができず、粗大なMnSを生じ、機械的性質にも悪影響を及ぼす。従って0.0005%を下限とした。さらにO含有量が0.05%を越えると鋳造中に気泡となりピンホールとなるため、0.05%以下とした。
【0027】
Sn:0.002〜0.5%
Snは、軟質金属であり、鋼中では粒界等に分布して鋼を脆化させる。このことで被削性を向上させる。0.002%以下ではその効果が認められず、0.5%を越えると、鋼を脆化させることで鋳造および圧延を困難にする。したがってその範囲を0.002〜0.5%とした。
【0028】
B:0.0005〜0.05%
Bは、被削性向上に効果がある。この効果は0.0005%未満では顕著でなく、0.05%を超えて添加してもその効果が飽和し、熱履歴によってBNが多く析出しすぎるとかえって鋳造特性、熱間変形特性の劣化から製造中に割れを生じる。そこで0.0005〜0.05%を範囲とした。
【0029】
Cr:0.01〜7%
Crは焼入れ性向上、焼戻し軟化抵抗付与元素である。また多量に添加することで耐食性を得られる。そのため高強度化が必要な鋼には添加される。その場合、0.01%以上の添加を必要とする。しかし多量に添加するとCr炭化物を生成し脆化させるため、7%を上限とした。
【0030】
Mo:0.01〜3%
Moは、焼戻し軟化抵抗を付与するとともに、焼入れ性を向上させる元素である。0.01%未満ではその効果が認められず、3%を超えて添加してもその効果が飽和しているので、0.01%〜3%を添加範囲とした。
【0031】
V:0.01〜3%
Vは、炭窒化物を形成し、二次析出硬化により鋼を強化することができる。0.01%未満では高強度化に効果はなく、3%を超えて添加すると多くの炭窒化物を析出し、かえって機械的性質を損なうので、これを上限とした。
【0032】
Nb:0.001〜0.2%
Nbも炭窒化物を形成し、二次析出硬化により鋼を強化することができる。0.001%未満では高強度化に効果はなく、0.2%を超えて添加すると多くの炭窒化物を析出し、かえって機械的性質を損なうので、これを上限とした。
【0033】
Ti:0.001〜0.5%
Tiも炭窒化物を形成し、鋼を強化する。また脱酸元素でもあり、軟質酸化物を形成させることで被削性を向上させることが可能である。0.001%未満ではその効果が認められず、0.5%を超えて添加してもその効果が飽和する。また、Tiは高温でも窒化物となりオーステナイト粒の成長を抑制する。そこで上限を0.5%とした。
【0034】
W:0.01〜3%
Wは、炭窒化物を形成し、二次析出硬化により鋼を強化することができる。0.01%未満では高強度化に効果はなく、3%を超えて添加すると粗大な炭窒化物を析出し、かえって機械的性質を損なうので、これを上限とした。
【0035】
Ni:0.05〜7%
Niは、フェライトを強化し、延性を延性向上させるとともに焼入れ性向上、耐食性向上にも有効である。0.05%未満ではその効果は認められず、7%を超えて添加しても、機械的性質の点では効果が飽和するので、これを上限とした。
【0036】
Cu:0.02〜3%
Cuは、フェライトを強化し、延性を延性向上させるとともに焼入れ性向上、耐食性向上にも有効である。0.02%未満ではその効果は認められず、3%を超えて添加しても、機械的性質の点では効果が飽和するので、これを上限とした。またCuは単独で添加すると熱間延性を極端に低下させて、割れ等の鋳造、圧延におけるトラブルの原因となる。その添加量が0.3%を越える場合には、製造上のトラブルをそれを避けるために、Niの添加量をNi%≧Cu%となるように添加することが好ましい。
【0037】
Al:0.001〜2%
Alは、脱酸元素で鋼中ではAlやAlNを形成する。 それにより焼入れ時のオーステナイト粒径の粗大化防止さらには靭性の向上に有効である。しかし0.001%未満ではその効果が認められず、2%を越えると粗大な介在物を生じて、かえって機械的性質を低下させる。さらにAlは硬質なので切削時に工具損傷の原因となり、摩耗を促進する場合がある。そこでオーステナイト粒等の粗大化効果が飽和し、Alの弊害が顕著となる2%を上限とした。特に被削性を優先する場合にはAlを多量に生成しない0.015%以下にすることが好ましく、さらに酸化物の軟質化を優先させる場合には0.005%以下が好ましい。
【0038】
Ca:0.0002〜0.01%
Caは、脱酸元素であり、軟質酸化物を生成し、被削性を向上させるだけでなく、MnSに固溶してその変形能を低下させ、圧延や熱間鍛造してもMnS形状の伸延を抑制する働きがある。したがって異方性の低減に有効な元素である。0.0002%未満ではその効果は顕著ではなく、0.01%を超えて添加しても歩留まりが極端に悪くなるばかりでなく、硬質のCaO、CaSなどを大量に生成し、かえって被削性を低下させる。したがって成分範囲を0.0002〜0.01%と規定した。
【0039】
Zr:0.0003〜0.5%
Zrは、脱酸元素であり、酸化物を生成する。酸化物はMnSの析出核になりMnSの微細均一分散に効果がある。またMnSに固溶してその変形能を低下させ、圧延や熱間鍛造してもMnS形状の伸延を抑制する働きがある。したがって異方性の低減に有効な元素である。0.0003%未満ではその効果は顕著ではなく、0.5%を越えて添加しても歩留まりが極端に悪くなるばかりでなく、硬質のZrOやZrSなどを大量に生成し、かえって被削性を低下させる。したがって成分範囲を0.0003〜0.5%と規定した。
【0040】
Mg:0.0002〜0.02%
Mgは、脱酸元素であり、酸化物を生成する。酸化物はMnSの析出核になりMnSの微細均一分散に効果がある。したがって異方性の低減に有効な元素である。0.0002%未満ではその効果は顕著ではなく、0.02%を超えて添加しても歩留まりが極端に悪くなるばかりで効果は飽和する。したがって成分範囲を0.0002〜0.02%と規定した。
【0041】
Te:0.001〜0.5%
Teは、被削性向上元素である。またMnTeを生成したり、MnSと共存することでMnSの変形能を低下させてMnS形状の伸延を抑制する働きがある。したがって異方性の低減に有効な元素である。この効果は0.001%未満では認められず、0.5%を超えると効果が飽和する。
【0042】
Pb、Bi:0.01〜0.7%
PbおよびBiは、被削性向上に効果のある元素である。その効果は0.01%未満では認められず、0.7%を超えて添加しても被削性向上効果が飽和するだけでなく、熱間鍛造特性が低下して疵の原因となりやすい。そのことからそれぞれの含有量を0.01〜0.7%とした。
【0043】
【実施例】
本発明の効果を実施例によって説明する。表1に示す化学成分を有する供試材の一部は270t転炉で溶製後、ビレットに分解圧延、さらにφ50mmの棒鋼に圧延した。他は2t−真空溶解炉にて溶製、圧延した。表2の実施例1〜40に示す材料の被削性評価はドリル穿孔試験で表3に切削条件を示す。累積穴深さ1000mmまで切削可能な最高の切削速度(いわゆるVL1000)で被削性を評価した。
【0044】
さらに表面粗さは突切工具によって工具形状を転写する、いわゆるプランジ切削によって評価した。その実験方法の概要を図1に示す。即ち、図1(a)に示すように、切削方向1に回転する試験材2を工具3により切削し、図1(b)に示すように、工具3を動かして表面粗さ測定面4を形成する。また切削条件を表4に示す。実験では200溝加工した場合の表面粗さ(10点表面粗さRzμm)を測定した。ここで表2に示す切り屑処理性に関して、切り屑はカール形状となるが、カールが5巻き以下で切り屑が破断し、短い切り屑を生成している場合を「○」、5巻をこえても破断しない長い切り屑を生成している場合を「×」と表記した。
【0045】
【表1】

Figure 2004018925
【0046】
【表2】
Figure 2004018925
【0047】
【表3】
Figure 2004018925
【0048】
【表4】
Figure 2004018925
【0049】
発明例はいずれも比較例に対してドリル工具寿命に優れるとともに、プランジ切削における表面粗さが良好であった。これはC、S等の添加量が異なっても、その順位が変わることはなく、Zn、Sn、B等の元素が添加された場合、同一C、S等の比較鋼に比べ、工具寿命と表面粗さに優れた。S量の多い方が被削性が良好な傾向にあったが、S量が比較的少量の場合でも切り屑処理性に改善が見られた。
【0050】
一方、実施例中の比較例6および26のようにSnが添加された場合でもZnが添加されていなければ被削性は向上しなかった。
【0051】
さらに従来から知られているTe、Pb、Bi等の被削性向上元素の含まれる場合であってもZnを添加した方がより優れた被削性を示した。
【0052】
同じく、構造用炭素鋼をベースとした鋼の被削性、機械的性質を評価したサンプルの化学成分を表5に評価結果を表6に示す。それぞれの供試材は一部は270t転炉で溶製後、ビレットに分解圧延、さらにφ65mmの棒鋼に圧延した。他は2t−真空溶解炉にて溶製、圧延した。
【0053】
衝撃値(J/cm)はJISに準拠して2mm深さのUノッチ試験片を作成して評価した。
【0054】
0.1%程度のCを含有する実施例41〜43に関する被削性評価はドリル穿孔試験で表3に切削条件を示す。累積穴深さ1000mmまで切削可能な最高の切削速度(いわゆるVL1000)で被削性を評価した。
【0055】
さらに表面粗さは突切工具によって工具形状を転写する、いわゆるプランジ切削によって評価した。実験では200溝加工した場合の表面粗さを測定した。表4に示すプランジ切削により表面粗さを評価した。
【0056】
約0.3%のCを含有する実施例44〜46およびそれらを超えるC量の実施例47〜77に関しては機械的性質を重要視するため、衝撃値およびその異方性を示した。ここでは棒鋼の横断面方向から切り出した試料の衝撃値を示す(「C方向」欄)とともに、異方性として (横断面方向試料の衝撃値)/(長手方向試料の衝撃値)を示した(「異方性」欄)。この値が大きいほど異方性が少ないことを示す。
【0057】
なお実施例44〜77の被削性評価はドリル穿孔特性VL1000で行い、表7に示す切削条件で評価した。これらの場合、切削表面粗さは評価していない。
【0058】
【表5】
Figure 2004018925
【0059】
【表6】
Figure 2004018925
【0060】
【表7】
Figure 2004018925
【0061】
実施例41〜43の比較では発明例はVL1000および表面粗さで比較例より勝っていた。また実施例44〜77に関しては、発明例はほぼ同等のCおよび他の合金元素を含有した比較例に対して硬度HV、横断面方向試料の衝撃値および(横断面方向試料の衝撃値)/(長手方向試料の衝撃値)は、ほぼ同等であるにも拘わらず、発明例の方が、VL1000が良好で被削性に優れることがわかる。
【0062】
さらに比較例53のようにSを増量することで被削性を向上させた場合、衝撃値の異方性が低下するため、構造用鋼としての性能が発明例47、48より劣ると考えられた。
【0063】
表8に、合金元素を多量に添加し、焼入れ性を向上させた鋼をベースとした実施例を示す。供試材は一部は270t転炉で溶製後、ビレットに分解圧延、さらにφ50mmに圧延した。他は2t−真空溶解炉にて溶製、圧延した。
【0064】
実施例78〜82はSCr420をベースとした鋼に関して、焼準(920℃×1hr→空冷)を施した後、切削試験に供した。被削性評価はドリル穿孔試験で切削条件は表5と同じ、評価項目は累積穴深さ1000mmまで切削可能な最高の切削速度(いわゆるVL1000)である。このVL1000の単位はm/minで、大きい程良好な工具寿命に優れる。さらに硬度を測定するとともに、図2に示すように9mmφの試験片にR1.16mmのノッチを形成したノッチ付き小野式回転曲げ試験片を作成し、図3(a)及び(b)に示す条件で浸炭した後に疲労特性を評価した。
【0065】
その結果、図3(b)に示す焼準後の硬さはほとんど同一にも関わらずVL1000は開発鋼の方が優れていた。浸炭後の疲労特性はほぼ同等であり、本発明の技術が被削性を向上させるものの、その後の歯車性能を低下させないことがわかる。
【0066】
【表8】
Figure 2004018925
【0067】
表9に、さらに合金元素を多量に添加し、焼入れ性を向上させた鋼をベースとした実施例を示す。供試材は一部は270t転炉で溶製後、ビレットに分解圧延、さらにφ50mmに圧延した。他は2t−真空溶解炉にて溶製、圧延した。被削性評価はドリル穿孔試験で切削条件は表7と同じ、評価項目は累積穴深さ1000mmまで切削可能な最高の切削速度(いわゆるVL1000)である。
【0068】
実施例83〜88はSCM440をベース鋼として、焼入れ焼戻し処理によって硬度をHV310程度に合わせ、被削性評価はVL1000で行った。また機械的性質として衝撃値を評価した。衝撃値は試料を棒鋼の長手方向から切り出し、JIS3号試験片(2mmU切欠き試験片)によって測定した。その結果、発明例は比較例に対してほぼ同一の硬度、衝撃値(J/cm)を有するにもかかわらず、被削性VL1000は比較例よりも大きく、優れていた。
【0069】
また実施例89〜94は軸受け鋼をベースとし、球状化焼鈍処理700℃×20hr保定により軟質化させ、被削性VL1000を測定した。その結果、発明例は比較例と比較して、ほぼ同等の硬度を有しているにも関わらず、被削性VL1000は大きく、比較例より優れていた。
【0070】
【表9】
Figure 2004018925
【0071】
【発明の効果】
本発明鋼によれば、鋼中マトリックスの破断を促進することで、0.15%未満のC量のいわゆる低炭快削鋼においては工具寿命と切削表面粗さを改善し、Pbを含まない場合でも良好な工具寿命と切削表面粗さを得ることができ、また、0.15%以上のCを含む構造用鋼においても、被削性を向上させるとともに、機械的性質の劣化、特に異方性を最低限に抑制することができる。あるいは同程度の機械的性質を有する鋼よりも本発明鋼は良好な被削性を得ることができる。
【図面の簡単な説明】
【図1】プランジ切削試験の概要を示す図で、(a)はプランジ切削試験方法、(b)は工具の動きを示す図である。
【0072】
【図2】ノッチ部付の小野式回転曲げ試験片を示す図である。
【0073】
【図3】浸炭条件を示す模式図で、(a)は浸炭焼入を(b)は焼準の条件を示す模式図である。
【符号の説明】
1 切削方向
2 試験材
3 工具
4 表面粗さ測定面[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to steel used for parts such as automobiles and general machines, and more particularly to steel excellent in machinability such as tool life during cutting, cutting surface roughness and chip handling.
[0002]
[Prior art]
General machines and automobiles are manufactured by combining various types of parts, and the parts are often manufactured through a cutting process from the viewpoint of required accuracy and manufacturing efficiency. At that time, cost reduction and improvement in production efficiency are required, and steel is also required to have improved machinability.
[0003]
SUM23 and SUM24L, which are called low-carbon free-cutting steels containing less than 0.2% of C, have been developed with emphasis on machinability. It has been known that it is effective to add a machinability improving element such as S or Pb in order to improve machinability. However, in recent years, Pb tends to be avoided as an environmental load, and the amount of Pb used is being reduced.
[0004]
Until now, when Pb is not added, a method of forming inclusions that are soft under a cutting environment such as MnS like S and improving machinability has been used. However, so-called low-carbon lead free-cutting steel SUM24L contains the same amount of S as low-carbon sulfur free-cutting steel SUM23. Therefore, it is necessary to add more S than before. However, when a large amount of S is added, merely making MnS coarse, not only does not result in an effective MnS distribution for improving machinability, but also becomes a fracture starting point in rolling, forging, etc., and causes many production problems such as rolling flaws. . Further, in the case of the SUM23-based sulfur free-cutting steel, the constituent cutting edge easily adheres, and the cut surface becomes uneven due to the falling of the constituent cutting edge and the chip separation phenomenon, thereby deteriorating the surface roughness. Therefore, from the viewpoint of machinability, there is a problem that accuracy is reduced due to deterioration of surface roughness. In terms of chip controllability as well, it is considered better if the chips are short and easy to separate, but the simple addition of S has a large ductility of the matrix, so that the matrix is not sufficiently separated and cannot be significantly improved.
Elements other than S, such as Te, Bi, and P, are also known as machinability improving elements. However, even if machinability can be improved to some extent, cracks easily occur during rolling or hot forging. It is said that it is desirable to have as little as possible.
[0005]
Further, steel containing 0.2% or more of C contains a lot of alloying elements such as C, Cr, and Mo, and has relatively high strength. In the case of such structural steel, the problem of the generation of the constituent cutting edges and the resulting unevenness (roughness) of the cutting surface is small, and the surface roughness is relatively good because it is originally a hard material. However, if a large amount of S, which is a machinability improving element, is added due to its high basic strength, the generated MnS will be elongated by rolling or forging, resulting in anisotropy in mechanical properties. Is greatly restricted. S is not added to the substantially high-strength steel for improving machinability, and the machinability is almost always sacrificed.
[0006]
[Problems to be solved by the invention]
In view of the above circumstances, the present invention reduces both tool life and surface roughness for so-called low carbon steels having a C content of less than 0.15% while avoiding defects in rolling, forging and product performance. To provide steel with improved and excellent machinability, and in the case of structural steel and high-strength steel containing 0.15% or more of C, mechanical properties (including anisotropy) It is an object of the present invention to provide a steel that is compatible with steel and machinability.
[0007]
[Means for Solving the Problems]
Cutting is a breaking phenomenon that separates chips, and promoting it is one point. However, as described above, there is a limit to simply increasing S.
[0008]
Therefore, the present inventors have conducted extensive experiments and conducted extensive studies. As a result, not only is the amount of S increased, but also the inclusion of Zn as a basic component makes the matrix brittle, facilitates fracture, prolongs tool life, and cuts. It has been found that irregularities on the surface can be suppressed.
[0009]
The present invention has been made based on the above findings, and the gist is as follows.
[0010]
(1) In mass% (hereinafter the same),
C: 0.001 to 1.5%,
Si: 3% or less,
Mn: 0.01 to 3%,
P: 0.001-0.2%,
S: 0.0001 to 1.2%,
Zn: 0.001-0.5%,
N: 0.0001 to 0.02%,
O: 0.0005 to 0.05%
A steel excellent in machinability characterized by containing.
[0011]
(2)
Sn: 0.002-0.5%
A steel excellent in machinability according to the above (1), characterized by containing:
(3)
B: 0.0005 to 0.05%,
The steel excellent in machinability according to the above (1) or (2), comprising:
[0012]
(4)
Cr: 0.01 to 7%,
Mo: 0.01 to 3%,
V: 0.01 to 3.0%,
Nb: 0.001 to 0.2%,
Ti: 0.001 to 0.5%,
W: 0.01 to 3%
The steel excellent in machinability according to any one of the above (1) to (3), characterized by containing one or more of the above.
[0013]
(5)
Ni: 0.05-7%,
Cu: 0.02 to 3%
One or two of the above, and when Cu contains 0.3% or more, satisfying Ni% ≧ Cu%, any one of the above (1) to (4) 4. A steel excellent in machinability according to 2.).
[0014]
(6)
Al: 0.001-2%,
Ca: 0.0002-0.01%,
Zr: 0.0003-0.5%,
Mg: 0.0002-0.02%
The steel excellent in machinability according to any one of the above (1) to (5), characterized by containing one or more of the above.
[0015]
(7)
Te: 0.001 to 0.5%,
Pb: 0.01 to 0.7%,
Bi: 0.01 to 0.7%
The steel excellent in machinability according to any one of the above (1) to (6), characterized by containing one or more of the above.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The basic idea of the present invention is to improve machinability without impairing mechanical properties by including Zn as an essential component of steel in addition to S.
[0017]
That is, Zn is a particularly important element in the present invention. Zn has the effect of embrittlement of steel and has the effect of improving machinability. Particularly, there is an effect of improving the cutting surface roughness. In addition, since it does not take the form of a coarse inclusion such as conventionally known MnS and exists in a matrix, deterioration of mechanical properties can be suppressed to a minimum. This effect is particularly noticeable as anisotropy. Conversely, even if they have similar mechanical properties, good machinability can be obtained when Zn is added. This is considered to be because the embrittlement effect of Zn becomes remarkable when the temperature is increased by cutting heat. It is also believed that during cutting, a lubricating effect is created at the tool / workpiece interface. If the Zn content is less than 0.001%, the effect is small. On the other hand, since Zn is very easy to evaporate at the time of smelting, a large amount of Zn needs to be introduced in order to allow Zn to remain in the molten steel and maintain a Zn amount exceeding 0.5% even after solidification. Since it is not industrially feasible from the viewpoint of cost, the upper limit is set to 0.5%. Therefore, the range of Zn in the steel of the present invention is limited to 0.001 to 0.5%.
[0018]
In addition to Zn, machinability-improving elements such as Sn, B, and Te can be contained. However, Sn alone does not improve machinability, and machinability is improved by interaction with Zn. I do.
[0019]
The reason for limiting the steel components other than Zn will be described below.
[0020]
C: 0.001 to 1.5%
C has a significant effect on machinability because it relates to the basic strength of the steel material and the amount of oxygen in the steel. If the strength is increased by adding a large amount of C, the machinability decreases, so the upper limit was made 1.5%. On the other hand, it is necessary to control the amount of oxygen to an appropriate amount in order to prevent the formation of hard oxides that reduce machinability and to suppress the adverse effects of dissolved oxygen at high temperatures such as pinholes during the solidification process. If the amount of C is simply reduced too much by blowing, not only does the cost increase, but also a large amount of oxygen in the steel remains and causes problems such as pinholes. Therefore, the lower limit of the C content of 0.001% at which inconveniences such as pinholes can be easily prevented is set.
[0021]
Si: 3% or less Excessive addition of Si lowers hot ductility and makes it difficult to roll, etc., but moderate addition imparts mechanical properties or softens oxides, improving machinability. Let it. The upper limit is 3%. If it is more than 3%, hot ductility is reduced, making rolling and the like difficult, and industrial production becomes difficult. Further, adverse effects such as reduction of machinability due to generation of hard oxides also occur.
[0022]
Mn: 0.01 to 3.0%
Mn is necessary as a deoxidizing element and for fixing and dispersing sulfur in steel as MnS. In addition, it is necessary to soften oxides in steel and make the oxides harmless. The effect also depends on the amount of S added, but if it is less than 0.01%, the added S cannot be sufficiently fixed as MnS, so that S becomes FeS and becomes brittle. When the amount of Mn increases, the hardness of the substrate increases, and machinability and cold workability decrease. Therefore, the upper limit is set to 3.0%.
[0023]
P: 0.001 to 0.2%
P increases the hardness of the base material in steel, and deteriorates not only cold workability but also hot workability and casting properties. Therefore, the upper limit of P must be set to 0.2%. On the other hand, the lower limit is set to 0.001%, which is an element which is effective for improving machinability by facilitating cutting by embrittlement.
[0024]
S: 0.0001-1.2%
S bonds with Mn and exists as MnS inclusions. MnS improves machinability, but elongated MnS is one of the causes of anisotropy during forging. Large MnS should be avoided, but a large amount is preferable from the viewpoint of improving machinability. Therefore, it is preferable to finely disperse MnS. To improve machinability, 0.0001% or more is required, and preferably 0.001% or more is good. On the other hand, if it exceeds 1.2%, not only the generation of coarse MnS is unavoidable, but also cracks occur during production due to deterioration of casting properties and hot deformation properties due to FeS or the like.
[0025]
N: 0.0001 to 0.02%
N hardens steel in the case of solid solution N. In particular, in cutting, it hardens near the cutting edge due to dynamic strain aging and shortens the life of the tool, but also has the effect of improving the cutting surface roughness. In addition, BN is generated in combination with B to improve machinability. If the N content is less than 0.0001%, the effect of improving the surface roughness by the dissolved nitrogen and the effect of improving the machinability by BN are not recognized. On the other hand, if the N content exceeds 0.02%, a large amount of solute nitrogen is present, so that the tool life is rather shortened. In addition, bubbles are generated during casting, which causes flaws and the like. Therefore, in the present invention, the upper limit is set to 0.02% at which these adverse effects become remarkable.
[0026]
O: 0.0005 to 0.05%
When O is present in a free state, it becomes a bubble at the time of cooling and causes a pinhole. Control is also required to soften oxides and suppress hard oxides harmful to machinability. Further, when finely dispersing MnS, an oxide is used as a precipitation nucleus. If the O content is less than 0.0005%, MnS cannot be sufficiently finely dispersed, coarse MnS is generated, and the mechanical properties are adversely affected. Therefore, 0.0005% was made the lower limit. Further, if the O content exceeds 0.05%, bubbles are formed during casting and pinholes are formed.
[0027]
Sn: 0.002-0.5%
Sn is a soft metal, and is distributed at grain boundaries and the like in steel to embrittle the steel. This improves machinability. If the content is less than 0.002%, the effect is not recognized. If the content exceeds 0.5%, casting and rolling become difficult due to embrittlement of the steel. Therefore, the range was made 0.002 to 0.5%.
[0028]
B: 0.0005 to 0.05%
B is effective in improving machinability. This effect is not remarkable when the content is less than 0.0005%, and the effect is saturated even when the content exceeds 0.05%, and the casting properties and the hot deformation properties deteriorate when the BN precipitates too much due to the heat history. Cracks during manufacturing. Therefore, the range is 0.0005 to 0.05%.
[0029]
Cr: 0.01 to 7%
Cr is an element that imparts hardenability and temper softening resistance. In addition, corrosion resistance can be obtained by adding a large amount. Therefore, it is added to steels requiring high strength. In that case, 0.01% or more must be added. However, if added in a large amount, Cr carbides are formed and embrittled, so the upper limit is 7%.
[0030]
Mo: 0.01 to 3%
Mo is an element that imparts temper softening resistance and improves hardenability. If it is less than 0.01%, the effect is not recognized, and even if it exceeds 3%, the effect is saturated. Therefore, the addition range is set to 0.01% to 3%.
[0031]
V: 0.01 to 3%
V forms carbonitrides and can strengthen the steel by secondary precipitation hardening. If it is less than 0.01%, there is no effect on increasing the strength, and if it exceeds 3%, a large amount of carbonitride precipitates, which impairs the mechanical properties.
[0032]
Nb: 0.001 to 0.2%
Nb also forms carbonitrides and can strengthen the steel by secondary precipitation hardening. If it is less than 0.001%, there is no effect in increasing the strength, and if it exceeds 0.2%, a large amount of carbonitride precipitates and mechanical properties are rather impaired.
[0033]
Ti: 0.001 to 0.5%
Ti also forms carbonitrides and strengthens the steel. It is also a deoxidizing element, and can improve machinability by forming a soft oxide. If it is less than 0.001%, the effect is not recognized, and even if it exceeds 0.5%, the effect is saturated. Further, Ti becomes a nitride even at a high temperature and suppresses the growth of austenite grains. Therefore, the upper limit is set to 0.5%.
[0034]
W: 0.01 to 3%
W forms carbonitrides and can strengthen the steel by secondary precipitation hardening. If it is less than 0.01%, there is no effect on increasing the strength, and if it exceeds 3%, coarse carbonitrides are precipitated and mechanical properties are rather impaired.
[0035]
Ni: 0.05 to 7%
Ni is effective in strengthening ferrite, improving ductility, improving hardenability, and improving corrosion resistance. If the content is less than 0.05%, the effect is not recognized, and if the content exceeds 7%, the effect is saturated in terms of mechanical properties. Therefore, the upper limit is set.
[0036]
Cu: 0.02 to 3%
Cu is effective for strengthening ferrite, improving ductility, improving hardenability, and improving corrosion resistance. If it is less than 0.02%, the effect is not recognized, and if it exceeds 3%, the effect is saturated in terms of mechanical properties. Therefore, the upper limit is set. In addition, when Cu is added alone, the hot ductility is extremely lowered, which causes troubles such as cracks in casting and rolling. When the addition amount exceeds 0.3%, it is preferable to add Ni so that Ni% ≧ Cu% in order to avoid manufacturing troubles.
[0037]
Al: 0.001-2%
Al is a deoxidizing element and forms Al 2 O 3 and AlN in steel. This is effective for preventing austenite grain size from being coarsened during quenching and for improving toughness. However, if the content is less than 0.001%, the effect is not recognized. If the content is more than 2%, coarse inclusions are generated, and the mechanical properties are rather deteriorated. Further, Al 2 O 3 is hard, which may cause tool damage during cutting and promote wear. Therefore, the upper limit is set to 2% at which the effect of coarsening of austenite grains and the like is saturated and the adverse effect of Al 2 O 3 becomes significant. In particular, when machinability is prioritized, the content is preferably set to 0.015% or less which does not generate a large amount of Al 2 O 3, and when priority is given to softening of the oxide, 0.005% or less is preferable.
[0038]
Ca: 0.0002-0.01%
Ca is a deoxidizing element, generates a soft oxide and not only improves the machinability, but also dissolves in MnS to reduce its deformability, and the MnS shape is formed even by rolling or hot forging. It works to control distraction. Therefore, it is an element effective for reducing anisotropy. If the content is less than 0.0002%, the effect is not remarkable. If the content exceeds 0.01%, not only the yield is extremely deteriorated, but also a large amount of hard CaO, CaS, etc. is generated, and the machinability is rather reduced. Lower. Therefore, the component range was defined as 0.0002 to 0.01%.
[0039]
Zr: 0.0003-0.5%
Zr is a deoxidizing element and generates an oxide. The oxide serves as a precipitation nucleus of MnS, and is effective in fine and uniform dispersion of MnS. Further, it has the function of dissolving in MnS to reduce its deformability and suppressing the elongation of the MnS shape even in rolling or hot forging. Therefore, it is an element effective for reducing anisotropy. If the content is less than 0.0003%, the effect is not remarkable. If the content exceeds 0.5%, not only the yield is extremely deteriorated, but also a large amount of hard ZrO 2 or ZrS is generated, and on the contrary, Reduce the nature. Therefore, the component range was defined as 0.0003 to 0.5%.
[0040]
Mg: 0.0002-0.02%
Mg is a deoxidizing element and generates an oxide. The oxide serves as a precipitation nucleus of MnS, and is effective in fine and uniform dispersion of MnS. Therefore, it is an element effective for reducing anisotropy. If the content is less than 0.0002%, the effect is not remarkable. If the content exceeds 0.02%, the yield is extremely deteriorated and the effect is saturated. Therefore, the component range was defined as 0.0002 to 0.02%.
[0041]
Te: 0.001 to 0.5%
Te is a machinability improving element. In addition, by producing MnTe or coexisting with MnS, it has a function of reducing the deformability of MnS and suppressing the elongation of the MnS shape. Therefore, it is an element effective for reducing anisotropy. This effect is not recognized at less than 0.001%, and the effect is saturated at more than 0.5%.
[0042]
Pb, Bi: 0.01 to 0.7%
Pb and Bi are elements that are effective in improving machinability. The effect is not recognized if it is less than 0.01%, and even if added over 0.7%, not only the machinability improving effect is saturated, but also the hot forging property is lowered, which is likely to cause a flaw. Therefore, the respective contents are set to 0.01 to 0.7%.
[0043]
【Example】
The effects of the present invention will be described with reference to examples. Some of the test materials having the chemical components shown in Table 1 were melted in a 270 t converter, then decomposed and rolled into billets, and further rolled into steel bars of φ50 mm. The others were melted and rolled in a 2t-vacuum melting furnace. In the evaluation of the machinability of the materials shown in Examples 1 to 40 in Table 2, cutting conditions are shown in Table 3 in a drilling test. The machinability was evaluated at the highest cutting speed (so-called VL1000) capable of cutting to a cumulative hole depth of 1000 mm.
[0044]
Further, the surface roughness was evaluated by so-called plunge cutting, in which the tool shape was transferred by a parting-off tool. The outline of the experimental method is shown in FIG. That is, as shown in FIG. 1A, a test material 2 rotating in a cutting direction 1 is cut by a tool 3, and as shown in FIG. Form. Table 4 shows the cutting conditions. In the experiment, surface roughness (10-point surface roughness Rz μm) when 200 grooves were processed was measured. With respect to the chip disposability shown in Table 2, the chips are curled, but if the curl is less than 5 turns and the chips are broken and short chips are generated, "O" indicates that the chips are 5 turns. A case where a long chip that did not break even when it was exceeded was generated was indicated as “×”.
[0045]
[Table 1]
Figure 2004018925
[0046]
[Table 2]
Figure 2004018925
[0047]
[Table 3]
Figure 2004018925
[0048]
[Table 4]
Figure 2004018925
[0049]
All of the inventive examples were superior to the comparative examples in the life of the drill tool and had good surface roughness in plunge cutting. This is because even if the addition amounts of C, S, etc. are different, the order does not change, and when elements such as Zn, Sn, B, etc. are added, the tool life and Excellent surface roughness. The greater the S content, the better the machinability tended to be, but even when the S content was relatively small, an improvement in chip disposability was observed.
[0050]
On the other hand, even when Sn was added as in Comparative Examples 6 and 26 in the examples, the machinability was not improved unless Zn was added.
[0051]
Further, even when a conventionally known machinability improving element such as Te, Pb, Bi or the like is included, the addition of Zn showed more excellent machinability.
[0052]
Similarly, Table 5 shows the chemical components of the samples evaluated for the machinability and mechanical properties of the steel based on the structural carbon steel, and Table 6 shows the evaluation results. A part of each test material was melted in a 270 t converter, then decomposed and rolled into billets, and further rolled into steel bars having a diameter of 65 mm. The others were melted and rolled in a 2t-vacuum melting furnace.
[0053]
The impact value (J / cm 2 ) was evaluated by preparing a U-notch test piece having a depth of 2 mm in accordance with JIS.
[0054]
Table 3 shows the cutting conditions in the drilling test for the machinability evaluation of Examples 41 to 43 containing about 0.1% of C. The machinability was evaluated at the highest cutting speed (so-called VL1000) capable of cutting to a cumulative hole depth of 1000 mm.
[0055]
Further, the surface roughness was evaluated by so-called plunge cutting, in which the tool shape was transferred by a parting-off tool. In the experiment, the surface roughness when 200 grooves were processed was measured. The surface roughness was evaluated by plunge cutting shown in Table 4.
[0056]
For Examples 44 to 46 containing about 0.3% C and Examples 47 to 77 having a C content exceeding them, the impact value and its anisotropy were shown in order to emphasize the mechanical properties. Here, the impact value of the sample cut out from the cross section direction of the steel bar is shown (“C direction” column), and (an impact value of the cross section direction sample) / (an impact value of the longitudinal sample) is shown as anisotropy. ("Anisotropic" column). The larger the value is, the smaller the anisotropy is.
[0057]
In addition, the machinability evaluation of Examples 44 to 77 was performed with the drilling characteristics VL1000, and evaluated under the cutting conditions shown in Table 7. In these cases, the cutting surface roughness was not evaluated.
[0058]
[Table 5]
Figure 2004018925
[0059]
[Table 6]
Figure 2004018925
[0060]
[Table 7]
Figure 2004018925
[0061]
In the comparison of Examples 41 to 43, the invention example was superior to the comparison example in VL1000 and surface roughness. Further, with respect to Examples 44 to 77, the invention examples showed hardness HV, impact value of the sample in the cross section direction and (impact value of the sample in the cross section direction) / compared to the comparative example containing substantially the same C and other alloying elements. Although the (impact value of the sample in the longitudinal direction) is almost the same, it can be seen that the VL1000 of the invention example is more favorable and has excellent machinability.
[0062]
Further, when the machinability is improved by increasing the amount of S as in Comparative Example 53, the anisotropy of the impact value is reduced, so that the performance as a structural steel is considered to be inferior to those of Invention Examples 47 and 48. Was.
[0063]
Table 8 shows examples based on steel in which a large amount of alloying elements were added to improve the hardenability. A part of the test material was melted in a 270 t converter, then decomposed and rolled into billets, and further rolled to φ50 mm. The others were melted and rolled in a 2t-vacuum melting furnace.
[0064]
In Examples 78 to 82, the steel based on SCr420 was subjected to normalization (920 ° C. × 1 hr → air cooling) and then subjected to a cutting test. The evaluation of machinability is a drilling test, and the cutting conditions are the same as those in Table 5. The evaluation item is the maximum cutting speed (so-called VL1000) capable of cutting to a cumulative hole depth of 1000 mm. The unit of this VL1000 is m / min, and the larger the value, the better the tool life. Further, the hardness was measured, and an Ono-type rotary bending test piece having a notch of R1.16 mm was formed on a test piece of 9 mmφ as shown in FIG. 2, and the conditions shown in FIGS. 3 (a) and (b) were obtained. After carburizing, the fatigue properties were evaluated.
[0065]
As a result, although the hardness after normalization shown in FIG. 3B was almost the same, VL1000 was superior to the developed steel. The fatigue characteristics after carburization are almost the same, and it is understood that the technology of the present invention improves the machinability but does not lower the subsequent gear performance.
[0066]
[Table 8]
Figure 2004018925
[0067]
Table 9 shows examples based on steel in which hardenability is improved by further adding a large amount of alloying elements. A part of the test material was melted in a 270 t converter, then decomposed and rolled into billets, and further rolled to φ50 mm. The others were melted and rolled in a 2t-vacuum melting furnace. The evaluation of machinability is a drilling test, and the cutting conditions are the same as those in Table 7. The evaluation item is the maximum cutting speed (so-called VL1000) capable of cutting to a cumulative hole depth of 1000 mm.
[0068]
In Examples 83 to 88, the hardness was adjusted to about HV310 by quenching and tempering using SCM440 as a base steel, and the machinability was evaluated at VL1000. The impact value was evaluated as a mechanical property. The impact value was measured by cutting a sample from the longitudinal direction of a steel bar and using a JIS No. 3 test piece (2 mm U notch test piece). As a result, although the inventive example had almost the same hardness and impact value (J / cm 2 ) as the comparative example, the machinability VL1000 was larger and superior to the comparative example.
[0069]
In Examples 89 to 94, the bearing steel was used as a base, and softening was performed by spheroidizing annealing at 700 ° C. for 20 hours, and the machinability VL1000 was measured. As a result, although the invention example had almost the same hardness as the comparative example, the machinability VL1000 was large and superior to the comparative example.
[0070]
[Table 9]
Figure 2004018925
[0071]
【The invention's effect】
According to the steel of the present invention, by promoting the fracture of the matrix in the steel, the tool life and the cutting surface roughness are improved in a so-called low-carbon free-cutting steel having a C content of less than 0.15%, and Pb is not contained. In this case, it is possible to obtain good tool life and cutting surface roughness, and also to improve machinability and degrade mechanical properties, especially for structural steel containing 0.15% or more of C. Anisotropy can be minimized. Alternatively, the steel of the present invention can obtain better machinability than steel having the same mechanical properties.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of a plunge cutting test, in which (a) shows a plunge cutting test method, and (b) shows a movement of a tool.
[0072]
FIG. 2 is a view showing an Ono-type rotary bending test piece with a notch.
[0073]
3A and 3B are schematic diagrams showing carburizing conditions, wherein FIG. 3A is a schematic diagram showing carburizing and quenching conditions, and FIG. 3B is a schematic diagram showing normalizing conditions.
[Explanation of symbols]
1 Cutting direction 2 Test material 3 Tool 4 Surface roughness measurement surface

Claims (7)

質量%で(以下、同じ)、
C:0.001〜1.5%、
Si:3%以下、
Mn:0.01〜3%、
P:0.001〜0.2%、
S:0.0001〜1.2%、
Zn:0.001〜0.5%、
N:0.0001〜0.02%、
O:0.0005〜0.05%
を含有することを特徴とする被削性に優れた鋼。
Mass% (hereinafter the same),
C: 0.001 to 1.5%,
Si: 3% or less,
Mn: 0.01 to 3%,
P: 0.001-0.2%,
S: 0.0001 to 1.2%,
Zn: 0.001-0.5%,
N: 0.0001 to 0.02%,
O: 0.0005 to 0.05%
A steel excellent in machinability characterized by containing.
さらに、
Sn:0.002〜0.5%
を含有することを特徴とする請求項1記載の被削性に優れた鋼。
further,
Sn: 0.002-0.5%
The steel excellent in machinability according to claim 1, comprising:
さらに、
B:0.0005〜0.05%
を含有することを特徴とする請求項1または2記載の被削性に優れた鋼。
further,
B: 0.0005 to 0.05%
The steel excellent in machinability according to claim 1 or 2, which comprises:
さらに、
Cr:0.01〜7%、
Mo:0.01〜3%、
V:0.01〜3%、
Nb:0.001〜0.2%、
Ti:0.001〜0.5%、
W:0.01〜3%
の内の1種または2種以上を含有することを特徴とする請求項1乃至3の内のいずれかに記載の被削性に優れた鋼。
further,
Cr: 0.01 to 7%,
Mo: 0.01 to 3%,
V: 0.01 to 3%,
Nb: 0.001 to 0.2%,
Ti: 0.001 to 0.5%,
W: 0.01 to 3%
The steel excellent in machinability according to any one of claims 1 to 3, wherein the steel comprises one or more of the following.
さらに、
Ni:0.05〜7%、
Cu:0.02〜3%
の内の1種または2種を含有すると共に、Cuが0.3%以上を含む場合はNi%≧Cu%を満足することを特徴とする請求項1乃至4の内のいずれかに記載の被削性に優れた鋼。
further,
Ni: 0.05-7%,
Cu: 0.02 to 3%
5. The method according to claim 1, wherein one or two of the above are contained, and when Cu contains 0.3% or more, Ni% ≧ Cu% is satisfied. Steel with excellent machinability.
さらに、
Al:0.001〜2%、
Ca:0.0002〜0.01%、
Zr:0.0003〜0.5%、
Mg:0.0002〜0.02%
の内の1種または2種以上を含有することを特徴とする請求項1乃至5の内のいずれかに記載の被削性に優れた鋼。
further,
Al: 0.001-2%,
Ca: 0.0002-0.01%,
Zr: 0.0003-0.5%,
Mg: 0.0002-0.02%
The steel excellent in machinability according to any one of claims 1 to 5, comprising one or more of the following.
さらに、
Te:0.001〜0.5%、
Pb:0.01〜0.7%、
Bi:0.01〜0.7%
の内の1種または2種以上を含有することを特徴とする請求項1乃至6の内のいずれかに記載の被削性に優れた鋼。
further,
Te: 0.001 to 0.5%,
Pb: 0.01 to 0.7%,
Bi: 0.01 to 0.7%
The steel with excellent machinability according to any one of claims 1 to 6, comprising one or more of the following.
JP2002174645A 2002-06-14 2002-06-14 Steel with excellent machinability Expired - Fee Related JP4267260B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002174645A JP4267260B2 (en) 2002-06-14 2002-06-14 Steel with excellent machinability
KR1020047020308A KR100683923B1 (en) 2002-06-14 2003-06-12 Steel excellent in machinability
CNB038134446A CN100355927C (en) 2002-06-14 2003-06-12 Steel excellent in machinability
PCT/JP2003/007502 WO2003106724A1 (en) 2002-06-14 2003-06-12 Steel excellent in machinability
TW92116112A TWI306476B (en) 2002-06-14 2003-06-13 A steel having excellent cuittability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002174645A JP4267260B2 (en) 2002-06-14 2002-06-14 Steel with excellent machinability

Publications (2)

Publication Number Publication Date
JP2004018925A true JP2004018925A (en) 2004-01-22
JP4267260B2 JP4267260B2 (en) 2009-05-27

Family

ID=29727986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002174645A Expired - Fee Related JP4267260B2 (en) 2002-06-14 2002-06-14 Steel with excellent machinability

Country Status (5)

Country Link
JP (1) JP4267260B2 (en)
KR (1) KR100683923B1 (en)
CN (1) CN100355927C (en)
TW (1) TWI306476B (en)
WO (1) WO2003106724A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004050932A1 (en) * 2002-11-15 2004-06-17 Nippon Steel Corporation Steel excellent in machinability and method for production thereof
JP2005060769A (en) * 2003-08-12 2005-03-10 Kobe Steel Ltd Steel material superior in corrosion resistance
WO2006062053A1 (en) * 2004-12-06 2006-06-15 Sumitomo Metal Industries, Ltd. Low carbon free-cutting steel
WO2012118053A1 (en) * 2011-03-03 2012-09-07 日立金属株式会社 Hot work tool steel having excellent toughness, and process of producing same
JP2012193451A (en) * 2011-03-03 2012-10-11 Hitachi Metals Ltd Hot work tool steel having excellent toughness
TWI448565B (en) * 2011-05-30 2014-08-11 Kobe Steel Ltd Steel with improved rolling fatigue characteristics
EP3412790A1 (en) * 2017-06-06 2018-12-12 BGH Edelstahl Siegen GmbH Precipitation hardening steel and use of such a steel for thermoforming tools

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4876638B2 (en) * 2006-03-08 2012-02-15 住友金属工業株式会社 Low carbon sulfur free cutting steel
CN101542004B (en) * 2007-04-18 2011-02-16 新日本制铁株式会社 Hot-worked steel material having excellent machinability and impact value
WO2010119911A1 (en) * 2009-04-14 2010-10-21 新日本製鐵株式会社 Low-specific gravity steel for forging having excellent machinability
CN101906596B (en) * 2010-07-05 2015-09-02 郁寿林 A kind of high-sulfur antifriction abrasion-resistant casting steel
CN102433505A (en) * 2011-12-14 2012-05-02 虞海盈 Material for producing rolling bearings
CN103388107B (en) * 2013-08-09 2015-03-11 武汉钢铁(集团)公司 Coppery BN (Boron Nitride) type free-cutting steel and production method thereof
CN103643139A (en) * 2013-11-12 2014-03-19 铜陵市肆得科技有限责任公司 Alloy steel material for water pump bearings and preparation method thereof
CN103741077A (en) * 2013-12-24 2014-04-23 中兴能源装备股份有限公司 Rolled steel
CN105349883A (en) * 2015-12-07 2016-02-24 张家港市新凯带钢制造有限公司 Corrosion-resistant alloy steel
CN105755382A (en) * 2016-03-31 2016-07-13 苏州睿昕汽车配件有限公司 Anticorrosion automobile accessory alloy steel material and preparation method thereof
CN106148818B (en) * 2016-06-23 2018-09-11 南通市嘉业机械制造有限公司 A kind of manufacturing method and its temperature control system of piercing plug for seamless steel tubes
KR102010052B1 (en) * 2017-10-19 2019-08-12 주식회사 포스코 Medium carbon free cutting steel having excellent hot workability and method for manufacturing the same
CN107747024A (en) * 2017-10-31 2018-03-02 桂林加宏汽车修理有限公司 A kind of high-temperature steel alloy
CN108798586A (en) * 2018-04-17 2018-11-13 常熟市虹桥铸钢有限公司 A kind of preventer
CN108677086A (en) * 2018-04-17 2018-10-19 常熟市虹桥铸钢有限公司 A kind of petroleum machinery preventer casting
CN108677085A (en) * 2018-04-17 2018-10-19 常熟市虹桥铸钢有限公司 A kind of preparation method of petroleum machinery preventer casting
KR102103382B1 (en) * 2018-10-29 2020-04-22 주식회사 포스코 Steel material and manufacturing method thereof
CN112063924B (en) * 2020-09-08 2022-05-20 鞍钢股份有限公司 High-carbon selenium-tin-containing free-cutting steel and production method thereof
TWI789124B (en) * 2021-11-19 2023-01-01 財團法人金屬工業研究發展中心 Method of manufacturing a carbon steel component
CN115896617A (en) * 2022-11-04 2023-04-04 湖南高华新材料科技有限公司 Low-cost super steel material structure component and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133716A (en) * 1974-09-17 1976-03-23 Daido Steel Co Ltd * teitansokarushiumu iokeikaisakuko *
US4255187A (en) * 1979-08-29 1981-03-10 Inland Steel Company Bismuth-containing steel
CA2243123C (en) * 1996-11-25 2002-01-29 Sumitomo Metal Industries, Ltd. Steel products excellent in machinability and machined steel parts

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004050932A1 (en) * 2002-11-15 2004-06-17 Nippon Steel Corporation Steel excellent in machinability and method for production thereof
US8137484B2 (en) 2002-11-15 2012-03-20 Nippon Steel Corporation Method of production of steel superior in machinability
JP2005060769A (en) * 2003-08-12 2005-03-10 Kobe Steel Ltd Steel material superior in corrosion resistance
WO2006062053A1 (en) * 2004-12-06 2006-06-15 Sumitomo Metal Industries, Ltd. Low carbon free-cutting steel
JP2006161087A (en) * 2004-12-06 2006-06-22 Sumitomo Metal Ind Ltd Low carbon free cutting steel
JP4507865B2 (en) * 2004-12-06 2010-07-21 住友金属工業株式会社 Low carbon free cutting steel
WO2012118053A1 (en) * 2011-03-03 2012-09-07 日立金属株式会社 Hot work tool steel having excellent toughness, and process of producing same
JP2012193451A (en) * 2011-03-03 2012-10-11 Hitachi Metals Ltd Hot work tool steel having excellent toughness
EP2682491A1 (en) * 2011-03-03 2014-01-08 Hitachi Metals, Ltd. Hot work tool steel having excellent toughness, and process of producing same
EP2682491A4 (en) * 2011-03-03 2015-04-08 Hitachi Metals Ltd Hot work tool steel having excellent toughness, and process of producing same
TWI448565B (en) * 2011-05-30 2014-08-11 Kobe Steel Ltd Steel with improved rolling fatigue characteristics
EP3412790A1 (en) * 2017-06-06 2018-12-12 BGH Edelstahl Siegen GmbH Precipitation hardening steel and use of such a steel for thermoforming tools

Also Published As

Publication number Publication date
JP4267260B2 (en) 2009-05-27
KR100683923B1 (en) 2007-02-16
KR20050008823A (en) 2005-01-21
CN1659297A (en) 2005-08-24
TW200401041A (en) 2004-01-16
TWI306476B (en) 2009-02-21
WO2003106724A1 (en) 2003-12-24
CN100355927C (en) 2007-12-19

Similar Documents

Publication Publication Date Title
JP4267260B2 (en) Steel with excellent machinability
EP2381003B1 (en) Steel for high-frequency hardening
JP4986203B2 (en) BN free-cutting steel with excellent tool life
JP2007289979A (en) Method for producing cast slab or steel ingot made of titanium-added case hardening steel and the cast slab or steel ingot, and case hardening steel made of the cast slab or steel ingot
JP4264329B2 (en) Steel with excellent machinability
JP2001026836A (en) Steel for induction hardening and parts for machine structure excellent in cold workability, rolling fatigue strength and twisting fatigue strength
JP2005220423A (en) Ti-CONTAINING CASE HARDENING STEEL
JP2005336553A (en) Hot tool steel
JP2003034840A (en) Steel for machine structure superior in machinability
JP2000282169A (en) Steel excellent in forgeability and machinability
WO2018212196A1 (en) Steel and component
JP3739958B2 (en) Steel with excellent machinability and its manufacturing method
JP3255611B2 (en) Free-cutting steel rod and wire excellent in drilling workability and method for producing the same
JP3236883B2 (en) Case hardening steel and method for manufacturing steel pipe using the same
JP4213948B2 (en) Steel with excellent machinability
JP3394439B2 (en) Bearing steel with excellent machinability
WO2018139671A1 (en) Steel pipe for underbody components of automobiles, and underbody component of automobiles
WO2018139672A1 (en) Steel pipe for underbody components of automobiles, and underbody component of automobiles
JPH03254341A (en) Manufacture of low cr bearing raw material having excellent service life to rolling fatigue
JP4348164B2 (en) Steel with excellent machinability
JP2005264270A (en) Crankshaft
JP6197467B2 (en) Steel for machine structure
JP4900251B2 (en) Manufacturing method of nitrided parts
JP2000345290A (en) Hot roll for copper and copper alloy
JP2002194483A (en) Steel for machine structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090218

R151 Written notification of patent or utility model registration

Ref document number: 4267260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20020716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees