JPH01262048A - Production of high corrosion resistant stainless steel having excellent hot workability and reducing segregation - Google Patents

Production of high corrosion resistant stainless steel having excellent hot workability and reducing segregation

Info

Publication number
JPH01262048A
JPH01262048A JP9230688A JP9230688A JPH01262048A JP H01262048 A JPH01262048 A JP H01262048A JP 9230688 A JP9230688 A JP 9230688A JP 9230688 A JP9230688 A JP 9230688A JP H01262048 A JPH01262048 A JP H01262048A
Authority
JP
Japan
Prior art keywords
alloy
segregation
solidification
stainless steel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9230688A
Other languages
Japanese (ja)
Other versions
JPH0555215B2 (en
Inventor
Masanori Ueda
上田 全紀
Masayuki Abe
雅之 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9230688A priority Critical patent/JPH01262048A/en
Publication of JPH01262048A publication Critical patent/JPH01262048A/en
Publication of JPH0555215B2 publication Critical patent/JPH0555215B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a high corrosion resistant stainless steel having excellent hot workability and reducing segregation by casting he specific composition of a high alloy containing much quantities of Cr, Ni, Mo, N, etc., into a cast slab having suitable structure and executing hot-rolling after executing the specific soaking. CONSTITUTION:The alloy composed of 18-55wt.% Cr, 13-70% Ni, <=5% Si, <=10% Mn, <=0.10% C, <=0.5% N, 3-20% Mo, and <=0.006% S, <=0.005% B, <=0.010% O, <=0.030 P as elements having small equilibrium distribution factor and particularly easy-to-segregation and one or more kinds among <=0.06% Y, <=0.02 Ce, <=0.02% Mg, <=0.01% Ca as existing in the slanting line range in the figure, and if necessary, further one or more kinds among <=4% Cu, <=1% Al, <=4% Nb, <=2% Ti, <=0.2% Zr and the balance Fe with inevitable impurities, is cast. Then, by one side face solidifying method, ESR method or both face solidifying method, over-heating degree is changed to make <=30% of uniaxial crystal part in cross section of the cast slab. Successively, after executing soaking in the slanting line range in the figure, the hot rolling is executed, to obtain the high corrosion resistant stainless steel.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は熱間加工性及び耐食性に優れた高合金ステンレ
ス鋼に関するものであり、特に偏析を軽減する方法を含
み海水環境や化学プラントにおける腐食環境等に対する
耐食性が優れた高合金ステンレス鋼の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to high-alloy stainless steel with excellent hot workability and corrosion resistance, and particularly includes a method for reducing segregation and corrosion resistance in seawater environments and chemical plants. The present invention relates to a method for manufacturing high-alloy stainless steel that has excellent corrosion resistance against the environment.

(従来の技術) 高合金ステンレス鋼は特に厳しい耐食性、耐熱性、耐酸
化性が要求される場合に使用され、今後ますます重要性
が増大する傾向にある。これらの合金は多くの場合、C
r 、 Ni 、 Mo 、 Si等を多量に含有して
おり、またNはステンレス鋼の強度と耐食性改善元素と
して積極的にその活用が望まれる元素である。このよう
に高合金化されたステンレス鋼は高温域での加工性が劣
り、従来インゴット法を余儀なくされていた。本発明者
等は特願昭60−/1118号(特開昭61−1632
47号公報)に提示したようにこれらの高合金鋼の連続
鋳造化を進めてきたが特に高合金化するとこれらの連続
鋳造鋳片(以下CC鋳片という)では特有の問題が生し
ることが判明した。
(Prior Art) High-alloy stainless steel is used in cases where particularly severe corrosion resistance, heat resistance, and oxidation resistance are required, and its importance tends to increase in the future. These alloys are often C
It contains large amounts of r, Ni, Mo, Si, etc., and N is an element that is actively desired to be used as an element to improve the strength and corrosion resistance of stainless steel. Highly alloyed stainless steel has poor workability in high-temperature ranges, and conventionally the ingot method had to be used. The inventors of the present invention and others have
As presented in Publication No. 47), continuous casting of these high-alloy steels has been promoted, but it has been found that these continuously cast slabs (hereinafter referred to as CC slabs) pose particular problems when the alloys are made particularly high. There was found.

(発明が解決しようとする課題) 高合金ステンレス鋼の要請が強まるにつれて、Cr +
 L + Mo +N + Cu等の合金元素を多量に
含有するステンレス鋼を安定にかつ経済的に製造する方
法の二−スが高まっている。しかしこれらの高合金ステ
ンレス鋼を大量に生産するために連続鋳造方法で製造す
るには、次のような問題点がある。
(Problem to be solved by the invention) As the demand for high-alloy stainless steel increases, Cr +
There is an increasing need for a method for stably and economically producing stainless steel containing a large amount of alloying elements such as L+Mo+N+Cu. However, there are the following problems when manufacturing these high alloy stainless steels in large quantities using a continuous casting method.

(1)高合金化と共に高温域での熱間加工性が劣る。(1) As the alloy becomes higher, hot workability in a high temperature range becomes poor.

(2)合金元素を多量に含有するためa同時に合金元素
の偏析が生し易く、成分によってはその後の均熱処理を
加えても偏析が容易に減少しない。
(2) Since it contains a large amount of alloying elements, segregation of the alloying elements is likely to occur at the same time, and depending on the components, segregation cannot be easily reduced even if a subsequent soaking treatment is applied.

(3)高合金化にともない変形抵抗が大きくなり従来の
加工温度では変形抵抗が大きく加工がしにく い。
(3) Deformation resistance increases with high alloying, and deformation resistance is large and processing is difficult at conventional processing temperatures.

これらの問題点に対して本発明者等はMoを6%含有す
る高合金ステンレス鋼の開発を通して(1)の問題点に
対しては例えば特開昭61−163247号公報記載の
方法を、(2)の問題点に対しては特願昭62−314
834号による方法を明らかにした。これらを発展させ
更にNi +Mo 、 Cr等の含有量が増大した場合
、(3)の問題が大きくなり、この問題を解決する方法
を検討し本発明法に到達した。
In order to solve these problems, the present inventors have developed a high-alloy stainless steel containing 6% Mo, and in order to solve the problem (1), for example, the method described in JP-A-61-163247 ( 2) Regarding the problem, the patent application No. 62-314
The method according to No. 834 was clarified. When these developments are further developed and the content of Ni + Mo, Cr, etc. increases, the problem (3) becomes more serious, and a method to solve this problem was studied and the method of the present invention was arrived at.

(課題を解決するための手段) 本発明の要旨とするところは下記の通りである。(Means for solving problems) The gist of the present invention is as follows.

(1)重量で、Cr:18〜55%、Ni : 13〜
70%、Si55%、Mn510%、C≦0.10%、
N≦0.5%、Mo:3〜20%を含有し、凝固時の平
衡分配係数が小さく特に偏析し易いS、 13. P、
0に関してはS≦0.006%、B≦0.005%、0
≦0.010%、P≦0.030%であり、かつ合金中
のNi+30xN量とΔS(但しΔS=S−0.8×C
a−0.5×Y −Q、 3 ×Mg −Q、 3 ×
Ce)との関係が第1図の斜線領域内にあるように、Y
≦0.06%、Ce6002%、Mg≦0.02%、C
a≦0.01%の1種または2種以」二を含の、残部F
e及び不可避的不純物からなる合金を、片面凝固法或い
はESR法によるか又は、両面凝固法による時は合金溶
湯の過熱度(合金溶湯温度とその合金の凝固温度との差
)を変化せしめる制御を行って、得られる鋳片断面にお
ける等軸晶部分の比率を30%以下とせしめ、次いで保
定時間、温度関係を第2図におLJる斜線領域内とする
均熱を行った後、熱間圧延することを特徴とする熱間加
工性が優れ偏析を軽減した高耐食性ステンレス鋼の製造
方法。
(1) By weight, Cr: 18~55%, Ni: 13~
70%, Si55%, Mn510%, C≦0.10%,
S, which contains N≦0.5% and Mo: 3 to 20%, has a small equilibrium distribution coefficient during solidification and is particularly prone to segregation; 13. P,
For 0, S≦0.006%, B≦0.005%, 0
≦0.010%, P≦0.030%, and the amount of Ni+30xN in the alloy and ΔS (however, ΔS=S−0.8×C
a-0.5×Y-Q, 3×Mg-Q, 3×
Ce) so that the relationship with Y is within the shaded area in Figure 1.
≦0.06%, Ce6002%, Mg≦0.02%, C
a≦0.01% of one or more types, the remainder F
When an alloy consisting of e and unavoidable impurities is processed by the single-sided solidification method or the ESR method, or by the double-sided solidification method, the superheating degree of the molten alloy (the difference between the temperature of the molten alloy and the solidification temperature of the alloy) is controlled. The ratio of the equiaxed crystal portion in the cross section of the obtained slab is reduced to 30% or less, and after soaking is carried out so that the holding time and temperature relationship are within the shaded area shown in Figure 2, hot heating is carried out. A method for producing highly corrosion-resistant stainless steel that has excellent hot workability and reduced segregation, which involves rolling.

(2)重量で、Cr:18−55%、Ni:13〜70
%、Si55%、Mn510%、C≦0.10%、N≦
0.5%、Mo:3〜20%を含有し、凝固時の平衡分
配係数が小さく特に偏析し易いS、B、P、0に関して
ばS≦0.006%、B≦0.005%、0≦0.01
0%、P≦0.030%であり、かつ合金中のNi+3
0×N量とΔS(但し△5=S−0,+3 ×Ca−0
,5×Y −0.3×Mg−0゜3×Ce)との関係が
第1図の斜線領域内にあるように、Y≦0.06%、C
e≦0,02%、陶≦0.02%、Ca≦0.01%の
1種または2種以上を含み、更にCu54%、A151
%、Nb1%、Ti52%、Zr≦0.2%の1種また
は2種以上を含み、残部Fe及び不可避的不純物からな
る合金を、片面凝固法或いはESR法によるか又は、両
面凝固法による時は合金溶湯の過熱度(合金溶湯温度と
その合金の凝固温度との差)を変化せしめる制御を行っ
て、得られる鋳片断面における等軸晶部分の比率を30
%以下とせしめ、次いで保定時間、温度関係を第2図に
おける斜線領域内とする均熱を行った後、熱間圧延する
ことを特徴とする熱間力■工性が優れ偏析を軽減した高
耐食性ステンレス鋼の製造方法。
(2) By weight, Cr: 18-55%, Ni: 13-70
%, Si55%, Mn510%, C≦0.10%, N≦
Regarding S, B, P, and 0, which contain Mo: 3 to 20% and have a small equilibrium distribution coefficient during solidification and are particularly easy to segregate, S≦0.006%, B≦0.005%, 0≦0.01
0%, P≦0.030%, and Ni+3 in the alloy
0×N amount and ΔS (however, △5=S-0, +3 ×Ca-0
, 5×Y −0.3×Mg−0°3×Ce) is within the shaded area in FIG.
Contains one or more of e≦0.02%, ceramic≦0.02%, Ca≦0.01%, further Cu54%, A151
%, 1% Nb, 52% Ti, and one or more of Zr≦0.2%, with the balance consisting of Fe and unavoidable impurities, by one-sided solidification method, ESR method, or double-sided solidification method. By controlling the degree of superheating of the molten alloy (the difference between the temperature of the molten alloy and the solidification temperature of the alloy), the ratio of the equiaxed crystal portion in the cross section of the resulting slab is increased to 30%.
% or less, followed by soaking with holding time and temperature within the shaded area in Figure 2, followed by hot rolling. Method of manufacturing corrosion-resistant stainless steel.

以下に本発明の詳細な説明する。本発明者等は各種Cr
−Ni系合金の凝固と熱間加工性並びに耐食性について
調査し検討を加えた。
The present invention will be explained in detail below. The present inventors have developed various Cr
-Investigated and considered the solidification, hot workability, and corrosion resistance of Ni-based alloys.

高合金鋼特にCr 、 Ni 、 Mo 、 N等を多
量に合金化したCC鋳片では熱間加工性が不良で熱間加
工中に耳割れ、面割れ等の割れを生じてその後の工程が
行えなくなる場合や、制れを除去する手入れを行うごと
による歩留りの低下をまねきコストアップしな&Jれば
ならない場合が生ずる。本発明者等はCC鋳片の熱間加
工性、特に割れの発生状況を詳細に調査した結果、割れ
は粒界や第2相との界面に生し易いことが判明した。ま
た各種合金の凝固時の偏析挙動と熱間変形能を検討した
ところ、a同時の平衡分配係数の小さいS、B、P、O
の元素か高合金鋼のCC877片の熱間加工性を大きく
支配していることを見いだした。これらの元素の影響を
低減するためには、S、BXP、0の含有量を規制する
ことが重要でS≦0.006%、B≦0.005%、0
≦0.010%、P≦0.030%とする必要がある。
High-alloy steel, especially CC slabs alloyed with large amounts of Cr, Ni, Mo, N, etc., has poor hot workability and cracks such as edge cracks and face cracks occur during hot working, making subsequent processes difficult. There may be cases where the product is lost, or there may be a case where the cost increases due to a decrease in yield due to each maintenance to remove the restriction. The present inventors conducted a detailed investigation into the hot workability of CC slabs, particularly the occurrence of cracks, and found that cracks tend to occur at grain boundaries and interfaces with the second phase. In addition, when we investigated the segregation behavior and hot deformability of various alloys during solidification, we found that S, B, P, and O
It has been found that the hot workability of CC877 pieces of high alloy steel is largely controlled by the elements . In order to reduce the effects of these elements, it is important to control the content of S, BXP, and 0.
It is necessary to satisfy P≦0.010% and P≦0.030%.

またこれらの粒界に偏析する元素以外ではN1やNも熱
間加工性を劣化させるが熱間加工性を劣化させないため
には、Yの添加が有効であり、Ce +’ Ca 1M
g等の添加も効果がある。特にNi量が増大した場合に
はΔS =S−0.8×Ca−0.5 ×Y−0,3×
Mg−0,3×Ceで決まるΔSとNi+30×Nの関
係が第1図に示す斜線の領域にはいるように、Y≦0.
06%、Ce≦0.02%、Mg≦0.02%、Ca≦
0.01%の範囲で1種または2種以上を選択添加する
ことて熱間加工性を向上させられることが判明した。
In addition to elements that segregate at grain boundaries, N1 and N also degrade hot workability, but in order to prevent hot workability from deteriorating, addition of Y is effective, and Ce +' Ca 1M
Addition of g etc. is also effective. Especially when the amount of Ni increases, ΔS =S-0.8×Ca-0.5×Y-0,3×
Y≦0 so that the relationship between ΔS determined by Mg-0, 3×Ce and Ni+30×N falls within the shaded area shown in FIG.
06%, Ce≦0.02%, Mg≦0.02%, Ca≦
It has been found that hot workability can be improved by selectively adding one or more kinds within a range of 0.01%.

更にこれらの合金を後述する望ましいソーキング条件(
第2図)の通り1100°C以上でソーキングし、第2
相やミクロ偏析を拡散消滅させることで高温における延
性を大きく向上させることが明らかとなった。このため
従来CC鋳片に対して取られていた1150°Cから1
000°Cの間の温度域よりも高い温度域から熱間加工
を始めることができるようになり変形抵抗が低い温度域
で割れを発生させることなく圧延が行えるようになった
Furthermore, the desirable soaking conditions (described below) for these alloys (
Soak at 1100°C or higher as shown in Figure 2), and
It has become clear that ductility at high temperatures can be greatly improved by diffusing and eliminating phases and microsegregation. For this reason, 1
It has become possible to start hot working from a temperature range higher than the temperature range of 000°C, and rolling can now be performed without cracking in a temperature range where deformation resistance is low.

こうして高合金鋼においてはS、B、P、0の含有量を
低減し、Ni+30×N量によっては更にY2Ce 、
 Ca 、 Mg等の添加で粒界に偏析する元素の影響
を低減し、またCC鋳片を均熱処理するごとでミクロ偏
析や第2相による熱間加工性に対する悪影響をのぞくこ
とで熱間加工性を改善すると々もに熱間加工に適した温
度範囲を高温側に拡大し変形抵抗の低い温度域での加工
を可能とすることができるようになった。
In this way, the content of S, B, P, and 0 is reduced in high alloy steel, and depending on the amount of Ni+30×N, Y2Ce,
The addition of Ca, Mg, etc. reduces the effects of elements that segregate at grain boundaries, and each soaking treatment of CC slabs eliminates the negative effects of micro-segregation and second phase on hot workability, thereby improving hot workability. By improving this, it has become possible to expand the temperature range suitable for hot working to the high temperature side, making it possible to work in a temperature range with low deformation resistance.

また高合金鋼では、特にMo 、 Niを多量に含有す
ると凝固時にごれらの元素ば偏析しやずく特にCC鋳片
の板厚中心部におけるマクロ偏析やスボッI・状の偏析
が分散するセミマク1コ偏析が顕著となることが判明し
た。Moと旧は高合金鋼の主要成分であり偏析が大きい
と耐食性を劣化させる。
In addition, when high alloy steel contains a large amount of Mo or Ni, the elements may segregate during solidification, especially semi-macro segregation in the center of the thickness of CC slabs or semi-macro segregation in the center of the thickness of CC slabs. It was found that single-column segregation was significant. Mo and Mo are the main components of high alloy steel, and if their segregation is large, they deteriorate corrosion resistance.

CC鋳片のMoの偏析は海水中の耐食性を劣化させるが
その対策については特願昭62−201028号で明か
にした。
The segregation of Mo in CC slabs deteriorates the corrosion resistance in seawater, and countermeasures for this problem were disclosed in Japanese Patent Application No. 62-201028.

このような耐食性を大幅に劣化させる原因となるCC鋳
片の板厚中心部におけるマクロ偏析やスポット状の偏析
が分散するセミマクロ偏析を鋳造方法で解消させたりま
たは軽減させる方法として一方向凝固の方法が研究され
ており、この方法は高合金鋼におりる中心部の偏析を起
こさず有効である。又従来からESR法による再溶解法
も偏析軽減では有効である。本発明者等は通常の連続鋳
造方法により中心部における偏析を軽減する方法を研究
した結果、特に鋳造温度をコン1〜ロールして柱状晶を
主体とする組織に凝固させることが中心偏析の程度を軽
減しその後のソーキングによる偏析の減少も容易である
ことを確認した。鋳造温度とCC鋳片の等軸晶比率の割
合は第4図に示す通りであり、この関係から等軸重の比
率を30%以下にする鋳造温度が求められる。こうして
鋳片の断面における等軸晶の比率を30%以下にするよ
うな鋳造をおこなうことでCC鋳片における中心部の偏
析の程度は軽くその後の1100’c以上のソーキング
における中心偏析の減少を容易にすることが可能となる
The unidirectional solidification method is a casting method that eliminates or reduces the macro-segregation in the center of the thickness of CC slabs and the semi-macro-segregation in which spot-like segregation is dispersed, which causes a significant deterioration in corrosion resistance. has been studied, and this method is effective because it does not cause segregation in the center of high-alloy steel. Furthermore, the remelting method using the ESR method has also been effective in reducing segregation. As a result of research into a method for reducing segregation in the center using a normal continuous casting method, the present inventors have found that it is especially effective to reduce the center segregation by controlling the casting temperature from 1 to 100 to solidify into a structure consisting mainly of columnar crystals. It was confirmed that it is easy to reduce the segregation by soaking. The ratio of the casting temperature and the equiaxed crystal ratio of the CC slab is as shown in FIG. 4, and from this relationship, the casting temperature that makes the ratio of the equiaxed load 30% or less is determined. In this way, by performing casting to reduce the ratio of equiaxed crystals in the cross section of the slab to 30% or less, the degree of segregation in the center of the CC slab is light and the center segregation during subsequent soaking of 1100'c or more is reduced. It becomes possible to make it easier.

次に本発明の詳細な説明する。第1表は本発明による高
合金及び比M’FAの成分を示している。
Next, the present invention will be explained in detail. Table 1 shows the composition of the high alloy and ratio M'FA according to the invention.

1は25Cr−3ONi−3Mo−3Cu−0,INを
基本成分とじS、B、P、0を低減し更にCa : 0
.003%、V : 0.006%を含有する高合金鋼
であり、2は20Cr −45N+ −9Mo −I 
Cuを基本成分としS。
1 contains 25Cr-3ONi-3Mo-3Cu-0,IN as the basic component, reduces S, B, P, 0, and further Ca: 0
.. 003%, V: 0.006%, 2 is 20Cr-45N+-9Mo-I
S with Cu as the basic component.

B、P、Oを低減し更にMg : 0.007%、y 
: o、oo4%を含有する高合金鋼である。これらの
合金は鋳造時ΔTを40〜50°Cとして150世厚さ
のCC鋳片にSb造した。鋳片断面では柱状晶が発達し
等軸晶比率は10%以下であった。その後鋳片を125
0°Cでそれぞれ511r 、 151bソーキングし
中心部の偏析やミクロ偏析及び第2相を拡散消滅させた
。この状態で鋳片の高温延性は改善され、耐食性に影響
を与える中心部の偏析も大幅に低減していた。これらの
鋳片はその後通常の厚板圧延の加熱炉で1200°C〜
1300°Cで加熱されて熱間圧延に供したが特にNi
含有量の多い2の鋼種については変形抵抗が大きいため
加熱温度を高くして圧延温度を1240°C程度で開始
し初期に高圧下を加えて圧延した。この結果側鋳片とも
熱間圧延時に割れを    生じる事なく圧延を行うこ
とができた。この圧延された厚板に対して熱間圧延終了
後水冷を行い金属間化合物の生成を防止し、ついで11
50°Cの焼鈍を実施し厚板を製造した。このjV板製
品ではMo、Niの偏析も軽微で耐孔食性も良好であっ
た。
Reduced B, P, O and further Mg: 0.007%, y
: High alloy steel containing 4% o, oo. These alloys were made of Sb into CC slabs with a thickness of 150 mm at a ΔT of 40 to 50°C during casting. In the cross section of the slab, columnar crystals were developed, and the equiaxed crystal ratio was less than 10%. After that, the slab was 125
Soaking was performed at 0°C with 511r and 151b, respectively, to diffuse and eliminate the segregation and microsegregation in the center and the second phase. In this state, the high-temperature ductility of the slab was improved, and segregation in the center, which affects corrosion resistance, was significantly reduced. These slabs are then heated at 1200°C in a conventional thick plate rolling furnace.
It was heated at 1300°C and subjected to hot rolling, but especially Ni
Regarding steel type 2 with a large content, since the deformation resistance was large, the heating temperature was increased, the rolling temperature was started at about 1240°C, and a high reduction was applied at the beginning of the rolling. As a result, both side slabs could be hot-rolled without cracking. After hot rolling, this rolled thick plate is water-cooled to prevent the formation of intermetallic compounds, and then
A thick plate was produced by annealing at 50°C. In this jV plate product, the segregation of Mo and Ni was slight and the pitting corrosion resistance was also good.

一方、比較材の鋼種3と4ではNi+30×Nとの関係
で第1図の関係を満足せず熱間加工性が劣りソーキング
処理を施しても熱間圧延時に耳割れを生じた。この厚板
に対しても圧延後水冷を施し鋼種1及び2と同様に溶体
化熱処理を施して製品を製造したが板厚中心部の偏析が
減少せず耐食性が不良であった。この理由は鋳片での等
軸重が30%を超えているため15hrのソーキングを
しても偏析が減少しなかったためである。
On the other hand, comparative steel types 3 and 4 did not satisfy the relationship shown in FIG. 1 in terms of Ni+30×N, had poor hot workability, and even after soaking treatment, edge cracks occurred during hot rolling. This thick plate was also water-cooled after rolling and subjected to solution heat treatment in the same manner as Steel Types 1 and 2 to produce a product, but the segregation in the center of the plate thickness did not decrease and the corrosion resistance was poor. The reason for this is that since the equiaxed load in the slab exceeds 30%, segregation did not decrease even after soaking for 15 hours.

(発明の効果) 本発明によればFe−Ni−Cr−Mo系の高合金で問
題になる高温域での熱間加工性を改善し凝固時の偏析を
減少させ、偏析の無い優れた特性を得ることができる上
、変形抵抗が高い高合金に対しても従来より高温域での
加工を可能にすることができ高合金鋼の製造に対する効
果はきわめて大きい。
(Effects of the Invention) According to the present invention, hot workability in the high temperature range, which is a problem with Fe-Ni-Cr-Mo-based high alloys, is improved, segregation during solidification is reduced, and excellent properties with no segregation are achieved. In addition, it is possible to process high alloys with high deformation resistance at a higher temperature than before, which has an extremely large effect on the production of high alloy steels.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はNi−1−30×NとΔS (−3−0,8×
Ca−0,5xY−0,3Mg−0,3Ce)の関係に
おいてFe−Cr−Ni系ステンレス鋼の融点直下の延
性良好域(斜線領域)を示す図、第2図は本発明の均熱
条件を規定する温度と保定時間の関係を示す図、第3図
は本発明鋼鋳片の熱間加工性に対するソーキングの効果
を示す図、第4図は本発明鋼の鋳造温度と断面の等軸晶
率の関係を示す図である。
Figure 1 shows Ni-1-30×N and ΔS (-3-0,8×
Figure 2 shows the good ductility region (shaded region) just below the melting point of Fe-Cr-Ni stainless steel in the relationship of Ca-0,5xY-0,3Mg-0,3Ce), and Figure 2 shows the soaking conditions of the present invention. Fig. 3 shows the effect of soaking on the hot workability of the steel slab of the invention, and Fig. 4 shows the relationship between the casting temperature and the equiaxed cross section of the invention steel. FIG. 3 is a diagram showing the relationship between crystal rates.

Claims (2)

【特許請求の範囲】[Claims] (1)重量で、Cr:18〜55%、Ni:13〜70
%、Si≦5%、Mn≦10%、C≦0.10%、N≦
0.5%、Mo:3〜20%を含有し、凝固時の平衡分
配係数が小さく特に偏析し易いS、B、P、Oに関して
はS≦0.006%、B≦0.005%、O≦0.01
0%、P≦0.030%であり、かつ合金中のNi+3
0×N量とΔS(但しΔS=S−0.8×Ca−0.5
×Y−0.3×Mg−0.3×Ce)との関係が第1図
の斜線領域内にあるように、Y≦0.06%、Ce≦0
.02%、Mg≦0.02%、Ca≦0.01%の1種
または2種以上を含み、残部Fe及び不可避的不純物か
らなる合金を、片面凝固法或いはESR法によるか又は
、両面凝固法による時は合金溶湯の過熱度(合金溶湯温
度とその合金の凝固温度との差)を変化せしめる制御を
行って、得られる鋳片断面における等軸晶部分の比率を
30%以下とせしめ、次いで保定時間、温度関係を第2
図における斜線領域内とする均熱を行った後、熱間圧延
することを特徴とする熱間加工性が優れ偏析を軽減した
高耐食性ステンレス鋼の製造方法。
(1) By weight, Cr: 18-55%, Ni: 13-70
%, Si≦5%, Mn≦10%, C≦0.10%, N≦
0.5%, Mo: 3 to 20%, and S, B, P, and O, which have a small equilibrium distribution coefficient during solidification and are particularly easy to segregate, are S≦0.006%, B≦0.005%, O≦0.01
0%, P≦0.030%, and Ni+3 in the alloy
0×N amount and ΔS (However, ΔS=S-0.8×Ca-0.5
x Y - 0.3 x Mg - 0.3 x Ce) is within the shaded area in Figure 1, Y≦0.06%, Ce≦0
.. 02%, Mg≦0.02%, Ca≦0.01%, and the balance consists of Fe and inevitable impurities, by one-sided solidification method, ESR method, or double-sided solidification method. In this case, the degree of superheating of the molten alloy (the difference between the temperature of the molten alloy and the solidification temperature of the alloy) is controlled to keep the ratio of equiaxed crystals in the cross section of the obtained slab to 30% or less, and then The retention time and temperature relationship are the second
A method for producing highly corrosion-resistant stainless steel with excellent hot workability and reduced segregation, which comprises soaking within the shaded area in the figure and then hot rolling.
(2)重量で、Cr:18〜55%、Ni:13〜70
%、Si≦5%、Mn≦10%、C≦0.10%、N≦
0.5%、Mo:3〜20%を含有し、凝固時の平衡分
配係数が小さく特に偏析し易いS、B、P、Oに関して
はS≦0.006%、B≦0.005%、O≦0.01
0%、P≦0.030%であり、かつ合金中のNi+3
0×N量とΔS(但しΔS=S−0.8×Ca−0.5
×Y−0.3×Mg−0.3×Ce)との関係が第1図
の斜線領域内にあるように、Y≦0.06%、Ce≦0
.02%、Mg≦0.02%、Ca≦0.01%の1種
または2種以上を含み、更にCu≦4%、Al≦1%、
Nb≦4%、Ti≦2%、Zr≦0.2%の1種または
2種以上を含み、残部Fe及び不可避的不純物からなる
合金を、片面凝固法或いはESR法によるか又は、両面
凝固法による時は合金溶湯の過熱度(合金溶湯温度とそ
の合金の凝固湿度との差)を変化せしめる制御を行って
、得られる鋳片断面における等軸晶部分の比率を30%
以下とせしめ、次いで保定時間、温度関係を第2図にお
ける斜線領域内とする均熱を行った後、熱間圧延するこ
とを特徴とする熱間加工性が優れ偏析を軽減した高耐食
性ステンレス鋼の製造方法。
(2) By weight, Cr: 18-55%, Ni: 13-70
%, Si≦5%, Mn≦10%, C≦0.10%, N≦
0.5%, Mo: 3 to 20%, and S, B, P, and O, which have a small equilibrium distribution coefficient during solidification and are particularly easy to segregate, are S≦0.006%, B≦0.005%, O≦0.01
0%, P≦0.030%, and Ni+3 in the alloy
0×N amount and ΔS (However, ΔS=S-0.8×Ca-0.5
x Y - 0.3 x Mg - 0.3 x Ce) is within the shaded area in Figure 1, Y≦0.06%, Ce≦0
.. 02%, Mg≦0.02%, Ca≦0.01%, and further contains Cu≦4%, Al≦1%,
An alloy containing one or more of Nb≦4%, Ti≦2%, and Zr≦0.2%, with the balance consisting of Fe and unavoidable impurities, is prepared by a single-sided solidification method, an ESR method, or a double-sided solidification method. In this case, the degree of superheating of the molten alloy (the difference between the temperature of the molten alloy and the solidification humidity of the alloy) is controlled to increase the ratio of equiaxed crystal parts in the resulting slab cross section to 30%.
A highly corrosion-resistant stainless steel with excellent hot workability and reduced segregation, which is characterized by being hot-rolled after soaking with the holding time and temperature within the shaded area in Figure 2. manufacturing method.
JP9230688A 1988-04-14 1988-04-14 Production of high corrosion resistant stainless steel having excellent hot workability and reducing segregation Granted JPH01262048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9230688A JPH01262048A (en) 1988-04-14 1988-04-14 Production of high corrosion resistant stainless steel having excellent hot workability and reducing segregation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9230688A JPH01262048A (en) 1988-04-14 1988-04-14 Production of high corrosion resistant stainless steel having excellent hot workability and reducing segregation

Publications (2)

Publication Number Publication Date
JPH01262048A true JPH01262048A (en) 1989-10-18
JPH0555215B2 JPH0555215B2 (en) 1993-08-16

Family

ID=14050724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9230688A Granted JPH01262048A (en) 1988-04-14 1988-04-14 Production of high corrosion resistant stainless steel having excellent hot workability and reducing segregation

Country Status (1)

Country Link
JP (1) JPH01262048A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044238A1 (en) * 2001-11-22 2003-05-30 Sandvik Ab Super-austenitic stainless steel
JP2007262485A (en) * 2006-03-28 2007-10-11 Sumitomo Metal Ind Ltd Continuously cast slab and its continuous casting method
JP2011230181A (en) * 2010-04-30 2011-11-17 Sumitomo Metal Ind Ltd Method for manufacturing high alloy steel by continuous casting
JP2012229463A (en) * 2011-04-25 2012-11-22 Nippon Yakin Kogyo Co Ltd Fe-Ni-Cr-Mo ALLOY AND METHOD OF MANUFACTURING THE SAME
WO2015072458A1 (en) 2013-11-12 2015-05-21 新日鐵住金株式会社 Ni-Cr ALLOY MATERIAL AND OIL WELL SEAMLESS PIPE USING SAME
WO2021066142A1 (en) * 2019-10-03 2021-04-08 東京都公立大学法人 Heat-resistant alloy, heat-resistant alloy powder, heat-resistant alloy molded article, and method for producing same
CN112779453A (en) * 2019-11-08 2021-05-11 日本冶金工业株式会社 Fe-Ni-Cr-Mo-Cu alloy with excellent corrosion resistance

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044238A1 (en) * 2001-11-22 2003-05-30 Sandvik Ab Super-austenitic stainless steel
WO2003044239A1 (en) * 2001-11-22 2003-05-30 Sandvik Ab Use of a super-austenitic stainless steel
US7081173B2 (en) 2001-11-22 2006-07-25 Sandvik Intellectual Property Ab Super-austenitic stainless steel
JP2007262485A (en) * 2006-03-28 2007-10-11 Sumitomo Metal Ind Ltd Continuously cast slab and its continuous casting method
JP2011230181A (en) * 2010-04-30 2011-11-17 Sumitomo Metal Ind Ltd Method for manufacturing high alloy steel by continuous casting
JP2012229463A (en) * 2011-04-25 2012-11-22 Nippon Yakin Kogyo Co Ltd Fe-Ni-Cr-Mo ALLOY AND METHOD OF MANUFACTURING THE SAME
WO2015072458A1 (en) 2013-11-12 2015-05-21 新日鐵住金株式会社 Ni-Cr ALLOY MATERIAL AND OIL WELL SEAMLESS PIPE USING SAME
KR20160082534A (en) 2013-11-12 2016-07-08 신닛테츠스미킨 카부시키카이샤 Ni-Cr ALLOY MATERIAL AND OIL WELL SEAMLESS PIPE USING SAME
US10557574B2 (en) 2013-11-12 2020-02-11 Nippon Steel Corporation Ni—Cr alloy material and seamless oil country tubular goods using the same
WO2021066142A1 (en) * 2019-10-03 2021-04-08 東京都公立大学法人 Heat-resistant alloy, heat-resistant alloy powder, heat-resistant alloy molded article, and method for producing same
US11846006B2 (en) 2019-10-03 2023-12-19 Tokyo Metropolitan Public University Corporation Heat-resistant alloy, heat-resistant alloy powder, heat-resistant alloy structural component, and manufacturing method of the same
CN112779453A (en) * 2019-11-08 2021-05-11 日本冶金工业株式会社 Fe-Ni-Cr-Mo-Cu alloy with excellent corrosion resistance
JP2021075758A (en) * 2019-11-08 2021-05-20 日本冶金工業株式会社 Fe-Ni-Cr-Mo-Cu ALLOY HAVING EXCELLENT CORROSION RESISTANCE
CN112779453B (en) * 2019-11-08 2024-05-24 日本冶金工业株式会社 Fe-Ni-Cr-Mo-Cu alloy excellent in corrosion resistance

Also Published As

Publication number Publication date
JPH0555215B2 (en) 1993-08-16

Similar Documents

Publication Publication Date Title
JPH01154848A (en) Production of austenitic stainless steel having excellent seawater resistance
KR100614558B1 (en) Chromium alloy ferritic steel, method of making the same, and chromium alloyed ferritic steel sheet
WO2022145061A1 (en) Steel material
JPH11246944A (en) Ferritic chromium alloy steel free from ridging
JPH01262048A (en) Production of high corrosion resistant stainless steel having excellent hot workability and reducing segregation
JPH0717946B2 (en) Method for producing duplex stainless steel with excellent resistance to concentrated sulfuric acid corrosion
WO2022145068A1 (en) Steel material
JPH0551633A (en) Production of high si-containing austenitic stainless steel
WO2019151124A1 (en) Ferritic stainless steel
JP3001718B2 (en) Manufacturing method of thin cast slab of ferritic stainless steel
JPS61133323A (en) Production of thin steel sheet having excellent formability
EP0247264A2 (en) Method for producing a thin casting of Cr-series stainless steel
WO2022145069A1 (en) Steel material
TWI683908B (en) Method for manufacturing austenite nickel-based alloy plate
JP2823220B2 (en) Manufacturing method of steel plate with good weld joint toughness
JPH0742552B2 (en) High Ni alloy thin strip having excellent corrosion resistance and method for producing the same
JP2002030395A (en) Cr STAINLESS STEEL AND ITS MANUFACTURING METHOD
JPH06304607A (en) Manufacture of preventing crack in hot rolling of cr-ni base stainless steel alloy
JP2633743B2 (en) Manufacturing method of thick steel plate with fine grain size
KR20000022016A (en) Fe-cr alloy without ridging
JP2691718B2 (en) Method for producing Gr-Ni-based stainless steel having excellent hot workability
JP2720693B2 (en) Blast rolling of austenitic stainless steel continuous cast slab.
JPH0339420A (en) Production of gamma-alpha duplex stainless steel sheet having coarse graining-prevented weld zone
JPH0236669B2 (en)
JP4258039B2 (en) Ferritic stainless steel hot-rolled sheet, cold-rolled sheet excellent in ridging resistance, and manufacturing method thereof