JPS6053725B2 - Method for manufacturing austenitic stainless steel sheets and steel strips - Google Patents
Method for manufacturing austenitic stainless steel sheets and steel stripsInfo
- Publication number
- JPS6053725B2 JPS6053725B2 JP12006781A JP12006781A JPS6053725B2 JP S6053725 B2 JPS6053725 B2 JP S6053725B2 JP 12006781 A JP12006781 A JP 12006781A JP 12006781 A JP12006781 A JP 12006781A JP S6053725 B2 JPS6053725 B2 JP S6053725B2
- Authority
- JP
- Japan
- Prior art keywords
- hot
- cold rolling
- stainless steel
- austenitic stainless
- rolling reduction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
【発明の詳細な説明】
本発明は18Cr−8Ni系を中心とするオーステナイ
ト系ステンレス鋼の製造方法に関するもので、特に熱延
板焼鈍を省略しても異方性の小さな優れた品質の鋼板を
得る方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing austenitic stainless steel, mainly 18Cr-8Ni stainless steel, and in particular a method for producing an excellent quality steel plate with small anisotropy even if hot-rolled plate annealing is omitted. It's about how to get it.
一般に18Cr−8Ni系を中心としたオーステナイト
系ステンレス鋼薄板の製造においては、ホットストリッ
プミル等の熱間圧延機にてホットストリップを製造し、
その後熱延板を1000℃以上の高温で軟化焼鈍し、デ
スケーリングを行なつた後1回冷延あるいは中間焼鈍を
はさんだ2回冷延等に冷間圧延で薄板とし、最終焼鈍・
酸洗して冷延薄板を製造して来た。熱延板焼鈍とデスケ
ーリングはHAPラインと称するステンレス鋼特有のラ
インで処理されている。本発明者らはこの熱延板焼鈍の
省略を目的に、熱延板焼鈍工程のはたしている役割りを
詳細に検討した結果、(1)冷延用素材として十分再結
晶させ軟化させる。Generally, in the production of thin austenitic stainless steel sheets mainly made of 18Cr-8Ni, hot strips are produced using a hot rolling mill such as a hot strip mill.
After that, the hot-rolled sheet is softened and annealed at a high temperature of 1000°C or higher, descaled, and then cold-rolled once or twice with intermediate annealing to form a thin sheet, and finally annealed.
A cold-rolled sheet was produced by pickling. Hot-rolled sheet annealing and descaling are performed on a line unique to stainless steel called the HAP line. With the aim of omitting this hot-rolled sheet annealing, the present inventors have studied in detail the role played by the hot-rolled sheet annealing process. As a result, (1) the hot-rolled sheet is sufficiently recrystallized and softened as a raw material for cold rolling.
(2)熱延中及び巻取中に析出した炭化物を固溶化させ
る。(2) Carbides precipitated during hot rolling and coiling are dissolved.
(3)酸洗スピードを向上させる。(3) Improve pickling speed.
(4)製品の異方性を改善させる。(4) Improve the anisotropy of the product.
の4点であることをつきとめた。We found that there are 4 points.
これらのうち田はすでに特開昭55−70404号公報
にて論じられ(2)についてはすでに特開昭51−77
523号公報、特開昭55−10772時公報にて論じ
られているところである。しカル(3)、(4)につい
ては従来ほとんど知られていない点である。又(1)、
(2)に関しても種々の新規な考え方があり、これらを
総合的に解決することが望まれている。熱延板焼鈍工程
では焼鈍軟化と炭化物の固溶に高温を必要とし、したが
つて相当のエネルギーを消費しており、かつHAPのラ
インスピードも焼鈍律速のケースが多い。These Uchida have already been discussed in JP-A-55-70404, and (2) has already been discussed in JP-A-51-77.
This is discussed in Japanese Patent Application Laid-open No. 523 and Japanese Unexamined Patent Publication No. 55-10772. Regarding (3) and (4), little is known so far. Also (1),
Regarding (2), there are various new ideas, and it is desired to solve them comprehensively. In the hot-rolled sheet annealing process, high temperatures are required for annealing softening and solid dissolution of carbides, which consumes a considerable amount of energy, and in many cases, the HAP line speed is also annealing rate-limiting.
したがつて熱延板焼鈍工程を省略出来れば省エネルギー
と生産性の向上に関してのメリットは極めて大きいと考
えられる。こうして本発明者らはSUS3O4を中心と
したオーステナイトステンレス鋼薄板の製造工程から熱
延板焼鈍工程を省略すると共に、すぐれた品質特性を有
したステンレス鋼薄板製造プロセスの開発を目的に、具
体的には上記4つの機能を完全に代替し得る新プロセス
を目標に総合的に研究を展関した結果、本発明に到達し
た。特に熱延板焼鈍を省略した場合のオーステナイトス
テンレス銅薄板の異方形の問題については従来ほとんど
研究がなく、この点を詳細に検討した。熱延板焼鈍を省
略したステンレス鋼薄板では、熱延板焼鈍をしたものに
比して製品段階で異方形が大きくなる。Therefore, if the hot-rolled plate annealing process can be omitted, the benefits in terms of energy saving and productivity improvement are considered to be extremely large. In this way, the present inventors specifically aimed to omit the hot-rolled plate annealing process from the manufacturing process of austenitic stainless steel thin sheets mainly made of SUS3O4, and to develop a process for manufacturing stainless steel thin sheets with excellent quality characteristics. The present invention was achieved as a result of comprehensive research aimed at developing a new process that can completely replace the above four functions. In particular, there has been little research on the problem of anisotropy in austenitic stainless copper thin sheets when hot-rolled sheet annealing is omitted, and this point was investigated in detail. Stainless steel thin plates that do not undergo hot-rolled plate annealing have a larger anisotropy at the product stage than those that undergo hot-rolled plate annealing.
異方形が大きいと圧延方向、圧延方向と直角方向、圧延
方向と45圧方向での特性が異なり、例えば円筒深絞り
をした場合、耳の発生が大きく製品歩留りが低下する。
この現象はイヤリングとして知られ、イヤリング率で表
示される。(第1図)本発明においてはイヤリングの評
価を円筒深絞り試験で実施したがその試験条件は0.7
TIr1n薄板でブランク径は807mφとし、ポンチ
径は40W$tφとした。我々の研究でこれらイヤリン
グの発生は、ステンレス鋼薄板で特有の集合組織が発達
することによることが判明した。したがつて熱延板焼鈍
を省略した場合に、この特有の集合組織の発達を抑制す
ることが出来ればイヤリングの発生は生じがたいと考え
られる。実験結果によると熱延板焼鈍をした場合のイヤ
リング率は4〜6%であるのに対して、熱延板焼鈍を省
略すると10!%程度のイヤリングが発生した。本発明
者らは以上のような考え方で各種のオーステナイトステ
ンレス鋼はもとより数多くの成分系について検討した結
果、熱延板焼鈍を省略しても異方性が小さく、したがつ
てイヤリング率が63%(通常の熱延板焼鈍をした場合
に得られる平均的イヤリング率)以下となるような製造
プロセスを検討した結果イヤリング率を支配するプロセ
スとして冷間圧延工程が重要であることが明らかになつ
た。If the anisotropy is large, the properties will be different in the rolling direction, in the direction perpendicular to the rolling direction, and in the rolling direction and the 45-press direction. For example, when cylindrical deep drawing is performed, selvage will be large and the product yield will be reduced.
This phenomenon is known as earring and is expressed as the earring rate. (Figure 1) In the present invention, the earrings were evaluated by a cylindrical deep drawing test, and the test conditions were 0.7
The blank diameter was 807 mφ using a TIr1n thin plate, and the punch diameter was 40 W$tφ. Our research revealed that these earrings occur due to the development of a unique texture in stainless steel sheets. Therefore, if hot-rolled sheet annealing is omitted and the development of this unique texture can be suppressed, earrings are unlikely to occur. According to experimental results, the earring ratio when hot-rolled sheets are annealed is 4 to 6%, but when hot-rolled sheets are omitted, it is 10! % earrings occurred. The inventors of the present invention have studied not only various austenitic stainless steels but also numerous component systems based on the above-mentioned concept, and have found that even if hot-rolled sheet annealing is omitted, the anisotropy is small, and therefore the earring ratio is 63%. (Average earring ratio obtained when normal hot-rolled sheet annealing) As a result of examining manufacturing processes that would result in the following, it became clear that the cold rolling process is important as a process that controls the earring ratio. .
すなわち各種成分系のオーステナイト系tステンレス鋼
において熱延板の厚みを変え、熱延板焼鈍(1100℃
×10分WQ)の有無を含めて0.7?厚まで1回冷延
し1100℃×1分W.Qの最終焼鈍をして、冷間圧下
率の影響を検討した。検討した冷間圧下率は45%から
90%である。オーステナイト系ステンレス鋼薄板の異
方性に対する冷延圧下率の検討結果は第2図(図中A,
8,Cは下記を意味する)の通りである。That is, in austenitic T stainless steels of various compositions, the thickness of the hot-rolled sheets was changed, and the hot-rolled sheets were annealed (1100°C).
×10 minutes WQ) 0.7? Cold rolled once to thickness, 1100°C x 1 minute W. The final annealing of Q was performed, and the influence of the cold reduction rate was investigated. The cold rolling reduction ratio studied was 45% to 90%. The results of examining the cold rolling reduction ratio with respect to the anisotropy of austenitic stainless steel thin sheets are shown in Figure 2 (A,
8, C means the following).
8:通常18Cr−8Ni;熱延板焼鈍なし ×〔Ni
〕=45.5%に成分規制した18Cr一8Ni;熱延
板焼鈍なし) ×〔Ni〕=41.0%に成分規制し
た18Cr−8Ni;熱延板焼鈍なし典型的な18Cr
−8Niステンレス鋼(イ).07C一18.4Cr−
8.7Ni−0.03P−0.04N)について熱延板
焼鈍を省略し、1回冷延の冷延圧下率の影響を調査した
ものは図中Aである。8: Normal 18Cr-8Ni; No hot rolled plate annealing × [Ni
] = 18Cr-8Ni whose composition was regulated to 45.5%; no hot rolled sheet annealing) × [Ni] = 18Cr-8Ni whose composition was regulated to 41.0%; typical 18Cr without hot rolled sheet annealing
-8Ni stainless steel (a). 07C-18.4Cr-
8.7Ni-0.03P-0.04N), the hot-rolled sheet annealing was omitted and the influence of the cold rolling reduction ratio in one cold rolling was investigated, which is shown in A in the figure.
冷延圧下率が80%前後から60%,50%と冷延圧下
率が低い程イヤリング率が改善されていることがわかる
。同図8,0の結果は熱延板焼鈍を省略した場合の合金
組成の影響を示している。この場合にも冷延圧下率が低
下する程イヤリング率は低下し冷延圧下率の影響が大き
いことを示している。更に冷延圧下率と合金組成の影響
が加算的に作用していることがわかる。すなわち(A)
,8,0と合金組成の規制を強くする程、かつ冷延圧下
率が低くなる程、それぞれイヤリング率が低下している
。オーステナイト系ステンレス鋼の製造法の中で熱延板
焼鈍を省略すると、製品板の異方性が劣化しイヤリング
特性が劣化するが、合金組成はこのイヤリング特性に大
きな影響を有している。It can be seen that the earring ratio is improved as the cold rolling reduction is lower, from around 80% to 60% and 50%. The results in Figures 8 and 0 show the influence of alloy composition when hot-rolled sheet annealing is omitted. In this case as well, the earring ratio decreases as the cold rolling reduction decreases, indicating that the effect of the cold rolling reduction is large. Furthermore, it can be seen that the effects of cold rolling reduction and alloy composition act additively. That is (A)
, 8, 0, the earring ratio decreases as the regulation of the alloy composition becomes stronger and as the cold rolling reduction ratio decreases. If hot-rolled sheet annealing is omitted in the manufacturing method of austenitic stainless steel, the anisotropy of the product sheet deteriorates and the earring characteristics deteriorate, but the alloy composition has a large influence on the earring characteristics.
イヤリング率を支配する主要成分はNi,C,P,N等
々であることがわかつた。第3図はNiの影響を示して
いる。NilO%から6%まで減少するとイヤリング率
は大巾に改善される。第4図はCI:.Pの影響を示し
ている。Cは0.08%から0.01%まで減少する程
イヤリング率を改善し、Pは0.045%から0.00
5%まで減少すると大巾にイヤリング率を改善する。こ
の他Nも低い方が好ましいがSは全く影響しない。これ
らの結果、上記主要成分は異方性の低減に対して加算的
に効果を発揮することがわかつた。It was found that the main components controlling the earring rate were Ni, C, P, N, etc. Figure 3 shows the influence of Ni. When NilO% is reduced to 6%, the earring rate is greatly improved. Figure 4 shows CI:. It shows the influence of P. C improves the earring rate as it decreases from 0.08% to 0.01%, and P improves from 0.045% to 0.00.
If it decreases to 5%, the earring rate will be greatly improved. In addition, N is also preferably lower, but S has no effect at all. As a result, it was found that the above-mentioned main components exert an additive effect on reducing anisotropy.
(第4図)これらの成分元素の効果を定量的に解析しイ
ヤリング率との関係を求めるとで表示される。(Figure 4) The effect of these component elements is quantitatively analyzed and the relationship with the earring rate is determined and displayed.
ここに成分元素は重量パーセントで表示した数値である
。更にこの式は下記の成分範囲について成立する。The component elements here are numerical values expressed in weight percent. Furthermore, this formula holds true for the following component ranges.
こうして合金成分はイヤリング率に大きな影響を示し、
更に冷延圧下率もイヤリングに大きな影響を加算的に示
すことがわかるが、この間の関係を定量的に解析した結
果1回冷延の冷延圧下率をxパーセントで表示すると、
イヤリング率He(%)との間で次の関係が成立する。Thus, the alloy composition has a great influence on the earring rate,
Furthermore, it can be seen that the cold rolling reduction ratio has a large additive effect on the earrings, but as a result of quantitative analysis of the relationship between them, when the cold rolling reduction ratio of one cold rolling is expressed as x percentage,
The following relationship holds true with the earring rate He (%).
ここで成分元素の範囲は前記した通りで重量パーセント
表示であり、冷延圧下率Xは45%〜90%で成立する
。このようにしてオーステナイト系ステンレス鋼の熱延
板焼鈍を省略した場合の製品におけるイヤリングの低減
に対して、成分元素の効果と冷延圧下率の効果を定量的
にはじめて表示するこが出来た。Here, the range of the component elements is as described above, expressed in weight percent, and the cold rolling reduction X is 45% to 90%. In this way, we were able to quantitatively demonstrate for the first time the effects of component elements and cold rolling reduction on the reduction of earrings in austenitic stainless steel products when hot-rolled sheet annealing is omitted.
(2)弐を用いることによつて熱延板焼鈍を省略しても
熱延板焼鈍ありと同じ6%以下のイヤリング率を得るた
めには、合金組成と冷延圧下率を次の関係を満すように
規制することが必須である。(2) In order to obtain an earring ratio of 6% or less, which is the same as with hot-rolled sheet annealing, even if hot-rolled sheet annealing is omitted by using 2, the following relationship between alloy composition and cold rolling reduction ratio must be established. It is essential that regulations be implemented to meet the requirements.
この式かられかる通り合金組成を低C1低P1低Ni等
々に規制すると大きな冷延圧下率、例えば80%程度を
採り得る。又逆に冷延圧下宝を6.5%程度の低冷延圧
下率の場合には成分の規制はさほど必要ではなくなる。
冷延圧下率を80%以下の低冷延率でオーステナイトス
テンレス鋼薄板を製造するためには2.5wt以下の厚
み、望ましくは2.0Tfn厚程度のホットコイルを必
要とするが最近の強力でかつ形状制御機能をそなえたホ
ットストリップミルの出現ではじめて可能となつた。As can be seen from this equation, if the alloy composition is restricted to low C1, low P1, low Ni, etc., a large cold rolling reduction, for example about 80%, can be obtained. Conversely, if the cold rolling reduction is as low as about 6.5%, regulation of the ingredients is not so necessary.
In order to produce thin austenitic stainless steel sheets with a low cold rolling reduction of 80% or less, a hot coil with a thickness of 2.5wt or less, preferably about 2.0Tfn, is required, but with the recent strong This became possible for the first time with the advent of hot strip mills equipped with shape control functions.
以下に本発明の要件の限定根拠を述べる。The basis for limiting the requirements of the present invention will be described below.
熱延板焼鈍を省略したオーステナイトステンレス鋼薄板
のイヤリング特性に対しては冷延圧下率と鋼の成分元素
の影響がきわめて大きい。The earring properties of thin austenitic stainless steel sheets without hot-rolled sheet annealing are extremely influenced by the cold rolling reduction and the constituent elements of the steel.
これらの両作用は相互に加算的に作用し、鋼成分の規制
と冷延圧下率の低減を組み合わせると異方性の小さなオ
ーステナイト系ステンレス鋼薄板を得ることが出来る。
冷延圧下率に関しては小さい方が望ましいが、鋼成分の
規制と組合せて次式からその上限の許容限界が求まる。These two effects act additively with each other, and by combining regulation of steel components and reduction of cold rolling reduction, an austenitic stainless steel thin plate with small anisotropy can be obtained.
As for the cold rolling reduction ratio, it is desirable to have a smaller one, but in combination with regulations on steel composition, the upper limit of the permissible limit can be found from the following equation.
xは冷―下率%である。冷延圧下率は小さい程異方性は
改善されるが、熱延コイルの製造可能厚みと、絞り加工
用の製品薄板の厚みとの関連で45%未満は実用的価値
は小さくなる。x is the cooling rate %. The smaller the cold rolling reduction ratio, the better the anisotropy is, but in relation to the manufacturable thickness of the hot rolled coil and the thickness of the product thin plate for drawing, a cold rolling reduction ratio of less than 45% has little practical value.
したがつて冷間圧下率は45%以上とした。更にオース
テナイト系ステンレス鋼成分も熱延板焼鈍省略プロセス
での異方性に影響を及ぼす。Therefore, the cold reduction rate was set to 45% or more. Furthermore, the austenitic stainless steel components also affect the anisotropy in the process of omitting hot-rolled sheet annealing.
Cは0.070%以下が望ましく、工業的経済的に可能
な限り低い方が望ましい。PはCと同様異方性に対して
は0.040%以下が望ましく工業的経済的に可能な限
り低い方が望ましい。Niは熱延板焼鈍省略のオーステ
ナイト系ステンレス鋼薄板の異方性に対して大きな影響
を有し、9.5%以下ですぐれた特性を示し、低い方が
望ましいが6%で効果が飽和する。C is desirably 0.070% or less, and desirably as low as possible from an industrial and economical point of view. Like C, P is desirably 0.040% or less with respect to anisotropy, and is desirably as low as possible from an industrial and economic point of view. Ni has a large effect on the anisotropy of austenitic stainless steel thin sheets without hot-rolled plate annealing, and exhibits excellent properties at 9.5% or less, and although a lower content is preferable, the effect is saturated at 6%. .
NもC,Pと同様異方性に対しては低い方が望ましく0
.2%以l下が良効で工業的経済的に可能な限り低い方
が望ましい。Crは異方性に対しては余り大きな影響を
示さないが、すぐれた耐食性、加工性を維持したオース
テナイト系ステンレス薄板としては16.0%以上門は
必要であり、Ni量との関連で安定なオーステナイト相
を維持するためには19.0%が上限となる。Similar to C and P, N is preferably as low as 0 for anisotropy.
.. A content of 2% or less is highly effective and is preferably as low as possible from an industrial and economic perspective. Cr does not have a large effect on anisotropy, but for an austenitic stainless steel sheet that maintains excellent corrosion resistance and workability, it needs to have a content of 16.0% or more, and is stable in relation to the Ni content. In order to maintain the austenite phase, the upper limit is 19.0%.
なお上述したC,P,Ni,Nは熱延板焼鈍を省略した
オーステナイト系ステンレス薄板のイヤフリング特性改
善に対して互に加算的に効果を発揮し更に冷間圧延率低
下の効果と上述の成分規制効果とは加算的に作用する。The above-mentioned C, P, Ni, and N have additive effects on improving the earring properties of austenitic stainless steel thin sheets without hot-rolled sheet annealing, and they also have the effect of lowering the cold rolling reduction and the above-mentioned components. Regulatory effects act additively.
冷延圧下率が低減出来れば成分規制をゆるめても異方性
の小さな薄板を得ることが出来る。こうして冷延圧下率
の効果と成分元素の効果l定量的関係からイヤリング率
を6%以下にする;はすでに述べた通り次式を満足する
ことが必要ある。If the cold rolling reduction ratio can be reduced, a thin plate with small anisotropy can be obtained even if the composition restrictions are relaxed. Thus, from the quantitative relationship between the effect of cold rolling reduction and the effect of component elements, the earring ratio should be 6% or less; as already stated, it is necessary to satisfy the following equation.
xは冷延圧下率をパーセント表示したも(である。以上
のように冷延圧下率と主要成分を規制す・ことで異方性
の小さなオーステナイト系ステン」ス鋼薄板を製造し得
る。x is the cold rolling reduction expressed as a percentage. By regulating the cold rolling reduction and the main components as described above, it is possible to produce an austenitic stainless steel thin plate with small anisotropy.
なおオーステナイト系ステンレス鋼としてのイlの成分
に関しては通常のレベルの含有量につい−直異方性には
さほど大きな影響はない。It should be noted that with regard to the content of Il as an austenitic stainless steel, a normal level of content does not have a significant effect on orthotropy.
以下に本発明の実施例について述べる。Examples of the present invention will be described below.
第1表に示すようなSUS3O4規格内の18−8ンー
ステナイト系ステンレス鋼を電炉−AOD法J1るいは
転炉−VOD法で溶製し、1607m厚のCC鋳片とし
た。18-8 stainless steels meeting the SUS3O4 standard as shown in Table 1 were melted by electric furnace-AOD method J1 or converter-furnace VOD method to obtain CC slabs with a thickness of 1607 m.
その後加熱炉で1250℃で加熱後通常通り熱延し、2
Twt厚と2.5?厚のホットコイルを得た。その後1
100℃の熱延板焼鈍工程を通したも7の、省略したも
のを用意し、ショットブラスト酸洗後冷延に供した。冷
延はゼンジ゛ミヤーミルによる1回冷延で0.4〜1.
3T1$L厚とし通常の最終焼鈍工程を経て製品板を得
た。第1表には成分含有量と冷延圧下率で規制される。
He(%)を表示してクあるが、第1表の本発明法は成
分と冷延圧下率の効果でHe(%)はすべて6.0%以
下である。それに対して比較法では6.0%以上となつ
ている。第2表にはこれら製品の異方性をイヤリング率
で実測した結果を示した。この結果本発明法によダれば
熱延板焼鈍を省略しても6.0%以下のイヤリング率が
得られることが確認された。After that, it was heated in a heating furnace at 1250°C and then hot rolled as usual.
Twt thickness and 2.5? I got a thick hot coil. then 1
A sample 7 which had been subjected to a hot rolled plate annealing process at 100°C was prepared and subjected to cold rolling after shot blasting and pickling. The cold rolling was carried out once using a Sendzimir mill with a rolling roughness of 0.4 to 1.
A product plate with a thickness of 3T1$L was obtained through a normal final annealing process. Table 1 shows regulations based on component content and cold rolling reduction.
Although He (%) is expressed, in the method of the present invention shown in Table 1, He (%) is all 6.0% or less due to the effects of the ingredients and cold rolling reduction. In contrast, the comparative method has a rate of 6.0% or more. Table 2 shows the results of actually measuring the anisotropy of these products in terms of earring ratio. As a result, it was confirmed that if the method of the present invention is used, an earring ratio of 6.0% or less can be obtained even if hot-rolled sheet annealing is omitted.
第1図はイヤリング率(He=川旦二ち血刈00hma
x+Hmin(%))の説明図、第2図はオーステナイ
ト系ステンレス薄鋼板の異方性に対する冷間圧下率、成
分元素の影響を示す図、第3図は18Cr−Niステン
レス薄鋼板(ベース成分0.04C+1&1Cr−Ni
)の熱延板焼鈍省略プロセスにおけるイヤリング率とN
i(%)の影響を示す図、第4図は18Cr−8Niス
テンレス薄鋼板(ベース成分1&1Cr−Ni)の熱延
板焼鈍省略プロセスにおけるイヤリング率とCP%の影
響を示す図である。Figure 1 shows the earring rate (He = Kawatan Futichi Chikari 00hma
x + Hmin (%)), Figure 2 is a diagram showing the influence of cold reduction rate and component elements on the anisotropy of austenitic stainless thin steel sheet, and Figure 3 is a diagram showing the influence of 18Cr-Ni stainless steel sheet (base composition 0). .04C+1&1Cr-Ni
) Earring ratio and N in the process of omitting hot rolled sheet annealing
FIG. 4 is a diagram showing the influence of the earring ratio and CP% in the process of omitting hot-rolled plate annealing of 18Cr-8Ni stainless thin steel sheet (base composition 1 & 1Cr-Ni).
Claims (1)
%以下、Mn3.0%以下、P0.040%以下、S0
.030%以下、Cr16.0%から19.0%、Ni
6.0から9.5%、N0.2%以下を含むオーステナ
イト系ステンレス鋼において、該成分の鋼を鋳造し、熱
延し、デスケーリング後、冷延圧下率を45%以上でか
つ成分元素との関連で決まる次式により規制した冷間圧
延を施こし、次いで最終焼鈍を行なうことを特徴とする
オーステナイト系ステンレス鋼板及び鋼帯の製造方法。 0.25×〔x〕+102×〔C〕+90×〔P〕+6
4×〔N〕+4×〔Ni〕≦62.8%〔x〕:冷延圧
下率パーセント 〔C〕:〔P〕・・・他 各元素の重重量パーセント[Claims] 1. C 0.070% or less, Si 1.0 in weight percent
% or less, Mn 3.0% or less, P 0.040% or less, S0
.. 030% or less, Cr16.0% to 19.0%, Ni
In austenitic stainless steel containing 6.0 to 9.5% and 0.2% or less of N, the steel of the composition is cast, hot rolled, descaled, and the cold rolling reduction is 45% or more and the component elements are A method for manufacturing austenitic stainless steel sheets and steel strips, which comprises performing cold rolling regulated by the following formula determined in relation to the above, and then final annealing. 0.25×[x]+102×[C]+90×[P]+6
4 x [N] + 4 x [Ni]≦62.8% [x]: Cold rolling reduction percentage [C]: [P]...other Weight percent of each element
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12006781A JPS6053725B2 (en) | 1981-07-31 | 1981-07-31 | Method for manufacturing austenitic stainless steel sheets and steel strips |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12006781A JPS6053725B2 (en) | 1981-07-31 | 1981-07-31 | Method for manufacturing austenitic stainless steel sheets and steel strips |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5822328A JPS5822328A (en) | 1983-02-09 |
JPS6053725B2 true JPS6053725B2 (en) | 1985-11-27 |
Family
ID=14777065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12006781A Expired JPS6053725B2 (en) | 1981-07-31 | 1981-07-31 | Method for manufacturing austenitic stainless steel sheets and steel strips |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6053725B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS609829A (en) * | 1983-06-25 | 1985-01-18 | Nippon Stainless Steel Co Ltd | Production of austenitic stainless steel plate for road mirror |
JPS60177168A (en) * | 1984-02-24 | 1985-09-11 | Nisshin Steel Co Ltd | Weatherproof austenitic stainless steel |
KR100573588B1 (en) * | 2003-12-23 | 2006-04-24 | 주식회사 포스코 | Manufacturing Method Of Steel Sheet Having High Stength And Deep Drawability By Minimill Process |
-
1981
- 1981-07-31 JP JP12006781A patent/JPS6053725B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5822328A (en) | 1983-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01172524A (en) | Production of complex phase structure chromium stainless strip having excellent corrosion resistance and high ductility and strength | |
JP2000144258A (en) | Production of titanium-containing ferritic stainless steel sheet excellent in ridging resistance | |
US4420347A (en) | Process for producing an austenitic stainless steel sheet or strip | |
JPH0681036A (en) | Production of ferritic stainless steel sheet excellent in ridging characteristic and workability | |
JPS6053725B2 (en) | Method for manufacturing austenitic stainless steel sheets and steel strips | |
JPS624831A (en) | Manufacture of martensitic stainless steel thin strip having good shape | |
EP0130221B1 (en) | Process for producing corrosion-resistant alloy steel | |
JPS59129731A (en) | Production of austenitic stainless steel plate or strip | |
JPS5913028A (en) | Production of austenitic stainless steel plate or strip | |
JP3379826B2 (en) | Ferritic stainless steel sheet with small in-plane anisotropy and method for producing the same | |
JP4239247B2 (en) | Method for producing Ti-containing ferritic stainless steel sheet with excellent workability | |
JP2695858B2 (en) | Method for producing austenitic stainless steel sheet with good workability | |
JP3422852B2 (en) | Manufacturing method of steel sheet for cans | |
JPH06271935A (en) | Production of high carbon cold rolled steel sheet small in anisotropy | |
JPH02258931A (en) | Production of cr stainless steel sheet by thin-wall casting method | |
JPS61204320A (en) | Production of as-rolled thin steel sheet for working having excellent ridging resistnace | |
JPS5931829A (en) | Production of al killd high strength cold rolled steel sheet having excellent deep drawability | |
JPH0841546A (en) | Production of high chromium cold rolled steel strip excellent in ridging resistance and workability and production of hot rolled steel strip for the same stock | |
JP3806983B2 (en) | Cold-rolled steel sheet material for deep drawing with excellent ridging resistance after cold rolling and annealing | |
JP2980486B2 (en) | Manufacturing method of steel plate for non-aging low earring container | |
JPS6156234A (en) | Manufacture of austenite stainless fine grain steel | |
JPH10102191A (en) | Stock for steel sheet for can, excellent in ridging resistance and deep drawability after cold rolling-annealing | |
JPS61204325A (en) | Production of as-rolled thin steel sheet for working having excellent ridging resistance and strength-elongation balance | |
JPH0250806B2 (en) | ||
CN114703351A (en) | Low-cost high-strength hot continuous rolling strip steel and preparation method thereof |