TWI306476B - A steel having excellent cuittability - Google Patents

A steel having excellent cuittability Download PDF

Info

Publication number
TWI306476B
TWI306476B TW92116112A TW92116112A TWI306476B TW I306476 B TWI306476 B TW I306476B TW 92116112 A TW92116112 A TW 92116112A TW 92116112 A TW92116112 A TW 92116112A TW I306476 B TWI306476 B TW I306476B
Authority
TW
Taiwan
Prior art keywords
machinability
steel
cutting
comparative example
inventive example
Prior art date
Application number
TW92116112A
Other languages
Chinese (zh)
Other versions
TW200401041A (en
Inventor
Hashimura Masayuki
Mizuno Atsushi
Hirata Hiroshi
Naito Kenichiro
Hagiwara Hiroshi
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of TW200401041A publication Critical patent/TW200401041A/en
Application granted granted Critical
Publication of TWI306476B publication Critical patent/TWI306476B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

1306476 玖、發明說明: 【發明所屬i技術領域】 技術領域 本發明係有關於/種用在汽車或一般機械等之零件之 5鋼,特別是有關於一種切削時之工具壽命、切削表面粗度 及切削碎屑處理性等玎切削性優異之鋼。 背景技術 一般機械或汽車係組合多種零件來製造,該等零件若 10 從要求精度、製造效率之觀點來看則多半會經由切削程序 來製造,此時要求能夠降低成本與提昇生產效能,且鋼亦 要求提昇可切削性。 C添加量小於0.2%而被稱作低碳快削鋼之SUM23或 SUM24L係重視可切削性所開發者。以往為了提昇可切削 15 性’已知添加S、Pb等可切削性提昇元素是有效的,然而近 年來卻因Pb會造成環境負荷而有避免使用之傾向,且以降 低其使用量為方向。 以往亦在未添加Pb時採用像S般形成如MnS在切削環 境下為軟質之夾雜物以提昇可切削性之方法,然而係於所 20謂低碳錯快削鋼SUM24L中添加與低碳硫快削鋼SUM23等 量之S。因此,為了提昇可切削性,則必須添加比以往更多 之s量,然而,若大量添加s,則只有使MnS粗大化而在提 昇可切削性方面無法構成有效之MnS分佈 ,不僅如此,在 壓延、鍛造等時常會成為破壞之起點而產生壓延瑕疵等製 1306476 造上之問題。再者,若為以SUM23為基材之硫快削鋼,則 構成刀鋒谷易附著且隨著構成刀鋒之脫落及切削碎屑分離 現象而使切削表面產生凹凸且表面粗度惡化。因此,若從 可切削I·生之觀點來看則有因表面粗度惡化產生精度降低之 5問題。於切削碎屬處理性方面亦以容易分割為短切削碎屬 者為佳’然而,若僅添加s,則由於基體之延展性大,因此 未充分地分割而無法大幅度地改善。 除了 S以外,已知Te、m、p等亦作為可切削性提昇元 素,然而,即便可提昇一定程度之可切削性,但由於壓延 10或熱軋鍛造時容易產生破裂,因此宜盡量減少。 又,若為含有0.2%以上之c之鋼則含有較多之c、cr、 Mo等合金兀素且具有較高之強度。若為此種構造用鋼,則 由於生成構造刀鋒與因此而產生之切削表面凹凸(粗度)之 問題少,且原本為較硬之材料,因此表面粗度較為良好。 15然而,由於基本強度高,gj此若大量添加可切削性提昇元 素之S ’則由於所生成之MnS於壓延或鍛造中拉伸而使機械 性質產生各向異性,故零件上之應用會受到大幅之限制。 又,咼強度鋼若未添加用以提昇可切削性之s,則幾乎會喪 失可切削性。 20 【明内^§1】 發明之揭示 有鑑於前述情況,本發明之課題係提供一種避免壓延 或鍛造及製品性能上之問題且有關C含有量小於〇15%之 所謂低碳鋼方面則可改善工具壽命與表面粗度兩者之具優 1306476 異可切削性之鋼,又,若為含有0.15%以上之C之構造用 鋼、高強度鋼時則提供一種可兼具機械性質(亦包含各向異 性)與可切削性之鋼。 切削係分離切削碎屑之破壞現象,且促進該切削係一 5 要點,然而,如前所述,若單純增加S量則有其限制。 故,發明人反覆實驗銳意研究之結果,發現藉由不單 是增加S量而亦含有Zn以作為基本成分,可使基體脆化且破 壞容易而延長工具壽命,同時可抑制切削表面之凹凸。 本發明係依據前述見識而完成,其要旨如下。 10 (1)一種可切削性優異之鋼,依質量%包含有:C: 0.001 〜1.5%、Si: 3% 以下、Μη: 0.01 〜3%、P: 0.001 〜0.2%、 S: 0.0001 〜1.2%、Zn: 0.001 〜0.5%、N: 0.0001 〜0.02%、 Ο : 0.0005〜0.05%。 (2)如前述第(1)項之可切削性優異之鋼,依質量%更包 15 含有 Sn : 0.002〜0.5%。 (3 )如前述第(1)或(2 )項之可切削性優異之鋼,依質量% 更包含有B : 0.0005〜0.05%。 (4) 如前述第(1)至(3)項中任一項之可切削性優異之 鋼,依質量%更包含有:Cr:0.01〜7%、M〇:0.01〜3% 、 20 V : 0.01 〜3%、Nb : 0.001 〜0.2%、Ti : 0.001 〜0.5%、W : 0.01〜3%中之1種或2種以上。 (5) 如前述第(1)至(4)項中任一項之可切削性優異之 鋼,依質量%更包含有:Ni : 0.05〜7%、Cu : 0.02〜3%中 之1種或2種以上,同時在含有0.3%以上之Cu時係滿足Ni 1306476 % 2Cu%。 (6) 如前述第(1)至(5)項中任一項之可切削性優異之 鋼,依質量%更包含有:Α1:0·001〜2%、Ca:.0.0002〜0·01 % 、Zr : 0.0003〜0.5% 、Mg : 0.0002〜0.02% 中之 1種或2 5 種以上。 (7) 如前述第(1)至(6)項中任一項之可切削性優異之 鋼,依質量°/«更包含有:Te : 0.001〜0.5%、Pb ·· 0.01〜0.7 % 、Bi : 0.01〜0.7%中之1種或2種以上。 圖式簡單說明 10 第1圖係顯示直進切削試驗之概要圖,第1(a)圖係直進 切削試驗方法,第1(b)圖係顯示工具移動之圖。 第2圖係顯示具有缺口部之小野式旋轉彎曲試驗片之 圖。 第3圖係顯示浸碳條件之模式圖,第3(a)圖係顯示浸碳 15 淬火之模式圖,第3(b)圖係顯示正火之條件之模式圖。 【實施方式3 發明之較佳實施形態 本發明之基本思想係藉由使鋼之必須成分除了 S以外 亦含有Zn而不會損害機械性質且提昇可切削性。 20 即,Zn於本發明中特別為重要之元素。Zn係具有使鋼 脆化之效果,且具有提昇可切削性之效果,特別是具有改 善切削表面粗度之效果。又,由於並未採取迄今習知之如 MnS之粗大夾雜物之形態而是存在於基體中,因此可將機 械性質之惡化抑制在最低限度,該效果特別是以各向異性 1306476 最為顯著。反之,即使具有相同程度之機械性質,在添加 Zn時可得到良好之可切削性,—般認為此係由於在因切削 熱而使溫度上昇時Zn之脆化效果顯著之故。再者,一般認 為切削時在工具/被切削#界面會產生满滑效果。若&小於 5 0.001%則其效果小。另一方面’由於Zn在溶製時非容容易 氣化,因此為了使Zn殘留於溶鋼中且凝固後亦維持大於〇5 %之心量,故必紐人大量之Zn,但由綠從成本之觀點 來看則在工業上無法達成,因此以〇 5%為上限。故本 明鋼之Zn成分範圍限定在o.ooi〜0 5%。 〇胃&了Zn之外’亦可進-步含有Sn、B、Te等可切削性 提昇元素,然而,若單獨添加Sn則可切削性無法提昇,兩 藉由與Zn之相互作用來提昇可切削性。 而 以下說明除了 Zn以外之鋼成分之限定理由。 C : 0.001 〜1.5% 15 由於C關係到鋼材之基本強度與鋼中含氧量, u此會對 可切削性造成很大之影響。若大量添加c來提高 , +A入 八’則由 於會降低可切削性’因此以1.5%為上限。另一方面,為 防止使可切削性降低之硬質氧化物之生成,且抑制凝固^ 程中之針孔等在高溫下之固溶氧之弊病,因此必須適量地 抑制含氧量。若單純藉由吹煉而過度降低(:量,則不作使成 本增加,且鋼中含氧量大量殘留而成為針孔等問題之原 因。故,以可輕易地防止針孔等問題之(:量〇 〇〇1%為下阳、 Si : 3%以下 延等會變得困 過度添加Si會使熱軋延展性降低且壓 20 1306476 難,適度添加則會賦予機械性質或使氧化物軟質化並提昇 可切削性,其上限係3%,若大於3% ,則熱軋延展性會降 低而使壓延等變得困難且工業生產困難。又,亦會發生如 產生硬質氧化物而降低可切削性等之弊病。 5 Mn :0.01 〜3.0% Μη係作為脫氧元素,又,#MnS來固定·分散鋼中之 硫所必須,且為使鋼中氧化物軟質化且使氧化物無害所必 須者’雖然其效果亦與添加之S量有關,但若小於Q.Q1%則 無法充分地以MnS來固定添加之S,且S成為FeS且變脆。若 10增加Μη量,則由於質地之硬度會變大且可切削性或冷軋加 工性會降低,因此以3.0%為上限。 Ρ : 0.001 〜0.2% 由於Ρ於鋼中質地之硬度變大,且不僅是冷軋加工性, 熱軋加工性或鑄造特性亦會降低,因此其上限必須為0.2 15 %。另一方面,藉由使其脆化,可輕易地切削而在可切削 性提昇方面為有效之元素,其下限值係設為0.001%。 S : 0.0001 〜1.2% S係與Μη結合而以MnS夾雜物存在。MnS雖可提昇可切 削性,但拉伸過之MnS為鍛造時產生各向異性之原因之 20 一。粗大之]^1^雖應避免,但若從提昇可切削性之觀點來 看則宜大量地添加’因此宜使]VtnS微細分散。為了提昇可 切削性,則必須添加0.0001%以上,且以添加〇〇〇1%以上 為佳。另一方面’若大於1.2% ,則不僅無法避免粗大MnS 之生成,且由於因FeS等造成之鑄造特性、熱軋變形特性之 10 1306476 惡化而於製造中產生破裂,因此以12%為上限。 N : 0·0001 〜〇 02% Ν為固溶Ν時會使鋼硬化,特別是在切削時因動態應變 時效而於刀鋒附近硬化,且會使工具壽命降低但亦且有 5改善切削表面粗度之效果。又,與β連結而生成ΒΝ並提昇 y切削性。剌含有量小於〇._1%,則由於未看見因固溶 氮造成之表面粗度提昇效果或因BN造成之可切削性改善 效果,因此以0.0001%為下限。又,若N含有量大於〇〇2% °, 則由於固溶氮大量存在,因此反而會使工具壽命降低又, 10於鑄造中生成氣泡且成為瑕疵等之原因,故本發明中以前 述弊病變得顯著之0.02%為上限。 0 : 0.0005〜0.05% 若Ο以游離狀態存在,則在冷卻時會成為氣泡且成為針 孔之原因。又’為了使氧化物軟質化且抑制對可切削性有 15害之硬質氧化物’則亦必須進行控制。再者,在使MnS微 細分散時亦以析出核來利用氧化物。若Ο含有量小於〇 〇〇〇5 % ,則無法充分地使MnS微細分散且產生粗大之MnS並對 機械性質帶來不良影響,故以0.0005為下限。再者,若〇含 有量大於0_05% ,則鑄造中會變成氣泡且成為針孔,因此 20 設為0.05%以下。1306476 玖 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 技术 技术 技术 技术 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 Steel with excellent machinability such as cutting chip treatment. BACKGROUND OF THE INVENTION Generally, a machine or an automobile system is manufactured by combining a plurality of parts, and if such parts are manufactured from a viewpoint of required precision and manufacturing efficiency, they are mostly manufactured by a cutting process, and it is required to reduce cost and improve production efficiency, and steel. It is also required to improve the machinability. The SUM23 or SUM24L, which is called low carbon fast-cut steel, is a developer who emphasizes machinability when the amount of C added is less than 0.2%. In the past, in order to improve the machinability, it is known to add a machinability improving element such as S or Pb. However, in recent years, Pb has an environmental load and tends to be avoided, and the use thereof is reduced. In the past, when Pb was not added, a method of forming a soft inclusion such as MnS in a cutting environment to improve the machinability was used. However, it was added to the low carbon SUM24L and low carbon sulfur. Quickly cut steel SUM23 equivalent S. Therefore, in order to improve the machinability, it is necessary to add more s than ever before. However, if s is added in a large amount, only the MnS is coarsened, and the effective MnS distribution cannot be formed in terms of improving machinability, and not only Calendering, forging, etc. are often the starting point of damage and cause problems such as rolling entanglement. In addition, in the case of sulfur-cut steel with SUM23 as a base material, the blade edge is likely to adhere, and the surface of the cutting surface is uneven and the surface roughness is deteriorated as the blade edge is separated and the cutting debris is separated. Therefore, from the viewpoint of the machinable I·sheng, there is a problem that the accuracy of the surface roughness is lowered. It is preferable that the cutting property is easily divided into short cuttings. However, if only s is added, since the matrix has a large ductility, it is not sufficiently divided and cannot be greatly improved. In addition to S, it is known that Te, m, p, and the like are also elements for improving machinability. However, even if a certain degree of machinability can be improved, it is preferable to minimize the occurrence of cracking due to rolling 10 or hot-rolling forging. Moreover, if it is a steel containing 0.2% or more of c, it contains a large amount of alloy halogen such as c, cr, or Mo and has high strength. In the case of such a steel for construction, since the problem of unevenness (thickness) of the cutting surface due to the formation of the blade is small and the material is originally hard, the surface roughness is good. 15 However, due to the high basic strength, if the S' of the machinability improving element is added in a large amount, the mechanical properties are anisotropic due to the stretching of the generated MnS during calendering or forging, so the application on the part is subject to Significant restrictions. Further, if the s strength steel is not added to improve the machinability, the machinability is almost lost. 20 [明内^§1] Disclosure of the Invention In view of the foregoing, the subject of the present invention is to provide a so-called low carbon steel which avoids problems of calendering or forging and product properties and which has a C content of less than 〇15%. A tool with improved tool life and surface roughness, which is excellent in 1306476, can be used as a structural steel and high-strength steel containing 0.15% or more of C. Anisotropic) and machinability of steel. The cutting system separates the destruction phenomenon of the cutting debris and promotes the cutting system. However, as described above, if the amount of S is simply increased, there is a limit. Therefore, the inventors have repeatedly studied the results of the intensive research and found that by not only increasing the amount of S but also containing Zn as a basic component, the matrix can be embrittled and broken, the tool life can be prolonged, and the unevenness of the cutting surface can be suppressed. The present invention has been completed based on the foregoing findings, and the gist thereof is as follows. 10 (1) A steel excellent in machinability, including C: 0.001 to 1.5%, Si: 3% or less, Μη: 0.01 to 3%, P: 0.001 to 0.2%, S: 0.0001 to 1.2, depending on the mass%. %, Zn: 0.001 to 0.5%, N: 0.0001 to 0.02%, Ο: 0.0005 to 0.05%. (2) The steel having excellent machinability as in the above item (1) contains Sn: 0.002 to 0.5% in terms of mass%. (3) The steel having excellent machinability as in the above item (1) or (2) further contains B: 0.0005 to 0.05% by mass%. (4) The steel having excellent machinability according to any one of the above items (1) to (3) further includes, by mass%: Cr: 0.01 to 7%, M: 0.01 to 3%, 20 V : 0.01 to 3%, Nb: 0.001 to 0.2%, Ti: 0.001 to 0.5%, and W: 0.01 to 3%, or two or more. (5) The steel having excellent machinability according to any one of the above items (1) to (4) further includes one of Ni: 0.05 to 7% and Cu: 0.02 to 3% by mass%. Or two or more types, and when it contains 0.3% or more of Cu, it satisfies Ni 1306476 % 2Cu%. (6) The steel having excellent machinability according to any one of the above items (1) to (5) further includes, by mass%: Α1:0·001~2%, Ca:.0.0002~0·01 %, Zr: 0.0003 to 0.5%, Mg: 0.0002 to 0.02% of one or two or more. (7) The steel having excellent machinability according to any one of the above items (1) to (6), further comprising: Te: 0.001 to 0.5%, Pb · 0.01 to 0.7%, depending on the mass °/«, Bi: one or two or more of 0.01 to 0.7%. BRIEF DESCRIPTION OF THE DRAWINGS 10 Fig. 1 shows a schematic diagram of a straight-cutting test. Figure 1(a) shows the straight-through cutting test method, and Figure 1(b) shows the tool movement. Fig. 2 is a view showing a small-field rotary bending test piece having a notched portion. Fig. 3 is a schematic view showing the conditions of carbon immersion, Fig. 3(a) shows a mode diagram of carbon immersion 15 quenching, and Fig. 3(b) shows a pattern diagram of conditions of normalizing. [Embodiment 3] BEST MODE FOR CARRYING OUT THE INVENTION The basic idea of the present invention is to improve the machinability by imparting Zn in addition to S, which does not impair mechanical properties. 20 That is, Zn is an especially important element in the present invention. The Zn system has an effect of embrittlement of steel and has an effect of improving machinability, and particularly has an effect of improving the thickness of the cutting surface. Further, since the conventional inclusions such as MnS are not present in the form of the coarse inclusions, the deterioration of the mechanical properties can be suppressed to a minimum, and the effect is particularly remarkable with the anisotropy 1306476. On the other hand, even if it has the same degree of mechanical properties, good machinability can be obtained when Zn is added, and it is considered that this is because the embrittlement effect of Zn is remarkable when the temperature rises due to the heat of cutting. Furthermore, it is generally considered that a full slip effect is produced on the tool/cut # interface during cutting. If & less than 5 0.001%, the effect is small. On the other hand, since Zn is not easily vaporized during the dissolution, in order to keep Zn in the molten steel and maintain a mass of more than 〇5% after solidification, it is necessary to use a large amount of Zn, but from the cost of green. From the point of view, it cannot be achieved industrially, so the upper limit is 〇5%. Therefore, the range of Zn content of this steel is limited to o.ooi~0 5%. In addition to Zn, it is also possible to carry out a step-cutting enhancement element such as Sn, B, Te, etc. However, if Sn is added alone, the machinability cannot be improved, and the two are enhanced by the interaction with Zn. Machinability. The reason for limiting the steel composition other than Zn is explained below. C : 0.001 to 1.5% 15 Since C is related to the basic strength of steel and the oxygen content in steel, u has a great influence on the machinability. If a large amount of c is added to increase, +A is 8%, which lowers the machinability. Therefore, the upper limit is 1.5%. On the other hand, in order to prevent the formation of a hard oxide which reduces the machinability and to suppress the disadvantage of solid solution oxygen at a high temperature such as pinholes in the solidification process, it is necessary to suppress the oxygen content in an appropriate amount. If it is excessively reduced by the blowing (the amount is not increased, the amount of oxygen in the steel remains large and the pinhole is caused by a large amount of oxygen in the steel. Therefore, problems such as pinholes can be easily prevented (: The amount of 〇〇〇1% is lower yang, Si: 3% or less, etc. will become trapped. Adding Si will reduce the hot rolling ductility and the pressure is 20 1306476. If it is added moderately, it will impart mechanical properties or soften the oxide. And the machinability is improved, and the upper limit is 3%. If it is more than 3%, the hot rolling ductility is lowered to make rolling and the like difficult, and industrial production is difficult. Further, it is also possible to produce a hard oxide and reduce the machinability. 5 Mn: 0.01 to 3.0% Μ η is a deoxidizing element, and #MnS is necessary for fixing and dispersing sulfur in the steel, and is necessary for softening the oxide in the steel and making the oxide harmless. 'Although the effect is related to the amount of S added, if it is less than Q.Q1%, the added S cannot be sufficiently fixed by MnS, and S becomes FeS and becomes brittle. If 10 increases the amount of Μη, the hardness due to texture Will become large and the machinability or cold rolling processability will be reduced, so The upper limit is 3.0%. Ρ : 0.001 ~0.2% Since the hardness of the steel in the steel is increased, and not only the cold rolling processability, but also the hot rolling processability or casting characteristics are lowered, the upper limit must be 0.2 15 %. On the other hand, by embrittlement, it is easy to cut and is effective in improving machinability, and the lower limit is 0.001%. S : 0.0001 ~1.2% S system is combined with Μη MnS inclusions exist. Although MnS can improve the machinability, the stretched MnS is the cause of the anisotropy during forging. The coarser ^^1^ should be avoided, but the machinability can be improved. From the viewpoint of the above, it is preferable to add a large amount of 'VtnS finely dispersed. In order to improve the machinability, it is necessary to add 0.0001% or more, and it is preferable to add 〇〇〇1% or more. On the other hand, if it is larger than 1.2. % is not only incapable of avoiding the formation of coarse MnS, but also due to the deterioration of casting properties and hot rolling deformation characteristics due to FeS, etc., which is deteriorated during manufacturing, so 12% is the upper limit. N : 0·0001 〜〇 02% Ν is solid solution 会使 will harden the steel, especially in the cut The cutting time hardens near the blade due to the dynamic strain aging, and the tool life is reduced, but also has the effect of improving the thickness of the cutting surface. Further, it is connected with β to form ΒΝ and improve y machinability. The 剌 content is less than 〇 ._1%, since the surface roughness improvement effect by solid solution nitrogen or the machinability improvement effect by BN is not seen, 0.0001% is the lower limit. Further, if the N content is more than 〇〇2% °, In the present invention, since the amount of solid solution nitrogen is large, the life of the tool is lowered, and 10 bubbles are formed during casting, which is a cause of defects, etc., so that the above disadvantages become 0.02%, which is an upper limit. 0 : 0.0005 to 0.05% If Ο is present in a free state, it becomes a bubble and becomes a pinhole when it cools. Further, in order to soften the oxide and suppress the hard oxide which has 15 defects in machinability, it is necessary to control it. Further, when the MnS is finely dispersed, the oxide is also used as a precipitated core. When the content of ruthenium is less than 〇 〇〇〇 5%, the MnS cannot be sufficiently dispersed finely and coarse MnS is generated and adversely affects mechanical properties, so 0.0005 is the lower limit. Further, if the content of cerium is more than 0_05%, bubbles become bubbles during casting and become pinholes, so 20 is set to 0.05% or less.

Sn : 0.002〜0.5%Sn : 0.002~0.5%

Sri係軟質金屬,且於鋼中分佈於晶界等而使鋼脆化, 藉此可提昇可切削性。若添加量為0.002%以下,則無法看 見其效果,若大於0.5%,則因鋼脆化而使縳造及壓延變得 1306476 困難,故將其範圍設為0·002〜〇.5%。 B : 0.0005〜0.05% B可有效提昇可切削性。若添加量小於〇._5%,則該 效果不顯著,若添加量大於〇观,則其效果飽和,且若 5因熱滞變而析出過多之BN,則反而會因鑄造特性、熱札變 形特性之惡化而於製造中產生破裂1以〇 〇〇〇5〜〇.㈣為 其範圍。Sri is a soft metal, which is distributed in the grain boundary in steel to embrittle the steel, thereby improving the machinability. When the amount of addition is 0.002% or less, the effect is not observed. If it is more than 0.5%, it is difficult to make the rolling and the rolling become 1306476 due to the embrittlement of the steel. Therefore, the range is set to 0.002 to 〇.5%. B : 0.0005~0.05% B can effectively improve the machinability. If the addition amount is less than 〇._5%, the effect is not significant. If the addition amount is larger than that of the surface, the effect is saturated, and if 5 excessive precipitation of BN due to thermal hysteresis, the casting property and heat deformation may occur. The deterioration of the characteristics causes cracks in the manufacturing 1 to 〇〇〇〇5~〇. (4) is its range.

Cr : 0.01 〜7%Cr : 0.01 to 7%

Cr係提昇可淬性、賦予回火軟化陡力之元素。藉由大 · 10量地添加,可得到—性’故添加於f要高強度之鋼中, 此時必須添加剛以上,然而’若大量添加則會生成& 碳化物且使其脆化,因此以7%為上限。Cr is an element that enhances hardenability and imparts tempering and softening. When it is added by a large amount of 10, it can be obtained as a property. Therefore, it is added to a steel having a high strength. In this case, it is necessary to add just above, but if a large amount is added, a & carbide is formed and embrittled. Therefore, the upper limit is 7%.

Mo : 〇.〇1 〜3%Mo : 〇.〇1 ~ 3%

Mo係賦予回火軟化阻力同時提昇可淬性之元素。若添 ^加小於0屬貝,!無法看見其效果,若添加量大於%則㈣ 其效果飽和,因此以0.01%〜3%為其添加範圍。 V : 0.01~3.0% # V可形成碳氮化物且藉由二次析出硬化使鋼強化。若添 加量小於0.01%則高強度化不具效果,若添加量大於3%, 20則由於會析出大量之碳氮化物且反而會損害機械性質,因 此以3%為上限。Mo is an element that imparts temper softening resistance while improving hardenability. If the addition is less than 0 genus, the effect cannot be seen. If the addition amount is greater than %, then (4) the effect is saturated, so the range is added by 0.01% to 3%. V : 0.01 to 3.0% # V can form carbonitrides and strengthen the steel by secondary precipitation hardening. If the amount is less than 0.01%, the high strength does not have an effect. If the amount is more than 3%, 20 will precipitate a large amount of carbonitride and adversely affect the mechanical properties, so the upper limit is 3%.

Nb : 0.001 〜0.2%Nb : 0.001 ~ 0.2%

Nb亦可形成碳氮化物且藉由二次析出硬化使鋼強化。 若添加量小於0.001%則高強度化不具效果,若添加量大於 12 !3〇6476 •"/o ,則由於會析出大量之碳氮化物且反而會損害機械性 質’因此以0.2%為上限。Nb can also form carbonitrides and strengthen the steel by secondary precipitation hardening. If the addition amount is less than 0.001%, high strength does not have an effect. If the addition amount is more than 12!3〇6476 •"/o, a large amount of carbonitride will be precipitated and the mechanical properties will be impaired. Therefore, the upper limit is 0.2%. .

Ti : 0.001 〜〇.5〇/0 Τι亦可形成碳氮化物且使鋼強化◎又,亦為脫氧元素, 且藉由形成軟質氧化物而可提昇可切削性。若添加量小於 則無法看見其效果,若添加量大於〇 5%則其效果飽 年又,Ti在高溫下會成為氮化物且抑制沃斯田體粒之成 長’故以0·5%為上限。 w : 0.01 〜3% 、W可形成碳氮化物且藉由二次析出硬化使鋼強化。若 、;、加量小於Q.G1%則南強度化不具效果皆添加量大於对 則由於會析出粗大之碳氮化物且反而會損害機械性質、,因 此以3%為上限。Ti: 0.001 ~ 〇.5 〇 / 0 Τ ι can also form carbonitrides and strengthen the steel ◎, also deoxidizing elements, and can improve the machinability by forming a soft oxide. If the addition amount is less than the effect, the effect cannot be seen. If the addition amount is more than 〇5%, the effect is saturated, and Ti becomes a nitride at a high temperature and suppresses the growth of the Worthite granules, so the upper limit is 0.5%. . w : 0.01 to 3%, W forms carbonitrides and strengthens the steel by secondary precipitation hardening. If the addition amount is less than Q.G1%, then the south strength does not have an effect. If the addition amount is larger than the opposite, the coarse carbonitride will be precipitated and the mechanical properties will be impaired. Therefore, the upper limit is 3%.

Ni : 〇.〇5 〜7%Ni : 〇.〇5 ~ 7%

Ni可強化肥粒體且使延展性提昇,@時在提昇可泮 性、提㈣純方面亦是有效的。若添加量小糾观則 無法看見其效果,若添加量大於7%則由於在_性質方面 效果飽和,因此以7%為上限。Ni can strengthen the fat granules and increase the ductility. It is also effective in improving the susceptibility and improving the purity. If the amount of addition is small, the effect cannot be seen. If the amount is more than 7%, the effect is saturated in terms of _ properties, so the upper limit is 7%.

Cu : 0.02〜3% 20Cu : 0.02 to 3% 20

Cu可強化練魅舰舰料,叫在提昇可泮 性、提㈣純方面亦是有效的。若添加量小飢〇2%則 無法看見其效果,若添加量大㈣料於在機械性質方面 效果飽和,因此以3%為上限 入7右 早獨添加Cu,則會極 ,a、、' >rj 苜從 度地使Μ延祕降低,域為破料私、延中問題 13 13〇6476 U。其添加量在大於〇.3%時,為了避免製造上產生問 題,Ni之添加量宜添加為Ni% $cu%。 A1 : O.ooi〜2% A1係脫氧元素且於鋼中形成Al2〇^tA1N,藉此,可有 5效防止淬火時沃斯田體粒徑之粗大化進而提高勤性,然 而右添加量小於〇.〇〇1%則無法看見其效果,若大於烈 則產生粗大之夾雜物,且反而會使機械性質降低。再者, 由於Al2〇3為硬質者,因此成為切削時工具損傷之原因,且 1有時會增加損耗。故,以沃斯田體粒等之粗大化效果飽和 且Al2〇3之弊病顯著之2%限,特別是若以可切削性為 優先時則宜設為不會大量生成Al2〇3之讀5%以下,再者, 若以氧化物之軟質化為優先時則宜為0.005%以下。Cu can strengthen the sculpt ship materials, which is also effective in improving the susceptibility and improving the purity. If the amount of addition is less than 2%, the effect cannot be seen. If the amount of addition is large (4), the effect is saturated in terms of mechanical properties. Therefore, adding Cu to the right of 7 at the upper limit of 3% will result in extreme, a,, and >rj 苜 Μ Μ 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低When the amount added is more than 〇.3%, in order to avoid problems in manufacturing, the addition amount of Ni is preferably added as Ni% $cu%. A1 : O.ooi~2% A1 is a deoxidizing element and forms Al2〇^tA1N in steel. This can reduce the grain size of the Worth field during quenching and improve the workability. Less than 〇.〇〇1% can not see its effect, if it is greater than strong, it will produce coarse inclusions, and will reduce the mechanical properties. Further, since Al2〇3 is hard, it causes damage to the tool during cutting, and 1 may increase the loss. Therefore, the coarsening effect of the Wolsfield granules and the like is saturated and the disadvantage of Al2〇3 is significantly limited to 2%, especially if the machinability is preferred, it is preferable to set the reading of Al2〇3 in a large amount. When the softening of the oxide is preferred, it is preferably 0.005% or less.

Ca : 0.0002〜〇Ca : 0.0002~〇

Ca係脫氧元素且生成軟質氧化物並提昇可切削性,不 僅如此Ca係固溶於Mns而降低其變形能且即使進行壓延 或熱軋鍛造亦具有抑制]^“形狀之延伸之作用,故為有效 降低各向異性之元素。若添加量小於〇〇〇〇2%,則其效果 並不顯著,若添加量大於〇 〇1%,則不僅成品率極度惡化, 且大直生成硬質之Ca〇、CaS等,反而會使可切削性降低, 20因此將成分範圍規定在0.0002〜0.01%。Ca is a deoxidizing element and forms a soft oxide and improves machinability. Not only is Ca solid dissolved in Mns to reduce its deformation energy, but even if it is calendered or hot-rolled forged, it has the effect of suppressing the extension of the shape. Effectively reduce the anisotropic element. If the addition amount is less than 〇〇〇〇2%, the effect is not significant. If the addition amount is more than 〇〇1%, not only the yield is extremely deteriorated, but also the hard Ca 〇 is generated. In addition, CaS, etc., will reduce the machinability, and thus the composition range is specified to be 0.0002 to 0.01%.

Zr : 0.0003 〜〇 5%Zr : 0.0003 ~ 〇 5%

Zr係脫氧元素且生成氧化物。氧化物係構成MnS之析 出核且具有使MnS微細均一分散之效果。又,&係固溶於 MnS而降低其變形能,且即使進行壓延或熱軋鍛造亦具有 14 l3〇6476 抑制MnS雜之延伸之作用,故為有效降低各向異性之元 素。若添加量小於〇._3%,則其效果並不顯著,若添加 量大於0.5%,則不僅成品率極度惡化,且大量生成硬質之Zr is a deoxidizing element and forms an oxide. The oxide system constitutes a precipitated nucleus of MnS and has an effect of uniformly dispersing MnS uniformly. Further, & is solid-dissolved in MnS to lower its deformation energy, and has a function of suppressing the elongation of MnS by 14 l3〇6476 even if it is calendered or hot-rolled forging, so it is an element which effectively reduces anisotropy. If the addition amount is less than 〇._3%, the effect is not significant. If the addition amount is more than 0.5%, not only the yield is extremely deteriorated, but also a large amount of hard is generated.

ZrOdZrS等’反而會使可切削性降低,因此將成分範圍規 5 定在 0.0003 〜0.5%。ZrOdZrS, etc., will reduce the machinability, so the composition range is set at 0.0003 to 0.5%.

Mg : 0.0002〜0.02%Mg : 0.0002~0.02%

Mg係脫氧元素且生成氧化物。氧化物係構成腐之析 出核且具有使MnS微細均-分散之效果,故為有效降低各 向異性之元素。若添加量小於〇〇_,則其效果並不顯 10著,若添加量大於0.02%,則不僅成品率極度惡化且效果 飽和,因此將成分範圍規定在〇 〇〇〇2〜〇 〇2%。Mg is a deoxidizing element and forms an oxide. The oxide system has an effect of suppressing the anisotropy of the nucleus and has an effect of uniformly dispersing and dispersing MnS. If the addition amount is less than 〇〇_, the effect is not significant. If the addition amount is more than 0.02%, not only the yield is extremely deteriorated but the effect is saturated, so the composition range is specified in 〇〇〇〇2 to 〇〇2%. .

Te : 0.001 〜0_5%Te : 0.001 ~ 0_5%

Te係可切削性提Μ素。又,具有生成或藉由與 MnS共存而使MnS之變形能降低並抑制MnS形狀之延伸之 15作用,故為有效降低各向異性之元素。若添加量小於〇〇〇1 %則無法看見該效果,若添加量大於〇.5%則效果飽和。Te is a machinability. Further, it has an effect of reducing or suppressing the deformation of the MnS and suppressing the extension of the MnS shape by coexistence with MnS, so that it is an element which effectively reduces anisotropy. If the amount added is less than 〇〇〇1%, the effect cannot be seen. If the amount added is greater than 〇.5%, the effect is saturated.

Pb、Bi : 0.01 〜0‘70/0Pb, Bi: 0.01 ~ 0 '70 / 0

Pb及Bi係有效提昇可切削性之元素。若添加量小於 0.01%則無法看見其政果,若添加量大於0.7%則不僅提昇 20可切削性之效果飽和,且熱軋鍛造特性降低而容易變成瑕 疵之原因,因此分別將其含有量設為0,01〜〇7%。 實施例 藉由實施例說明本發明之效果。具有表丨所示化學成分 之供試材之一部分於270t轉爐中溶製後,分解壓延為小 15 1306476 胚,再壓延為φ 50mm之棒鋼,其他則於2t_真空溶解爐中 溶製、壓延。表2之實施例1〜4〇所示之材料之可切削性評 4貝係藉鑽頭穿孔試驗且於表3顯示切削條件。藉由可切削至 累積孔深1000mm之最高切削速度(所謂VL丨〇〇〇)來評價可 5 切削性。 10Pb and Bi are elements that effectively improve the machinability. If the addition amount is less than 0.01%, the effect cannot be seen. If the addition amount is more than 0.7%, the effect of improving the 20 machinability is not only saturated, but the hot-rolling forging property is lowered to easily cause enthalpy, so the content thereof is set separately. It is 0,01~〇7%. EXAMPLES The effects of the present invention will be described by way of examples. One part of the test material with the chemical composition shown in the table is dissolved in a 270t converter, and then decomposed and calendered into a small 15 1306476 embryo, and then rolled into a bar of φ 50mm, and the others are melted and calendered in a 2t_vacuum dissolution furnace. . The machinability of the materials shown in Examples 1 to 4 of Table 2 was evaluated by the drill bit perforation test and the cutting conditions are shown in Table 3. The machinability was evaluated by cutting to the highest cutting speed of the cumulative hole depth of 1000 mm (so-called VL 丨〇〇〇). 10

再者,表面粗度係藉由以平壓切斷工具複製工具形银 之所謂直進㈣彳來評價。以圖顯補實驗方法之概要。 即’如第1(a)圖所示,藉由工具3切削朝切削方則旋轉之^ 驗材2’且如第1(_所示移動工具3而形成表面粗度測以 4。又,表4顯示切削條件。實驗係測定加工2 粗度(10點表面粗度ΚζμΓη)。在 虛理,Nt t Ζ 有關表2所示之切削碎肩 處理性方面’切削碎屑係構成為捲邊形狀 'Λ A 5i& η -τ- ,, 己為在揭 邊為如下且_碎屑㈣並生成短 超過5捲但未斷裂之長切削碎㈣為^碎叫為〇’名Further, the surface roughness was evaluated by a so-called straight-through (four) 复制 which duplicated the tool-shaped silver with a flat-pressure cutting tool. A summary of the experimental method is shown in the figure. That is, as shown in Fig. 1(a), the tool 2 is rotated by the tool 3 to rotate the workpiece 2' toward the cutting side, and as shown in the first (_), the surface roughness is measured by 4 to move the tool 3. The cutting conditions are shown in Table 4. The experimental system measures the thickness of the processing 2 (10-point surface roughness ΚζμΓη). In the imaginary, Nt t Ζ the cutting shoulder handling property shown in Table 2 'cutting debris system is formed as crimping The shape 'Λ A 5i& η -τ- , , has been smashed as follows and _ shards (four) and generated a short cut of more than 5 rolls but not broken (four) is called 〇 'name

16 1306476 表1 實施例 化學成分(iass%) No. 區分 C Si lin P S Zd Sn B Te Pb Bi N 0 1 發明例 0.009 0.007 1.540 0.071 0.502 0.0098 - - 0.0167 0.0178 2 發明例 0.018 0.012 1.512 0.078 0.494 0.0063 0.014 - 0.0176 0.0190 3 翻例 0.008 0.008 1.090 0.090 0.530 0.0075 0.016 - 0.0099 0.0179 4 發明例 0.014 0.015 1.688 0.080 0.550 0.0039 0.009 0.0020 0.0083 0.0179 5 比較例 0.011 0.013 1.410 0,074 0.458 - - — 0.0111 0.0165 6 比較例 0.019 0.013 1.430 0.071 0.468 - 0.029 - 0.0131 0.0159 7 翻例 0.051 0.013 1.606 0.07? 0.526 0.0064 - - 0.0091 0.0173 8 發明例 0.024 0.004 1.429 0.077 0.467 0,1181 - - 0.0143 0.0198 9 發明例 0.036 0.005 1.471 0.082 0.481 0.4462 - - 0,0083 0.0201 10 發明例 0.057 0.007 0.919 0.081 0.452 0.0054 伽 0.0030 0.0094 0.0183 11 發明例 0.057 0.011 1.651 0.079 0.540 0.0058 0.013 - 0.0126 0.0191 12 發明例 0.023 0.010 0.988 0.076 0.476 0.0070 0.015 - 0,0165 0.0183 13 發明例 0.050 0.005 1.409 0.081 0.459 0.0067 0.015 0.0024 0.0126 0.0196 14 比較例 0.024 0.009 1.424 0.082 0.464 - - - 0.0132 0.0150 15 發明例 0.076 0.010 0.983 0.074 0.322 0.0051 - - 0.0103 0.0197 16 發明例 0.071 0.003 0.897 0,077 0.299 0.0034 0.007 - 0,0117 0.0198 17 發明例 0.073 0.003 0.909 0.077 0.300 0.004? 0.011 0.0034 0,0098 0.0200 18 發明例 0.083 0.007 0.861 0.088 0.287 0.0059 - - 0.275 0.0137 0.0151 19 發明例 0.072 0.004 0.907 0.071 0.297 0.0092 0.020 - 0.271 0.0143 0.0177 20 發明例 0.084 0.014 1.002 0.071 0.331 0.0085 0,019 0.0027 0.186 0.0142 0,0186 21 發明例 0.078 0.013 0·腳 0.085 0.292 0.0049 — - 0.113 0.0084 0.0199 22 比較例 0.079 0.014 1.068 0.089 0.348 - - - 0.0145 0.0202 23 比較例 0.080 0.003 1.065 0.075 0.347 - - - 0.279 0.0119 0.0186 24 比較例 0.071 0.010 0.909 0.072 0.299 續 - 祕 0.177 0.0178 0.0157 25 比關 0,071 0.002 0.911 0.089 0.300 - - - 0,119 0,0120 0.0208 26 比較例 0,076 0.004 1.459 0.084 0.479 — 0.057 0.0099 0.0171 27 翻例 0,073 0.012 1.533 0.073 0.503 0.0039 * - 0.0104 0.0197 28 翻例 0.073 0.008 1.426 0.086 0.465 0.0079 0.009 - 0.0131 0.0182 29 發明例 0.073 0.005 1.013 0.085 0.491 0.0070 0.017 - 0.0119 0.0200 30 發明例 0.079 0.007 1.589 0.072 0.521 0.0066 0.017 0.0028 0.0130 0.0194 31 比較例 0.087 0.015 1.624 0.082 0.530 - - 0,0176 0.0165 32 發酬 0,080 0.002 2.204 0.079 0.720 0.0046 - - 0,0146 0.0152 33 發明例 0,079 0.011 2.188 0.082 0.712 0.0060 冊 - 0.0090 0.0202 34 發明例 0.088 0.002 2.147 0.084 0.699 0.0088 0.010 - 0,0105 0.0155 35 發明例 0.081 0.014 2.203 0.078 0.717 0.0035 0.019 0.0018 0.0140 0.0204 36 比較例 0.077 0.003 2.056 0.077 0.672 - - - 0.0141 0.0189 37 麵例 0.075 0.012 0.332 0.083 0.087 0.0043 - - 0,0142 0.0206 38 發明例 0.081 0.002 0.346 0.哪 0.088 0.0095 0.020 - 0.0163 0.0169 39 發酬 0.078 0.006 0.384 0.087 0.096 0.0056 0.012 0.0017 0.0129 0.0177 40 比較例 0.071 0.012 0.326 0.090 0.083 - - - 0.0178 0.017416 1306476 Table 1 Examples Chemical composition (iass%) No. Distinguish C Si lin PS Zd Sn B Te Pb Bi N 0 1 Invention Example 0.009 0.007 1.540 0.071 0.502 0.0098 - - 0.0167 0.0178 2 Invention Example 0.018 0.012 1.512 0.078 0.494 0.0063 0.014 - 0.0176 0.0190 3 翻数0.008 0.008 1.090 0.090 0.530 0.0075 0.016 - 0.0099 0.0179 4 Inventive Example 0.014 0.015 1.688 0.080 0.550 0.0039 0.009 0.0020 0.0083 0.0179 5 Comparative Example 0.011 0.013 1.410 0,074 0.458 - - 0.0111 0.0165 6 Comparative Example 0.019 0.013 1.430 0.071 0.468 - 0.029 - 0.0131 0.0159 7 Turning 0.051 0.013 1.606 0.07? 0.526 0.0064 - - 0.0091 0.0173 8 Invention Example 0.024 0.004 1.429 0.077 0.467 0,1181 - - 0.0143 0.0198 9 Invention Example 0.036 0.005 1.471 0.082 0.481 0.4462 - - 0,0083 0.0201 10 Inventive Example 0.057 0.007 0.919 0.081 0.452 0.0054 Glycol 0.0030 0.0094 0.0183 11 Inventive Example 0.057 0.011 1.651 0.079 0.540 0.0058 0.013 - 0.0126 0.0191 12 Inventive Example 0.023 0.010 0.988 0.076 0.476 0.0070 0.015 - 0,0165 0.0183 13 Inventive Example 0.050 0.005 1.4 09 0.081 0.459 0.0067 0.015 0.0024 0.0126 0.0196 14 Comparative Example 0.024 0.009 1.424 0.082 0.464 - - - 0.0132 0.0150 15 Invention Example 0.076 0.010 0.983 0.074 0.322 0.0051 - - 0.0103 0.0197 16 Invention Example 0.071 0.003 0.897 0,077 0.299 0.0034 0.007 - 0,0117 0.0198 17 Inventive Example 0.073 0.003 0.909 0.077 0.300 0.004? 0.011 0.0034 0,0098 0.0200 18 Inventive Example 0.083 0.007 0.861 0.088 0.287 0.0059 - - 0.275 0.0137 0.0151 19 Inventive Example 0.072 0.004 0.907 0.071 0.297 0.0092 0.020 - 0.271 0.0143 0.0177 20 Invention Example 0.084 0.014 1.002 0.071 0.331 0.0085 0,019 0.0027 0.186 0.0142 0,0186 21 Invention Example 0.078 0.013 0·foot 0.085 0.292 0.0049 — - 0.113 0.0084 0.0199 22 Comparative Example 0.079 0.014 1.068 0.089 0.348 - - - 0.0145 0.0202 23 Comparative Example 0.080 0.003 1.065 0.075 0.347 - - - 0.279 0.0119 0.0186 24 Comparative Example 0.071 0.010 0.909 0.072 0.299 Continued - Secret 0.177 0.0178 0.0157 25 Ratio Off 0,071 0.002 0.911 0.089 0.300 - - - 0,119 0,0120 0.0208 26 Comparative Example 0,076 0.004 1.459 0.084 0.479 — 0.057 0.0099 0.0171 27 翻数0,073 0.012 1.533 0.073 0.503 0.0039 * - 0.0104 0.0197 28 Exception 0.073 0.008 1.426 0.086 0.465 0.0079 0.009 - 0.0131 0.0182 29 Invention Example 0.073 0.005 1.013 0.085 0.491 0.0070 0.017 - 0.0119 0.0200 30 Invention Example 0.079 0.007 1.589 0.072 0.521 0.0066 0.017 0.0028 0.0130 0.0194 31 Comparative Example 0.087 0.015 1.624 0.082 0.530 - - 0,0176 0.0165 32 Remuneration 0,080 0.002 2.204 0.079 0.720 0.0046 - - 0,0146 0.0152 33 Invention Example 0,079 0.011 2.188 0.082 0.712 0.0060 book - 0.0090 0.0202 34 Invention Example 0.088 0.002 2.147 0.084 0.699 0.0088 0.010 - 0,0105 0.0155 35 Invention Example 0.081 0.014 2.203 0.078 0.717 0.0035 0.019 0.0018 0.0140 0.0204 36 Comparative Example 0.077 0.003 2.056 0.077 0.672 - - - 0.0141 0.0189 37 Case 0.075 0.012 0.332 0.083 0.087 0.0043 - - 0,0142 0.0206 38 Invention Example 0.081 0.002 0.346 0. Which 0.088 0.0095 0.020 - 0.0163 0.0169 39 Remuneration 0.078 0.006 0.384 0.087 0.096 0.0056 0.012 0.0017 0.0129 0.0177 40 Comparative Example 0.0 71 0.012 0.326 0.090 0.083 - - - 0.0178 0.0174

17 130647617 1306476

表2 實施例 評價 No. 區分 VL1000 表面粗度 切削碎屑處理性 1 發明例 138 11.3 〇 2 發明例 133 11.4 〇 3 發明例 138 10.2 〇 4 發明例 137 9.9 〇 5 比較例 91 19.5 〇 6 比較例 93 24.3 〇 7 發明例 133 9.3 〇 8 發明例 139 9.6 〇 9 發明例 133 9.1 〇 10 發明例 139 9.7 〇 11 發明例 139 10.6 〇 12 發明例 136 9.8 〇 13 發明例 138 10.2 〇 14 比較例 104 20.6 〇 15 發明例 124 11.2 〇 16 發明例 138 10.6 〇 17 發明例 136 9.5 〇 18 發明例 173 11.8 〇 19 發明例 173 10.1 〇 20 發明例 176 9.4 〇 21 發明例 137 10.4 〇 22 比較例 79 22.2 X 23 比較例 154 9.5 〇 24 比較例 153 11.5 〇 25 比較例 97 22.2 〇 26 比較例 72 19.7 X 27 發明例 127 11.1 〇 28 發明例 125 10.9 〇 29 發明例 131 11.0 〇 30 發明例 131 9.1 〇 31 比較例 86 23.6 〇 32 發明例 138 9.4 〇 33 發明例 134 10.9 〇 34 發明例 134 11.7 〇 35 發明例 136 11.5 〇 36 比較例 93 21.9 〇 37 發明例 93 11.3 〇 38 發明例 92 10.9 〇 39 發明例 98 9.3 〇 40 比較例 71 19.2 XTable 2 Example Evaluation No. Distinguishing VL1000 Surface Roughness Cutting Debris Handling Property 1 Inventive Example 138 11.3 〇2 Inventive Example 133 11.4 〇3 Inventive Example 138 10.2 〇4 Inventive Example 137 9.9 〇5 Comparative Example 91 19.5 〇6 Comparative Example 93 24.3 〇7 Inventive Example 133 9.3 〇8 Inventive Example 139 9.6 〇 9 Inventive Example 133 9.1 〇 10 Inventive Example 139 9.7 〇 11 Inventive Example 139 10.6 〇 12 Inventive Example 136 9.8 〇 13 Inventive Example 138 10.2 〇 14 Comparative Example 104 20.6 〇15 Inventive Example 124 11.2 〇16 Inventive Example 138 10.6 〇17 Inventive Example 136 9.5 〇18 Inventive Example 173 11.8 〇19 Inventive Example 173 10.1 〇20 Inventive Example 176 9.4 〇21 Inventive Example 137 10.4 〇22 Comparative Example 79 22.2 X 23 Comparative Example 154 9.5 〇24 Comparative Example 153 11.5 〇25 Comparative Example 97 22.2 〇26 Comparative Example 72 19.7 X 27 Inventive Example 127 11.1 〇28 Inventive Example 125 10.9 〇29 Inventive Example 131 11.0 〇30 Inventive Example 131 9.1 〇31 Comparative Example 86 23.6 〇32 invention example 138 9.4 〇 33 invention example 134 10.9 〇 34 invention example 134 11.7 〇 35 invention example 136 11.5 〇 36 ratio Comparative Example 93 21.9 〇 37 Invention Example 93 11.3 〇 38 Invention Example 92 10.9 〇 39 Invention Example 98 9.3 〇 40 Comparative Example 71 19.2 X

18 1306476 表3 切削條件 鑽頭 其他 切削速度10-200m/min 進料 0.33mm/rev 非水溶性切削油 φ 5mm NACHI—般鑽頭 突出量65mm 孔深 15mm 工具壽命折損為止 表4 切削條件 鑽頭 _____ 其他 切削速度80m/min 進料 0.05mm/rev 非水溶性切削油 相當SKH51 斜角15° 離隙角6° 突出 評價時點200週期 發明例中任一者相對於比較例皆具有優異之鑽頭工具 壽命’同時直進切削中表面粗度良好’此在C、S等之添加 5量不同時其順位亦不會改變,在添加有Zn、Sn、B等元素 時,相較於同一C、S等之比較鋼,亦具有優異之工具壽命 與表面粗度。S量多者具有可切削性良好之傾向,但s量較 少時亦可改善切削碎屑處理性。 另一方面’如實施例中之比較例6及26,在添加Sn時若 10未添加Zn,則無法提昇可切削性。 再者’在含有習知Te、Pb、Bi等可切削性提昇元素時, 添加有Ζ η者亦顯示出較優異之可切削性。 同樣地’表6係顯示評價表5所示樣品之化學成分之以 構造用碳鋼為基材之鋼的可切削性、機械性質之評價結 15果。各供試材之~部分於270t轉爐中溶製後’分解壓延為 小胚,再壓延為Φ 65mm之棒鋼,其他則於2t—真空溶解爐 中溶製、壓延。 衝擊值(J/cm2)係以jis為基準而作成深度2mm之U形缺 口試驗片來評價。 19 關於含有ο·1% α之實施例41〜43之可切削性評價係 ,頭牙孔錢且於表3顯示切肖彳條件。藉^切削至累積 孔深1 OOOmm之最高切削速度(所謂VL丨〇〇〇)來評價可切削 性。 5 再者’表面粗度係藉由以平壓切斷工具複製工具形狀 之所謂直進切削來評價。實驗係測定加工200溝時之表面粗 度。藉由表4所示之直進切削評價表面粗度。 關於含有約0.3%之c之實施例44〜46及大於實施例44 〜46之C量之實施例47〜77方面,由於重視的是機械性質, 口此顯示衝擊值及其各向異性。在此,顯示從棒鋼之橫截 面方向切出之試料之衝擊值(「C方向」攔),同時各向異性 係顯示(橫截面方向試料之衝擊值)/(長向試料之衝擊 值)(「各向異性」欄)。該值愈大則顯示各向異性愈少。 另,實施例47〜77之可切削性評價係以鑽頭穿孔特性 15 VL1000來進行,且以表7所示之切削條件進行評價,此時 並未評價切削表面粗度。 20 w 0 eft Μ S w, Φ 链 M o [0. 0052! 10.0088 1 i 0.0046 I I 0.0026 | I 〇 |0. 00151 10. 0018 | ί 0’00171 10. 0016 I 10. 0020 1 I 0. 0013 I 1 0. 0015 | 0.0013 L〇. 00201 10·0020| I 0. 0017 | 10. 0019 | [0. 0014] 10. 0016 I 0. 0020 10. 0013! φ δ ο 0. 0021 0. 0021 10.0017 | 10. 00151 I a 00221 0,0016 0.0022 0.0019 0.0015 0.0018 0. 0018 0.0018 0.0021 10. 0020 |〇. 0015| z 1 0.0065 1 1 d [0^)046 Ί I 0.0046 | 1 0.0045 I 1 0.0051 1 I 0.0064 | 10.0059」 1 0.0048 1 [0.0052 1 1 0.0050 1 I 0.0061 I I d i d [0.0057 I | 0.005» | 1 0.0054 I I O.OOS4 I I 0.0064 I I 0. 0052 I 3? S d 1 0.0054 1 1 0.0049 I I 0. 0052 I 1 0. 0055 I I o' M i d 1 d § ο | 0.0059 | | 0.0064 | I 0.0047 I 1 0.0056 0.0045 M 1 d S d 1 0. 0052 | ώ 1 0.0026 1 1 0.0021 I 〇 8 d 1 0.0016 I I 0.0028 | I 0.0013 | I 0.0018 ] 00 i d [0.0013 1 i d I 0. 0022 | I 0.0011 | 5 s s o* 1 0. 0022 ) ί 0. 0028 | ΙΛ i d |0.0012 I B 8 6 i d 00 d 8 d 1 0.026 | 1 0.032 1 1 0.029 1 i 0.018 | 1 0.035 1 1 0.018 1 1 0.030 i 1 0.0X9 1 1 0.021 ] 1 0.021 1 ο 1 0.030 | | 0,020 | I 0.024 | 1 0.034 1 1 0.017 1 I 0.029 j 1 0.0X9 I [0.035 I 1 0.023 1 1 0.029 1 1 0.017 1 1 0.0016 I ! 0.0028 1 I 0.0021 i 1 0.0016 1 1 0.0023 1 [0.0029 1 1 0· 0023 1 1 0. 0024 1 I 0. 0016 | f 0. 0014 1 1 0. 0025 1 I 0. 0026 | 1 0. 0021 1 1 0. 0021 1 1 0. 0028 I — I 0.043 I 1 0.043 1 1 0.033 1 z 1 0.037 1 1 0.024 1 1 0.024 1 > 1—0.11 1 1 0.10 I 1 0.12 I m 1 1 1 1 1 1 i 1 1 1 1 1 1 1 1 \ 1 1 1 i 1 1 1 1 1 i 0.0033Ί 1 I f 1 1 I 1 1 ί 1 t & I 1 0.0098 1 1 1 1 0.0155 1 I 1 0.0107 1 1 1 1 0.0164 1 i 1 I 1 0. 0144Ί ! ] 1 0.0093 I t 1 雄 S d 1 1 这 o 1 t 1 0.01691 1 1 卜 2 O o' i 1 1 0.0196 | 1 1 r〇. 0115 1 1 t5 I 0. 0043 | i 0. 0050 | 1 i O 1 0.0069 1 l· 0. 0020 1 V 1 0.0050 1 1 ! 0. 0076 1 1 0. 0100 ι 1 1 10. 0053 ! I 0. 0067Ί 1 i d 1 O 1 1 0.0091 | [0.0077 1 I I 0.0035 I [0.0072 1 1 [0. 0045 1 1 0.0077 1 1 1 0.0065 1 [0.0067 1 i 1 0. 0077 1 I O i 1 0.0034 1 1 0. 0053 1 ! CO C4 s 6 丨 0.016 1 1 0.025 1 00 — o d 1 0.019 1 1 0.024 I f 0.029 1 〇 d 1 0.018 ! [0.013 | 1 0.017 i 1 0.019 1 1 0.114 | I 0.025 1 s o d E 0.022 I i ό 1 d 1 0.018 ! I 0.0X2 | 1 0.015] 1 0.024 1 1 0.025 i 1 0.022 1 Γ0.016 1 1 0.013 1 1 0.027 1 Γ 0.016 1 ! 0.020 1 「0,015 1 1 0.029 1 [0.019 1 bO B ό 1 0.029 1 1 0.087 1 1 0.117 1 1 0.082 I CL. 0.029 j 8 Ο ό i 0.024 1 1 0.023 1 1 0.013 1 1 0.013 I 1 0.029 1 [0.021 1 i 0.027 I 1 a 015 i i 0.027 ! 1 0.015 ! 1 0.014 j t 0.021 1 CQ s d I 0.029 Ί 1 0.014 I i 0.018 I f 0.015 1 f 0.015 j 1 0.018 1 \ 0.016 1 [0.021 1 I 0.016 | I 0.027 1 f 0.025 | o d U) s d t 0.018 | 1 0.025 | | 0,029 1 1 0.015 | l 0.019 | \ 0.015 1 I 0.019 | j 0.027 1 [0.030 | e o i 0.56 1 1 0.51 1 O s o o s o s o [0.62 1 1 0.68 I 1 0.88 1 «VJ iO o s o’ l_〇,n J 1 0.67 1 1 0.76 I 00 (0 d 1 0v7i -1 Γ 0. 78 1 1 0.79 | w d 1 0.73 I LQ,80J] 丨m」 d o s o 〇o d 丨 0,77 1 s o u ό o g o μ ό 1 0.82 1 1 0.65 | V3 i 0.311 l 〇· 18! 1 0.33 1 [0.17-1 L 0J8 J 1 0.29 1 i 017 J s 〇· K d Q.\s\ 〇· 1 0.24 ! d I 0.30 1 I 0.23 | I 0.28 | 1 0.19 1 1 0.30 1 d Q0 d 8 d 1 0.23 1 1 a33 1 d 1 0.19 1 λ « d Si ό Γ0Γ29 1 <0 d 1 0.22 I 1 0.25 1 L0.24 J 1 0.32 I d 1 0.20 1 1 0.24 1 1 0.21 1 u o d o.n 1 0.10 1 0.32 1 o ! 0.31 1 I 0. 43 I 10,43 J t 0 44 j | 0.54 I 10.551 i 0.57 1 丨 0,4S 1 5* d I 0.44 i ss o I 0.43 | 1 0.43 I I 0.43 1 1 0.44 I 1 0.46 1 f 0.43 1 1—047 1 1 0.47 | 1 0.44 I Γ 0.43 1 \ 0.45 1 [0.43 1 i 0.44 1 !5 1 0-47 1 1 0.43 1 Γ0. 46 ] Γ 0.44 I 1 0.45 1 1 0.42 1 「X 45 s 掲 l〇l 1區分 1 箱 5 鞔 I發明例」 睇 u i發明例 | 鞔 銪 1 鞔 u JJ U £ 1發明例 1 墩 Ϊλ 盔 嫌 丨發明例 j g jj 镅 盔 嫌 丨比較例 1 ¥ 1發明例 1 1比較例1 s 烯 s 燉 1發明例 1 £ 翻 额 w 溢 W 級 【發明例Π f 5 9 3 5 s s to CVJ in K S Cs· in s s s 3 λ Φ s φ s g JJ |2 21 1306476 表6 實施例 可切削性 硬度 HV 衝擊值 No. 區分 VL1000 表面粗度 C方向 各向異性 41 發明例 65 20.3 128 — — 42 發明例 65 21.2 132 — — 43 比較例 45 33.5 132 — — 44 發明例 52 — 167 53.4 0.55 45 發明例 57 — 165 53.4 0.53 46 比較例 43 — 174 52.1 0.55 47 發明例 47 一 194 41.6 0.52 48 發明例 50 — 184 38.1 0.55 49 比較例 37 — 196 38.0 0.59 50 發明例 44 — 206 36.2 0.45 51 發明例 36 — 215 35.3 0.46 52 比較例 25 — 203 35.9 0.48 53 比較例 46 - 199 18.9 0.29 54 發明例 45 — 210 35.4 0.44 55 發明例 37 — 202 37.3 0.58 56 比較例 26 — 208 36.9 0.53 57 發明例 43 — 206 36.6 0.54 58 發明例 44 — 212 35.9 0.51 59 比較例 26 — 212 37.7 0.51 60 發明例 38 — 201 37.3 0.51 61 發明例 42 — 205 35.9 0.46 62 比較例 25 — 202 36.4 0.51 63 發明例 45 — 198 41.4 0.63 64 發明例 50 — 192 39.8 0.52 65 比較例 34 一 193 41.4 0.54 66 發明例 50 — 202 41.5 0.66 67 發明例 50 — 192 39.0 0.53 68 比較例 35 — 196 41.2 0.54 69 發明例 46 — 205 38.5 0.51 70 發明例 48 一 204 40.0 0.64 71 比較例 31 — 201 39.6 0.55 72 發明例 48 — 206 40.4 0.59 73 發明例 48 — 192 38.7 0.50 74 比較例 31 一 208 38.6 0.48 75 發明例 47 — 193 38.9 0.59 76 發明例 48 — 205 41.2 0.52 77 比較例 35 — 203 40.4 0.64 22 1306476 表7 切削條件 鑽頭 其他 切削速度1 _200m/min 進料 0.25mm/rev 水溶性切削油 Φ 3mm NACHI —般鑽頭 突出量45mm 孔深 9mm 工具壽命折損為止 實施例41〜43之比較中,發明例在VL1000及表面粗度 上勝過比較例。又,有關實施例44〜77方面,可知雖然發 明例相對於具有大致相等之C及其他合金元素之比較例在 5硬度Hv、橫截面方向試料之衝擊值及(橫截面方向試料之衝 擊值)/(長向試料之衝擊值)上大致相等,但發明例之VL1000 良好且可切削性優異。 再者’如比較例53藉由增加S量來提昇可切削性時,由 於衝擊值之各向異性降低,因此作為構造用鋼之性能比發 10 明例47、48差。 表8係顯示將大量添加合金元素且提昇可淬性之鋼作 為基材之實施例。供試材之一部分於270t轉爐中溶製後, 分解壓延為小胚,再壓延為φ 50mm,其他則於2t~真空溶 解爐中溶製、壓延。 15 實施例78〜82係關於以SCr420作為基材之鋼,在實施 正火(92(TCx lhr—氣冷)後供給至切削試驗。可切削性評價 係藉由鑽頭穿孔試驗且切削條件與表5相同,評價項目為可 切削至累積孔深1000mm之最高切削速度(所謂VL1 〇〇〇)。該 VL1000之單位係m/min,且愈大工具壽命愈佳。再者,測 2〇 定硬度同時作成如第2圖所示於之試驗片上开{成 Rl.16mm之缺口之具有缺口之小野式旋轉彎曲試驗片,且 藉由第3(a)及3(b)圖所示之條件在浸碳後評價疲勞特性。 23 1306476 結果,第3(b)圖所示之正火後之硬度雖然大致相同,但 VL1000係開發鋼較為優異。浸碳後之疲勞特性大致相等, 可知本發明之技術雖然可提昇可切削性,但不會使後來之 齒輪性能降低。18 1306476 Table 3 Cutting conditions Other cutting speeds of the drill bit 10-200m/min Feed 0.33mm/rev Insoluble cutting oil φ 5mm NACHI General drill protrusion amount 65mm Hole depth 15mm Tool life loss until Table 4 Cutting condition bit _____ Other Cutting speed 80m/min Feed 0.05mm/rev Water-insoluble cutting oil equivalent SKH51 Angle 15° Angle of separation 6° Outstanding evaluation point 200 cycles Inventive example has excellent bit tool life relative to the comparative example' At the same time, the surface roughness is good in straight-cutting. This is not changed when the addition of 5, C, S, etc. is different. When adding elements such as Zn, Sn, B, etc., compared with the same C, S, etc. Steel also has excellent tool life and surface roughness. A large amount of S tends to have good machinability, but when the amount of s is small, the chipping property can be improved. On the other hand, as in Comparative Examples 6 and 26 of the examples, when Zn was not added when Sn was added, the machinability could not be improved. Further, when a moldable property-enhancing element such as Te, Pb or Bi is contained, the addition of Ζ η also exhibits superior machinability. Similarly, Table 6 shows the evaluation of the machinability and mechanical properties of the steel having the structural carbon steel as the base material of the chemical composition of the sample shown in Table 5. The ~ part of each test material is dissolved in a 270t converter, and then decomposed and calendered into small embryos, and then rolled into a bar of Φ 65mm, and the others are dissolved and calendered in a 2t-vacuum dissolution furnace. The impact value (J/cm2) was evaluated by making a U-shaped test piece having a depth of 2 mm based on jis. 19 The evaluation of the machinability of Examples 41 to 43 containing ο·1% α was shown in Table 3 for the scallops. The machinability was evaluated by cutting to the highest cutting speed (so-called VL 丨〇〇〇) of the cumulative hole depth of 1 OOO mm. 5 Further, the surface roughness was evaluated by a so-called straight cut using a flat-pressure cutting tool to duplicate the shape of the tool. The experimental system measures the surface roughness when 200 grooves are processed. The surface roughness was evaluated by the straight cut shown in Table 4. With respect to Examples 47 to 46 containing about 0.3% of c and Examples 47 to 77 which are larger than the amounts of C of Examples 44 to 46, since the mechanical properties were emphasized, the impact value and the anisotropy thereof were exhibited. Here, the impact value of the sample cut out from the cross-sectional direction of the bar steel ("C direction" block) is displayed, and the anisotropy system shows (the impact value of the sample in the cross-sectional direction) / (the impact value of the long-term sample) ( "Anisotropy" column). The larger the value, the less anisotropy is shown. Further, the machinability evaluation of Examples 47 to 77 was carried out by the drill hole piercing property 15 VL1000, and was evaluated under the cutting conditions shown in Table 7, and the thickness of the cut surface was not evaluated at this time. 20 w 0 eft Μ S w, Φ chain M o [0. 0052! 10.0088 1 i 0.0046 II 0.0026 | I 〇|0. 00151 10. 0018 | ί 0'00171 10. 0016 I 10. 0020 1 I 0. 0013 I 1 0. 0015 | 0.0013 L〇. 00201 10·0020| I 0. 0017 | 10. 0019 | [0. 0014] 10. 0016 I 0. 0020 10. 0013! φ δ ο 0. 0021 0. 0021 10.0017 10. 00151 I a 00221 0,0016 0.0022 0.0019 0.0015 0.0018 0. 0018 0.0018 0.0021 10. 0020 |〇. 0015| z 1 0.0065 1 1 d [0^)046 Ί I 0.0046 | 1 0.0045 I 1 0.0051 1 I 0.0064 10.0059" 1 0.0048 1 [0.0052 1 1 0.0050 1 I 0.0061 II did [0.0057 I | 0.005» | 1 0.0054 II O.OOS4 II 0.0064 II 0. 0052 I 3? S d 1 0.0054 1 1 0.0049 II 0. 0052 I 1 0. 0055 II o' M id 1 d § ο | 0.0059 | | 0.0064 | I 0.0047 I 1 0.0056 0.0045 M 1 d S d 1 0. 0052 | ώ 1 0.0026 1 1 0.0021 I 〇8 d 1 0.0016 II 0.0028 | I 0.0013 | I 0.0018 ] 00 id [0.0013 1 id I 0. 0022 | I 0.0011 | 5 sso* 1 0. 0022 ) ί 0. 0028 | ΙΛ id |0.0012 IB 8 6 id 00 d 8 d 1 0.026 | 1 0.032 1 1 0.029 1 i 0.018 | 1 0.035 1 1 0.018 1 1 0.030 i 1 0.0X9 1 1 0.021 ] 1 0.021 1 ο 1 0.030 | | 0,020 | I 0.024 | 1 0.034 1 1 0.017 1 I 0.029 j 1 0.0X9 I [0.035 I 1 0.023 1 1 0.029 1 1 0.017 1 1 0.0016 I ! 0.0028 1 I 0.0021 i 1 0.0016 1 1 0.0023 1 [0.0029 1 1 0· 0023 1 1 0. 0024 1 I 0. 0016 | f 0. 0014 1 1 0. 0025 1 I 0. 0026 | 1 0. 0021 1 1 0. 0021 1 1 0. 0028 I — I 0.043 I 1 0.043 1 1 0.033 1 z 1 0.037 1 1 0.024 1 1 0.024 1 > 1—0.11 1 1 0.10 I 1 0.12 I m 1 1 1 1 1 1 i 1 1 1 1 1 1 1 1 \ 1 1 1 i 1 1 1 1 1 i 0.0033Ί 1 I f 1 1 I 1 1 ί 1 t & I 1 0.0098 1 1 1 1 0.0155 1 I 1 0.0107 1 1 1 1 0.0164 1 i 1 I 1 0. 0144Ί ! ] 1 0.0093 I t 1 Male S d 1 1 This o 1 t 1 0.01691 1 1 卜2 O o' i 1 1 0.0196 | 1 1 r〇. 0115 1 1 t5 I 0. 0043 | i 0. 0050 | 1 i O 1 0.0069 1 l· 0. 0020 1 V 1 0.0050 1 1 0. 0076 1 1 0. 0100 ι 1 1 10. 0053 ! I 0. 00 67Ί 1 id 1 O 1 1 0.0091 | [0.0077 1 II 0.0035 I [0.0072 1 1 [0. 0045 1 1 0.0077 1 1 1 0.0065 1 [0.0067 1 i 1 0. 0077 1 IO i 1 0.0034 1 1 0. 0053 1 ! CO C4 s 6 丨0.016 1 1 0.025 1 00 — od 1 0.019 1 1 0.024 I f 0.029 1 〇d 1 0.018 ! [0.013 | 1 0.017 i 1 0.019 1 1 0.114 | I 0.025 1 sod E 0.022 I i ό 1 d 1 0.018 ! I 0.0X2 | 1 0.015] 1 0.024 1 1 0.025 i 1 0.022 1 Γ0.016 1 1 0.013 1 1 0.027 1 Γ 0.016 1 ! 0.020 1 “0,015 1 1 0.029 1 [0.019 1 bO B ό 1 0.029 1 1 0.087 1 1 0.117 1 1 0.082 I CL. 0.029 j 8 Ο ό i 0.024 1 1 0.023 1 1 0.013 1 1 0.013 I 1 0.029 1 [0.021 1 i 0.027 I 1 a 015 ii 0.027 ! 1 0.015 ! 1 0.014 jt 0.021 1 CQ sd I 0.029 Ί 1 0.014 I i 0.018 I f 0.015 1 f 0.015 j 1 0.018 1 \ 0.016 1 [0.021 1 I 0.016 | I 0.027 1 f 0.025 | od U) sdt 0.018 | 1 0.025 | | 0,029 1 1 0.015 | l 0.019 | \ 0.015 1 I 0.019 | j 0.027 1 [0.030 | eoi 0.56 1 1 0.51 1 O soososo [0.62 1 1 0.68 I 1 0.88 1 «VJ iO os o' l_〇,n J 1 0.67 1 1 0.76 I 00 (0 d 1 0v7i -1 Γ 0. 78 1 1 0.79 | wd 1 0.73 I LQ,80J] 丨m” doso 〇od 丨0,77 1 sou ό ogo μ ό 1 0.82 1 1 0.65 | V3 i 0.311 l 〇· 18! 1 0.33 1 [0.17-1 L 0J8 J 1 0.29 1 i 017 J s 〇 · K d Q.\s\ 〇· 1 0.24 ! d I 0.30 1 I 0.23 | I 0.28 | 1 0.19 1 1 0.30 1 d Q0 d 8 d 1 0.23 1 1 a33 1 d 1 0.19 1 λ « d Si ό Γ0Γ29 1 <0 d 1 0.22 I 1 0.25 1 L0.24 J 1 0.32 I d 1 0.20 1 1 0.24 1 1 0.21 1 uod on 1 0.10 1 0.32 1 o ! 0.31 1 I 0 43 I 10,43 J t 0 44 j | 0.54 I 10.551 i 0.57 1 丨0,4S 1 5* d I 0.44 i ss o I 0.43 | 1 0.43 II 0.43 1 1 0.44 I 1 0.46 1 f 0.43 1 1— 047 1 1 0.47 | 1 0.44 I Γ 0.43 1 \ 0.45 1 [0.43 1 i 0.44 1 !5 1 0-47 1 1 0.43 1 Γ0. 46 ] Γ 0.44 I 1 0.45 1 1 0.42 1 "X 45 s 掲l〇 l 1 Division 1 box 5 鞔I invention example 睇ui invention example | 鞔铕1 鞔u JJ U £ 1 invention example 1 Ϊ Ϊ 盔 盔 丨 丨 丨 丨 丨 丨 j j j j j j 丨 丨 丨 丨 丨 ¥ ¥ Comparative Example 1 s ene s stew 1 invention example 1 £ 翻 w overflow W grade [invention example Π f 5 9 3 5 ss to CVJ in KS Cs· in ss s 3 λ Φ s φ sg JJ | 2 21 1306476 Table 6 Example Machinability Hardness HV Impact Value No. Distinguish VL1000 Surface Thickness C Direction Anisotropy 41 Inventive Example 65 20.3 128 — — 42 Inventive Example 65 21.2 132 — - 43 Comparative Example 45 33.5 132 - 44 Inventive Example 52 - 167 53.4 0.55 45 Inventive Example 57 - 165 53.4 0.53 46 Comparative Example 43 - 174 52.1 0.55 47 Inventive Example 47 - 194 41.6 0.52 48 Inventive Example 50 - 184 38.1 0.55 49 Comparative Example 37 - 196 38.0 0.59 50 Inventive Example 44 - 206 36.2 0.45 51 Inventive Example 36 - 215 35.3 0.46 52 Comparative Example 25 - 203 35.9 0.48 53 Comparative Example 46 - 199 18.9 0.29 54 Inventive Example 45 - 210 35.4 0.44 55 Inventive Example 37 — 202 37.3 0.58 56 Comparative Example 26 — 208 36.9 0.53 57 Inventive Example 43 — 206 36.6 0.54 58 Inventive Example 44 — 212 35.9 0.51 59 Comparative Example 26 — 212 37.7 0.51 60 Inventive Example 38 — 201 37.3 0.51 61 Inventive Example 42 — 205 35.9 0.46 62 Comparative Example 25 - 202 36.4 0.51 63 Inventive Example 45 - 198 41.4 0.63 64 Inventive Example 50 - 192 39.8 0.52 65 Comparative Example 34 193 41.4 0.54 66 Inventive Example 50 - 202 41.5 0.66 67 Inventive Example 50 - 192 39.0 0.53 68 Comparative Example 35 - 196 41.2 0.54 69 Inventive Example 46 - 205 38.5 0.51 70 Inventive Example 48 A 204 40.0 0.64 71 Comparative Example 31 - 201 39.6 0.55 72 Inventive Example 48 - 206 40.4 0.59 73 Inventive Example 48 - 192 38.7 0.50 74 Comparative Example 31 - 208 38.6 0.48 75 Inventive Example 47 - 193 38.9 0.59 76 Inventive Example 48 - 205 41.2 0.52 77 Comparative Example 35 - 203 40.4 0.64 22 1306476 Table 7 Cutting conditions Other cutting speed of the drill bit 1 _200 m / min Feed 0.25 mm / rev Water-soluble cutting oil Φ 3 mm NACHI General drill bit protrusion amount 45 mm Hole depth 9 mm Tool life loss before the comparison of Examples 41 to 43, the invention example The comparison example is superior to VL1000 and surface roughness. Further, in the examples 44 to 77, it is understood that the impact value of the sample in the case of the comparative example having substantially equal C and other alloying elements in the hardness Hv, the cross-sectional direction, and the impact value of the sample in the cross-sectional direction. The (the impact value of the long-term sample) was substantially equal, but the VL1000 of the invention example was excellent and the machinability was excellent. Further, as in Comparative Example 53, when the machinability was improved by increasing the amount of S, the anisotropy of the impact value was lowered, so that the performance as the structural steel was inferior to that of the examples 47 and 48. Table 8 shows an example in which a large amount of alloying elements and a steel which improves hardenability are used as a substrate. One part of the test material was dissolved in a 270t converter, and then decomposed and calendered into small embryos, which were then rolled to φ 50mm, and others were dissolved and calendered in a 2t~ vacuum melting furnace. 15 Examples 78 to 82 are steels with SCr420 as the base material, and are subjected to normalizing (92 (TCx lhr-air cooling) and supplied to the cutting test. The machinability evaluation is performed by the drill bit perforation test and the cutting conditions and the table. 5 is the same, the evaluation item is the highest cutting speed that can be cut to a cumulative hole depth of 1000mm (so-called VL1 〇〇〇). The unit of VL1000 is m/min, and the larger the tool life is, the better the hardness is. At the same time, as shown in Fig. 2, a small-field rotating bending test piece having a notch of R1.16 mm was opened on the test piece, and the conditions shown in Figs. 3(a) and 3(b) were After the carbon immersion, the fatigue characteristics were evaluated. 23 1306476 As a result, although the hardness after normalizing as shown in Fig. 3(b) is substantially the same, the VL1000-based developed steel is superior. The fatigue characteristics after carbon immersion are substantially equal, and the present invention is known. Although the technology can improve the machinability, it will not degrade the performance of the gears.

24 1306476 oom 疲勞限度 MPa | 499 | [505 1 | 496 1 s in 485 硬度 HV 1 153 1 L 1.49 1 Lis〇— 1 149 | 可切削性 VL1000 CO CO s s CO 化學成分 (eass%〉 〇 10.0021 | [0.0059 | [0.0056 | |0.0052 1 |0.0042| as 10.00561 |〇.0050 1 10.00451 10.0056! |0.0060| *< | 0.032 | | 0.034 1 | 0. 032 | 1 0.026 | | 0.018 1 LO o | 0.94 1 Οϊ o f—4 | 0.94 | | 0.91 1 CO 1 10.00271 1 1 1 CO 1 1 |0.O163| 1 1 e5 10.00751 10.0032| 10.00781 1 1 c/> | 0.013 | | 0.017 | | 0.013 | | 0.013 I | 0.046 1 | 0.016 | | 0.018 1 | 0.014 | | 0.020 1 [0. 016 1 1 〇y71 1 | 0.70 1 | 0.72 ] | 0.79 1 1 0.71 I CO | 0.19 1 [0.19 1 | 0.19 | | 0.19 1 | 0.19 1 o | 0.21 | L〇^2〇J | 0.18 | 1 0.21 1 0.19 實施例 區分 發明例 發明例 發明例 比較例 |比較例 00 00 1306476 表9係顯示以進一步大量添加合金元素且提昇可淬性 之鋼作為基材之實施例。供試材之一部分於27轉爐中溶 製後,分解壓延為小胚,再壓延為中5〇mm,其他則於2卜 真空浴解爐中溶製、壓延。可切削性評價係藉由鑽頭穿孔 5试驗且切削條件與表7相同,評價項目為可切削至累積孔深 1000mm之最高切削速度(所謂VL丨〇〇〇)。 實施例83〜8 8係以SCM440為基材鋼,並藉由淬火回火 處理使硬度調和為HV310,且可切削性評價係以乂1^1000來 進行。又,機械性質係評價衝擊值。衝擊值係從棒鋼之長 10向切出試料且藉由JIS3號試驗片(2mmU形切口試驗片)來測 定。結果’雖然發明例相對於比較例具有大致相同之硬度、 衝擊值(J/cm2),然而可切削性VL1000比比較例大且優異。 又’實施例89〜94係以軸承鋼為基材,且藉由固定球 狀化退火處理700°Cx 20hr而使其軟質化,且測定可切削性 15 VL1000。結果,雖然發明例相較於比較例具有大致相等之 硬度,但可切削性VL1000大且比比較例優異。 26 1306476 6術 衝擊値 長向 | 61,8 I CO 64.9 1 75.3 1 1 69.5 1 | 70.9 1 1 107.4 1 | 101.5 1 | 105· 9 | l 1 1 硬度 HV Lil§J σ> s | 308 1 1 307 1 CO s CO 1 266 1 CO to 1 276 1 CS3 ft Sj 可切削性 VL1000 CO o CO 00 tn CO cvi cn esi i-H 化學成分 (》ass%) 〇 丨 0· 0013| 10.00151 10.00171 10.00161 丨 0.00141 |0. 0014 | 10.00361 [0.00301 丨 0.0051 | |0. 0009 1 |0.0009 | [0. 0011 1 as |0. 0053 | |0. 0064 1 |0.0046 1 0. 0060 0.00S5 丨0.00521 |0. 0055 1 |0.00501 |0. 0056 1 丨0.0065 j LQQogJ 丨0· 0045 1 丨 0. 026 | |0.031| [0.018 | |0. 033| 丨 0.021 1 丨 0.016| 丨 0.030| 丨 0.0211 |0.026| Γ〇. 029 ] |〇. 034| [0.0191 5 0.10 0.09 — Μ 1.83 m 0.33 0.29 0. 21 0.22 0.28 Ϊ0.25 s f-4 0.97 0.91 o ΙΟ. 95 0.48 0.46 o m r·^ O) GO 1 1 t 1 1 1 1 10.0024 1 1 1 1 1 1 丨 0.0148] 1 1 10.02071 - 1 1 1 i 丨 0.02131 1 tS 0.0067 0.0065 1 丨 0.0094 | 丨 0.00981 1 |0. 0034 1 丨 0.00621 1 |0· 00581 10.00991 1 | 0.017 1 0.017 I 0.016 | | 0.019 | | 0.018 | 丨 0.018 1 1 0.020 1 1 0. 014 1 I 0.016 | | 0.027 | | 0.020 | | 0. 024 | α. 0.013 |0.0131 0.013 |0.0131 10. 0141 l〇. 013] |0.018 ι |〇. 017 1 10.0171 丨0.0281 10·018| 丨 0.017 | β o 0.74 0-74 0.72 0.71 0-79 0.59 0.55 0.57 0,51」 0-53 |0. 52 CO 0.19 0.20 0.19 0.21 o 0.19 CM ο 〇> ο 0,18 0.30 0.33 |〇. 21 0. 39 0. 40 0, 43 0· 39 0. 42 0. 39 〇. 22 0,19 0.20 0.98 0.98 0.99 1 實施例 I i區分 發明例 5 比較例 發明例 發明例 比較例 發明例 5 m 比較例 m 發明例 比較例 So S3 § S5 ς^ι s24 1306476 oom Fatigue Limit MPa | 499 | [505 1 | 496 1 s in 485 Hardness HV 1 153 1 L 1.49 1 Lis〇 — 1 149 | Machinability VL1000 CO CO ss CO Chemical Composition (eass% > 〇10.0021 | [ 0.0059 | [0.0056 | |0.0052 1 |0.0042| as 10.00561 |〇.0050 1 10.00451 10.0056! |0.0060| *< | 0.032 | | 0.034 1 | 0. 032 | 1 0.026 | | 0.018 1 LO o | 0.94 1 Οϊ Of—4 | 0.94 | | 0.91 1 CO 1 10.00271 1 1 1 CO 1 1 |0.O163| 1 1 e5 10.00751 10.0032| 10.00781 1 1 c/> | 0.013 | | 0.017 | | 0.013 | | 0.013 I | 0.046 1 | 0.016 | | 0.018 1 | 0.014 | | 0.020 1 [0. 016 1 1 〇y71 1 | 0.70 1 | 0.72 ] | 0.79 1 1 0.71 I CO | 0.19 1 [0.19 1 | 0.19 | | 0.19 1 | o | 0.21 | L〇^2〇J | 0.18 | 1 0.21 1 0.19 Example Differentiation Invention Example Invention Example Comparative Example | Comparative Example 00 00 1306476 Table 9 shows that the alloying element is further added in a large amount and the hardenability is improved. An example of steel as a substrate. One part of the test material is dissolved in a 27-turn furnace, decomposed and calendered into small embryos, and then calendered to a medium of 5 mm. Then, it was dissolved and calendered in a vacuum bath furnace. The machinability evaluation was carried out by the drill bit 5 test and the cutting conditions were the same as in Table 7. The evaluation item was the highest cutting speed that can be cut to a cumulative hole depth of 1000 mm (so-called VL丨〇〇〇). Examples 83 to 8 8 were made of SCM440 as a base steel, and the hardness was adjusted to HV310 by quenching and tempering, and the machinability evaluation was performed by 乂1^1000. The mechanical properties were evaluated for the impact value. The impact value was measured by cutting the sample from the length of the steel bar 10 and was measured by JIS No. 3 test piece (2 mm U-shaped slit test piece). Results 'Although the inventive examples have substantially the same hardness with respect to the comparative example. The impact value (J/cm2), however, the machinability VL1000 was larger and superior than the comparative example. Further, Examples 89 to 94 were made of bearing steel as a base material, and were softened by a fixed spheroidizing annealing treatment at 700 ° C for 20 hr, and the machinability 15 VL1000 was measured. As a result, although the inventive examples have substantially equal hardness compared to the comparative examples, the machinability VL1000 is large and superior to the comparative examples. 26 1306476 6 shock 値 long | 61,8 I CO 64.9 1 75.3 1 1 69.5 1 | 70.9 1 1 107.4 1 | 101.5 1 | 105· 9 | l 1 1 Hardness HV Lil§J σ> s | 308 1 1 307 1 CO s CO 1 266 1 CO to 1 276 1 CS3 ft Sj Machinability VL1000 CO o CO 00 tn CO cvi cn esi iH Chemical composition ("ass%) 〇丨0· 0013| 10.00151 10.00171 10.00161 丨0.00141 |0 0014 | 10.00361 [0.00301 丨0.0051 | |0. 0009 1 |0.0009 | [0. 0011 1 as |0. 0053 | |0. 0064 1 |0.0046 1 0. 0060 0.00S5 丨0.00521 |0. 0055 1 |0.00501 |0. 0056 1 丨0.0065 j LQQogJ 丨0· 0045 1 丨0. 026 | |0.031| [0.018 | |0. 033| 丨0.021 1 丨0.016| 丨0.030| 丨0.0211 |0.026| Γ〇. 029 ] | 034. 034| [0.0191 5 0.10 0.09 — Μ 1.83 m 0.33 0.29 0. 21 0.22 0.28 Ϊ 0.25 s f-4 0.97 0.91 o ΙΟ. 95 0.48 0.46 omr·^ O) GO 1 1 t 1 1 1 1 10.0024 1 1 1 1 1 1 丨0.0148] 1 1 10.02071 - 1 1 1 i 丨0.02131 1 tS 0.0067 0.0065 1 丨0.0094 | 丨0.00981 1 |0. 0034 1 丨0.00621 1 |0· 00581 10.0099 1 1 | 0.017 1 0.017 I 0.016 | | 0.019 | | 0.018 | 丨0.018 1 1 0.020 1 1 0. 014 1 I 0.016 | | 0.027 | | 0.020 | | 0. 024 | α. 0.013 |0.0131 0.013 |0.0131 10. 0141 l〇. 013] |0.018 ι |〇. 017 1 10.0171 丨0.0281 10·018| 丨0.017 | β o 0.74 0-74 0.72 0.71 0-79 0.59 0.55 0.57 0,51” 0-53 |0. 52 CO 0.19 0.20 0.19 0.21 o 0.19 CM ο 〇> ο 0,18 0.30 0.33 |〇. 21 0. 39 0. 40 0, 43 0· 39 0. 42 0. 39 〇. 22 0,19 0.20 0.98 0.98 0.99 1 Example I i Division invention Example 5 Comparative Example Invention Example Invention Example Comparative Example Invention Example 5 m Comparative Example m Inventive Example Comparative Example So S3 § S5 ς^ι s

27 1306476 產業上之可利用性 若藉由本發明鋼,則藉由促進鋼中機體之斷裂,於c 量小於0.15%之所謂低碳快削鋼中可改善工具壽命與切削 表面粗度,且即使未含有Pb時亦可得到良好之工具壽命與 5 切削表面粗度,又,於含有0.15%以上之C之構造用鋼中亦 可提昇可切削性,同時可將機械性質之惡化,特別是各向 異性抑制在最低限度,或,相較於具有相同程度之機械性 質之鋼,本發明鋼可得到良好之可切削性。 t圖式簡單說明3 10 第1圖係顯示直進切削試驗之概要圖,第1(a)圖係直進 切削試驗方法,第1(b)圖係顯示工具移動之圖。 第2圖係顯示具有缺口部之小野式旋轉彎曲試驗片之 圖。 第3圖係顯示浸碳條件之模式圖,第3(a)圖係顯示浸碳 15 淬火之模式圖,第3(b)圖係顯示正火之條件之模式圖。 【圖式之主要元件代表符號表】 1.. .切削方向 3…工具 2.. .試驗材 4...表面粗度測定面27 1306476 INDUSTRIAL APPLICABILITY According to the steel of the present invention, by promoting the fracture of the body in the steel, the tool life and the surface roughness of the cutting surface can be improved in a so-called low carbon quick-cut steel having a c content of less than 0.15%, and even Good tool life and 5 cutting surface roughness are also obtained when Pb is not contained, and machinability can be improved in structural steel containing 0.15% or more of C, and mechanical properties can be deteriorated, especially The inhibition of the opposite sex is minimal, or the steel of the present invention can achieve good machinability compared to steel having the same degree of mechanical properties. Brief description of t-pattern 3 10 Figure 1 shows a schematic diagram of the straight-cutting test. Figure 1(a) shows the straight-through cutting test method, and Figure 1(b) shows the tool movement. Fig. 2 is a view showing a small-field rotary bending test piece having a notched portion. Fig. 3 is a schematic view showing the conditions of carbon immersion, Fig. 3(a) shows a mode diagram of carbon immersion 15 quenching, and Fig. 3(b) shows a pattern diagram of conditions of normalizing. [The main components of the diagram represent the symbol table] 1.. Cutting direction 3...Tools 2..Test material 4...Surface thickness measurement surface

Claims (1)

公告本 申請專利範圍·· 第92116112號專利申請案申請專利範圍修正本93年9月 1· 一種可切削性優異之鋼,依質量%包含有:c: 〇15〜 [5%、Si : 3% 以下、Μη : 0.01 〜3%、P : 0.001 〜0.2 5 <、S . 0.0<301 〜Ο·1%、Ζη : 0.001 〜0.5%、Ν : 0.0001 〜0.02%、〇 : 0.0005〜〇 〇5%。 2.如申請專利範圍第丨項之可切削性優異之鋼,依質量%Announcement of the scope of patent application of this application · · Patent application No. 92116112 Patent application revision 93 September 1993 1. A steel with excellent machinability, including: c: 〇15~ [5%, Si: 3 % below, Μη: 0.01 to 3%, P: 0.001 to 0.2 5 <, S . 0.0 < 301 Ο 1 1%, Ζ η : 0.001 ~ 0.5%, Ν : 0.0001 ~0.02%, 〇: 0.0005 〇 〇5%. 2. If the steel with excellent machinability is in the scope of the patent application, according to the mass% 更包含有:Sn : 0.002〜0.5%、Β : 0.0005〜0.05%、Cr : 〇.〇1 〜7%、Μο:0·01 〜3%、V:0.01 〜3%、Nb:0.001 10 〜〇.2%、Ti : 0.001 〜0.5%、W : 0.01 〜3%、Ni : 0,05 〜7%、Cu : 0.02〜3%、A1 : 0.001 〜2%、Ca : 0.0002 〜0.01%、Zr : 0.0003〜0.5%、Mg : 0.0002〜0.02%、 Te : o.ooi〜0.5%、Pb : 〇.〇1 〜〇_7%、Bi : 〇.〇1 〜〇 7% 中之1種或2種以上。 15 3.如申請專利範圍第2項之可切削性優異之鋼,其中在含 有0.3%以土之Cu時係滿足Ni% 2Cu%。Further included: Sn: 0.002~0.5%, Β: 0.0005~0.05%, Cr: 〇.〇1 ~7%, Μο:0·01 ~3%, V: 0.01 ~3%, Nb: 0.001 10 〇 .2%, Ti: 0.001 to 0.5%, W: 0.01 to 3%, Ni: 0,05 to 7%, Cu: 0.02 to 3%, A1: 0.001 to 2%, Ca: 0.0002 to 0.01%, Zr: 0.0003 to 0.5%, Mg: 0.0002 to 0.02%, Te: o.ooi to 0.5%, Pb: 〇.〇1 to 〇_7%, Bi: 〇.〇1 to 〇7% of one or two the above. 15 3. A steel having excellent machinability as in the second application of the patent application, wherein Ni% 2Cu% is satisfied when containing 0.3% of Cu in soil. 2929
TW92116112A 2002-06-14 2003-06-13 A steel having excellent cuittability TWI306476B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002174645A JP4267260B2 (en) 2002-06-14 2002-06-14 Steel with excellent machinability

Publications (2)

Publication Number Publication Date
TW200401041A TW200401041A (en) 2004-01-16
TWI306476B true TWI306476B (en) 2009-02-21

Family

ID=29727986

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92116112A TWI306476B (en) 2002-06-14 2003-06-13 A steel having excellent cuittability

Country Status (5)

Country Link
JP (1) JP4267260B2 (en)
KR (1) KR100683923B1 (en)
CN (1) CN100355927C (en)
TW (1) TWI306476B (en)
WO (1) WO2003106724A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60318745T2 (en) * 2002-11-15 2009-01-15 Nippon Steel Corp. STEEL WITH EXCELLENT CUT-OUTPUT AND MANUFACTURING METHOD THEREFOR
JP4041781B2 (en) * 2003-08-12 2008-01-30 株式会社神戸製鋼所 Steel material with excellent corrosion resistance
JP4507865B2 (en) * 2004-12-06 2010-07-21 住友金属工業株式会社 Low carbon free cutting steel
JP4876638B2 (en) * 2006-03-08 2012-02-15 住友金属工業株式会社 Low carbon sulfur free cutting steel
BRPI0804500B1 (en) * 2007-04-18 2018-09-18 Nippon Steel & Sumitomo Metal Corp hot work steel
CN105908069B (en) * 2009-04-14 2018-03-06 新日铁住金株式会社 The low-gravity warm and hot forging bar steel of excellent in machinability
CN101906596B (en) * 2010-07-05 2015-09-02 郁寿林 A kind of high-sulfur antifriction abrasion-resistant casting steel
WO2012118053A1 (en) * 2011-03-03 2012-09-07 日立金属株式会社 Hot work tool steel having excellent toughness, and process of producing same
JP5907415B2 (en) * 2011-03-03 2016-04-26 日立金属株式会社 Hot work tool steel with excellent toughness
TWI448565B (en) * 2011-05-30 2014-08-11 Kobe Steel Ltd Steel with improved rolling fatigue characteristics
CN102433505A (en) * 2011-12-14 2012-05-02 虞海盈 Material for producing rolling bearings
CN103388107B (en) * 2013-08-09 2015-03-11 武汉钢铁(集团)公司 Coppery BN (Boron Nitride) type free-cutting steel and production method thereof
CN103643139A (en) * 2013-11-12 2014-03-19 铜陵市肆得科技有限责任公司 Alloy steel material for water pump bearings and preparation method thereof
CN103741077A (en) * 2013-12-24 2014-04-23 中兴能源装备股份有限公司 Rolled steel
CN105349883A (en) * 2015-12-07 2016-02-24 张家港市新凯带钢制造有限公司 Corrosion-resistant alloy steel
CN105755382A (en) * 2016-03-31 2016-07-13 苏州睿昕汽车配件有限公司 Anticorrosion automobile accessory alloy steel material and preparation method thereof
CN106148818B (en) * 2016-06-23 2018-09-11 南通市嘉业机械制造有限公司 A kind of manufacturing method and its temperature control system of piercing plug for seamless steel tubes
PT3412790T (en) * 2017-06-06 2020-11-03 Bgh Edelstahl Siegen Gmbh Precipitation hardening steel and use of such a steel for thermoforming tools
KR102010052B1 (en) * 2017-10-19 2019-08-12 주식회사 포스코 Medium carbon free cutting steel having excellent hot workability and method for manufacturing the same
CN107747024A (en) * 2017-10-31 2018-03-02 桂林加宏汽车修理有限公司 A kind of high-temperature steel alloy
CN108677086A (en) * 2018-04-17 2018-10-19 常熟市虹桥铸钢有限公司 A kind of petroleum machinery preventer casting
CN108677085A (en) * 2018-04-17 2018-10-19 常熟市虹桥铸钢有限公司 A kind of preparation method of petroleum machinery preventer casting
CN108798586A (en) * 2018-04-17 2018-11-13 常熟市虹桥铸钢有限公司 A kind of preventer
KR102103382B1 (en) * 2018-10-29 2020-04-22 주식회사 포스코 Steel material and manufacturing method thereof
CN112063924B (en) * 2020-09-08 2022-05-20 鞍钢股份有限公司 High-carbon selenium-tin-containing free-cutting steel and production method thereof
TWI789124B (en) * 2021-11-19 2023-01-01 財團法人金屬工業研究發展中心 Method of manufacturing a carbon steel component
CN115896617A (en) * 2022-11-04 2023-04-04 湖南高华新材料科技有限公司 Low-cost super steel material structure component and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133716A (en) * 1974-09-17 1976-03-23 Daido Steel Co Ltd * teitansokarushiumu iokeikaisakuko *
US4255187A (en) * 1979-08-29 1981-03-10 Inland Steel Company Bismuth-containing steel
KR100268536B1 (en) * 1996-11-25 2000-10-16 고지마 마타오 Steel having excellent machinability and machined component

Also Published As

Publication number Publication date
JP4267260B2 (en) 2009-05-27
JP2004018925A (en) 2004-01-22
WO2003106724A1 (en) 2003-12-24
KR20050008823A (en) 2005-01-21
CN1659297A (en) 2005-08-24
KR100683923B1 (en) 2007-02-16
CN100355927C (en) 2007-12-19
TW200401041A (en) 2004-01-16

Similar Documents

Publication Publication Date Title
TWI306476B (en) A steel having excellent cuittability
EP2138597B1 (en) Hot-worked steel material having excellent machinability and impact value
TWI494445B (en) Carburized steel part
EP2381003B1 (en) Steel for high-frequency hardening
TWI494447B (en) High-strength steel sheet excellent in formability, high-strength zinc plated steel sheet and the like (2)
TW201037090A (en) Carburized steel, carburized steel parts, and manufacturing method of carburized steel
KR20100132529A (en) Steel, process for the manufacture of a steel blank and process for the manufacture of a component of the steel
KR101726251B1 (en) Steel for nitrocarburizing and nitrocarburized component, and methods for producing said steel for nitrocarburizing and said nitrocarburized component
TW200821393A (en) A high strength steel used for springs and a high strength heat-treated steel wire used for springs
JP6366326B2 (en) High toughness hot work tool steel and manufacturing method thereof
JP2007031787A (en) Case-hardened steel having superior grain coarsening resistance, fatigue characteristic and machinability, and manufacturing method therefor
WO2012161321A1 (en) Steel component for mechanical structural use and manufacturing method for same
KR20100116991A (en) Steel wire rod having high strength and excellent toughness
TWI531666B (en) Fat iron type stainless steel and its manufacturing method
WO2001059170A1 (en) Machine structural steel being free of lead, excellent in machinability and reduced in strength anisotropy
CN108603260B (en) Steel
JP5152440B2 (en) Steel parts for machine structure and manufacturing method thereof
JP2007211314A (en) Method for hot-forging non-heat-treated parts
EP2022865A1 (en) Ultrahigh strength steel sheet and strength part for automobile utilizing the same
JP6772915B2 (en) Cold tool steel
JP2007314837A (en) Age hardening type ferritic stainless steel sheet and age-treated steel material using the same
JPH09316601A (en) Cold tool steel suitable for surface treatment, die and tool for the same
JP2004277818A (en) Free cutting steel for metal mold for molding plastic
JP2000256785A (en) Steel excellent in machinability and its production
JP2012001765A (en) Bar steel for steering rack bar and method for manufacturing bar steel

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent