JP4624774B2 - Cr-based stainless steel wire rod for wear resistance excellent in corrosion resistance and cold workability, or lead wire for loom cages using the steel wire - Google Patents

Cr-based stainless steel wire rod for wear resistance excellent in corrosion resistance and cold workability, or lead wire for loom cages using the steel wire Download PDF

Info

Publication number
JP4624774B2
JP4624774B2 JP2004376607A JP2004376607A JP4624774B2 JP 4624774 B2 JP4624774 B2 JP 4624774B2 JP 2004376607 A JP2004376607 A JP 2004376607A JP 2004376607 A JP2004376607 A JP 2004376607A JP 4624774 B2 JP4624774 B2 JP 4624774B2
Authority
JP
Japan
Prior art keywords
steel wire
stainless steel
corrosion resistance
cold workability
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004376607A
Other languages
Japanese (ja)
Other versions
JP2006183081A (en
Inventor
光司 高野
好宣 多田
好則 谷本
保 辛木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seisen Co Ltd
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Seisen Co Ltd
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seisen Co Ltd, Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Seisen Co Ltd
Priority to JP2004376607A priority Critical patent/JP4624774B2/en
Publication of JP2006183081A publication Critical patent/JP2006183081A/en
Application granted granted Critical
Publication of JP4624774B2 publication Critical patent/JP4624774B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、耐摩耗性と耐食性に優れるCr系ステンレス鋼線に係わり、例えばシャフト用、ミニチュアロープ用の他、例えば織機おさ用のリード材として好適し、特に冷間加工や切削加工のままで優れた耐摩耗性と耐食性を有する安価なステンレス鋼線材または鋼線と、該鋼線でなる織機おさ用のリード材料に関するものである。   The present invention relates to a Cr-based stainless steel wire excellent in wear resistance and corrosion resistance, and is suitable as, for example, a lead material for a shaft or a miniature rope, for example, a weaving machine, especially in cold working or cutting. The present invention relates to an inexpensive stainless steel wire or steel wire having excellent wear resistance and corrosion resistance, and a lead material for a loom cage made of the steel wire.

これまで、耐摩耗性と耐食性が必要とされる機械部品等については、焼鈍されたSUS420J2やSUS440C等のマルテンサイト系ステンレス鋼を部品等に冷間成形や切削加工し、その後焼入れ強化されて使用されてきた(例えば特許文献1)。   Up to now, for machine parts that require wear resistance and corrosion resistance, annealed SUS420J2 and SUS440C and other martensitic stainless steels are cold formed and cut into parts, and then hardened and used. (For example, Patent Document 1).

さらに、マルテンサイト系ステンレス鋼において高い耐食性が必要な場合、Mo,N等の合金元素が添加されてきた。このように、近年、耐食性に優れ、且つ、良好な冷間加工性をも有するマルテンサイト系ステンレス鋼が開発されてきた(特許文献2)。   Further, when high corrosion resistance is required in martensitic stainless steel, alloy elements such as Mo and N have been added. Thus, in recent years, martensitic stainless steel having excellent corrosion resistance and good cold workability has been developed (Patent Document 2).

しかしながら、マルテンサイト系ステンレス鋼は、冷間加工後に焼入れ・焼戻しの熱処理が必要であるため、部品の一貫製造コストが高くなる。そのため、耐食性と耐摩耗性を必要とする部位には、耐食性に有利であるが耐摩耗性に劣るフェライト系ステンレス鋼やオーステナイト系ステンレス鋼を冷間加工のままで使用し、部品交換を頻繁に行うことで対応してきた。   However, since martensitic stainless steel requires quenching and tempering heat treatment after cold working, the integrated manufacturing cost of parts increases. Therefore, in parts that require corrosion resistance and wear resistance, ferritic stainless steel or austenitic stainless steel, which is advantageous in corrosion resistance but inferior in wear resistance, is used in the cold working state, and parts are frequently replaced. Have responded by doing.

一方、SUS304を中心とするステンレス鋼製ミニチュアロープにおいては、冷間加工性(強度)と耐食性に加え、摩耗性の向上も求められている。   On the other hand, in stainless steel miniature ropes centering on SUS304, in addition to cold workability (strength) and corrosion resistance, improvement in wearability is also required.

このようなニーズの中、最近、オーステナイト系ステンレス鋼に炭化物を分散させた耐摩耗性鋼が提案されている(特許文献3)。しかしながら、オーステナイト系ステンレス鋼では熱伝導率が悪く、摩擦熱が発生する部位では耐摩耗性が劣化する課題がある。   Among such needs, recently, wear resistant steel in which carbide is dispersed in austenitic stainless steel has been proposed (Patent Document 3). However, austenitic stainless steel has a poor thermal conductivity, and there is a problem that the wear resistance deteriorates at a site where frictional heat is generated.

そのため、熱伝導率の高いCr系ステンレス鋼にNb,Ti系の炭化物を分散させた耐摩耗性鋼も提案されている(特許文献4,5)。   Therefore, wear-resistant steel in which Nb and Ti-based carbides are dispersed in Cr-based stainless steel having high thermal conductivity has also been proposed (Patent Documents 4 and 5).

さらには、Cr系ステンレス鋼でフェライトとマルテンサイト組織にNb,Ti,V,Zr,Wを分散させた耐摩耗性鋼も提案されている(特許文献6)。   Furthermore, a wear-resistant steel in which Nb, Ti, V, Zr, and W are dispersed in a ferrite and martensite structure using a Cr-based stainless steel has also been proposed (Patent Document 6).

また、C:0.07〜0.35%、Si:1.0%以下、Mn:1.0%以下、Cr:10〜17%、Mo:0.5〜3.0%、N:0.05〜0.20%を含むマルテンサイト系ステンレス鋼による織機おさ用のリード材料も提案されている。(特許文献7)   Further, C: 0.07 to 0.35%, Si: 1.0% or less, Mn: 1.0% or less, Cr: 10 to 17%, Mo: 0.5 to 3.0%, N: 0 A lead material for a loom sheath made of martensitic stainless steel containing 0.05 to 0.20% has also been proposed. (Patent Document 7)

特開2001−271142号公報JP 2001-271142 A 特開平10−36945号公報JP-A-10-36945 特開2003−147493号公報JP 2003-147493 A 特開2002−235113号公報JP 2002-235113 A 特開2000−192198号公報JP 2000-192198 A 特開2002ー220640号公報Japanese Patent Laid-Open No. 2002-220640 特開2004−225085号公報JP 2004-225085 A

ところで、一般的にCr系ステンレス鋼は低価格でしかもNi系に比して熱膨張係数が大きいことから、熱摩耗を伴う用途では寿命を高める利点があるものの、従来例として示した前記各文献によるCr系ステンレス鋼では冷間加工性,耐摩耗性および耐食性の全てにおいて満足することは困難である。例えば織機おさ用リード材を対象とする特許文献7によるステンレス鋼では、耐摩耗性を高める手段として炭化物を意識的に高めることとし、その為に実施例では0.17〜0.29%の多量のC量を含有することにしているものの、その場合の耐食性を示す孔食電位(vs Ag/AgCl)は、40〜150mvに留まる結果であることが示されている。   By the way, in general, Cr-based stainless steel is inexpensive and has a large thermal expansion coefficient as compared with Ni-based materials. It is difficult to satisfy all of the cold workability, wear resistance, and corrosion resistance in the Cr-based stainless steel made by JIS. For example, in the stainless steel according to Patent Document 7 for a lead material for loom sheaths, carbide is consciously increased as a means for increasing wear resistance. For this reason, 0.17 to 0.29% in the embodiment. Although it is decided to contain a large amount of C, the pitting corrosion potential (vs Ag / AgCl) showing the corrosion resistance in that case is shown to be a result of staying at 40 to 150 mV.

したがって、例えば紫外線をカットする為に酸化チタンを塗布した糸(UV処理糸)を用いる場合に、時として付与される油剤などと反応して、あるいは作業後にこれを長期間保管する場合のリード材料には、しばしば発銹など耐食性の点で十分とは言えず、十分な耐食性、かつ強度の摩耗に耐える耐摩耗性、更に優れた加工性とを備えるものとは言い難いものであり、更なる改良が望まれている。   Therefore, for example, when using a thread coated with titanium oxide (UV-treated thread) to cut off ultraviolet rays, it is sometimes used as a lead material when it reacts with an oil agent or the like that is sometimes given or is stored for a long time after work Is often not sufficient in terms of corrosion resistance, such as cracking, and it is difficult to say that it has sufficient corrosion resistance, wear resistance to withstand strong wear, and excellent workability. Improvement is desired.

そこで本発明は、その使用状態でもJIS G 0577の孔食電位で150mV超(vs Ag/AgCl,飽和KCl)の特性を持つ耐食性と、高い耐摩耗特性、及び機械加工性に優れたCr系ステンレス鋼線材または鋼線を提供し、これら特性とともに製造コストを下げたステンレス鋼線材(鋼線)を可能とし、その結果として各種部品自体での耐久性を高めるとともにトータルのコスト引下げを可能にすることを目標とする。   Accordingly, the present invention is a Cr-based stainless steel having excellent corrosion resistance with a pitting corrosion potential of more than 150 mV (vs Ag / AgCl, saturated KCl), high wear resistance, and machinability even in the state of use. Providing steel wire or steel wire, enabling stainless steel wire (steel wire) with reduced manufacturing costs along with these characteristics, and as a result, increasing the durability of various parts themselves and reducing the total cost To the goal.

本発明者らは、上記課題を解決するために種々検討した結果、Cr系ステンレス鋼をベースにC量を規制すると共にMo,N等の合金元素を適量添加し、かつV,Ti,Nbの3種の合計量とCとの関係、及びPI値との関係を解明し、かつ材料中のフェライト組織マトリックス中に一定量の硬質炭窒化物(炭化物+窒化物)を微細分散させた金属組織にすることで、冷間加工のままで(焼き入れ処理不要で)耐摩耗性と耐食性に優れるCr系ステンレス鋼線材または鋼線を安定して得られることを見出し、また該鋼線は例えばこれを所定の圧延加工によって帯材とすることでリード材料としては好適することが確認された。本発明は、上記知見に基づいてなされたものであり、その要旨とするところは以下の通りである。   As a result of various studies to solve the above-mentioned problems, the present inventors have regulated the amount of C based on Cr-based stainless steel, added an appropriate amount of an alloy element such as Mo, N, and the like of V, Ti, Nb. Clarification of the relationship between the total amount of three types and C, and the PI value, and a metal structure in which a certain amount of hard carbonitride (carbide + nitride) is finely dispersed in the ferrite structure matrix of the material Thus, it has been found that a Cr-based stainless steel wire or steel wire having excellent wear resistance and corrosion resistance can be stably obtained with cold working (without quenching treatment). It was confirmed that it is suitable as a lead material by forming a strip by a predetermined rolling process. This invention is made | formed based on the said knowledge, The place made into the summary is as follows.

すなわち、本発明の要旨とするところは以下の通りである。
(1)質量%で、C:0.10〜0.30%,Si:0.05〜2.0%,Mn:0.1〜1.5%,Cr:12〜17.5%,Mo:0.05〜3.0%,N:0.005〜0.15%を含有し、更に、Nb:0.05〜1.0%,Ti:0.05〜1.0%,V:0.05〜1.0%の1種以上を含有し、残部がFeおよび不可避的不純物で構成され、(A)式で示されるPI値が14.0以上、(B)式で示されるCI値が3〜15の条件を満たすとともに、フェライト組織のマトリックス中に総量で1〜8%の炭窒化物(炭化物+窒化物)を含有することを特徴と耐摩耗性、耐食性と冷間加工性に優れるCr系ステンレス鋼線材である。
PI値=Cr+3Mo−17C−7N −−−−−−−−−−−−−−− (A)
CI値=(V+Ti+Nb)/C −−−−−−−−−−−−−−− (B)
(2)V,TiおよびNbの3種を共に含んでその合計が0.3〜1.2%であることを特徴とする前記1記載の耐摩耗性、耐食性と冷間加工性に優れるCr系ステンレス鋼線材である。
(3)さらに、質量%で、B:0.001〜0.015%を含有することを特徴とする前記1または2記載の耐摩耗性、耐食性と冷間加工性に優れるCr系ステンレス鋼線材である
(4)さらに、質量%で、Al:0.01〜0.2%,Ca:0.001〜0.02%,Mg:0.001〜0.02%,Zr:0.0005〜0.02%のうち、1種以上を含有することを特徴とする前記1〜記載のいずれかの耐摩耗性、耐食性と冷間加工性に優れるCr系ステンレス鋼線材である。
)前記1乃至のいずれかに記載の化学組成及び金属組織を有することを特徴とするの耐摩耗性、耐食性と冷間加工性に優れるステンレス鋼鋼線である。
(6)前記1乃至4のいずれかに記載の化学組成及び金属組織を有するとともに、さらに質量%で、Ni:0.1〜1.4%,Cu:0.1〜2.0%,Sn:0.05〜0.3%の1種以上を含有することを特徴とする耐摩耗性、耐食性と冷間加工性に優れる織機おさのリード材用Cr系ステンレス鋼線材である。
(7)前記6に記載の化学組成及び金属組織を有することを特徴とする耐摩耗性、耐食性と冷間加工性に優れる織機おさのリード材用ステンレス鋼鋼線である。
)前記1乃至4、6のいずれかに記載の化学組成及び金属組織を有し、表面硬度300〜500Hvであることを特徴とする織機おさ用のリード材料である。
That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.10 to 0.30%, Si: 0.05 to 2.0%, Mn: 0.1 to 1.5%, Cr: 12 to 17.5%, Mo : 0.05 to 3.0%, N: 0.005 to 0.15%, Nb: 0.05 to 1.0%, Ti: 0.05 to 1.0%, V: It contains one or more of 0.05 to 1.0%, the remainder is composed of Fe and inevitable impurities, the PI value shown by the formula (A) is 14.0 or more, and the CI shown by the formula (B) The value of 3 to 15 is satisfied, and the total amount of carbonitride (carbide + nitride) is contained in the matrix of ferrite structure. Features, wear resistance, corrosion resistance and cold workability Cr-based stainless steel wire rod excellent in
PI value = Cr + 3Mo-17C-7N --------------- (A)
CI value = (V + Ti + Nb) / C −−−−−−−−−−−−−−− (B)
(2) Cr having excellent wear resistance, corrosion resistance and cold workability as described in 1 above, wherein all of V, Ti and Nb are included and the total is 0.3 to 1.2% Stainless steel wire.
(3) The Cr-based stainless steel wire excellent in wear resistance, corrosion resistance and cold workability as described in 1 or 2 above, further comprising, by mass%, B: 0.001 to 0.015% It is .
(4 ) Further, by mass%, Al: 0.01 to 0.2%, Ca: 0.001 to 0.02%, Mg: 0.001 to 0.02%, Zr: 0.0005 to 0. The Cr-based stainless steel wire material having excellent wear resistance, corrosion resistance, and cold workability according to any one of the above items 1 to 3 , characterized by containing one or more of 02%.
(5) the 1 to the wear resistance of and having a chemical composition and metal structure according to any one of 4, a stainless steel steel wire excellent in corrosion resistance and cold workability.
(6) Having the chemical composition and metal structure described in any one of 1 to 4 above, and further in mass%, Ni: 0.1 to 1.4%, Cu: 0.1 to 2.0%, Sn : A Cr-based stainless steel wire for a lead material of a weaving machine excellent in wear resistance, corrosion resistance and cold workability, characterized by containing at least one of 0.05 to 0.3%.
(7) A stainless steel wire for a lead material of a weaving machine having excellent wear resistance, corrosion resistance and cold workability, characterized by having the chemical composition and metal structure described in (6) above.
( 8 ) A lead material for a weaving machine having the chemical composition and metal structure described in any one of 1 to 4 and 6 , and having a surface hardness of 300 to 500 Hv.

なお、本発明のCr系ステンレス鋼とはNiを多く含有しない(≦2.0質量%)bccの結晶構造を有するCrを主要元素とするステンレス鋼(フェライト系およびマルテンサイト系ステンレス鋼)を示す。   The Cr-based stainless steel of the present invention refers to stainless steel (ferritic and martensitic stainless steel) containing Cr as a main element that does not contain much Ni (≦ 2.0 mass%) and has a bcc crystal structure. .

また「線材」とは、材料を溶解し熱間圧延等を施したRODを示し、「鋼線」とは前記線材に更に伸線や圧延加工等を施して所定の寸法・特性に仕上げたものを示す。   “Wire” refers to ROD that has been melted and hot-rolled, etc. “Steel wire” is a wire that has been further drawn or rolled to the specified dimensions and characteristics. Indicates.

本発明による耐摩耗用のCr系ステンレス鋼線材または鋼線は、製品へ冷間加工ままで焼入れ・焼戻し処理が不要であり、且つ、耐摩耗性と耐食性を付与でき、製品のコストパフォーマンスを飛躍的に向上する効果を発揮する。   The Cr-based stainless steel wire or steel wire for wear resistance according to the present invention does not require quenching and tempering treatment as it is cold-worked on the product, and can provide wear resistance and corrosion resistance, thus dramatically improving the cost performance of the product. The effect which improves automatically.

以下に、先ず、本発明の請求項1記載の限定理由について説明する。   Below, the reason for limitation of Claim 1 of this invention is demonstrated first.

Cは、M236,M73,M3C等の炭化物(MはCr,Fe,Mo,V,Nb,Ti等を示す)を形成させて耐摩耗性を向上できる為、0.05%以上添加する。しかしながら、特許文献7の実施例に示されるような多量に添加するとCr炭化物発生の確率を高めることとなり、耐摩耗性には好ましいものの、耐食性を劣化させ、同時に冷間加工性も低下することとなる。そのため、本発明ではV,Ti,NbでCを固定するが、上限を0.30%とする。さらに好ましくは0.07〜0.15%とする。 C can form carbides such as M 23 C 6 , M 7 C 3 , and M 3 C (M represents Cr, Fe, Mo, V, Nb, Ti, etc.) and can improve wear resistance. Add at least 05%. However, when added in a large amount as shown in the Examples of Patent Document 7, the probability of Cr carbide generation is increased, and although it is preferable for wear resistance, the corrosion resistance is deteriorated and the cold workability is also decreased at the same time. Become. Therefore, in the present invention, C is fixed by V, Ti, and Nb, but the upper limit is set to 0.30%. More preferably, it is 0.07 to 0.15%.

Siは、脱酸に必要であり、また、炭窒化物の析出を促進させて耐摩耗性を確保するため、0.05%以上添加する。しかしながら、2.0%を超えて添加すると冷間加工性を劣化させる。そのため、上限を2.0%に限定する。好ましい範囲は、0.1%〜1.0%である。   Si is necessary for deoxidation, and is added in an amount of 0.05% or more in order to promote precipitation of carbonitrides and ensure wear resistance. However, if it exceeds 2.0%, cold workability is deteriorated. Therefore, the upper limit is limited to 2.0%. A preferred range is from 0.1% to 1.0%.

Mnは、脱酸に必要な元素であり、0.1%以上添加する。しかしながら、1.5%を超えて添加すると焼鈍により冷間加工性を確保することが困難となる。そのため、上限を1.5%に限定する。好ましい範囲は、0.2〜0.8%である。   Mn is an element necessary for deoxidation, and is added in an amount of 0.1% or more. However, if added over 1.5%, it becomes difficult to ensure cold workability by annealing. Therefore, the upper limit is limited to 1.5%. A preferable range is 0.2 to 0.8%.

Crは、耐食性を確保するため、また、炭窒化物を形成させて耐摩耗性を確保するために、12%以上添加する。しかしながら、17.5%を超えて添加すると粗大炭窒化物のため冷間加工性が劣化する。そのため、上限を17.5%に限定する。好ましい範囲は、13〜17%である。   Cr is added in an amount of 12% or more in order to ensure corrosion resistance and to form carbonitrides to ensure wear resistance. However, if added over 17.5%, the cold workability deteriorates due to coarse carbonitride. Therefore, the upper limit is limited to 17.5%. A preferred range is 13-17%.

Moは、耐食性を確保すると同時に、Nと一緒に添加して炭窒化物を微細分散させて耐摩耗性を確保するため、0.05%以上添加する。しかしながら、3.0%を超えて添加すると冷間加工性が劣化する。そのため、上限を3%に限定する。好ましい範囲は、0.5〜2.5%である。   Mo is added at 0.05% or more in order to ensure corrosion resistance and at the same time add together with N to finely disperse carbonitride to ensure wear resistance. However, if it exceeds 3.0%, cold workability deteriorates. Therefore, the upper limit is limited to 3%. A preferable range is 0.5 to 2.5%.

Nは、M2N,MN等の窒化物(MはCr,Fe,Mo,W,V,Nb,Ta,Hf等を示す)を形成させると共に、Moと一緒に添加して炭窒化物を微細分散させて耐摩耗性を向上させるために0.005%以上添加する。しかしながら、0.15%を超えて添加するとブローホールにより品質が著しく劣化する。そのため、上限を0.15%に限定する。好ましい範囲は、0.02〜0.12%である。なお、窒化熱処理等で鋼材の表層から吸収されたN量も含むが、本発明におけるN量とは線材の表層から中心までの平均値である。 N forms nitrides such as M 2 N and MN (M represents Cr, Fe, Mo, W, V, Nb, Ta, Hf, etc.) and is added together with Mo to add carbonitride. Add 0.005% or more in order to finely disperse and improve wear resistance. However, if it exceeds 0.15%, the quality is significantly degraded by blow holes. Therefore, the upper limit is limited to 0.15%. A preferable range is 0.02 to 0.12%. In addition, although the N amount absorbed from the surface layer of the steel material by nitriding heat treatment or the like is included, the N amount in the present invention is an average value from the surface layer to the center of the wire material.

V,Ti,Nbは、炭窒化物を形成する上で有効であり、しかもこの炭窒化物の硬度もHv:2200〜3200と極めて高いものである。   V, Ti, and Nb are effective in forming carbonitride, and the hardness of the carbonitride is extremely high as Hv: 2200 to 3200.

また通常のCr系ステンレス鋼では、例えば(Cr,Fe)236などCrやFeとの炭化物が多量に形成されるが、こうした炭化物は容易に粗大化しやすく高温で長時間使用する場合には強度低下することが知られており、また、耐食性の劣化をも引き起こす。V,TiやNbの添加は耐食性の劣化を引き起こすCr炭窒化物の生成を抑制し、替わって微細分散した炭窒化物を得る上からも有効である。そのため、V,Nb,Tiの1種以上を0.05%以上添加する。しかしながら、1.0%を超えて添加すると冷間加工性が劣化する。そのため、上限を1.0%に限定する。好ましい範囲は、0.1〜0.7%である。 Also, in ordinary Cr-based stainless steel, a large amount of carbides such as (Cr, Fe) 23 C 6 and Cr and Fe are formed, but these carbides are easily coarsened and used for a long time at high temperatures. It is known to decrease in strength and also causes deterioration of corrosion resistance. The addition of V, Ti, or Nb is effective in suppressing the formation of Cr carbonitride that causes deterioration of corrosion resistance, and obtaining a finely dispersed carbonitride instead. Therefore, 0.05% or more of one or more of V, Nb, and Ti is added. However, if it exceeds 1.0%, cold workability deteriorates. Therefore, the upper limit is limited to 1.0%. A preferable range is 0.1 to 0.7%.

(A)式に示すPI値は製品の耐食性に影響を及ぼし、特にPI値が14.0未満になると大気環境中でも発銹し、問題を引き起こすようになる。そのため、PI値を14.0以上に限定する。好ましくは15.0以上、さらに好ましくは16.0以上にするものである。   The PI value shown in the formula (A) affects the corrosion resistance of the product. In particular, when the PI value is less than 14.0, it occurs in the atmospheric environment and causes problems. Therefore, the PI value is limited to 14.0 or more. Preferably it is 15.0 or more, more preferably 16.0 or more.

また、前記Nb,Ti及びVによる第三元素とCとの関係を示す式(B)については、耐食性を劣化させるCr炭窒化物生成の抑制に影響を及ぼす。C量の3倍以上のN,Ti,Vを添加すると耐食性の劣化抑制に有効である。そのため、CI値(Carbide Index)を3以上に限定する。しかしながら、15を超えると炭窒化物が粗大化して冷間加工性が劣化することから、上限を15に限定する。より好ましくは5〜10である。   Further, the formula (B) indicating the relationship between the third element and C by Nb, Ti, and V affects the suppression of the formation of Cr carbonitride that deteriorates the corrosion resistance. Addition of N, Ti, V more than 3 times the amount of C is effective in suppressing deterioration of corrosion resistance. Therefore, the CI value (Carbide Index) is limited to 3 or more. However, if it exceeds 15, the carbonitride becomes coarse and the cold workability deteriorates, so the upper limit is limited to 15. More preferably, it is 5-10.

金属組織は、耐摩耗性と冷間加工性を確保するためにフェライト組織のマトリックス中に前記炭窒化物(炭化物および窒化物)が分散している組織にする。なお、組織の判定は、透過型電子顕微鏡にて薄膜試料を観察し、転位密度が低いフェライト組織および炭窒化物(炭化物+窒化物)に分解されているかで判定するが、目安として焼鈍後の硬さが270Hv以下であれば本発明で定義するフェライトと炭窒化物の組織と判定する。前記炭窒化物について、線材での分布状態の一例を図1の顕微鏡写真(100倍)に示しており、鋼線及びリード材料では、若干微細化したり均一分散するなど変化する傾向にある。   The metal structure is a structure in which the carbonitride (carbide and nitride) is dispersed in a ferrite structure matrix in order to ensure wear resistance and cold workability. The structure is determined by observing the thin film sample with a transmission electron microscope and determining whether it is decomposed into a ferrite structure and carbonitride (carbide + nitride) having a low dislocation density. If the hardness is 270 Hv or less, the structure is determined to be a ferrite and carbonitride structure defined in the present invention. An example of the distribution state of the carbonitride in the wire is shown in the micrograph (100 times) in FIG. 1, and the steel wire and the lead material tend to change, for example, slightly refined or uniformly dispersed.

好ましくは、線材状態では10μm以下(より好ましくは5μm以下)、鋼線及びリード材料では5μm以下(より好ましくは2μm以下、更には0.5μm以下)の微細な粒子径とする。   Preferably, the fine particle diameter is 10 μm or less (more preferably 5 μm or less) in the wire state, and 5 μm or less (more preferably 2 μm or less, and further 0.5 μm or less) in the steel wire and the lead material.

炭窒化物の総量(質量%)は、耐摩耗性と冷間加工性を確保するために、1%以上に限定し、マトリックスをフェライト組織に制御する。しかしながら、8%を超えると冷間加工性および耐食性が劣化する。そのため、上限を8%に限定する。好ましい範囲は、2〜7%である。なお、炭窒化物とは、炭化物および窒化物のうち、1種以上の析出物のことを指す。また、炭窒化物の総量(質量%)の測定は、実施例で詳細に記述するが、非水溶液中での電解分離法にて実施する。   The total amount (mass%) of carbonitride is limited to 1% or more in order to ensure wear resistance and cold workability, and the matrix is controlled to a ferrite structure. However, when it exceeds 8%, cold workability and corrosion resistance deteriorate. Therefore, the upper limit is limited to 8%. A preferred range is 2-7%. Carbonitride refers to one or more precipitates of carbide and nitride. Moreover, although the measurement of the total amount (mass%) of carbonitride is described in detail in the Examples, it is carried out by electrolytic separation in a non-aqueous solution.

炭窒化物の総量を1%以上に制御する方法はC量(%)とN量(%)の下限値と焼鈍方法にて調整し、8%以下に制御する方法はC量(%)とN量(%)の上限値にて調整する。本発明の炭窒化物の総量に制御するには、焼鈍温度は600〜950℃、焼鈍時間は3〜300分程度の焼鈍を施し、場合によっては焼鈍後に徐冷(冷速;約5〜60℃/h程度)も行う。600℃未満の焼鈍では炭窒化物の析出(炭窒化物の総量)が不十分となり、950℃以上の焼鈍では不経済となる。   The method for controlling the total amount of carbonitride to 1% or more is adjusted by the lower limit of C amount (%) and N amount (%) and the annealing method, and the method for controlling it to 8% or less is C amount (%). Adjust the upper limit of N amount (%). In order to control the total amount of the carbonitride of the present invention, annealing is performed at an annealing temperature of 600 to 950 ° C. and an annealing time of about 3 to 300 minutes. In some cases, annealing is performed slowly (cooling speed; about 5 to 60). C./h). Annealing below 600 ° C. results in insufficient carbonitride precipitation (total amount of carbonitride), and annealing above 950 ° C. is uneconomical.

次に、本発明の請求項2記載の化学組成(質量%)の限定理由について説明する。   Next, the reason for limiting the chemical composition (mass%) according to claim 2 of the present invention will be described.

V,TiおよびNbの第三元素の単体で添加できる量は材料組成上あるいはコスト的な面などから自ずと限られることから、本発明では必用に応じて各元素を共に添加(複合添加)してその合計を0.3〜1.2%にすることで前記効果をより容易な方法で得ることにしている。   Since the amount that can be added as a single element of the third element of V, Ti and Nb is naturally limited in terms of material composition or cost, etc., in the present invention, each element is added together (combined addition) as necessary. By making the total 0.3 to 1.2%, the above effect is obtained by an easier method.

次に、本発明の請求項3記載の化学組成(質量%)の限定理由について説明する。   Next, the reason for limiting the chemical composition (mass%) according to claim 3 of the present invention will be described.

Bは、炭窒化物を均一微細分散させて耐摩耗性を向上させるため、必要に応じて、0.001%添加する。しかしながら、0.015%を超えて添加すると粗大なボライドの生成により冷間加工性が劣化する。そのため、上限を0.015%に限定する。好ましい範囲は、0.002〜0.008%である。   B is added in an amount of 0.001% as necessary in order to disperse carbonitride uniformly and finely to improve wear resistance. However, if added over 0.015%, the cold workability deteriorates due to the formation of coarse boride. Therefore, the upper limit is limited to 0.015%. A preferred range is 0.002 to 0.008%.

次に、本発明の請求項4記載の化学組成(質量%)の限定理由について説明する。   Next, the reason for limiting the chemical composition (mass%) according to claim 4 of the present invention will be described.

Niは、耐食性を確保するために、必要に応じて、0.1%以上添加する。しかしながら、過度に添加すると焼鈍により冷間加工性を確保することが困難になる。そのため、2.0%以下に限定する。好ましい範囲は、0.1〜1.4%である。   Ni is added in an amount of 0.1% or more as necessary in order to ensure corrosion resistance. However, if added excessively, it becomes difficult to ensure cold workability by annealing. Therefore, it is limited to 2.0% or less. A preferable range is 0.1 to 1.4%.

Cu,Snは、耐食性を確保するために、必要に応じて、Cu:0.1%以上,Sn;0.05%以上添加する。しかしながら、過度に添加すると焼鈍により冷間加工性を確保することが困難になる。そのため、それぞれ、Cu:2.0%以下,Sn;0.3%以下に限定する。好ましい範囲は、Cu:0.1〜0.5%,Sn;0.05〜0.15%である。   In order to ensure corrosion resistance, Cu and Sn are added as necessary: Cu: 0.1% or more, Sn: 0.05% or more. However, if added excessively, it becomes difficult to ensure cold workability by annealing. Therefore, it is limited to Cu: 2.0% or less and Sn; 0.3% or less, respectively. Preferred ranges are Cu: 0.1 to 0.5%, Sn; 0.05 to 0.15%.

次に、本発明の請求項5記載の化学組成(質量%)の限定理由について説明する。   Next, the reason for limiting the chemical composition (mass%) according to claim 5 of the present invention will be described.

Al,Ca,Mg,Zrは、必要に応じて、脱酸を強化することを目的に、それぞれ、Al;0.01%〜0.2%,Ca;0.001%〜0.02%,Mg;0.001〜0.02%,Zr;0.0005〜0.02%添加する。ここで、過剰に添加すると粗大な脱酸生成物により冷間加工性や耐食性が劣化するため、それぞれ、上限を設定する。   Al, Ca, Mg, and Zr are Al; 0.01% to 0.2%, Ca; 0.001% to 0.02%, respectively, for the purpose of strengthening deoxidation as necessary. Mg: 0.001 to 0.02%, Zr: 0.0005 to 0.02% is added. Here, when excessively added, the coarse deoxidation product deteriorates the cold workability and the corrosion resistance, so the upper limit is set respectively.

さらに請求項6の発明は、前記いずれかに記載の化学組成及び金属組織を有することを特徴とする耐食性と冷間加工性に優れる耐摩耗用のステンレス鋼鋼線である。   The invention of claim 6 is a wear-resistant stainless steel wire excellent in corrosion resistance and cold workability, characterized by having the chemical composition and metal structure described in any one of the above.

さらに請求項7の発明は、前記いずれかの鋼線を冷間圧延加工によって所定断面寸法を持つ帯材とし、前記加工によってその表面硬度300〜500Hvの特性の織機おさ用のリード材料とする。その寸法としては、例えば厚さ0.1〜1.5mm,幅:1.5〜3.0mm程度とされ、より好ましくは伸線加工によって一旦硬質化した後、引き続き圧延加工することで広幅の圧延加工が容易になる。   Further, according to the invention of claim 7, any one of the above steel wires is formed into a strip having a predetermined cross-sectional dimension by cold rolling, and the processing is used as a lead material for a weaving machine having a surface hardness of 300 to 500 Hv. . The dimensions are, for example, a thickness of about 0.1 to 1.5 mm and a width of about 1.5 to 3.0 mm. More preferably, after hardening once by wire drawing, rolling is continued to widen the width. Rolling process becomes easy.

以下に本発明の実施例について説明する。   Examples of the present invention will be described below.

表1に実施例の鋼の化学組成を示す。   Table 1 shows the chemical composition of the steels of the examples.

これら化学組成の鋼は、100kgの真空溶解炉にて溶解し、φ180mmの鋳片に鋳造し、その鋳片をφ5.5mmまで熱間の線材圧延を行い、1000℃で熱延を終了し、室温まで冷却した。そして、その線材をバッチ炉にて850℃で2時間の焼鈍・徐冷を施して、フェライトと炭窒化物の組織にした。その後、酸洗を行い、冷間加工性を調べるために種々の径まで冷間伸線加工を施した。φ3mmへ伸線加工した材料については、耐摩耗性,耐食性および炭窒化物の総量を調査した。結果を表2に示す。   Steels of these chemical compositions are melted in a 100 kg vacuum melting furnace, cast into a slab of φ180 mm, the slab is hot-rolled to φ5.5 mm, and hot rolling is finished at 1000 ° C. Cooled to room temperature. The wire was annealed and annealed at 850 ° C. for 2 hours in a batch furnace to obtain a ferrite and carbonitride structure. Thereafter, pickling was performed, and cold wire drawing was performed to various diameters in order to investigate cold workability. For materials drawn to φ3 mm, the wear resistance, corrosion resistance, and total amount of carbonitride were investigated. The results are shown in Table 2.

冷間加工性は、φ5.5mmの線材をφ2mmまで伸線加工した。そして、80%超の減面率まで伸線加工できれば、冷間加工性を○とし、断線・縦割れ等で伸線加工不可な場合を×として評価した。本発明例の冷間加工性は、いずれも○であった。   The cold workability was obtained by drawing a φ5.5 mm wire to φ2 mm. And if wire-drawing was possible to a reduction in area of more than 80%, the cold workability was evaluated as ◯, and the case where wire-drawing was impossible due to disconnection, vertical cracking, etc. was evaluated as x. The cold workability of the inventive examples was all good.

耐摩耗性は、伸線加工材の横断面を#1000で研磨し、その研磨面を回転する研磨ディスクに押しつけて摩擦を発生させて摩耗減量で評価した。研磨ディスクは、0.1μmのTiO2粒子とポリエステル系樹脂を1:3の割合で均一に混合し、硬質化させて作製した。摩擦条件については、接触圧力は15g/cm2,摩擦速度は2m/s,摩擦距離50km,乾式で行い、試験前後の質量差を測定した。本発明例の摩耗減量は、50μg/cm2・km以下であった。 Abrasion resistance was evaluated by reducing the wear by polishing the cross section of the wire drawing material with # 1000 and pressing the polished surface against a rotating polishing disk to generate friction. The abrasive disc was prepared by uniformly mixing 0.1 μm TiO 2 particles and a polyester resin at a ratio of 1: 3 and making them hard. As for the friction conditions, the contact pressure was 15 g / cm 2 , the friction speed was 2 m / s, the friction distance was 50 km, and the mass difference before and after the test was measured. The wear loss of the inventive examples was 50 μg / cm 2 · km or less.

耐食性は、鋼線を100mm長さに切断後、全面を#500研磨して、JIS Z 2731の塩水噴霧試験により100時間の腐食試験を行った。そして、試験後に発銹状況を5段階に分けて評価した。Aは無発銹,Bは点錆発銹,Cは僅かな流れ錆発銹,Dは酷い流れ錆発銹,Eは全面発銹として評価した。本発明例の耐食性は、A又はBであった。   For corrosion resistance, the steel wire was cut to a length of 100 mm, and the entire surface was polished by # 500, and a corrosion test for 100 hours was performed by a salt spray test of JIS Z2731. And after the test, the bruising situation was evaluated in five stages. A was evaluated as no rust, B as spot rust, C as slight flow rust, D as severe flow rust, and E as overall rust. The corrosion resistance of the examples of the present invention was A or B.

炭窒化物の総量(質量%)は、表層を#500研磨した3gの伸線材を非水溶液中(3%のマレイン酸+1%のテトラメチルアンモニウムクロイド+残部メタノール)で電解(100mV定電圧)して、マトリックスを溶解し、0.2μm穴径のフィルターでろ過して、炭窒化物を抽出した。そして、1時間経過後に質量測定により、炭窒化物の総質量%を算出した。なお、X線回折の同定より、析出物は実質的に炭化物と窒化物であることを確認した。本発明例の炭窒化物の総量はいずれも1〜8%の範囲内であった。   The total amount (mass%) of carbonitride was obtained by electrolysis (100 mV constant voltage) of 3 g of wire drawing material with a surface layer of # 500 polished in a non-aqueous solution (3% maleic acid + 1% tetramethylammonium croid + remaining methanol). The matrix was dissolved and filtered through a 0.2 μm hole diameter filter to extract carbonitride. And the total mass% of the carbonitride was computed by mass measurement after 1 hour progress. The identification of X-ray diffraction confirmed that the precipitates were substantially carbides and nitrides. The total amount of carbonitrides of the inventive examples was in the range of 1 to 8%.

一方、比較例No.26〜48は、本発明例No.1〜No.25に比べ耐摩耗性,耐食性又は冷間加工性のいずれかが劣っている。   On the other hand, Comparative Example No. Nos. 26 to 48 are examples of the present invention. 1-No. Compared to 25, any of wear resistance, corrosion resistance, or cold workability is inferior.

次に、特性に及ぼす組織の影響を調べるために、前述した本発明鋼Bの化学組成を有するφ5.5mmの線材について、バッチ炉にて700〜900℃で60分間焼鈍・徐冷してフェライトと炭窒化物の組織とした。また、比較材として上記線材を1050℃で焼入れ処理後、200℃〜500℃で焼鈍(徐冷却)を施して、組織状態をマルテンサイト、又は、焼戻しマルテンサイトとした。これらの線材は上記と同じ手法で冷間伸線加工性,耐摩耗性,耐食性および炭窒化物の総量を調査し、結果を第3表に示した。   Next, in order to investigate the influence of the structure on the properties, the φ5.5 mm wire having the chemical composition of the steel B of the present invention described above was annealed and gradually cooled in a batch furnace at 700 to 900 ° C. for 60 minutes to produce ferrite. And carbonitride structure. Moreover, the said wire was hardened at 1050 degreeC as a comparative material, Then, it annealed (slow cooling) at 200 to 500 degreeC, and made the structure | tissue state martensite or tempered martensite. These wires were examined for cold drawing workability, wear resistance, corrosion resistance and total amount of carbonitride by the same method as above, and the results are shown in Table 3.

組織は、冷間伸線加工前の線材から薄膜試料を作製して透過型電子顕微鏡により組織観察し、転位密度が低いフェライト組織および炭窒化物が観察される場合をフェライトと炭窒化物の組織と定義し、ラスマルテンサイト組織のみの場合をマルテンサイト組織と定義し、ラスマルテンサイトおよびラス間に微細な炭窒化物が析出した状態を焼戻しマルテンサイト組織と定義した。本発明鋼の組織は、フェライトと炭窒化物の組織であり、良好な冷間加工性を示した。   The microstructure is a ferrite and carbonitride structure when a thin film sample is prepared from a wire before cold drawing and the structure is observed with a transmission electron microscope, and a ferrite structure and carbonitride with low dislocation density are observed. The case of only the lath martensite structure was defined as the martensite structure, and the state in which fine carbonitrides precipitated between the lath martensite and the lath was defined as the tempered martensite structure. The structure of the steel of the present invention was a structure of ferrite and carbonitride, and showed good cold workability.

一方、比較例No.51,52は、マトリックスの組織が焼戻しマルテンサイトおよびマルテンサイト組織であり、冷間加工性に劣っている。   On the other hand, Comparative Example No. Nos. 51 and 52 are tempered martensite and martensite structures in the matrix, and are inferior in cold workability.

次に、前記の鋼B(No.2),鋼Z(No.26,SUS430)のφ1.6mmに伸線した鋼線を温度780℃で焼鈍処理し、加工率50%の冷間伸線加工を行い、さらに引続いて多段圧延機によって幅2.2mm、厚さ0.28mmの硬質帯材でなるリード材料とした。そして、この帯材の炭窒化物の分析と耐摩耗性、耐食性についても前記と同様の方法で行い、帯材の表面硬さについては、JIS法により荷重1kgでビッカース硬さを測定した。その結果を表4に示す。   Next, the steel wire drawn to φ1.6 mm of the steel B (No. 2) and the steel Z (No. 26, SUS430) was annealed at a temperature of 780 ° C., and cold drawn with a processing rate of 50%. The lead material made of a hard strip material having a width of 2.2 mm and a thickness of 0.28 mm was subsequently processed by a multi-stage rolling mill. The analysis of the carbonitride of the band material and the wear resistance and corrosion resistance were also performed in the same manner as described above, and the surface hardness of the band material was measured by a JIS method with a load of 1 kg. The results are shown in Table 4.

比較例No.54のSUS430の帯材に比べ、本発明例No.53の帯材の耐摩耗性は大幅に優れていることがわかる。   Comparative Example No. As compared with the band material of SUS430 of 54, the present invention example No. It can be seen that the wear resistance of the band 53 is significantly superior.

以上の実施例から分かるように本発明鋼の優位性が明らかである。   As can be seen from the above examples, the superiority of the steel of the present invention is clear.

以上の各実施例から明らかなように、本発明により、焼入れ・焼戻し処理が不要で、冷間加工のままで耐摩耗性と耐食性を付与できる安価なCr系ステンレス鋼線材または鋼線を提供することが可能であり、シャフト,ミニチュアロープ等の汎用耐摩耗材や織機用のリード材料などとして、産業上極めて有用である。   As is clear from each of the above examples, the present invention provides an inexpensive Cr-based stainless steel wire or steel wire that does not require quenching / tempering treatment and can impart wear resistance and corrosion resistance while still being cold worked. It is extremely useful industrially as general-purpose wear-resistant materials such as shafts and miniature ropes and lead materials for looms.

炭窒化物の分布状態の一例を示す顕微鏡写真。The microscope picture which shows an example of the distribution state of carbonitride.

Claims (8)

質量%で、C:0.10〜0.30%,Si:0.05〜2.0%,Mn:0.1〜1.5%,Cr:12〜17.5%,Mo:0.05〜3.0%,N:0.005〜0.15%を含有し、更に、Nb:0.05〜1.0%,Ti:0.05〜1.0%,V:0.05〜1.0%の1種以上を含有し、残部がFeおよび不可避的不純物で構成され、(A)式で示されるPI値が14.0以上、(B)式で示されるCI値が3〜15の条件を満たすとともに、フェライト組織のマトリックス中に総量で1〜8%の炭窒化物(炭化物+窒化物)を含有することを特徴とする耐摩耗性、耐食性と冷間加工性に優れるCr系ステンレス鋼線材。
PI値=Cr+3Mo−17C−7N −−−−−−−−−−−−−− (A)
CI値=(V+Ti+Nb)/C −−−−−−−−−−−−−− (B)
In mass%, C: 0.10 to 0.30%, Si: 0.05 to 2.0%, Mn: 0.1 to 1.5%, Cr: 12 to 17.5%, Mo: 0.00. 0.5 to 3.0%, N: 0.005 to 0.15%, Nb: 0.05 to 1.0%, Ti: 0.05 to 1.0%, V: 0.05 -1% or more of -1.0%, the balance is composed of Fe and inevitable impurities, the PI value shown by the formula (A) is 14.0 or more, the CI value shown by the formula (B) is 3 It is excellent in wear resistance, corrosion resistance and cold workability characterized by containing 1 to 8% of carbonitride (carbide + nitride) in the total amount in the matrix of ferrite structure while satisfying the condition of ~ 15 Cr-based stainless steel wire.
PI value = Cr + 3Mo-17C-7N -------------- (A)
CI value = (V + Ti + Nb) / C −−−−−−−−−−−−−− (B)
V,TiおよびNbの3種を共に含んでその合計が0.3〜1.2%であることを特徴とする請求項1記載の耐摩耗性、耐食性と冷間加工性に優れるCr系ステンレス鋼線材。 The Cr-based stainless steel excellent in wear resistance, corrosion resistance and cold workability according to claim 1, characterized in that all of V, Ti and Nb are included and the total is 0.3 to 1.2%. Steel wire rod. さらに、質量%で、B:0.001〜0.015%を含有することを特徴とする請求項1または2記載の耐摩耗性、耐食性と冷間加工性に優れるCr系ステンレス鋼線材。 The Cr-based stainless steel wire excellent in wear resistance, corrosion resistance and cold workability according to claim 1 or 2, further comprising B: 0.001 to 0.015% by mass. さらに、質量%で、Al:0.01〜0.2%,Ca:0.001〜0.02%,Mg:0.001〜0.02%,Zr:0.0005〜0.02%のうち、1種以上を含有することを特徴とする請求項1〜記載のいずれかの耐摩耗性、耐食性と冷間加工性に優れるCr系ステンレス鋼線材。 Furthermore, by mass%, Al: 0.01 to 0.2%, Ca: 0.001 to 0.02%, Mg: 0.001 to 0.02%, Zr: 0.0005 to 0.02% Among them, the Cr-based stainless steel wire material having excellent wear resistance, corrosion resistance, and cold workability according to any one of claims 1 to 3, comprising at least one kind. 請求項1乃至のいずれかに記載の化学組成及び金属組織を有することを特徴とする耐摩耗性、耐食性と冷間加工性に優れるステンレス鋼鋼線。 A stainless steel wire excellent in wear resistance, corrosion resistance and cold workability , characterized by having the chemical composition and metal structure according to any one of claims 1 to 4 . 請求項1乃至4のいずれかに記載の化学組成及び金属組織を有するとともに、さらに質量%で、Ni:0.1〜1.4%,Cu:0.1〜2.0%,Sn:0.05〜0.3%の1種以上を含有することを特徴とする耐摩耗性、耐食性と冷間加工性に優れる織機おさのリード材用Cr系ステンレス鋼線材。It has the chemical composition and metal structure according to any one of claims 1 to 4, and is further in mass%, Ni: 0.1 to 1.4%, Cu: 0.1 to 2.0%, Sn: 0 A Cr-based stainless steel wire for a lead material of a weaving machine excellent in wear resistance, corrosion resistance and cold workability, characterized by containing at least one of 0.05 to 0.3%. 請求項6に記載の化学組成及び金属組織を有することを特徴とする耐摩耗性、耐食性と冷間加工性に優れる織機おさのリード材用ステンレス鋼鋼線。A stainless steel wire for a lead material of a weaving machine with excellent wear resistance, corrosion resistance and cold workability, characterized by having the chemical composition and metal structure according to claim 6. 請求項1乃至4、6のいずれかに記載の化学組成及び金属組織を有し、表面硬度300〜500Hvであることを特徴とする織機おさ用のリード材料。 Has a chemical composition and metal structure according to any one of claims 1 to 4, 6, lead material for the loom reed, characterized in that the surface hardness 300~500Hv.
JP2004376607A 2004-12-27 2004-12-27 Cr-based stainless steel wire rod for wear resistance excellent in corrosion resistance and cold workability, or lead wire for loom cages using the steel wire Active JP4624774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004376607A JP4624774B2 (en) 2004-12-27 2004-12-27 Cr-based stainless steel wire rod for wear resistance excellent in corrosion resistance and cold workability, or lead wire for loom cages using the steel wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004376607A JP4624774B2 (en) 2004-12-27 2004-12-27 Cr-based stainless steel wire rod for wear resistance excellent in corrosion resistance and cold workability, or lead wire for loom cages using the steel wire

Publications (2)

Publication Number Publication Date
JP2006183081A JP2006183081A (en) 2006-07-13
JP4624774B2 true JP4624774B2 (en) 2011-02-02

Family

ID=36736412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004376607A Active JP4624774B2 (en) 2004-12-27 2004-12-27 Cr-based stainless steel wire rod for wear resistance excellent in corrosion resistance and cold workability, or lead wire for loom cages using the steel wire

Country Status (1)

Country Link
JP (1) JP4624774B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5235452B2 (en) * 2008-02-28 2013-07-10 新日鐵住金ステンレス株式会社 Martensitic stainless steel for loom parts with excellent corrosion resistance and wear resistance and method for producing the steel strip
EP3491159A1 (en) * 2016-07-28 2019-06-05 BorgWarner Inc. Ferritic steel for turbochargers
JP7267702B2 (en) * 2018-09-27 2023-05-02 日鉄ステンレス株式会社 MARTENSITE STAINLESS STEEL BAR FOR HIGH HARDNESS AND HIGH CORROSION RESISTANCE WITH EXCELLENT COLD WORKABILITY AND METHOD FOR MANUFACTURING SAME
CN111020364A (en) * 2018-10-09 2020-04-17 中国电力科学研究院有限公司 High-strength stainless steel fastener wire for power transmission and transformation engineering and production method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264194A (en) * 1993-01-12 1994-09-20 Nippon Steel Corp High strength martensitic stainless steel excellent in rust resistance and drilling tapping screw
JP2005179718A (en) * 2003-12-17 2005-07-07 Nippon Steel & Sumikin Stainless Steel Corp Stainless steel wire rod for high strength product, and high-tensile bolt made of stainless steel having excellent durability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264194A (en) * 1993-01-12 1994-09-20 Nippon Steel Corp High strength martensitic stainless steel excellent in rust resistance and drilling tapping screw
JP2005179718A (en) * 2003-12-17 2005-07-07 Nippon Steel & Sumikin Stainless Steel Corp Stainless steel wire rod for high strength product, and high-tensile bolt made of stainless steel having excellent durability

Also Published As

Publication number Publication date
JP2006183081A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP3918787B2 (en) Low carbon free cutting steel
JP6004653B2 (en) Ferritic stainless steel wire, steel wire, and manufacturing method thereof
EP1669469A1 (en) Steel parts for machine structure, material therefor, and method for manufacture thereof
KR20190060805A (en) Carbon steel sheet for carburizing and method of manufacturing steel sheet for carburizing
WO2016148037A1 (en) Steel sheet for carburization having excellent cold workability and toughness after carburizing heat treatment
JP2001294972A (en) Steel for bearing
CN108291285B (en) Steel, carburized steel part, and method for producing carburized steel part
JP2008007853A (en) Rolled wire rod and production method therefor
EP3382051A1 (en) Steel, carburized steel component, and carburized steel component production method
CN113661019B (en) Composite roll for rolling produced by centrifugal casting method and method for producing same
WO2017018108A1 (en) Steel pipe for line pipe and method for manufacturing same
JP5370073B2 (en) Alloy steel for machine structural use
JP6635890B2 (en) Martensitic stainless steel sheet for cutting tools with excellent manufacturability and corrosion resistance
JP4624774B2 (en) Cr-based stainless steel wire rod for wear resistance excellent in corrosion resistance and cold workability, or lead wire for loom cages using the steel wire
JP5151223B2 (en) Ferritic stainless steel sheet excellent in spinning workability and manufacturing method thereof
JP2008045177A (en) High strength high elasticity stainless steel and stainless steel wire
JP5459197B2 (en) Alloy steel for machine structural use
JP2017193751A (en) High carbon steel sheet excellent in processability and abrasion resistance after hardening and tempering and manufacturing method therefor
CN107429359B (en) Hot-rolled rod and wire material, component, and method for producing hot-rolled rod and wire material
JP7135485B2 (en) Carburizing steel and parts
JP3919076B2 (en) Rolling bearing and manufacturing method thereof
JP2020143309A (en) Ferritic stainless steel sheet
JP2021127504A (en) Steel material for bearing raceway and bearing raceway
WO2022153790A1 (en) Martensite-based stainless steel material and method for producing same
JPH08109447A (en) Austenitic stainless steel excellent in roll transferability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101104

R150 Certificate of patent or registration of utility model

Ref document number: 4624774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250