JP3507723B2 - Bi free cutting steel - Google Patents

Bi free cutting steel

Info

Publication number
JP3507723B2
JP3507723B2 JP06713699A JP6713699A JP3507723B2 JP 3507723 B2 JP3507723 B2 JP 3507723B2 JP 06713699 A JP06713699 A JP 06713699A JP 6713699 A JP6713699 A JP 6713699A JP 3507723 B2 JP3507723 B2 JP 3507723B2
Authority
JP
Japan
Prior art keywords
steel
less
free
metal
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06713699A
Other languages
Japanese (ja)
Other versions
JP2000265243A (en
Inventor
雅実 染川
吾郎 阿南
義武 松島
良雄 福▲崎▼
和寛 辻
大輔 小椋
武広 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP06713699A priority Critical patent/JP3507723B2/en
Publication of JP2000265243A publication Critical patent/JP2000265243A/en
Application granted granted Critical
Publication of JP3507723B2 publication Critical patent/JP3507723B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、被削性、とくに切
屑処理性に優れたBi快削鋼に関するものである。
TECHNICAL FIELD The present invention relates to a Bi free-cutting steel excellent in machinability, particularly chip disposability.

【0002】[0002]

【従来の技術】鋼材の被削性を改善するための手段とし
ては、鉛や硫黄の如き被削性向上元素の添加が広く実用
化されている。このうち鉛を添加した鉛快削鋼は、被削
性、とりわけ切屑処理性に優れており、近年における切
削工程の自動化に大きく貢献してきた。しかも鉛は鋼中
に粒状で微細に分散しているため、鉛を添加しないもの
に比べても機械的性質の劣化が少ないことから、広範囲
に実用化されてきた。
As a means for improving the machinability of steel materials, the addition of machinability improving elements such as lead and sulfur has been widely put into practical use. Among them, the lead free-cutting steel containing lead is excellent in machinability, particularly chip disposability, and has greatly contributed to the automation of the cutting process in recent years. Moreover, since lead is granular and finely dispersed in the steel, mechanical properties are less deteriorated than those without lead added, and thus it has been widely used in practice.

【0003】ところが近年、有害な鉛を含む鉛快削鋼の
製造・使用について環境汚染の問題が提起されるにおよ
び、その汎用化が見直されており、鉛快削鋼の使用は急
速に低減していくものと推測される。
However, in recent years, as the problem of environmental pollution has been raised in the production and use of lead free-cutting steel containing harmful lead, its generalization has been reviewed, and the use of lead free-cutting steel is rapidly reduced. It is supposed to be done.

【0004】一方、硫黄を添加した硫黄快削鋼は、圧延
方向に延伸した硫化物系介在物の影響により、過多に硫
黄を含有させると圧延方向に対して垂直方向(以下、横
目という)の機械的性質が悪影響を受け、機械部品とし
ての要求特性を満足し得なくなったり、熱間鍛造や冷間
鍛造時に延伸した硫化物系介在物が起点となって割れを
生じ易くなり、更には、部品成形後の高周波焼入れ処理
を行う場合にも割れを起こし易くなるという問題を抱え
ている。そのため硫黄の添加量が制限され、鉛快削鋼に
比べると被削性が十分でない。
On the other hand, in the sulfur free-cutting steel added with sulfur, if the sulfur is excessively contained due to the influence of the sulfide-based inclusions stretched in the rolling direction, the vertical direction to the rolling direction (hereinafter referred to as "cross grain") Mechanical properties are adversely affected, the required properties as mechanical parts cannot be satisfied, or sulfide-based inclusions stretched during hot forging or cold forging tend to be the starting points for cracking. There is also a problem that cracks are likely to occur even when induction hardening is performed after the parts are molded. Therefore, the amount of sulfur added is limited, and the machinability is insufficient as compared with lead free-cutting steel.

【0005】上記以外の被削性向上手段としてBi快削
鋼が知られており、例えば特開昭56−35758号、
同56−38453号、同60−152653等などが
提案されているが、Bi介在物の存在形態が被削性にど
の様な影響を及ぼすかについては、十分な研究がなされ
ているとは言えない。
Bi free-cutting steel is known as a machinability improving means other than the above, and is disclosed in, for example, JP-A-56-35758.
No. 56-38453, No. 60-152653, etc. have been proposed, but it can be said that sufficient research has been conducted on how the existence form of Bi inclusions affects machinability. Absent.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記の様な事
情に着目してなされたものであって、特にBi快削鋼に
注目し、従来のBi快削鋼と同レベルのBi添加量であ
っても、被削性、殊に切削工程の自動化で最も重要とな
る切屑処理性が飛躍的に高められたBi快削鋼を提供す
ることにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances. In particular, attention is paid to Bi free-cutting steel, and the amount of Bi added is the same level as that of conventional Bi free-cutting steel. Even so, it is to provide a Bi free-cutting steel having dramatically improved machinability, particularly chip disposability which is most important in automation of a cutting process.

【0007】[0007]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係るBi快削鋼とは、Pbを実質的に
含まない機械構造用鋼であって、Bi含有量が0.01
〜0.3%(質量%を意味する、以下同じ)であり、
延方向断面1mmの視野内に観察される面積1μm
以上の金属Biの個数とBi含有率との下記式(1)で
示される比が50以上、より好ましくは70以上とし、
特に切屑処理性を著しく高めたところに要旨がある。 [金属Bi個数(個/mm)]/[Bi含有率(質量%×10)]……(1) 本発明に係る上記Bi快削鋼において、その特徴が最も
有効に発揮されるのは、ベース組成として、鋼がC:
0.06〜0.70%、Si:2.5%以下、Mn:
0.1〜3%を含み、S:0.15%以下、O:0.0
03%以下に抑えられた機械構造用鋼である。
The Bi free-cutting steel according to the present invention, which has been able to solve the above-mentioned problems, contains Pb substantially.
Machine structural steel not containing Bi content of 0.01
˜0.3% (meaning mass%, the same applies hereinafter) , and an area of 1 μm 2 observed in the field of view of a cross section of 1 mm 2 in the rolling direction.
The ratio of the number of the metal Bi and the Bi content expressed by the following formula (1) is 50 or more, more preferably 70 or more,
In particular, the point is that the chip disposability is remarkably improved. [ Metallic Bi number (pieces / mm 2 )] / [Bi content rate (mass% × 10)] (1) In the Bi free-cutting steel according to the present invention, the characteristics are most effectively exhibited. The base composition of steel is C:
0.06 to 0.70%, Si: 2.5% or less, Mn:
Including 0.1 to 3%, S: 0.15% or less, O: 0.0
It is a steel for machine structural use that is suppressed to 03% or less.

【0008】[0008]

【発明の実施の形態】本発明者らは前述した様な課題の
下で、特にBi快削鋼を対象として、従来のBi快削鋼
と同レベルのBi含有量で、切削性、特に切屑処理性の
一層の向上を期して鋭意研究を進めてきた。その結果、
前記式(1)で示される鋼材の圧延方向断面1mm
視野内に観察される面積1μm以上の金属Biの個数
とBi含有量の比が50以上であるものは、安定して高
レベルの切屑処理性を示すことを知り、本発明に想到し
たものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Under the above-mentioned problems, the inventors of the present invention specifically target Bi free-cutting steels with a Bi content at the same level as that of conventional Bi free-cutting steels, and in particular machinability, especially chips. We have been conducting intensive research with the aim of further improving processability. as a result,
A steel having a ratio of the Bi content of 50 or more and the number of the metal Bi having an area of 1 μm 2 or more observed in the field of view of the cross section of 1 mm 2 in the rolling direction of the steel material represented by the formula (1) is stably high The inventors of the present invention have come to the present invention by knowing that the above chip disposability is exhibited.

【0009】Biは鉛と同様に融点が低く、切削加工時
に鋼材温度が上昇したときに溶融金属脆化を起こし、工
具面上での潤滑作用の向上によって切屑処理性が高めら
れると考えられているが、如何なる存在形態のときにそ
の効果がより有効に発揮されるか、という観点からの研
究は現在のところなされていない。
Like lead, Bi has a low melting point, and it is considered that molten metal embrittles when the temperature of the steel material rises during cutting and improves the chip disposability by improving the lubricating action on the tool surface. However, at present, no research has been done from the viewpoint of in what form of existence the effect is more effectively exerted.

【0010】そこで、Bi添加による切屑処理性向上効
果がBiの存在形態によってどの様に変わってくるか、
また該存在形態をどの様に調整すればBiの上記添加効
果がより有効に活かされるか、という観点から研究を進
めた結果、前記式(1)で示される比が50以上、より
好ましくは70以上となる様に金属Biを微細分散させ
たものは、前述したBiによる溶融金属脆化および潤滑
作用がより効果的に発揮され、切屑処理性が確実かつよ
り有効に発揮されることをつきとめたのである。
Therefore, how the effect of improving the chip disposability by adding Bi changes depending on the existence form of Bi ,
As a result of further research from the viewpoint of how to adjust the existence form to more effectively utilize the above-mentioned addition effect of Bi, the ratio represented by the formula (1) is 50 or more, and more preferably 70 or more. It was found that the finely dispersed metal Bi as described above more effectively exerts the molten metal embrittlement and the lubricating action due to the above-mentioned Bi, and reliably and effectively exhibits the chip disposability. Of.

【0011】ここで、被検面内に観察される面積1μm
以上の金属Biの個数を切屑処理性の評価対象として
選択したのは、鋼中に微分散した金属Biのうち、被削
加工時における前記溶融金属脆化と潤滑作用による切屑
処理性に影響を及ぼす金属Biは、その面積が1μm
以上のものであり、これ未満の金属Biは切屑処理性の
改善に殆ど寄与しないからである。また、前記式(1)
で示される比を50以上に規定したのは、後記実施例で
も明らかにする通り50未満では本発明が意図するレベ
ルの切屑処理性を確保できないからである。
Here, the area observed on the surface to be inspected is 1 μm.
The number of metal Bi of 2 or more was selected as the evaluation target of the chip disposability . Among the metal Bi finely dispersed in steel, the influence of the molten metal embrittlement and the chip disposability due to the lubricating action at the time of machining is affected. The metal Bi that exerts an area of 1 μm 2
This is because the metal Bi less than this value hardly contributes to the improvement of chip disposability. In addition, the above formula (1)
The reason that the ratio shown by is defined to be 50 or more is that the chip disposability of the level intended by the present invention cannot be secured when the ratio is less than 50, as will be apparent from the examples described later.

【0012】このとき、鋼中のBi含有量の絶対量が不
足する場合は、前記式(1)で示される比を満たし難く
なるので、鋼中のBi含有量は0.01%以上を確保し
なければならず、より好ましくは0.03%以上とする
ことが望ましい。しかし、Bi含有量が0.3%を超え
ると、切屑処理性は飽和状態に達してそれ以上の被削性
向上効果は殆ど現われず、鋼材の靭性が著しく阻害され
るので、0.3%以下に抑えなければならず、より好ま
しくは0.15%以下に抑えることが望ましい。
At this time, if the absolute amount of Bi content in the steel is insufficient, it becomes difficult to satisfy the ratio represented by the above formula (1), so that the Bi content in the steel is 0.01% or more. However, it is preferable that the content be 0.03% or more. However, when the Bi content exceeds 0.3%, the chip disposability reaches a saturated state, the machinability improving effect is not further exhibited, and the toughness of the steel material is significantly impaired. It should be suppressed below, and more preferably 0.15% or less.

【0013】鋼中に微分散される金属Biサイズの調整
は、溶製段階で溶鋼中に添加するBi供給源のサイズを
変えることによって容易に行なうことができる。即ちB
iは、凝固点が273℃であって鋼材の凝固点(150
0℃以上)に比べて非常に低いため、溶製から圧延段階
までは鋼中で液状として存在し、圧延鋼材が273℃以
下にまで降温した時点で初めて凝固する。またBiは、
溶鋼に対する親和性が小さく且つ密度は9.8g/cm
で鉄の密度(7.8g/cm)と大きな差がなく、
また鋼内に固溶することなくBi粒状で鋼材中に分散し
易い。従って、Biを微細な粉状で溶鋼中に添加して溶
鋼を電磁攪拌やガスバブリング等により十分に攪拌する
と共に、鋳造時の凝固速度をうまくコントロールしてや
れば、添加Biのサイズに応じて鋼材中に金属Biを微
分散状態で均一に分布させることができる。
The size of the metal Bi that is finely dispersed in the steel can be easily adjusted by changing the size of the Bi source added to the molten steel at the melting stage. That is, B
i has a freezing point of 273 ° C. and a freezing point (150
Since it is much lower than that of (0 ° C or higher), it exists as a liquid state in the steel from the melting to the rolling stage, and the rolled steel material solidifies only when the temperature is lowered to 273 ° C or lower. Bi is
Low affinity for molten steel and density of 9.8 g / cm
3 , there is no big difference with the density of iron (7.8 g / cm 3 ),
Further, it does not form a solid solution in the steel and is easily dispersed in the steel material in the form of Bi particles. Therefore, if Bi is added to the molten steel in the form of fine powder and the molten steel is sufficiently stirred by electromagnetic stirring, gas bubbling, etc., and if the solidification rate during casting is well controlled, the steel material will be added according to the size of the added Bi. The metal Bi can be evenly distributed in a finely dispersed state.

【0014】鋼中に添加するBi源としては、金属Bi
をそのまま使用してもよいが、Bi酸化物として添加す
ることも可能である。しかしてBi酸化物は高温条件下
で容易に還元され、特に高温の溶鋼と接触すると溶鋼中
の炭素やアルミニウムによって速やかに還元されBiと
なるからである。また酸化ビスマスは融点が820℃で
あって金属ビスマスの融点よりもかなり高いので、ビス
マスを金属として添加するよりも酸化物として添加した
方が、添加時におけるBi原料粒子相互の付着成長が抑
えられ、鋼内への微分散は促進されると考えられる。
As a Bi source to be added to steel, metallic Bi is used.
May be used as it is, but may be added as a Bi oxide. However, the Bi oxide is easily reduced under high temperature conditions, and when it comes into contact with molten steel at high temperature, it is rapidly reduced by carbon and aluminum in the molten steel to form Bi. Further, since bismuth oxide has a melting point of 820 ° C., which is considerably higher than the melting point of metal bismuth, it is more preferable to add bismuth as an oxide than to add bismuth as a metal, because the growth of adhesion between Bi raw material particles during addition is suppressed. It is considered that fine dispersion in steel is promoted.

【0015】また、Bi原料の添加形態としては、粉末
状のものを不活性ガス等のキャリヤガスと共に溶鋼中に
吹き込む方法、或いはBi原料粉末を鉄製のケーシング
内に充填して引き伸ばしたワイヤ状で湯面上から供給す
る方法等を採用すればよい。
The Bi raw material may be added in a powder form by blowing it into a molten steel together with a carrier gas such as an inert gas, or in the form of a wire filled with a Bi raw material powder in an iron casing and drawn out. A method such as supplying from the surface of the molten metal may be adopted.

【0016】なお本発明において鋼材中に微分散した
属Biの測定は、次の様にして行なった。即ち、溶製段
階でBiが添加された鋼材の圧延方向に平行な断面を研
磨し、その断面をSEMで観察することにより反射電子
像を撮影する(倍率200倍)。この写真を自動測定装
置にかけ、1mmの視野内に観察される面積1μm
以上の金属Bi個数を測定する。この時、上記断面内の
任意に選択した5個所について同様の測定を行ない、そ
の平均値を金属Bi個数とした。
In the present invention, gold finely dispersed in the steel material
The genus Bi was measured as follows. That is, a cross section parallel to the rolling direction of the steel material to which Bi is added is polished in the melting stage, and a backscattered electron image is taken by observing the cross section with an SEM (magnification: 200 times). This photograph was placed on an automatic measuring device and the area observed in a visual field of 1 mm 2 was 1 μm 2.
The number of the above metal Bi is measured. At this time, the same measurement was performed at five arbitrarily selected points in the cross section, and the average value was taken as the number of metal Bi .

【0017】本発明は、上記の様に鋼へのBi添加量を
規定すると共に、該鋼中に微分散したBiの特定サイズ
の個数とBi添加量の比率を規定したところにあり、そ
れにより微分散したBiによる研削加工時の溶融金属脆
化と潤滑作用をより有効に発揮させるところに特徴を有
するものであり、鋼材の成分組成自体は特に限定されな
いが、被削性の観点から好ましいベース鋼材としては、
C:0.06〜0.70%、Si:2.5%以下、M
n:0.1〜3%を含み、S:0.15%以下、O:
0.003%以下に抑えられた機械構造用鋼、より具体
的には、例えばJIS G4051に規定される機械構
造用炭素鋼、JIS G4102に規定されるニッケル
・クロム鋼、JIS G4103に規定されるニッケル
・クロム・モリブデン鋼、JIS G4104に規定さ
れるクロム鋼、JIS G4105に規定されるクロム
・モリブデン鋼、JIS G4106に規定される機械
構造用マンガン鋼、マンガン・クロム鋼などが挙げら
れ、これらベース鋼材の好ましい化学成分を規定した理
由は下記の通りである。
The present invention resides in that the Bi addition amount to the steel is specified as described above, and the ratio between the number of Bi of a specific size finely dispersed in the steel and the Bi addition amount is specified. It is characterized by more effectively exerting the molten metal embrittlement and the lubricating action during the grinding process by the finely dispersed Bi, and the component composition of the steel material itself is not particularly limited, but it is a preferable base from the viewpoint of machinability. As a steel material,
C: 0.06 to 0.70%, Si: 2.5% or less, M
n: 0.1 to 3% included, S: 0.15% or less, O:
Mechanical structural steel suppressed to 0.003% or less, more specifically, for example, mechanical structural carbon steel specified in JIS G4051, nickel-chromium steel specified in JIS G4102, and JIS G4103. Nickel / chromium / molybdenum steel, chrome steel specified in JIS G4104, chrome molybdenum steel specified in JIS G4105, manganese steel for machine structure specified in JIS G4106, manganese chrome steel, etc. A theory that defines the preferred chemical composition of steel
The reasons are as follows.

【0018】C:0.06〜0.70% Cは、最終製品の強度を確保するのに重要な元素であ
り、機械構造用鋼などとして必要な強度を確保するには
0.06%以上、より好ましくは0.08%以上含有す
るものが望ましい。しかし、多過ぎると靭性が低下する
と共に工具寿命や被削性が低下するので、0.70%以
下、より好ましくは0.60%以下のものが望ましい。
C: 0.06 to 0.70% C is an important element for securing the strength of the final product, and is 0.06% or more for securing the strength required as steel for machine structural use. , And more preferably 0.08% or more is desirable. However, if it is too large, the toughness is reduced and the tool life and machinability are reduced, so 0.70% or less, more preferably 0.60% or less is desirable.

【0019】Si:2.5%以下 Siは脱酸元素として有効に作用する他、固溶強化によ
って鋼材の強度向上にも寄与する。しかし、多過ぎると
被削性に悪影響が現われてくるので、2.5%程度以
下、より好ましいくは1.5%以下のものを使用するの
がよい。
Si: 2.5% or less Si acts effectively as a deoxidizing element and also contributes to the strength improvement of steel by solid solution strengthening. However, if too large, the machinability is adversely affected, so it is preferable to use about 2.5% or less, more preferably 1.5% or less.

【0020】Mn:0.1〜3% Mnは、鋼材の焼入性を高めて強度向上に寄与するばか
りでなく、硫化物系介在物を形成して被削性を高める作
用も発揮する。こうした作用は0.1%以上含有させる
ことによって有効に発揮されるが、多過ぎると被削性が
却って悪くなる傾向が現われてくるので、3%程度以
下、より好ましくは2.5%以下に抑えるのがよい。
Mn: 0.1 to 3% Mn not only enhances the hardenability of the steel material and contributes to the improvement of the strength, but also forms the sulfide inclusions to enhance the machinability. Although such an effect is effectively exhibited by containing 0.1% or more, if too much is present, the machinability tends to deteriorate rather. Therefore, the content should be about 3% or less, and more preferably 2.5% or less. It is good to suppress.

【0021】S:0.15%以下 Sは、MnSなどの硫化物系介在物を形成して被削性を
高める作用を有しているが、多過ぎると熱間鍛造や冷間
鍛造時に割れ発生の起点となって変形能を低下させるの
で、0.15%程度以下、より好ましくは、0.12%
以下に抑えるのがよい。
S: 0.15% or less S has the action of forming sulfide-based inclusions such as MnS to enhance the machinability, but if it is too large, it cracks during hot forging or cold forging. Since it becomes the starting point of generation and reduces the deformability, it is about 0.15% or less, more preferably 0.12%.
The following should be suppressed.

【0022】Al:0.1%以下 Alは鋼材溶製時の脱酸性元素として重要であるほか、
窒化物を形成してオーステナイト結晶粒を微細化し、靭
性を高める作用も有している。しかし多過ぎると逆に結
晶粒が粗大化し、靭性に悪影響が現われてくるので、
0.1%程度以下、より好ましくは0.06%以下に抑
えるべきである。
Al: 0.1% or less Al is important as a deoxidizing element when steel is melted,
It also has a function of forming a nitride and refining austenite crystal grains to enhance toughness. However, if it is too large, the crystal grains will become coarser and adversely affect the toughness.
It should be suppressed to about 0.1% or less, more preferably 0.06% or less.

【0023】Ni:3%以下、Cr:5%以下、Mo:
1.2%以下、Cu:1%以下などの1種以上 これらの元素は何れも鋼材の強度向上に有用な元素であ
るが、多過ぎると被削性を低下させる等の障害が現われ
てくるので、用途に応じて適宜選択し、上記範囲の中か
ら適正量含有させることができる。
Ni: 3% or less, Cr: 5% or less, Mo:
One or more of these elements such as 1.2% or less and Cu: 1% or less are all useful elements for improving the strength of the steel material, but if they are too much, obstacles such as decrease in machinability appear. Therefore, an appropriate amount can be selected from the above range by appropriately selecting according to the application.

【0024】Ca:0.05%以下、Zr:0.2%以
下、REM:0.3%以下の1種以上 これらの元素は、前述したMnとSの反応によって生成
するMnSを粒状化し、異方性を改善する作用を有して
いる他、被削性の向上にも有効に作用する。しかし、そ
れらの効果は上記範囲で飽和するので、それ以上の添加
は無駄である。
Ca: 0.05% or less, Zr: 0.2% or less, REM: 0.3% or less, one or more of these elements, MnS produced by the above-mentioned reaction of Mn and S is granulated, In addition to having the effect of improving the anisotropy, it also effectively acts on the improvement of machinability. However, since their effects are saturated within the above range, any further addition is useless.

【0025】V:0.5%以下、Ti:0.3%以下、
Nb:0.3%以下の1種以上 これらの元素は、調質後の鋼組繊を微細化して強度・靭
性バランスの向上に有効に作用する。また、非調質鋼の
場合でも強度を大幅に高める作用を有しており且つ組繊
も微細化して靭性も高める。しかしそれらの効果は上記
範囲で飽和するので、それ以上の添加は無駄である。
V: 0.5% or less, Ti: 0.3% or less,
Nb: One or more of 0.3% or less These elements effectively refine the steel braid after conditioning to improve the strength / toughness balance. Further, even in the case of non-heat treated steel, it has the effect of significantly increasing the strength, and also finely assembles the combined fibers to enhance the toughness. However, since their effects saturate within the above range, any further addition is useless.

【0026】B:0.0003〜0.01% Bは極微量の添加で焼入性を高め強度向上に寄与する
が、その効果は0.01%程度で飽和するのでそれ以上
の添加は無駄である。Bのより好ましい添加量は0.0
005〜0.005%の範囲である。
B: 0.0003 to 0.01% B is added in an extremely small amount to enhance the hardenability and contributes to the improvement of strength. However, the effect is saturated at about 0.01%, so any further addition is useless. Is. The more preferable addition amount of B is 0.0
It is in the range of 005 to 0.005%.

【0027】O:0.003%以下 OはA1などの硬質な非金属介在物として鋼中に
存在し、切削工具の摩耗を促進させるので、0.003
%以下、より好ましくは0.002%以下に抑えるのが
よい。
O: 0.003% or less O is present in the steel as a hard non-metallic inclusion such as A1 2 O 3 and accelerates wear of the cutting tool.
% Or less, and more preferably 0.002% or less.

【0028】N:0.003〜0.03% Nは、AlやTi等と結合して窒化物を生成し、オース
テナイト結晶粒を微細化して靭性や疲労強度の向上に有
効に作用する。しかし、多過ぎると逆に靭性を劣化させ
るので、0.003〜0.03%、より好ましくは0.
003〜0.02%の範囲で含有させることが望まし
い。
N: 0.003 to 0.03% N combines with Al, Ti or the like to form a nitride, which makes the austenite crystal grains finer and effectively acts to improve toughness and fatigue strength. However, if it is too large, the toughness is adversely deteriorated, so 0.003 to 0.03%, and more preferably 0.
It is desirable to contain it in the range of 003 to 0.02%.

【0029】Bi:0.01〜0.3% Biは、先に示した様に単独で鋼中に分散し、溶融金属
脆化作用と潤滑作用によって被削性、とりわけ切屑処理
性を高める有効な元素であり、前記式(1)の比で50
以上を確保するには、0.01%以上含有させなければ
ならない。しかし、こうしたBiの作用は0.3%程度
で飽和し、それ以上に添加すると靭性に顕著な悪影響が
現われてくるので、0.3%以下に抑えるべきである。
Bi: 0.01 to 0.3% Bi is dispersed alone in the steel as shown above, and is effective in enhancing the machinability, especially the chip disposability by the molten metal embrittlement action and the lubricating action. Is an element that is 50% in the ratio of the above formula (1).
In order to secure the above, 0.01% or more must be contained. However, the action of Bi is saturated at about 0.3%, and if added in excess of this amount, the toughness will have a marked adverse effect, so it should be suppressed to 0.3% or less.

【0030】[0030]

【実施例】以下、実施例を挙げて本発明をより具体的に
説明するが、本発明はもとより下記実施例によって制限
を受けるものではなく、前・後記の趣旨に適合し得る範
囲で適当に変更を加えて実施することも可能であり、そ
れらはいずれも本発明の技術的範囲に含まれる。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and may be appropriately applied within a range compatible with the gist of the preceding and the following. Modifications can be made and implemented, and all of them are included in the technical scope of the present invention.

【0031】実施例 ベース鋼材として機械構造用炭素鋼S45Cを用いて、
転炉溶製時にBiを0.03%、0.05%および0.
1%の3水準狙いで添加し、電磁攪拌によって十分に攪
拌した。この溶鋼を用いて鋳造した後、圧延して直径5
0mmの棒鋼を得た。
Example Using carbon steel S45C for machine structure as a base steel material,
When the converter was melted, Bi was 0.03%, 0.05% and 0.
Aiming at 3 levels of 1%, the mixture was thoroughly stirred by magnetic stirring. After casting using this molten steel, it is rolled to a diameter of 5
A 0 mm steel bar was obtained.

【0032】なお、溶製時に添加するBi原料として
は、粒径10mm以下の酸化ビスマス超微粉末、粒径1
5μm以下の金属ビスマス超微粉末、粒径0.5mm以
下の金属ビスマス粉末、粒径3〜8mmの金属ビスマス
ショットの4種を使用し、それらの配合比率を調整する
ことによって、各鋼材中の金属Biサイズと個数を制御
した。尚これらのBi原料は、何れも薄肉の鉄製ケーシ
ング内に装入し、幅15mm×厚さ6mmのワイヤ状で
溶鋼内に添加した。
The Bi raw material to be added at the time of melting is ultrafine bismuth oxide powder having a particle size of 10 mm or less, and a particle size of 1
By using 4 kinds of metal bismuth ultrafine powder of 5 μm or less, metal bismuth powder of 0.5 mm or less in particle diameter, metal bismuth shot of 3 to 8 mm in particle diameter, and adjusting the compounding ratio thereof, The metal Bi size and number were controlled. Each of these Bi raw materials was charged in a thin iron casing and added to the molten steel in the form of a wire having a width of 15 mm and a thickness of 6 mm.

【0033】Bi原料として用いた粉末の使用比率およ
び得られた各Bi快削鋼の化学成分を表1に示すと共
に、各Bi快削鋼中の金属Bi個数と前記式(1)の
比、および各快削鋼の切屑処理性を表2に一括して示
す。
The use ratio of the powder used as the Bi raw material and the chemical composition of each Bi free-cutting steel obtained are shown in Table 1, and the number of metal Bi in each Bi free-cutting steel and the ratio of the above formula (1), Table 2 collectively shows chip disposability of each free-cutting steel.

【0034】なお、No.1〜12は本発明の要件を満
たす実施例、No.13〜18は比較例であり、No.
1〜4,13,14はBi0.03%狙い、No.5〜
8,15,16はBi0.05%狙い、No.9〜1
2,17,18はBi0.1%狙いの例である。
No. Nos. 1 to 12 are examples satisfying the requirements of the present invention. Nos. 13 to 18 are comparative examples, and No.
Nos. 1 to 4, 13, and 14 aim at Bi 0.03%. 5-
Nos. 8, 15 and 16 aim at 0.05% Bi. 9-1
2, 17 and 18 are examples of Bi 0.1% aiming.

【0035】また金属Biは、上記各圧延材の圧延方向
断面を切断し研磨した後、切削性を評価したD/8位置
のSEM反射電子像を倍率200倍で写真撮影し、この
写真を自動測定装置にかけて、1mmの視野内に観察
される面積1μm以上の金属Bi個数を測定すること
によって求めた(観察位置5個所の平均値)。
For the metal Bi , after the sections in the rolling direction of the above-mentioned rolled materials were cut and polished, SEM backscattered electron images at the D / 8 position where the machinability was evaluated were photographed at a magnification of 200, and this photograph was automatically taken. It was determined by applying a measuring device and measuring the number of metal Bi having an area of 1 μm 2 or more observed in a visual field of 1 mm 2 (average value at 5 observation positions).

【0036】また切屑処理性は、各快削鋼を850℃×
1Hr加熱→油冷→500℃×2Hr保持→水冷の焼入
れ・焼戻し処理を行なった後、超硬旋削試験により評価
した。試験条件は、表3に示す如く切削速度150m/
minで送りを0.05,0.1,0.2,0.3mm
/revの4水準、切込みを0.5,1.0,2.0m
mの3水準で変化させ、各条件で切り出した切屑を採取
して図2に示す評点を基準に点数をつけ、各供試快削鋼
について12条件の合計を切屑処理性指数として評価し
た。即ち、仮に全条件で図2の右端に示す最小の切屑状
態であったものの切屑性指数は100となる。
The chip disposability is 850 ° C. for each free-cutting steel.
After 1 hour heating → oil cooling → 500 ° C. × 2 hour holding → water cooling quenching / tempering treatment, evaluation was carried out by a carbide turning test. As shown in Table 3, the test conditions are cutting speed 150 m /
Feed at 0.05, 0.1, 0.2, 0.3 mm
4 levels of / rev, 0.5, 1.0, 2.0 m depth of cut
Chips cut out under each condition were sampled under various conditions, and a score was assigned based on the rating shown in FIG. 2. The total of 12 conditions for each test free-cutting steel was evaluated as a chip disposability index. That is, if all the conditions were the minimum chip state shown at the right end of FIG. 2, the chip property index becomes 100.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【表3】 [Table 3]

【0040】上記表1,2より、Bi含有量0.03
%,0.05%および0.10%のものについて、前記
式(1)で示される比と切屑処理性指数の関係を整理し
て示したのが図1であり、何れのBi含有率において
も、上記比が50以上で切屑処理性指数は急上昇傾向を
示し、特に70以上とすることにより高い切屑処理性
数が得られることを確認できる。
From the above Tables 1 and 2, Bi content of 0.03
%, 0.05%, and 0.10%, the relationship between the ratio represented by the formula (1) and the chip disposability index is shown in FIG. 1 at any Bi content ratio. also, chip disposability index above ratio is 50 or more indicates a surge tendency, it can be confirmed that the high chip disposability finger <br/> number is obtained by particularly 70 or more.

【0041】[0041]

【発明の効果】本発明は以上の様に構成されており、
属Biのサイズと存在量およびBi含有率を適正に制御
することにより、被削性、特に切屑処理性を著しく高め
ることができる。その結果、被削性、殊に切屑処理性が
確実に高められたBi快削鋼を確実且つ安定して提供す
ることができ、切削加工の自動化に大きく貢献できる。
また、従来と同程度の被削性で要求が満たされる場合
は、より少ないBi添加量で目的を果たすことができる
ので、Bi快削鋼のコストダウンを図ることができる。
According to the present invention is constructed as described above, gold
By appropriately controlling the size and abundance of the genus Bi and the Bi content, the machinability, especially the chip disposability, can be significantly enhanced. As a result, it is possible to reliably and stably provide Bi free-cutting steel whose machinability, in particular, chip disposability, is surely improved, which greatly contributes to automation of cutting.
Further, if the requirements are satisfied with the same machinability as the conventional one, the purpose can be achieved with a smaller amount of added Bi, so that the cost of Bi free-cutting steel can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で得たBi快削鋼の[金属Bi個数(個
/mm)]/[Bi含有率(質量%×10)]比と切
屑処理性指数の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the [ metal Bi number (pieces / mm 2 )] / [Bi content (mass% × 10)] ratio and the chip disposability index of Bi free-cutting steel obtained in an example. .

【図2】切屑処理性の評価基準を表形式で示す図であ
る。
FIG. 2 is a diagram showing, in tabular form, an evaluation standard for chip disposability.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松島 義武 神戸市灘区灘浜東町2番地 株式会社神 戸製鋼所 神戸製鉄所内 (72)発明者 福▲崎▼ 良雄 神戸市灘区灘浜東町2番地 株式会社神 戸製鋼所 神戸製鉄所内 (72)発明者 辻 和寛 神戸市灘区灘浜東町2番地 株式会社神 戸製鋼所 神戸製鉄所内 (72)発明者 小椋 大輔 神戸市灘区灘浜東町2番地 株式会社神 戸製鋼所 神戸製鉄所内 (72)発明者 土田 武広 神戸市西区高塚台1丁目5番5号 株式 会社神戸製鋼所神戸総合技術研究所内 (56)参考文献 特開 平11−217650(JP,A) 特開 平6−212349(JP,A) 特開 昭62−60815(JP,A) 特開 平2−274838(JP,A)   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yoshitake Matsushima               Kobe, Nada-ku, Nadahama Higashi-cho 2 God               To Steel Works Inside Kobe Steel Works (72) Inventor Fuku ▲ Saki ▼ Yoshio               Kobe, Nada-ku, Nadahama Higashi-cho 2 God               To Steel Works Inside Kobe Steel Works (72) Inventor Kazuhiro Tsuji               Kobe, Nada-ku, Nadahama Higashi-cho 2 God               To Steel Works Inside Kobe Steel Works (72) Inventor Daisuke Ogura               Kobe, Nada-ku, Nadahama Higashi-cho 2 God               To Steel Works Inside Kobe Steel Works (72) Inventor Takehiro Tsuchida               1-5-5 Takatsukadai, Nishi-ku, Kobe-shi Stock               Kobe Steel Co., Ltd.Kobe Research Institute                (56) Reference JP-A-11-217650 (JP, A)                 JP-A-6-212349 (JP, A)                 JP 62-60815 (JP, A)                 JP-A-2-274838 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Pbを実質的に含まない機械構造用鋼で
あって、Bi含有量が0.01〜0.3%(質量%を意
味する、以下同じ)であり、圧延方向断面1mmの視
野内に観察される面積1μm以上の金属Biの個数と
Bi含有率との下記式(1)で示される比が50以上で
あることを特徴する切屑処理性に優れたBi快削鋼。 [金属Bi個数(個/mm)]/[Bi含有率(質量%×10)]……(1)
1. A steel for machine structural use which is substantially free of Pb.
And the Bi content is 0.01 to 0.3% (meaning mass%, the same applies below) , and the number of metal Bi having an area of 1 μm 2 or more observed in the visual field of the rolling direction cross section of 1 mm 2. A Bi free-cutting steel excellent in chip disposability, characterized by having a ratio of Bi content expressed by the following formula (1) of 50 or more. [Number of metal Bis (number / mm 2 )] / [Bi content rate (mass% × 10)] (1)
【請求項2】 鋼がC:0.06〜0.70%、Si:
2.5%以下、Mn:0.1〜3%を含み、S:0.1
5%以下、O:0.003%以下に抑えられた機械構造
用鋼である請求項1に記載のBi快削鋼。
2. Steel C: 0.06 to 0.70%, Si:
2.5% or less, including Mn: 0.1 to 3%, S: 0.1
The Bi free-cutting steel according to claim 1, which is a steel for machine structural use in which the content is 5% or less and O: 0.003% or less.
JP06713699A 1999-03-12 1999-03-12 Bi free cutting steel Expired - Fee Related JP3507723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06713699A JP3507723B2 (en) 1999-03-12 1999-03-12 Bi free cutting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06713699A JP3507723B2 (en) 1999-03-12 1999-03-12 Bi free cutting steel

Publications (2)

Publication Number Publication Date
JP2000265243A JP2000265243A (en) 2000-09-26
JP3507723B2 true JP3507723B2 (en) 2004-03-15

Family

ID=13336197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06713699A Expired - Fee Related JP3507723B2 (en) 1999-03-12 1999-03-12 Bi free cutting steel

Country Status (1)

Country Link
JP (1) JP3507723B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4141405B2 (en) 2003-10-28 2008-08-27 大同特殊鋼株式会社 Free-cutting steel and fuel injection system parts using it
DE102009052036A1 (en) * 2009-11-05 2011-05-12 Buderus Edelstahl Band Gmbh Lead-free free-cutting steel
JP7417091B2 (en) 2020-03-27 2024-01-18 日本製鉄株式会社 steel material
JPWO2023017829A1 (en) * 2021-08-10 2023-02-16
WO2023048248A1 (en) * 2021-09-24 2023-03-30 日本製鉄株式会社 Steel material
WO2024019013A1 (en) * 2022-07-20 2024-01-25 日本製鉄株式会社 Steel material

Also Published As

Publication number Publication date
JP2000265243A (en) 2000-09-26

Similar Documents

Publication Publication Date Title
JP3577411B2 (en) High toughness spring steel
KR101367350B1 (en) Steel for case hardening which has excellent cold workability and machinability and which exhibits excellent fatigue characteristics after carburizing and quenching, and process for production of same
WO2013058131A1 (en) Bearing steel and method for producing same
KR101824352B1 (en) Steel material for induction hardening
JP2003226939A (en) Hot tool steel
JP5484103B2 (en) Steel plate for high-strength machine parts, method for producing the same, and method for producing high-strength machine parts
JP6881613B2 (en) Carburized bearing steel parts and steel bars for carburized bearing steel parts
JP2002069569A (en) Free cutting steel for machine structure having excellent mechanical property
JP5753365B2 (en) High chrome cast iron
JP2006291237A (en) Steel superior in cold-forgeability and machinability for machine structural use
JP6504330B2 (en) Wire for cutting
JP2006299296A (en) Rolled bar steel for case hardening having excellent fatigue property and crystal grain coarsening resistance, and method for producing the same
JP2001131684A (en) Steel for machine structure excellent in treatment of chip
JP2006183136A (en) Steel for high strength spring
KR101723174B1 (en) High chromium white cast-iron alloy with excellent abrasion resistance, oxidation resistance and strength and method for preparing the same
JP4041413B2 (en) Machine structural steel having excellent chip disposal and manufacturing method thereof
JP3507723B2 (en) Bi free cutting steel
JP6677071B2 (en) Ferritic free-cutting stainless steel
JP6710484B2 (en) Powder high speed tool steel
JPH05171373A (en) Powder high speed tool steel
JPH07157846A (en) Steel for high strength spring
JP4002411B2 (en) Machine structural steel with excellent machinability
JP2005177809A (en) External layer material of rolling roll, and rolling roll
JP2934424B2 (en) Steel for free-cutting plastic molds with excellent finished surface roughness
JP4348164B2 (en) Steel with excellent machinability

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031219

R150 Certificate of patent or registration of utility model

Ref document number: 3507723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees