KR950004709B1 - Making method of cold rolling steel plate - Google Patents

Making method of cold rolling steel plate Download PDF

Info

Publication number
KR950004709B1
KR950004709B1 KR1019920026518A KR920026518A KR950004709B1 KR 950004709 B1 KR950004709 B1 KR 950004709B1 KR 1019920026518 A KR1019920026518 A KR 1019920026518A KR 920026518 A KR920026518 A KR 920026518A KR 950004709 B1 KR950004709 B1 KR 950004709B1
Authority
KR
South Korea
Prior art keywords
rolling
less
steel
workability
temperature
Prior art date
Application number
KR1019920026518A
Other languages
Korean (ko)
Other versions
KR940014846A (en
Inventor
진광근
강희재
장삼규
김홍한
이의영
Original Assignee
포항종합제철주식회사
박득표
재단법인산업과학기술연구소
백덕현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철주식회사, 박득표, 재단법인산업과학기술연구소, 백덕현 filed Critical 포항종합제철주식회사
Priority to KR1019920026518A priority Critical patent/KR950004709B1/en
Publication of KR940014846A publication Critical patent/KR940014846A/en
Application granted granted Critical
Publication of KR950004709B1 publication Critical patent/KR950004709B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

The steel sheet is manufactured by continuous casting a steel melt including (by wt.) up to 0.01% C, up to 0.15% Mn, up to 0.008% S, up to 0.015 % P, 0.03--0.07% sol. Al, up to 0.003% N, 0.02--0.07% Ti, balance Fe and inevitable impurities, into a slab, holding at slab surface temperature of 900--1150 deg.C for 10--20 mins., hot-rolling at finish temperature of below 860 deg.C, coiling at 560--680 deg.C, cold rolling, and continuous annealing. The steel sheet is used for inner or outer plate of cars and vehicles, and has good deep drawability.

Description

심가공성이 우수한 냉연강판의 제조방법Manufacturing method of cold rolled steel sheet with excellent deep workability

본 발명은 자동차의 내, 외판등에 사용되는 냉연강판을 제조하는 방법에 관한 것으로서, 보다 상세하게는 심가공성이 우수한 냉연강판을 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a cold rolled steel sheet used for the interior, exterior plate, etc. of an automobile, and more particularly, to a method for manufacturing a cold rolled steel sheet excellent in deep workability.

자동차의 내, 외판으로 주로 사용되는 심가공용 냉연강판은 저탄소 알루미늄 킬드강 또는 티타늄(Ti) 첨가 알루미늄 킬드강을 상소둔하여 제조하는 방법과 티타늄(Ti), 니오비옴(Nb)등을 소량 첨가한 극저탄소강을 연속소둔하여 제조하는 방법등이 있는데, 이 경우 가공성을 확보하는 가장 중요한 변수로는 열간압연후 권취온도를 들 수 있다. 통상, 상소둔재의 경우는 재결정소둔시 석출하는 알루미늄질화물(AIN)에 의한 집합조직제어가 가공성확보의 필수조건이기 때문에 열연후 저온에서 권취하여 알루미늄(Al)과 질소상태로 유지한 다음 소둔시 석출되도록 하고 있다.Cold-rolled steel sheet for deep processing mainly used as the inner and outer plates of automobiles is manufactured by performing annealing of low carbon aluminum-kilted steel or titanium (Ti) -added aluminum-kilted steel, and adding a small amount of titanium (Ti) and niobium (Nb). There is a method of manufacturing an ultra low carbon steel by continuous annealing, in which case the most important parameter to ensure the workability is the coiling temperature after hot rolling. In general, in case of annealing materials, the control of texture by aluminum nitride (AIN) precipitated during recrystallization annealing is a prerequisite for ensuring workability, so it is wound at a low temperature after hot rolling to maintain aluminum (Al) and nitrogen and then precipitated during annealing. I am trying to.

연속소둔방식은 급속가열, 단시간소둔, 급속냉각 및 과시효로 이루어져 소둔열처리가 단시간에 행해지는 특성을 가지고 있기 때문에 가공성 확보를 위하여 제강과 열연단계에서의 공정 조건이 매우 중요하고 연속소둔에 심가공성이 우수한 냉연강판을 제조하기 위해서는 제강단계에서 강중에 티타늄(Ti)나 니오비옴(Nb)등과 같은 강력한 탄질화물 형성원소를 첨가하고 또한 열간압연시 마무리 압연온도를 Ar3변태점이상으로 하여 압연중 오스테나이트가 완전히 재결정되도록 하고 그후 650℃이상의 고온에서 권취함으로써 탄소, 질소를 열연단계에서 완전히 석출시켜 그후 냉간압연과 소둔시 강중에 고용되어 있는 탄소와 질소의 가공성 저해요인을 제거하는 것이 필수적이다. 현재까지 알려진 일반적인 열간압연시 가공성확보에 대한 주된 금속학적 원리는 Ar3변태점이상에서 재결정압연을 하여 결정립을 미세화한 다음, 런 아우트테이블(run-out table)을 통과시부터 권취과정에 걸쳐 강중에 남아있는 고용탄소를 티타늄(Ti)과 결합시켜 탄화물로 형성시키면 냉연이후 연속소둔과정에서 (111) 집합조직이 증가하여 가공성을 향상시킨다는 것이다. 더우기, 이와 같이 냉간압연전에 고용탄소가 미리 제거된 강은 냉간압하율이 증가할수록 가공성이 향상된다. 그러나, 티타늄(Ti)이나 니오비옴(Nb)첨가 극저탄소가으이 경우 사상압연이 Ar3변태점이하에서 압연되면 두께방향의 집합조직과 현미경조직이 불균일하게 되어 냉연, 소둔후 가공성이 열화되는 것으로 알려져 있다. 이와 관련한 해결방법으로는 고윤활압연을 하여 압연시 강판의 표층에 작용하는 전단응력성분을 최소로 함으로써 가공성열화의 원인인 열연코일(Coil)의 두께방향으로 집합조직 불균일을 해소하는 방법과 A1변태점이하의 아주 저온(780 ℃이하)에서 사상압연을 한 후 고온권취하여 집합조직을 냉연집합조직에 유사하게 형성시킴으로써 냉연, 연속소둔후 가공성을 확보하는 방법등이 개발되었다.The continuous annealing method consists of rapid heating, short time annealing, rapid cooling, and overaging, so that the annealing heat treatment is performed in a short time, so process conditions in steelmaking and hot rolling are very important to ensure processability, and deep workability is required for continuous annealing. In order to manufacture excellent cold rolled steel sheets, strong carbonitride-forming elements such as titanium (Ti) and niobium (Nb) are added to the steel during the steelmaking stage, and the finish rolling temperature during hot rolling is set to be higher than Ar 3 transformation point. It is essential that the nit is completely recrystallized and then wound at a high temperature of 650 ° C. or higher to completely precipitate carbon and nitrogen in the hot rolling step, thereby eliminating the processability inhibitors of carbon and nitrogen in the steel during cold rolling and annealing. The main metallurgical principle to ensure workability in general hot rolling to date is recrystallization rolling over Ar 3 transformation point to refine the grains, and then through the run-out table to the steel during the winding process. When the remaining solid carbon is combined with titanium (Ti) to form carbide, the (111) texture increases during continuous annealing after cold rolling, thereby improving workability. In addition, the steel in which the solid solution carbon has been removed in advance before cold rolling is improved in workability as the cold reduction rate increases. However, in the case of ultra low carbon added with titanium (Ti) or niobium (Nb), when filament rolling is rolled under the Ar 3 transformation point, the aggregate structure and the microscopic structure in the thickness direction become nonuniform, resulting in deterioration of workability after cold rolling and annealing. Known. In this respect solutions with the method to relieve the high lubrication rolling to the shear stress component to cause the texture irregularity in the thickness direction of the hot-rolled coil (Coil) of workability deterioration by minimizing acting on the surface layer of the rolling when the steel sheet and A 1 After finishing rolling at very low temperature (below 780 ℃) below transformation point, a method of securing processability after cold rolling and continuous annealing has been developed by forming the aggregate structure similarly to the cold rolled structure by winding it at high temperature.

그러나, 고 윤활압연에 대한 효과는 아직도 반대의 의견이 제시되고 있고 그 효과도 명확하지 않을 뿐 아니라 압연시 통판성과 압연성에, 그리고 극저온압연의 경우는 열간압연시 스케일 제거와 압연성에 아직은 문제점이 남아 있는 등 부분적으로 실용화에 어려움이 있다. 최근 슬라브의 높은 열을 이용하기 위하여 개발된 새로운 열간압연방법인 연속주조-열간압연간 열편슬라브 직송압연방법이나 박판슬라브를 이용한 열간압연방법을 적용하여 냉연강판용 열연코일(coil)을 제조할때 열간사상압연온도의 저하가 발생하고 그에 따른 가공성저하를 방지하기 위하여 스케일 제거작업을 불충분하게 실시하거나 아니면 Ar3변태점 직하에서 압연을 행하는 경우가 많다. 이런 경우 냉연강판의 스케일 경함증가와 열연코일(Coil)이 판형상의 불량 등이 발생하는 문제점이 있다.However, the effects of high lubrication rolling are still contrary, and the effect is not clear, and there are still problems in the flowability and rolling property in rolling, and in the case of cryogenic rolling in scale removal and rolling in hot rolling. There are difficulties in practical use, in part. Recently, hot rolled coils for cold rolled steel are manufactured by applying the new hot rolling method, continuous casting-hot rolling hot rolled slab direct transfer rolling method or hot rolling method using thin slab, developed to use high heat of slab. In order to prevent the fall of the finishing rolling temperature and to prevent the deterioration of workability, descaling work is insufficiently performed or rolling is performed directly under the Ar 3 transformation point. In this case, there is a problem that the hardness of the scale of the cold rolled steel sheet and the hot rolled coil (Coil), such as plate shape defects occur.

본 발명자는 상기와 같은 문제점을 해결하기 위하여 연구와 실험을 행하고, 그 결과에 근거하여 본 발명을 제안하게 된 것으로써, 본 발명은 티타늄이 첨가된 0.01wt% 이하의 탄소를 함유하는 극저탄소알루미늄킬드강을 열편 슬라브 직송 압연을 행한 후 860℃이하의 온도에서 사상압연을 행하고, 그후 저온권취를 행하므로서 심가공성이 우수한 냉연강판을 제공하고자 하는데, 그 목적이 있다.The present inventors conducted research and experiments to solve the above problems, and based on the results, the present invention proposes the present invention. The present invention is ultra-low carbon aluminum containing 0.01 wt% or less of carbon to which titanium is added. It is an object of the present invention to provide a cold rolled steel sheet having excellent deep workability by carrying out filamentous rolling at a temperature of 860 ° C. or lower after the direct rolling of a slab slab directly at a temperature of 860 ° C.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은, wt%로, C : 0.01%이하, Mn : 0.15%이하, S: 0.008*이하, P : 0.015%이하, Sol.Al : 0.03~0.07%, N : 0.003%이하, Ti : 0.02~0.07%, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 강슬라브를 연속주조직후 직송하여 그 표면온도가 900-1500℃의 온도구간에서 권취한 다음, 통사으이 방법으로 냉간압연 및 연속소둔하여 심가공성이 우수한 냉연강판을 제조하는 방법에 관한 것이다.The present invention is wt%, C: 0.01% or less, Mn: 0.15% or less, S: 0.008 * or less, P: 0.015% or less, Sol.Al: 0.03 to 0.07%, N: 0.003% or less, Ti: 0.02 ~ 0.07%, remainder Fe and other steel slabs composed of inevitable impurities are sent directly after the continuous cast structure, and the surface temperature is wound in the temperature range of 900-1500 ℃, and then cold rolled and continuously annealed by the usual method for deep workability. It relates to a method for producing an excellent cold rolled steel sheet.

이하 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail.

강중의 탄소는 침입형 고용원소로 작용하여 강판의 집합조직 형성과정에서 결정의 회전에 영향을 미치는 것으로 알려져 있는데, 현재까지는 그 영향이 주로 냉간압연시 결정의 회전 및 축적에너지 분포에 영향을 미쳐 결과적으로 강판의 가공성을 열화시키며 열간압연이나 소둔과정에서의 영향에 대해서는 명확한 결과가 없다. 본 발명에서는 강중 탄소를 열간압연시 미리 석출물(Ti4C2S2)로 고정시켜 그후 열연 및 냉연공정에서 집합조직발달에 대한 영향이 제거됨으로써 가공성에 유리한(222) 집합조직을 형성하는데 이용하였다. 따라서 강중 탄소함량은 석출물로 형성시키는데 소요되는 Ti첨가량을 최소화하고 결과적으로 만들어지는 석출물에 의한 영향을 가급적 줄이기 위하여 0.01wt% 이하로 제한하는 것이 바람직하다. 상기 망간(Mn)은 제강후 강중에서 황(S)과 결합하여 망간황화물(MnS)를 형성하는데 이럴 경우 티타늄(Ti)과 결합할 황(S)이 고갈되어 결과적으로 열간압연중 강중 탄소를 고정하는 석출물(Ti4C2S2)이 형성되지 못하기 때문에 냉연강판의 가공성을 해치게 된다.It is known that carbon in steel acts as an invasive solid-solution element, which affects the rotation of crystals during the formation of the texture of the steel sheet. Until now, the effects mainly affect the rotation and accumulation energy of crystals during cold rolling. As a result, the workability of the steel sheet is deteriorated, and there is no definite result on the hot rolling or annealing process. In the present invention, the carbon in the steel was fixed in advance during hot rolling with a precipitate (Ti 4 C 2 S 2 ) and then used to form a texture (222), which is advantageous for workability, by removing the influence on the texture development in hot rolling and cold rolling processes. . Therefore, the carbon content in the steel is preferably limited to 0.01wt% or less in order to minimize the Ti addition amount required to form the precipitate and to reduce the effect of the resulting precipitate as possible. The manganese (Mn) combines with sulfur (S) in steel after steelmaking to form manganese sulfide (MnS), in which case depletion of sulfur (S) to bind with titanium (Ti) results in fixing carbon in the steel during hot rolling. Since precipitates (Ti 4 C 2 S 2 ) are not formed, the workability of the cold rolled steel sheet is impaired.

따라서, 석출물(Ti4C2S2)형성을 조장하기 위하여 티타늄황화물(TiS)이 망간황화물(MnS)보다 우선 형성될 수 있도록 상기 Mn의 함량은 0.15wt%이하로 제한하는 것이 바람직하다.Accordingly, the content of Mn is preferably limited to 0.15 wt% or less so that titanium sulfide (TiS) may be formed prior to manganese sulfide (MnS) in order to promote the formation of precipitates (Ti 4 C 2 S 2 ).

상기 황(S)은 열간압연시 열간취성의 요인으로 작용하기 때문에, 그 함량은 황화물 상태로 강중에 존재하도록 하는 것이 중요하며, 강중에서 황화물을 만드는 성분인 티타늄(Ti) 및 망간(Mn)과 화합할 수 있는 최대량 이하의 범위에서 안정성을 고려하여 0.008wt%이하로 선정하는 것이 바람직하다. 상기 인(P)은 입계에 편석하여 취성을 일으키고 고용상태에서 강도를 상승시키나 티타늄(Ti)첨가 극저탄소강에서는 티타늄철 인화물(Ti, Fe)P)를 형성하여 강도를 상승시키는데 비하여 가공성을 약간 저하시키기 때문에, 그 함량은 0.015wt%이하로 선정하는 것이 바람직하다.Since the sulfur (S) acts as a factor of hot brittleness during hot rolling, its content is important to exist in the steel in the form of sulfides, and titanium (Ti) and manganese (Mn), which are sulfides in the steel, It is preferable to select 0.008wt% or less in consideration of stability in the range below the maximum amount that can be compounded. The phosphorus (P) segregates at grain boundaries to cause brittleness and increases strength in solid solution. However, in the case of titanium (Ti) -added ultra low carbon steels, the form of titanium iron phosphide (Ti, Fe) P increases to increase the strength. In order to reduce, the content thereof is preferably selected to 0.015 wt% or less.

상기 알루미늄(Al)은 근본적으로 강중 산소를 제거하기 위하여 첨가되는 성분으로서 연속주조재에서는 첨가가 불가피하며 티타늄첨가 극저탄소강에서는 고용상태로 강중에 존재하게 되는데, 이 강중에 고용상태로 존재하는 알루미늄(Al)이 가공성에 미치는 효과에 대해서는 명확한 결과가 없으며, 다만, 강중 산소를 완전히 제거하지 못할 경우 산소와 다른 성분과의 결합물인 산화물이 가공성에 나쁜 영향을 미칠 가능성이 있기 때문에 산소와 결합하는 알루미늄(Al)을 제외한 잉여량, 즉 산가용 알루미늄(Sol.Al)의 함량은 0.03~0.07wt로 제한하는 것이 바람직하다.The aluminum (Al) is essentially a component added to remove oxygen in the steel, it is inevitable to be added in the continuous casting material and is present in the steel in the solid solution state in the titanium-added ultra low carbon steel, aluminum in the solid solution state in the steel There is no clear result of the effect of (Al) on the workability, but aluminum that binds to oxygen because the oxide, which is a combination of oxygen and other components, may adversely affect the workability if oxygen in the steel is not completely removed. Excluding (Al), the excess amount, that is, the content of acid value aluminum (Sol.Al) is preferably limited to 0.03 ~ 0.07wt.

상기 질소는 고온에서 티타늄과 결합하여 티타늄질화물(TiN)을 형성하며, 그 양이 많을 경우 강도를 상승시키고 가공성을 저하시키며, 또한, 탄소제거 역할을 하는 석출물(Ti4C2S2)형성에 필요한 티타늄(Ti)을 고갈시키기 때문에 상기 질소의 함량은 0.003wt% 이하로 한정하는 것이 바람직하다. 상기 티타늄(Ti)은 냉연강판의 가공성 확보에 결정적인 역할을 하는 성분으로서 티타늄이 강중에서 결합하는 황(S), 탄소, 질소의 첨가량을 고려하여 이들 세 성분과의 결합당량을 최소로하고 잉여함량이 0.05wt %를 초과하지 않도록, 상기 티타늄 함량은 0.02~0.07wt%로 제한하는 것이 바람직하다.The nitrogen combines with titanium at high temperature to form titanium nitride (TiN), when the amount is high, the strength is increased and the workability is lowered, and also the formation of precipitates (Ti 4 C 2 S 2 ) that serves as carbon removal. It is preferable to limit the content of nitrogen to 0.003wt% or less because it depletes the necessary titanium (Ti). The titanium (Ti) is a component that plays a decisive role in securing the workability of the cold rolled steel sheet in consideration of the addition amount of sulfur (S), carbon, and nitrogen to which titanium is bonded in the steel to minimize the coupling equivalent with these three components and to excess content In order not to exceed 0.05 wt%, the titanium content is preferably limited to 0.02 to 0.07wt%.

만약, 상기 세성분과 결합할 티타늄(Ti)함량이 결합당량이하가 될 경우에는 결합순서가 가장 늦은 탄소와의 결합이 불완전하게 이루어지고, 그에 따라 강중탄소가 고용상태로 존재하므로써 집합조직과정에 영향을 미치고 나아가 가공성을 저하시키는 요인이 된다.If the amount of titanium (Ti) to be combined with the three components is less than the bonding equivalent, the bond with the carbon having the latest bonding order is incompletely formed and accordingly, the heavy carbon is in solid solution and thus, It affects and further reduces the workability.

또한, 잉여함량이 0.05wt%이상이 되면 가공성 향상효과가 더 이상 개선되지 않고, 다만, 재결정온도만 상승시키는 역효과가 발생하므로 상한을 설정한 것이다.In addition, when the surplus content is more than 0.05wt%, the effect of improving workability is no longer improved, but an adverse effect of only raising the recrystallization temperature occurs, thereby setting an upper limit.

상기와 같이 조성되는 강 슬라브는 연속주조 직후 고온의 열에너지를 활용하기 위하여 900-1150℃범위에서 열간압연공정에 투입한다.The steel slab formed as described above is put into a hot rolling process in the range of 900-1150 ° C. to utilize high temperature heat energy immediately after continuous casting.

이때, 강중에는 티타늄화합물(TiS)이 석출하고, 이 석출물이 모체가 되어 계속되는 압연과정에서 탄소가 추가로 결합한 석출물(Ti4C2S2)이 형성된다. 열간압연은 조압연과 사상압연으로 구성되고, 그 중간에 강판표면에 존재하는 스케일을 제거하기 위하여 고압수를 분사시키기 때문에 강판의 온도가 강하하고, 더구나 티타늄 황화물(TiS)과 강중탄소의 결합이 충분히 일어난 다음, 사상압연을 하기 위하여 사상압연은 페라이트 고온역에서 행하고 마무리 압연온도인 사상압연온도는 860℃이하로 설정하는 것이 바람직하다.At this time, the titanium compound (TiS) is precipitated in the steel, and the precipitate is formed as a matrix (Ti 4 C 2 S 2 ) in which carbon is further bonded in the rolling process. Hot rolling consists of rough rolling and filament rolling, and the temperature of the steel sheet decreases because high pressure water is injected in order to remove the scale present on the surface of the steel sheet. Moreover, the combination of titanium sulfide (TiS) and heavy carbon is reduced. After sufficient occurrence, in order to perform finishing rolling, it is preferable to perform finishing rolling in a ferrite high temperature range, and to set finishing rolling temperature which is a finishing rolling temperature below 860 degreeC.

열간압연후, 권취온도는 열연판의 결정립도와 석출물 및 강판표면의 스케일 형성두께에 영향을 미치며, 고온에서 작업할수록 결정립도는 조대히지며, 강판 표면 스케일 두께도 증가하게 된다.After hot rolling, the coiling temperature affects the grain size of the hot rolled sheet and the scale formation thickness of the precipitates and the steel sheet surface, and the grain size becomes coarse as the work is performed at high temperature, and the steel sheet surface scale thickness increases.

그러나, 본 발명에 있어서는 이미 고온압연역에서 대부분이 석출하기 때문에 권취온도에 따라서는 거의 변화가 없다.However, in the present invention, since most of it is already precipitated in the hot rolling region, there is almost no change depending on the winding temperature.

일반적으로 냉연강판의 가공성은 열연판의 조직이 미세할수록 향상되기 때문에 석출물변화가 작고 표면스케일양이 감소하여 산세과정에서 스케일 제거가 용이하도록 560-680℃의 저온에서 권취하고 여기서 얻어진 열연강판을 산세에 의해서 표면 스케일을 제거한 뒤 65-75% 압하율로 압연하여 0.6-1.4mm 두께의 냉연판을 만들고 이 냉연판을 연속소둔장치에서 소둔하는데 연속소둔 열처리사이클은 가열-균열-1차냉각-과시효-최종냉각과정으로 구성되어 있으며 소둔온도는 균열과정의 온도를 기준으로 하여 800-850℃범위로 설정하는 것이 바람직하다.In general, the workability of the cold rolled steel sheet is improved as the structure of the hot rolled sheet is finer, so that the precipitation change is small and the amount of surface scale is reduced, so that the coil is wound at a low temperature of 560-680 ° C to facilitate scale removal during the pickling process. After removing the surface scale by rolling to a 65-75% reduction rate to form a cold rolled sheet of 0.6-1.4mm thickness, the cold rolled sheet is annealed in a continuous annealing apparatus, the continuous annealing heat treatment cycle is heat-cracking-first cooling-showing It consists of effect-final cooling process and the annealing temperature is preferably set in the range of 800-850 ℃ based on the temperature of the cracking process.

이하 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the following examples.

실시예Example

하기 표 1에 나타난 화학성분을 가지는 티타늄(Ti)첨가 극저탄소 알루미늄킬드강을 용해하여 하기 표 2의 각 열간압연 및 권취조건하에서 열연판을 제조한 뒤 이 열연판을 산세후 70-73%의 압하율로 0.8mm정도의 두께로 냉간 압연하여 연속소둔을 행하였다. 연속소둔은 800-830℃에서 30초 정도 균열 시킨 뒤 1-40/sec의 속도로 2단 냉각하고 그후 400℃에서 180초 동안 과시효처리를 하였다.To prepare a hot rolled sheet under the hot rolling and winding conditions of Table 2 by dissolving the titanium (Ti) -added ultra low-carbon aluminum-kilted steel having the chemical composition shown in Table 1 below after the pickling of the hot rolled sheet 70-73% Cold rolling was carried out to a thickness of about 0.8 mm at a reduction ratio to carry out continuous annealing. Continuous annealing was cracked for about 30 seconds at 800-830 ℃ and then cooled in two stages at a rate of 1-40 / sec and then overaging for 400 seconds at 400 ℃.

상기와 같이 제조된 가 시편에 대하여 기계적 성질을 측정하고, 그 측정결과를 하기 표 3에 나타내었다.Mechanical properties of the provisional specimens prepared as described above were measured, and the measurement results are shown in Table 3 below.

[표 1]TABLE 1

[표 2]TABLE 2

[표 3]TABLE 3

상기 표 3에 나타난 바와 같이, 본 발명에 따라 제조된 발명재(1-5)가 본 발명의 범위를 벗어나는 비교재(a-b)에 비하여 심가공성이 우수함을 알 수 있다.As shown in Table 3, it can be seen that the inventive material (1-5) prepared according to the present invention is excellent in deep workability compared to the comparative material (a-b) outside the scope of the present invention.

상술한 바와 같이, 본 발명은 티타늄(Ti)이 첨가된 0.01wt%이하의 탄소를 함유하는 극저탄소알루미늄킬드강을 열편 슬라브 직송압연을 행하므로서 슬라브 재가열에 필요한 열에너지를 절감할 수 있는, 또한, 공정 연속화에 따른 제조시간의 단축을 가져올 뿐만 아니라 저온권취를 행하므로서, 열연코일의 스케일제거가 용이하고, 따라서 냉연강판의 스케일성 결함감소의 효과도 가져올 수 있는 것이다.As described above, the present invention can reduce the thermal energy required for slab reheating by performing direct rolling of the slab slab directly to ultra-low carbon aluminum-kilted steel containing less than 0.01wt% carbon added with titanium (Ti). In addition to shortening the manufacturing time according to the sequencing of the process, the low temperature winding is performed, and thus, the scale of the hot rolled coil can be easily removed, thereby reducing the scale defect of the cold rolled steel sheet.

Claims (1)

wt%로, C : 0.01%이하, Mn : 0.15%이하, S : 0.008%이하, P : 0.015%이하, Sol.Al : .03-0.07%, N : 0.003%이하, Ti : 0.02-0.07%, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 강 슬라브를 연속주조직후 직송하여 그 표면 온도가 900-1150℃의 온도범위에서 10-20분 동안 균열 유지한 후, 860℃ 이하의 마무리 압연 온도조건으로 열간압연하고, 560-680℃의 온도구간에서 권취한 다음, 통상의 방법으로 냉간압연 및 연속소둔하는 것을 특징으로 하는 심가공성이 우수한 냉연강판의 제조방법.In wt%, C: 0.01% or less, Mn: 0.15% or less, S: 0.008% or less, P: 0.015% or less, Sol.Al: .03-0.07%, N: 0.003% or less, Ti: 0.02-0.07% Steel slab composed of residual Fe and other unavoidable impurities, sent directly after continuous main structure, and the surface temperature is maintained for 10-20 minutes in the temperature range of 900-1150 ℃, and then hot-pressed to finish rolling temperature condition of 860 ℃ or less. Rolling, winding in a temperature range of 560-680 ℃, and then cold rolling and continuous annealing in a conventional method for producing a cold rolled steel sheet excellent in deep workability.
KR1019920026518A 1992-12-30 1992-12-30 Making method of cold rolling steel plate KR950004709B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019920026518A KR950004709B1 (en) 1992-12-30 1992-12-30 Making method of cold rolling steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019920026518A KR950004709B1 (en) 1992-12-30 1992-12-30 Making method of cold rolling steel plate

Publications (2)

Publication Number Publication Date
KR940014846A KR940014846A (en) 1994-07-19
KR950004709B1 true KR950004709B1 (en) 1995-05-04

Family

ID=19347656

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019920026518A KR950004709B1 (en) 1992-12-30 1992-12-30 Making method of cold rolling steel plate

Country Status (1)

Country Link
KR (1) KR950004709B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100516459B1 (en) * 2000-10-31 2005-09-23 주식회사 포스코 A method for manufacturing soft cold rolled steel sheet by hot direct rolling method

Also Published As

Publication number Publication date
KR940014846A (en) 1994-07-19

Similar Documents

Publication Publication Date Title
JPH05306430A (en) Steel sheet for galvanizing and its production
JP2987815B2 (en) Method for producing high-tensile cold-rolled steel sheet excellent in press formability and secondary work cracking resistance
KR950004709B1 (en) Making method of cold rolling steel plate
JP3302118B2 (en) Manufacturing method of cold rolled steel sheet with excellent deep drawability
KR0143478B1 (en) The making method of coil strip with ductile
KR960005225B1 (en) Making method of excellent deep drawing cold steel sheet
JPH06346147A (en) Production of grain-oriented silicon steel sheet
JPS6119733A (en) Preparation of super 70kg grade high strength hot rolled steel plate excellent in elongation flange property
JPS5980726A (en) Production of high strength cold rolled steel sheet having excellent deep drawability and small plate anisotropy
JPH0452229A (en) Highly efficient production of cold rolled steel sheet extremely excellent in workability
JPH0726328A (en) Production of grain oriented silicon steel sheet
JPS6367524B2 (en)
JP2790018B2 (en) Manufacturing method of hot rolled steel sheet with excellent workability
KR930002739B1 (en) Method for making aluminium-killed cold-rolled steel having a good forming property
JPS592725B2 (en) Method for producing thermosetting high-strength cold-rolled steel sheet for deep drawing
KR100584755B1 (en) Method for manufacturing high strength cold rolled steel sheet having Bake Hardening and superior press
JP3261037B2 (en) Manufacturing method of cold rolled steel sheet with good aging resistance
JPS59575B2 (en) Manufacturing method for high-strength cold-rolled steel sheets with excellent formability
JPH10130780A (en) Cold rolled steel sheet reduced in inplane anisotropy and excellent in formability, and its production
KR100325707B1 (en) The hot rolled steel with good drawability and ductility and a method of manufacturing thereof
JPH07197128A (en) Production of grain oriented silicon steel sheet
JPH05345918A (en) Production of high strength hot rolled steel plate
JPH075989B2 (en) Manufacturing method of cold-rolled steel sheet with excellent deep drawability
JPS61157660A (en) Nonageable cold rolled steel sheet for deep drawing and its manufacture
JPH06240363A (en) Production of high strength cold rolled steel sheet excellent in workability

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110502

Year of fee payment: 17

LAPS Lapse due to unpaid annual fee