JP2006131972A - Ferritic stainless steel with excellent machinability, and its manufacturing method - Google Patents

Ferritic stainless steel with excellent machinability, and its manufacturing method Download PDF

Info

Publication number
JP2006131972A
JP2006131972A JP2004324107A JP2004324107A JP2006131972A JP 2006131972 A JP2006131972 A JP 2006131972A JP 2004324107 A JP2004324107 A JP 2004324107A JP 2004324107 A JP2004324107 A JP 2004324107A JP 2006131972 A JP2006131972 A JP 2006131972A
Authority
JP
Japan
Prior art keywords
stainless steel
ferritic stainless
machinability
sulfide
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004324107A
Other languages
Japanese (ja)
Inventor
Yuichi Ichihara
祐一 市原
Shuji Narita
修二 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2004324107A priority Critical patent/JP2006131972A/en
Publication of JP2006131972A publication Critical patent/JP2006131972A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide ferritic stainless steel in which machinability is improved without particularly deteriorating toughness and ductility and also to provide its manufacturing method. <P>SOLUTION: The ferritic stainless steel has a composition consisting of, by mass, ≤0.15% C, ≤1.00% Si, ≤1.50% Mn, 12 to 30% Cr, ≥0.010% S and the balance Fe with inevitable impurities and further containing, if necessary, 2.0 to 6.0% Al. Moreover, the width of sulfides is made to ≤3μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は被削性及び靭延性に優れたフェライト系ステンレス鋼及びその製造方法に関する。   The present invention relates to a ferritic stainless steel excellent in machinability and toughness and a method for producing the same.

従来より、加熱,冷却が繰り返される部位に使用される耐熱材料として、熱膨張係数の小さいフェライト系ステンレス鋼が用いられている。
ところでこのフェライト系ステンレス鋼は靭延性が悪い問題の他に被削性が悪く、切削加工によって所望の部品等を製造する際に製造能率,歩留りが低く、そのため製造コストが高くなるといった問題が内在している。
特に太さが100μm程度の細い繊維状の製品を切削加工によって製造する際、これらの問題が大きな問題となる。
Conventionally, a ferritic stainless steel having a low coefficient of thermal expansion has been used as a heat-resistant material used in a portion where heating and cooling are repeated.
By the way, this ferritic stainless steel has not only poor toughness but also poor machinability, and has problems such as low production efficiency and yield when manufacturing desired parts by cutting, and therefore high production cost. is doing.
In particular, when a thin fiber product having a thickness of about 100 μm is manufactured by cutting, these problems become serious problems.

例えば自動車のマフラーではフェライト系ステンレス鋼を繊維状に加工して消音材として用いることが行われているが、この場合、フェライト系ステンレス鋼の繊維の径が細い方が消音効果が高いとされており、従って加工の際にフェライト系ステンレス鋼を細く加工することが求められる。   For example, in an automobile muffler, ferritic stainless steel is processed into a fiber and used as a sound deadening material. In this case, the smaller the diameter of the ferrite stainless steel fiber, the higher the sound deadening effect. Therefore, it is required to finely process ferritic stainless steel during processing.

例えばこのような用途には従来、Alを含有していないフェライト系ステンレス鋼と、耐熱性が更に求められる場合にAlを含有させて耐酸化性を高めたAl含有のフェライト系ステンレス鋼(フェライト系耐熱鋼)が用いられ、而してこれを加工製造する方法として線材引抜加工(伸線加工)を用いれば特に被削性が問題となることはないが、近年これを切削加工にて製造することが検討されており、この場合従来のフェライト系ステンレス鋼は被削性が悪いために切削加工を良好に行えず、製造能率が低くなるとともに、加えてフェライト系ステンレス鋼は靭延性も悪いために加工中に容易に繊維が折れてしまって歩留りが悪化し、製造コストの上昇をもたらす問題を生じていた。
また靭延性の低さは単に加工の際に問題となるだけでなく、製品となった後も容易に折れたりしてしまうなど、製品(部品)としての特性も損ってしまう。
For example, conventional ferritic stainless steels that do not contain Al for such applications, and Al-containing ferritic stainless steels that have improved oxidation resistance by adding Al when heat resistance is further required (ferritic series) However, if wire drawing (drawing) is used as a method for processing and manufacturing this, machinability is not particularly problematic, but in recent years this is manufactured by cutting. In this case, since conventional ferritic stainless steel has poor machinability, it cannot perform cutting well, resulting in low production efficiency. In addition, ferritic stainless steel also has poor toughness. In addition, the fiber easily breaks during processing, yield is deteriorated, and the production cost is increased.
In addition, the low toughness is not only a problem in processing, but also the characteristics as a product (part), such as being easily broken after the product is produced.

このようなフェライト系ステンレス鋼の欠点である被削性の問題を改善する手段として、快削元素であるSを添加することが考えられるが、この場合単にSを添加しただけであると被削性については向上するものの、一方で靭延性が更に劣化し、製造能率,歩留りをより悪化させるだけでなく、部品としての特性も更に低下させてしまう。   As a means of improving the machinability problem, which is a disadvantage of such ferritic stainless steels, it is conceivable to add S, which is a free-cutting element. However, the ductility is further deteriorated, and not only the production efficiency and the yield are further deteriorated, but also the characteristics as a part are further deteriorated.

尚、下記特許文献1には製造性及び耐高温酸化性に優れたAl含有フェライト系ステンレス鋼についての発明が、また下記特許文献2には耐高温酸化性に優れた高Al含有フェライト系ステンレス鋼についての発明が開示され、そこにおいてそれぞれ加工性を改善するための技術手段が示されているが、これらは本発明とは課題解決手段の異なるもので、本発明とは異なっている。   The following Patent Document 1 discloses an invention about an Al-containing ferritic stainless steel excellent in manufacturability and high-temperature oxidation resistance, and the following Patent Document 2 describes a high Al-containing ferritic stainless steel excellent in high-temperature oxidation resistance. The technical means for improving the workability are disclosed in each of them, and these are different from the present invention in the problem solving means and are different from the present invention.

特開平6−172933号公報JP-A-6-172933 特開平6−172932号公報JP-A-6-172932

本発明は以上のような事情を背景とし、靭延性が特に損われないで被削性の改善されたフェライト系ステンレス鋼及びその製造方法を提供することを目的としてなされたものである。   The present invention has been made for the purpose of providing a ferritic stainless steel having improved machinability without particularly impairing toughness and a method for producing the same, against the background described above.

而して請求項1のものは被削性に優れたフェライト系ステンレス鋼に関するもので、質量%でC:≦0.15%,Si:≦1.00%,Mn:≦1.50%,Cr:12〜30%,S:≧0.010%,残部Fe及び不可避的不純物の組成を有し、且つ硫化物の巾が3μm以下であることを特徴とする。   Thus, claim 1 relates to a ferritic stainless steel having excellent machinability, and in terms of mass%, C: ≦ 0.15%, Si: ≦ 1.00%, Mn: ≦ 1.50%, Cr: 12-30% , S: ≧ 0.010%, remaining Fe and inevitable impurities, and the width of the sulfide is 3 μm or less.

請求項2のものは、請求項1において、質量%でMo:≦3.0%を更に含有することを特徴とする。   According to a second aspect of the present invention, in the first aspect, Mo: ≦ 3.0% is further contained by mass%.

請求項3のものは、質量%でC:≦0.15%,Si:≦1.00%,Mn:≦1.50%,Cr:12〜30%,Al:2.0〜6.0%,S:≧0.010%,残部Fe及び不可避的不純物の組成を有し、且つ硫化物の巾が3μm以下であることを特徴とする。   According to the third aspect, in mass%, C: ≦ 0.15%, Si: ≦ 1.00%, Mn: ≦ 1.50%, Cr: 12-30%, Al: 2.0-6.0%, S: ≧ 0.010%, balance Fe And the composition of inevitable impurities, and the width of the sulfide is 3 μm or less.

請求項4のものは、請求項1〜3の何れかにおいて、質量%でZr:0.01〜0.3%,Y:0.01〜0.3%の何れか1種又は2種を更に含有することを特徴とする。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the composition further comprises any one or two of Zr: 0.01 to 0.3% and Y: 0.01 to 0.3% by mass%. .

請求項5は被削性に優れたフェライト系ステンレス鋼の製造方法に関するもので、請求項1〜4の何れかに記載のフェライト系ステンレス鋼において、鍛錬比1000以上で熱間圧延又は鍛造を行うことによって前記硫化物の巾を3μm以下とすることを特徴とする。   Claim 5 relates to a method for producing a ferritic stainless steel having excellent machinability. In the ferritic stainless steel according to any one of claims 1 to 4, hot rolling or forging is performed at a forging ratio of 1000 or more. Thus, the width of the sulfide is set to 3 μm or less.

発明の作用・効果Effects and effects of the invention

以上のように本発明はフェライト系ステンレス鋼、更にはAl含有によって耐酸化性を高めた耐熱性のフェライト系ステンレス鋼において、Sを0.010%以上含有させるとともに硫化物の形態を、その巾が3μm以下となるように形態制御したものである。   As described above, in the present invention, ferritic stainless steel, and further heat resistant ferritic stainless steel whose oxidation resistance is improved by containing Al, is contained 0.010% or more of S, and the form of sulfide is 3 μm in width. The form is controlled to be as follows.

オーステナイト系ステンレス鋼の場合、もともと靭延性に優れているためにSを添加した場合において、その硫化物の形態を上記のような形態に制御しても、そのことが靭延性に大きく影響を与えるといったことは特に生じない。
このようなオーステナイト系ステンレス鋼の場合、Sの添加量(絶対量)そのものによって靭延性が左右される。
In the case of austenitic stainless steel, when S is added because it is originally excellent in toughness, even if the form of the sulfide is controlled to the above form, it greatly affects the toughness. This does not occur in particular.
In the case of such an austenitic stainless steel, the toughness is affected by the addition amount (absolute amount) of S itself.

しかるにフェライト系ステンレス鋼の場合、もともと靭延性が低いため、硫化物の存在形態を上記形態とすることで、S添加による靭延性の低下を効果的に抑制することができる。
詳述すると、硫化物を巾3μm以下で圧延,鍛造方向に細く延びた形態で存在させたフェライト系ステンレス鋼にあっては、その横断面においては硫化物の粒子は細かいものとなり、従って曲げ方向或いは引張り方向、特に引張り方向においては丸い大きな硫化物が多数存在している場合に比べて延性及び靭性が良好となる。
従って例えばフェライト系ステンレス鋼を細い繊維状に切削加工して製造する場合において、その加工品の折れや切断方向の靭延性が良好となる。
However, in the case of ferritic stainless steel, the toughness is originally low, so that the reduction of toughness due to the addition of S can be effectively suppressed by making the presence form of sulfides the above form.
More specifically, in the ferritic stainless steel in which the sulfide is present in a form extending thinly in the forging direction by rolling with a width of 3 μm or less, the sulfide particles are fine in the cross section, and therefore the bending direction. Or ductility and toughness become favorable compared with the case where many large round sulfides exist in the tensile direction, particularly in the tensile direction.
Therefore, for example, when ferritic stainless steel is manufactured by cutting into a thin fiber shape, the work product has good bending and tough ductility in the cutting direction.

その結果として、本発明によれば靭延性を大きく損うことなくS添加によってフェライト系ステンレス鋼の被削性を効果的に高めることができ、これによって繊維状その他の部材を切削加工にて製造する際の製造能率を高め、また歩留りを高め得て、製造コストを効果的に低減することが可能となる。   As a result, according to the present invention, the machinability of ferritic stainless steel can be effectively increased by adding S without greatly impairing the toughness, thereby producing a fibrous or other member by cutting. In this case, the production efficiency can be increased and the yield can be increased, and the production cost can be effectively reduced.

次に本発明の請求項5の製造方法は、鍛錬比1000以上で熱間圧延又は鍛造を行うことによって請求項1〜4のフェライト系ステンレス鋼を製造するもので、このような鍛錬比で熱間圧延又は鍛造を行うことによって、硫化物の存在形態を上記の形態即ち巾3μm以下で細長く延びた形態とすることができる。   Next, the manufacturing method of Claim 5 of this invention manufactures the ferritic stainless steel of Claims 1-4 by performing hot rolling or forging by the forging ratio 1000 or more, By performing the intermediate rolling or forging, the existence form of the sulfide can be made into the above-mentioned form, that is, the form elongated in a width of 3 μm or less.

本発明においては、必要に応じてPb,Bi,Se,Te,Ca等の快削元素の何れか1種又は2種以上を、それぞれ0.01〜0.3%の範囲で添加することができる。
またNb,Ti,V,Ta等の結晶粒微細化元素の何れか1種又は2種以上を、それぞれ0.01〜0.3%の範囲で添加することができる。
更にREM,La等の耐酸化性向上元素の何れか1種又は2種以上を、それぞれ0.1〜0.3%の範囲で添加することができる。
In the present invention, one or more free cutting elements such as Pb, Bi, Se, Te, and Ca can be added in the range of 0.01 to 0.3%, respectively, as necessary.
In addition, any one or more of crystal grain refining elements such as Nb, Ti, V, and Ta can be added in the range of 0.01 to 0.3%, respectively.
Further, any one or more of oxidation resistance improving elements such as REM and La can be added in the range of 0.1 to 0.3%.

また硫化物の増量,快削元素の添加で熱間加工性が劣化する場合には、大きな熱間加工を加えるために例えば線材熱間加工時に3方ロール圧延,中間加熱等を採用することができる。
更に強度を高めるためにCo,W等の固溶強化元素の何れか1種又は2種以上を、それぞれ0.1〜2.0%の範囲で添加することができる。
If hot workability deteriorates due to an increase in the amount of sulfide or addition of free-cutting elements, for example, three-way roll rolling or intermediate heating may be employed during hot working of wire rods in order to add large hot working. it can.
In order to further increase the strength, one or more of solid solution strengthening elements such as Co and W can be added in the range of 0.1 to 2.0%, respectively.

次に本発明の化学成分の限定理由を以下に詳述する。
C:≦0.15%
Cは鋼の強度を付与する元素である。一方炭化物,窒化物として析出し、耐食性,靭性を低下させるため0.15%以下とした。
Next, the reasons for limiting the chemical components of the present invention will be described in detail below.
C: ≤ 0.15%
C is an element imparting the strength of steel. On the other hand, it is precipitated as carbides and nitrides, and in order to reduce corrosion resistance and toughness, the content is made 0.15% or less.

Si:≦1.00%
Siは耐高温酸化性向上に有効である。一方靭性を低下させるため1.00%以下とした。
Si: ≦ 1.00%
Si is effective in improving high temperature oxidation resistance. On the other hand, to reduce toughness, the content was made 1.00% or less.

Mn:≦1.50%
Mnは熱間加工性改善に有効である一方、耐酸化性を劣化させるため1.50%以下とした。
Mn: ≦ 1.50%
Mn is effective for improving the hot workability, but is made 1.50% or less in order to deteriorate the oxidation resistance.

Cr:12〜30%
Crは耐酸化性を確保するために必要であるが、上限を超えると靭性,延性が低下するため12〜30%とした。
Cr: 12-30%
Cr is necessary to ensure oxidation resistance, but if it exceeds the upper limit, the toughness and ductility deteriorate, so the content was made 12-30%.

S:≧0.010%
Sは被削性向上に有効であるため0.010%以上とした。
S: ≧ 0.010%
Since S is effective in improving machinability, it is set to 0.010% or more.

Mo:≦3.0%
Moは耐食性を向上させる一方、含有量が多いと延性が低下するため3.0%以下とした。
Mo: ≤3.0%
While Mo improves the corrosion resistance, the ductility decreases when the content is large, so the content was made 3.0% or less.

Al:2.0〜6.0%
Alは耐高温酸化性を向上させるが、上限を超えた場合その効果は飽和し、また靭性劣化を招くため2.0〜6.0%とした。
Al: 2.0-6.0%
Al improves the high-temperature oxidation resistance, but when the upper limit is exceeded, the effect is saturated and the toughness is deteriorated, so the content was made 2.0 to 6.0%.

Zr:0.01〜0.3%
Zrは結晶粒微細化或いは耐酸化性向上に寄与するが、過剰に添加しても効果は飽和するため0.01〜0.3%とした。
Zr: 0.01-0.3%
Zr contributes to refinement of crystal grains or improvement of oxidation resistance, but the effect is saturated even if added excessively, so the content was made 0.01 to 0.3%.

Y:0.01〜0.3%
Yは耐高温酸化性向上に寄与するが、過剰に添加してもその効果は飽和するため0.01〜0.3%とした。
Y: 0.01-0.3%
Y contributes to the improvement of high-temperature oxidation resistance, but the effect is saturated even if added in excess, so the content was made 0.01 to 0.3%.

Pb,Bi,Se,Te,Ca:0.01〜0.3%
Pb,Bi,Se,Te,Caは被削性向上に寄与するため、必要に応じ0.01〜0.3%添加することができる。
Pb, Bi, Se, Te, Ca: 0.01 to 0.3%
Pb, Bi, Se, Te, and Ca contribute to the improvement of machinability, so that 0.01 to 0.3% can be added as necessary.

Nb,Ti,V,Ta:0.01〜0.3%
Nb,Ti,V,Taは結晶粒微細化に寄与するため、必要に応じ0.01〜0.3%添加することができる。
Nb, Ti, V, Ta: 0.01 to 0.3%
Since Nb, Ti, V, and Ta contribute to crystal grain refinement, 0.01 to 0.3% can be added as necessary.

REM,La:0.1〜0.3%
REM,Laは耐酸化性向上元素であり、必要に応じ0.1〜0.3%添加することができる。
REM, La: 0.1-0.3%
REM and La are elements for improving oxidation resistance, and can be added in an amount of 0.1 to 0.3% as necessary.

CO,W:0.1〜2.0%
CO,Wは固溶強化元素であり、強度を高めるため必要に応じ0.1〜2.0%添加することができる。
CO, W: 0.1-2.0%
CO and W are solid solution strengthening elements, and can be added in an amount of 0.1 to 2.0% as necessary to increase the strength.

次に本発明の実施形態を以下に詳しく説明する。
表1に示す各種成分組成の鋼を電気炉にて溶製し、1t〜12tのインゴットに鋳込んだ後、鍛造及び圧延の組み合わせにて表1に示す鍛錬比が得られるよう、発明例1についてはφ5.5,発明例2についてはφ7.25,発明例3についてはφ9.0,発明例4についてはφ9.25,発明例6についてはφ8.25の線材を、発明例5についてはφ22の棒鋼を製造した(単位はそれぞれmm)。
その後800℃〜1000℃にて焼鈍を施した後、硫化物巾,靭延性(絞り),被削性(切削抵抗)のそれぞれを以下の方法で評価した。
Next, embodiments of the present invention will be described in detail below.
Inventive Example 1 so as to obtain the forging ratio shown in Table 1 by a combination of forging and rolling after melting steels having various component compositions shown in Table 1 in an electric furnace and casting into ingots of 1 to 12 t. Is φ5.55 for Invention Example 2, φ9.05 for Invention Example 3, φ9.05 for Invention Example 4, φ8.55 for Invention Example 6, and φ8.25 for Invention Example 6, A steel bar of φ22 was manufactured (unit is mm).
Then, after annealing at 800 ° C. to 1000 ° C., each of the sulfide width, toughness (drawing), and machinability (cutting resistance) was evaluated by the following methods.

<硫化物巾>
硫化物巾は、試験片の縦断面方向の任意の30視野を光学顕微鏡(×400)にて観察し、確認された硫化物について圧延方向に対し垂直方向の最大巾を測定した。
<Sulphide width>
With respect to the sulfide width, arbitrary 30 visual fields in the longitudinal section direction of the test piece were observed with an optical microscope (× 400), and the maximum width in the direction perpendicular to the rolling direction was measured for the confirmed sulfide.

<靭延性(絞り)>
絞りはJIS4号試験片にて常温引張り試験を行い評価した。
<Toughness (drawing)>
The drawing was evaluated by performing a room temperature tensile test with a JIS No. 4 test piece.

<被削性(切削抵抗)>
被削性は切削加工時の切削抵抗の主分力(N)の大小によって評価した。
尚試験条件は以下とした。
・試験条件
工具:超硬
周速:100m/min
切込み量:0.1mm
一回転当りの送り量:0.05mm/rev
乾式
<Machinability (cutting resistance)>
The machinability was evaluated by the magnitude of the main component force (N) of the cutting resistance during cutting.
The test conditions were as follows.
Test conditions Tool: Carbide Peripheral speed: 100 m / min
Cutting depth: 0.1 mm
Feed amount per rotation: 0.05mm / rev
Dry

結果が表1に併せて示してある。   The results are also shown in Table 1.

Figure 2006131972
Figure 2006131972

表1において、S添加量0.004%である比較例1は被削性評価が×である(被削性評価は×:35N以上,○:35〜25N,◎:25N以下とした)。   In Table 1, the machinability evaluation is x in Comparative Example 1 where the S addition amount is 0.004% (the machinability evaluation is x: 35N or more, ◯: 35-25N, ◎: 25N or less).

S添加量0.241%である比較例2は被削性評価◎であるが、硫化物巾が5μmであり、その結果として絞り値が51%と比較例1対比で低めである。   Comparative Example 2 with an S addition amount of 0.241% is a machinability evaluation ◎, but the sulfide width is 5 μm, and as a result, the aperture value is 51%, which is lower than that of Comparative Example 1.

S添加量0.023%である比較例3は被削性評価○であるが、硫化物巾が4μmであり、その結果として絞り値が43%と比較例1対比で低めである。   Comparative Example 3 with an S addition amount of 0.023% is a machinability evaluation ◯, but the sulfide width is 4 μm, and as a result, the aperture value is 43%, which is lower than that of Comparative Example 1.

比較例1,2,3の絞り値を比較すると、硫化物巾が最小である比較例1が最良であることが分る。
また高鍛錬比である比較例1が比較例2,3に比べ硫化物巾が小さい傾向にあることが分る。
Comparing the aperture values of Comparative Examples 1, 2, and 3, it can be seen that Comparative Example 1 with the smallest sulfide width is the best.
Moreover, it turns out that the comparative example 1 which is a high training ratio exists in the tendency for a sulfide width to be small compared with the comparative examples 2 and 3. FIG.

上記を加味し、発明例1〜発明例6を製造し評価したところ、硫化物の巾が3μm以下であり、良好な靭延性(絞り)を保有し、また被削性に優れたフェライト系ステンレス鋼を得ることができた。
尚絞り値については60%以上を目標とした。
In consideration of the above, Invention Examples 1 to 6 were produced and evaluated, and the width of the sulfide was 3 μm or less, possessed good toughness (drawing), and ferritic stainless steel excellent in machinability. I was able to get steel.
The aperture value was set to 60% or more.

以上本発明の実施形態を詳述したがこれはあくまで一例示であり、本発明はその趣旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。   Although the embodiment of the present invention has been described in detail above, this is merely an example, and the present invention can be implemented in variously modified forms without departing from the spirit of the present invention.

Claims (5)

質量%で
C :≦0.15%
Si:≦1.00%
Mn:≦1.50%
Cr:12〜30%
S :≧0.010%
残部Fe及び不可避的不純物の組成を有し、且つ硫化物の巾が3μm以下であることを特徴とする被削性に優れたフェライト系ステンレス鋼。
In mass%
C: ≤0.15%
Si: ≦ 1.00%
Mn: ≦ 1.50%
Cr: 12-30%
S: ≧ 0.010%
A ferritic stainless steel having excellent machinability, characterized by having a composition of the balance Fe and inevitable impurities and having a sulfide width of 3 μm or less.
質量%で
Mo:≦3.0%
を更に含有することを特徴とする請求項1に記載の被削性に優れたフェライト系ステンレス鋼。
In mass%
Mo: ≤3.0%
The ferritic stainless steel excellent in machinability according to claim 1, further comprising:
質量%で
C :≦0.15%
Si:≦1.00%
Mn:≦1.50%
Cr:12〜30%
Al:2.0〜6.0%
S :≧0.010%
残部Fe及び不可避的不純物の組成を有し、且つ硫化物の巾が3μm以下であることを特徴とする被削性に優れたフェライト系ステンレス鋼。
In mass%
C: ≤0.15%
Si: ≦ 1.00%
Mn: ≦ 1.50%
Cr: 12-30%
Al: 2.0-6.0%
S: ≧ 0.010%
A ferritic stainless steel excellent in machinability, characterized by having a composition of the balance Fe and inevitable impurities, and having a sulfide width of 3 μm or less.
質量%で
Zr:0.01〜0.3%
Y :0.01〜0.3%
の何れか1種又は2種を更に含有することを特徴とする請求項1〜3の何れかに記載の被削性に優れたフェライト系ステンレス鋼。
In mass%
Zr: 0.01-0.3%
Y: 0.01 to 0.3%
The ferritic stainless steel excellent in machinability according to any one of claims 1 to 3, further comprising any one or two of the above.
鍛錬比1000以上で熱間圧延又は鍛造を行うことによって前記硫化物の巾を3μm以下とする請求項1〜4の何れかに記載の被削性に優れたフェライト系ステンレス鋼の製造方法。   The manufacturing method of the ferritic stainless steel excellent in the machinability in any one of Claims 1-4 which makes the width | variety of the said sulfide 3 micrometers or less by performing hot rolling or forging by the forge ratio 1000 or more.
JP2004324107A 2004-11-08 2004-11-08 Ferritic stainless steel with excellent machinability, and its manufacturing method Pending JP2006131972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004324107A JP2006131972A (en) 2004-11-08 2004-11-08 Ferritic stainless steel with excellent machinability, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004324107A JP2006131972A (en) 2004-11-08 2004-11-08 Ferritic stainless steel with excellent machinability, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006131972A true JP2006131972A (en) 2006-05-25

Family

ID=36725781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004324107A Pending JP2006131972A (en) 2004-11-08 2004-11-08 Ferritic stainless steel with excellent machinability, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006131972A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104202A1 (en) * 2015-12-18 2017-06-22 大同特殊鋼株式会社 Ferrite-based free-machining stainless steel and method for producing same
CN114789232A (en) * 2022-03-09 2022-07-26 山东腾达紧固科技股份有限公司 Processing technology of high-strength stainless steel fastener

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104202A1 (en) * 2015-12-18 2017-06-22 大同特殊鋼株式会社 Ferrite-based free-machining stainless steel and method for producing same
CN114789232A (en) * 2022-03-09 2022-07-26 山东腾达紧固科技股份有限公司 Processing technology of high-strength stainless steel fastener
CN114789232B (en) * 2022-03-09 2023-08-11 山东腾达紧固科技股份有限公司 Processing technology of high-strength stainless steel fastener

Similar Documents

Publication Publication Date Title
JP4803174B2 (en) Austenitic stainless steel
JP4258679B1 (en) Austenitic stainless steel
JP6004653B2 (en) Ferritic stainless steel wire, steel wire, and manufacturing method thereof
JP5396752B2 (en) Ferritic stainless steel with excellent toughness and method for producing the same
JP5156293B2 (en) Ferritic / austenitic stainless steel with excellent corrosion resistance and workability and manufacturing method thereof
JP6475053B2 (en) Duplex stainless steel wire and screw product and method for producing duplex stainless steel wire
JP2008189974A (en) Ferritic stainless steel for exhaust gas passage member
WO2016152622A1 (en) Ferrite-austenite stainless steel sheet with excellent sheared end face corrosion resistance
JP2007289979A (en) Method for producing cast slab or steel ingot made of titanium-added case hardening steel and the cast slab or steel ingot, and case hardening steel made of the cast slab or steel ingot
JP6520546B2 (en) Austenitic heat-resistant alloy member and method of manufacturing the same
JP2010070812A (en) Free-cutting austenitic stainless steel wire rod excellent in cold forgeability, and manufacturing method therefor
JP5311942B2 (en) Stainless steel for brazing
JP4850444B2 (en) High-strength, high-corrosion-resistant, inexpensive austenitic stainless steel wire with excellent ductility
JP6093063B1 (en) High-strength stainless steel material excellent in workability and its manufacturing method
WO2017104202A1 (en) Ferrite-based free-machining stainless steel and method for producing same
JP5957241B2 (en) Ferritic free-cutting stainless steel bar wire and method for producing the same
JP2011184716A (en) Martensitic stainless free-cutting steel bar wire having excellent forgeability
JP4600988B2 (en) High carbon steel plate with excellent machinability
JP5907760B2 (en) Martensitic free-cutting stainless steel bar wire and manufacturing method thereof
JP5474616B2 (en) Ferritic stainless free-cutting steel rod with excellent forgeability
JP2006131972A (en) Ferritic stainless steel with excellent machinability, and its manufacturing method
WO2006062053A1 (en) Low carbon free-cutting steel
JP6459681B2 (en) High Cr ferritic heat resistant steel with excellent high temperature creep characteristics
JP6895864B2 (en) Duplex stainless steel, duplex stainless steel plate and duplex stainless linear steel with excellent corrosion resistance on sheared surfaces
JP2005015856A (en) Inexpensive stainless steel wire having excellent elongation characteristic, and fine wire and method for manufacturing the same