JPH10130780A - Cold rolled steel sheet reduced in inplane anisotropy and excellent in formability, and its production - Google Patents

Cold rolled steel sheet reduced in inplane anisotropy and excellent in formability, and its production

Info

Publication number
JPH10130780A
JPH10130780A JP28068996A JP28068996A JPH10130780A JP H10130780 A JPH10130780 A JP H10130780A JP 28068996 A JP28068996 A JP 28068996A JP 28068996 A JP28068996 A JP 28068996A JP H10130780 A JPH10130780 A JP H10130780A
Authority
JP
Japan
Prior art keywords
temperature
rolling
less
cold
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28068996A
Other languages
Japanese (ja)
Inventor
Tatsuo Yokoi
龍雄 横井
Masayoshi Suehiro
正芳 末廣
Kazuo Koyama
一夫 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28068996A priority Critical patent/JPH10130780A/en
Publication of JPH10130780A publication Critical patent/JPH10130780A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a cold rolled steel sheet reduced in inplane anisotropy and excellent in formability by adding specific amounts of Ti to a low C aluminum killed steel and specifying hot rolling, cold rolling rate, and conditions in annealing, etc., respectively. SOLUTION: A steel, having a composition consisting of, by weight, 0.02-0.06% C, <=0.5% Si, 0.05-2.0% Mn, <=0.10% P, <=0.02% S, 0.005-0.1% Al, <=0.01% N, Ti in an amount satisfying Ti-48×(N/14+S/32)>=0.02 and Ti<=0.1%, and the balance essentially Fe is used. This steel is hot-rolled at >=800 deg.C and coiled at <=750 deg.C. After acid pickling, cold rolling is performed at 70-95% rolling rate. The resultant steel sheet is heated at >=5 deg.C/sec temp.-rise rate up to a temp. between the recrystallization temp. and the Ac3 point and held at this temp. for <=5min. The steel sheet is cooled at >=5 deg.C/sec cooling rate down to 250-500 deg.C and subjected to overaging treatment in this temp. region for <=10min. The degree of elongation of annealed recrystallized grains in the cross section parallel to a rolling direction is regulated to >=1.5, and the index Δr of inplane anisotropy using r-value is regulated to <=0.1 absolute value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、面内異方性が小さ
く成形性に優れた冷延鋼板およびその製造方法に関する
ものであり、特に、円筒もしくは角筒などの深絞り形状
に成形される自動車部品等に好適な面内異方性が小さく
成形性に優れた冷延鋼板およびその製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold-rolled steel sheet having a small in-plane anisotropy and excellent formability and a method for producing the same, and more particularly, to a deep drawn shape such as a cylinder or a square tube. TECHNICAL FIELD The present invention relates to a cold-rolled steel sheet having a small in-plane anisotropy and being excellent in formability suitable for an automobile part and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】自動車用鋼板に要求される材料特性は、
近年、年々高度になってきている。特に、自動車外板の
フェンダーや自動車エンジンのオイルパン等の自動車部
品については、極めて過酷なプレス成形がなされること
から、これらの部品に適用される自動車用鋼板には、深
絞り性および延性についてより一層の向上が期待されて
きた。さらに、最近では、CO2 排出規制などの地球環
境問題などから、燃費の向上が求められる一方で、衝突
安全性の向上の要望も高まってきた。このような要求に
応えるために、エンジン効率の改善や自動車車体構造の
改善だけでなく、自動車車体の軽量化や高強度化が図ら
れてきた。自動車用鋼板につてい言えば、引張強さが3
40MPa級以上でかつ良好な成形性を備える高強度冷
延鋼板が、自動車の車体を構成する各種部品に広範囲に
わたって使用されるようになってきた。
2. Description of the Related Art Material properties required for steel sheets for automobiles are as follows.
In recent years, it has become increasingly sophisticated year by year. In particular, automobile parts such as fenders for automobile outer panels and oil pans for automobile engines are subjected to extremely severe press forming. Therefore, steel sheets for automobiles applied to these parts are required to have deep drawability and ductility. Further improvements are expected. Furthermore, recently, due to global environmental problems such as CO 2 emission regulations, improvement in fuel efficiency has been demanded, while demand for improvement in collision safety has also increased. In order to meet such demands, not only the improvement of the engine efficiency and the improvement of the structure of the vehicle body, but also the reduction of the weight and strength of the vehicle body have been attempted. Speaking of steel plates for automobiles, tensile strength is 3
BACKGROUND ART High-strength cold-rolled steel sheets having a formability of 40 MPa or higher and having good formability have come to be widely used for various parts constituting a vehicle body of an automobile.

【0003】成形性の優れた高強度冷延鋼板の製造方法
としては、Mn、P、Si等の固溶強化元素を添加し、
Ti、Nb等の炭窒化物形成元素を添加した極低炭素鋼
を連続焼鈍装置にて製造する方法がよく知られている。
例えば、特公昭59−42742号公報等に開示されて
いる発明は、Tiを複合添加した極低炭素高強度冷延鋼
板に関する発明である。しかし、これらの従来技術によ
る冷延鋼板は、異方性が大きいという欠点があった。高
強度冷延鋼板は、曲げや軽い絞り成形を施される部品に
使用されるだけでなく、円筒もしくは角筒などの深絞り
形状に成形される場合もある。このような部品に成形す
る際に耳の高さが大きいと、成形部品の板厚が圧延方向
によって変動し、部品としての十分な均一性が得られな
いという品質の問題や、材料歩留りが悪いなどの経済性
の問題が顕在化してくる。
As a method for producing a high-strength cold-rolled steel sheet having excellent formability, a solid solution strengthening element such as Mn, P, or Si is added.
2. Description of the Related Art A method of manufacturing a very low carbon steel to which a carbonitride forming element such as Ti or Nb is added by a continuous annealing apparatus is well known.
For example, the invention disclosed in Japanese Patent Publication No. 59-42742 is an invention relating to an ultra-low carbon high strength cold rolled steel sheet to which Ti is added in a complex manner. However, these conventional cold-rolled steel sheets have a drawback that the anisotropy is large. The high-strength cold-rolled steel sheet is not only used for parts subjected to bending or light drawing, but may also be formed into a deep drawn shape such as a cylinder or a square tube. If the height of the ears is large when forming such a part, the thickness of the formed part fluctuates depending on the rolling direction, and there is a quality problem that sufficient uniformity as a part cannot be obtained, and the material yield is poor. Economic problems such as these will become apparent.

【0004】なお、耳の高さと方向は、r値の面内異方
性Δrと密接な関係があり、Δrの絶対値が小さいほど
耳の高さが小さくなる。具体的には、圧延方向に対して
0°、45°、90°方向のランクフォード値を、それ
ぞれ、r0 、r45、r90とすると、Δrは、Δr=(r
0 −2×r45+r90)/2で表される。また、耳の発生
する方向は、r90≧r0 >r45ならば(V字分布)、圧
延方向より0°および90°の方向であり、r45>r90
≧r0 ならば(逆V字分布)、圧延方向より45°の方
向である。また、r値の面内異方性は、集合組織に起因
しており、{110}〈100〉方位が強い場合は、r
90≧r0 >r45のV字分布の異方性を示し、{100}
〈110〉方位が強い場合には、r45>r90≧r0 の逆
V字分布を示す。
The height and direction of the ear are closely related to the in-plane anisotropy Δr of the r value, and the smaller the absolute value of Δr, the smaller the height of the ear. Specifically, assuming that the Rankford values in the 0 °, 45 °, and 90 ° directions with respect to the rolling direction are r 0 , r 45 , and r 90 , respectively, Δr becomes Δr = (r
0−2 × r 45 + r 90 ) / 2. If the direction of ear generation is r 90 ≧ r 0 > r 45 (V-shaped distribution), the directions are 0 ° and 90 ° from the rolling direction, and r 45 > r 90
If ≧ r 0 (reverse V-shaped distribution), the direction is 45 ° from the rolling direction. The in-plane anisotropy of the r value is due to the texture, and when the {110} <100> orientation is strong, r
It shows anisotropy of V-shaped distribution of 90 ≧ r 0 > r 45 , {100}
When the <110> orientation is strong, an inverted V-shaped distribution of r 45 > r 90 ≧ r 0 is exhibited.

【0005】そこで、このような高強度冷延鋼板の異方
性の改善策として、特開昭62−287018号公報
に、Ti、Nbを添加した鋼を、オーステナイト域で再
結晶しない温度域で熱間圧延し、直ちに低温で巻き取っ
て、固溶Cと固溶Nを熱延時に固定し、冷延、再結晶焼
鈍することにより、異方性を小さくする発明が開示され
ている。また、特開昭62−161919号公報には、
熱間圧延でスラブ加熱温度を低温にし、巻取温度を高温
にすることにより適当なAlNを析出させて異方性を小
さくした熱延鋼板を、85〜93%の高冷延率で冷延
し、再結晶焼鈍することによって、異方性の小さい薄鋼
板を製造する発明が開示されている。また、特公昭57
−3732号公報や特公平8−14003号公報には、
低炭素アルミキルド鋼の成分系をベースとし、Tiまた
はNbを添加してNをこれらの窒化物として固定して焼
鈍時のAlNの析出を抑制し、TiCの析出物サイズを
制御することによって異方性を小さくする発明が開示さ
れている。
Therefore, as a measure for improving the anisotropy of such a high-strength cold-rolled steel sheet, Japanese Patent Application Laid-Open No. 62-287018 discloses a method in which a steel containing Ti and Nb is added in a temperature range where recrystallization in the austenite range does not occur. There is disclosed an invention in which anisotropy is reduced by hot rolling, immediately winding at a low temperature, fixing solid solution C and solid solution N during hot rolling, and performing cold rolling and recrystallization annealing. Also, JP-A-62-161919 discloses that
A hot-rolled steel sheet having a low anisotropy by precipitating appropriate AlN by lowering the slab heating temperature and raising the winding temperature by hot rolling is cold-rolled at a high cold-rolling rate of 85 to 93%. Then, an invention of manufacturing a thin steel sheet having small anisotropy by recrystallization annealing is disclosed. In addition,
-3732 and JP-B-8-14003,
Based on a low carbon aluminum killed steel component system, Ti or Nb is added and N is fixed as these nitrides to suppress the precipitation of AlN during annealing and control the size of TiC precipitates. There is disclosed an invention for reducing the performance.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、特開昭
62−287018号公報に記載された発明は、極低炭
素鋼ベースの成分系における高強度冷延鋼板の異方性改
善方法を開示したものであり、C、Nなどの侵入型固溶
元素を低減させるため、RHなどの二次精練を行わなけ
ればならず、製鋼コストが高くなるという難点がある。
また、特開昭62−161919号公報に記載された発
明は、異方性改善のために、85%以上という高い冷延
率が必要とするため、冷間圧延の負荷が高くなるという
問題がある。また、特公昭57−3732号公報や特公
平8−14003号公報に記載された発明は、長時間を
要する箱焼鈍を前提としており、単位時間あたりの生産
量が低いという問題がある。
However, the invention described in Japanese Patent Application Laid-Open No. 62-287018 discloses a method for improving the anisotropy of a high-strength cold-rolled steel sheet in a component system based on an ultra-low carbon steel. However, in order to reduce interstitial solid solution elements such as C and N, secondary refining such as RH must be performed, and there is a problem that steelmaking costs are increased.
Further, the invention described in Japanese Patent Application Laid-Open No. 62-161919 requires a high cold rolling ratio of 85% or more to improve anisotropy, so that the load of cold rolling increases. is there. Further, the inventions described in JP-B-57-3732 and JP-B-8-14003 are based on the premise of box annealing that requires a long time, and have a problem that the production amount per unit time is low.

【0007】本発明は、r値の面内異方性を改善するた
めに、析出物の析出サイズ、分布および析出時期等を最
適化して、再結晶焼鈍時の{110}〈100〉方位ま
たは{100}〈110〉方位の生成を抑制すること
で、面内異方性が小さく成形性に優れた冷延鋼板および
その製造方法を提供しようとするものである。
According to the present invention, in order to improve the in-plane anisotropy of the r value, the precipitate size, distribution and precipitation time of the precipitates are optimized, and the {110} <100> orientation or An object of the present invention is to provide a cold-rolled steel sheet having small in-plane anisotropy and excellent formability by suppressing generation of the {100} <110> orientation, and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明者らは、現在通常
に採用されている工業的規模の連続焼鈍設備または連続
溶融亜鉛めっき設備による製造を念頭において、冷延鋼
板のr値面内異方性を改善すべく鋭意研究を重ねた結
果、図1に示すように低炭素アルミキルド鋼にTiまた
はNbを添加した鋼板の再結晶粒の展伸度とΔr値の間
に強い相関があることを見出した。また、スラブ再加熱
温度、熱間圧延条件、冷延率、焼鈍条件等を制限するこ
とによって、Δr値≦±0.1という鋼板を製造できる
ことを新規に知見した。
Means for Solving the Problems The inventors of the present invention considered the difference between the r-value planes of cold-rolled steel sheets in view of the production by an industrial-scale continuous annealing equipment or a continuous hot-dip galvanizing equipment which is currently usually employed. As a result of intensive studies to improve the anisotropy, there is a strong correlation between the elongation degree of recrystallized grains and the Δr value of a steel sheet obtained by adding Ti or Nb to a low carbon aluminum killed steel as shown in FIG. Was found. In addition, the present inventors have newly found that a steel sheet having an Δr value ≦ ± 0.1 can be manufactured by limiting the slab reheating temperature, hot rolling conditions, cold rolling ratio, annealing conditions, and the like.

【0009】本発明は、上記知見により構成したもの
で、その要旨は、 (1)重量%にて、C:0.02〜0.06%、Si≦
0.5%、Mn:0.05〜2.0%、P≦0.10
%、S≦0.02%、Al:0.005〜0.1%、N
≦0.01%を含み、さらに、Tiを、Ti−48×
(N/14+S/32)≧0.02、かつTi≦0.1
%なる条件を満たす範囲で含有し、残部がFe及び不可
避的不純物からなり、圧延方向と平行な断面における焼
鈍再結晶粒の展伸度が1.4以上であり、ランクフォー
ド値を用いた面内異方性の指標Δrが0.1以下である
ことを特徴とする面内異方性が小さく成形性に優れた冷
延鋼板。 (2)さらに、重量%にて、Nb≦0.1%を含有する
ことを特徴とする上記(1)に記載の面内異方性が小さ
く成形性に優れた冷延鋼板。
The present invention has been made on the basis of the above findings. The gist of the present invention is as follows: (1) C: 0.02 to 0.06% by weight, Si ≦
0.5%, Mn: 0.05 to 2.0%, P ≦ 0.10
%, S ≦ 0.02%, Al: 0.005 to 0.1%, N
≦ 0.01%, and further, Ti is added to Ti-48 ×
(N / 14 + S / 32) ≧ 0.02 and Ti ≦ 0.1
%, The balance being Fe and unavoidable impurities, the elongation of the recrystallized annealing grains in a section parallel to the rolling direction being 1.4 or more, and a surface using the Rankford value. A cold-rolled steel sheet having a small in-plane anisotropy and an excellent formability, wherein the index Δr of the in-plane anisotropy is 0.1 or less. (2) The cold-rolled steel sheet having a small in-plane anisotropy and an excellent formability according to the above (1), further comprising Nb ≦ 0.1% by weight.

【0010】(3)重量%にて、C:0.02〜0.0
6%、Si≦0.5%、Mn:0.05〜2.0%、P
≦0.10%、S≦0.02%、Al:0.005〜
0.1%、N≦0.01%を含み、さらに、Tiを、T
i−48×(N/14+S/32)≧0.02、かつT
i≦0.1%なる条件を満たす範囲で含有し、残部がF
e及び不可避的不純物からなる鋼を、800℃以上の温
度域で熱間圧延した後、750℃以下で巻き取り、酸洗
して、圧延率70%以上、95%以下の冷間圧延を施
し、さらに、昇温速度5℃/s以上で再結晶温度以上、
Ac3 点以下の温度域に加熱し、該温度域で5分以下保
持した後、冷却速度5℃/s以上で250〜500℃の
温度域まで冷却し、該温度域で10分以下の過時効処理
をすることを特徴とする、圧延方向と平行な断面におけ
る焼鈍再結晶粒の展伸度が1.4以上であり、ランクフ
ォード値を用いた面内異方性の指標Δrが0.1以下で
ある面内異方性が小さく成形性に優れた冷延鋼板の製造
方法。
(3) C: 0.02 to 0.0% by weight
6%, Si ≦ 0.5%, Mn: 0.05-2.0%, P
≦ 0.10%, S ≦ 0.02%, Al: 0.005
0.1%, N ≦ 0.01%.
i−48 × (N / 14 + S / 32) ≧ 0.02 and T
i ≦ 0.1% is contained within the range satisfying the condition, and the balance is F
e, and a steel consisting of unavoidable impurities is hot-rolled in a temperature range of 800 ° C. or more, then wound at 750 ° C. or less, pickled, and subjected to cold rolling at a rolling ratio of 70% or more and 95% or less. And further, at a heating rate of 5 ° C./s or more, at a recrystallization temperature or more,
Ac is heated to a temperature range of 3 points or less, maintained at the temperature range for 5 minutes or less, cooled at a cooling rate of 5 ° C./s or more to a temperature range of 250 to 500 ° C., and cooled to a temperature range of 10 minutes or less at the temperature range. The aging treatment is characterized in that the degree of elongation of the recrystallized annealing grains in a section parallel to the rolling direction is 1.4 or more, and the index Δr of in-plane anisotropy using the Rankford value is 0. A method for producing a cold-rolled steel sheet having a small in-plane anisotropy of 1 or less and excellent in formability.

【0011】(4)前記鋼が、重量%にて、さらに、N
b≦0.1%を含有するとともに、熱間圧延終了温度が
Ar3 変態点温度以上であることを特徴とする上記
(3)に記載の面内異方性が小さく成形性に優れた冷延
鋼板の製造方法である。ただし、ここに言う展伸度と
は、JIS G 0552に示された方法で測定される
べき値である。なお、上記の本発明は、溶融亜鉛めっき
鋼板にも適用可能である。
[0011] (4) The steel may further contain N
b) 0.1% and the hot-rolling end temperature is not lower than the Ar 3 transformation point temperature. This is a method for producing a rolled steel sheet. However, the elongation here is a value to be measured by the method shown in JIS G 0552. The present invention is also applicable to hot-dip galvanized steel sheets.

【0012】[0012]

【発明の実施の形態】以下、本発明を詳細に説明する。
まず、本発明の化学成分の限定理由について説明する。
Cは、0.06%超含有していると再結晶粒の展伸度が
小さくなるので、0.06%以下とする。また0.02
%未満であるとΔr値が大きくなり過ぎるので0.02
%以上とする。Siは、固溶強化元素であり、0.5%
超添加すると固溶硬化が著しくなり加工用に不適当にな
るので、0.5%以下とする。溶融亜鉛めっき用途の場
合は、溶融亜鉛めっきの密着性のために、0.1%以下
とするのが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
First, the reasons for limiting the chemical components of the present invention will be described.
If C exceeds 0.06%, the elongation of the recrystallized grains becomes small. 0.02
%, The Δr value becomes too large, so that 0.02
% Or more. Si is a solid solution strengthening element, and 0.5%
If added in an excessive amount, solid solution hardening becomes remarkable and becomes unsuitable for processing. In the case of hot-dip galvanizing, the content is preferably 0.1% or less for the adhesion of hot-dip galvanizing.

【0013】Mnは、鋼の赤熱脆化防止の点から、0.
05%以上必要である。また、2.0%超添加すると延
性が低下するため2.0%以下とする。なお、MnのA
3点を低下させる作用を活用して再結晶焼鈍の温度を
確保する必要がある場合は1.0%以下とするのが好ま
しい。Pは、強力な固溶強化元素であるので求められる
強度レベルに応じて添加する。ただし0.10%超添加
するとその溶接性に悪影響を及ぼすので、上限を0.1
0%とする。
Mn is contained in an amount of 0.1 to prevent red embrittlement of steel.
More than 05% is required. Further, if added in excess of 2.0%, the ductility decreases, so the content is made 2.0% or less. In addition, A of Mn
If leverage effect of lowering the c 3-point it is necessary to ensure the temperature of recrystallization annealing is preferably 1.0% or less. P is a strong solid solution strengthening element and is added according to the required strength level. However, if the addition exceeds 0.10%, the weldability is adversely affected.
0%.

【0014】Sは、多すぎると熱間圧延時の割れを引き
起こすばかりでなく、平均r値の劣化を起こすので極力
低減させるべきであるが、0.02%以下ならば許容で
きる範囲である。Alは、溶鋼脱酸のために0.005
%以上添加する必要があるが、あまり多量に添加する
と、非金属介在物を増大させ延性を劣化させるだけでな
く、コストの上昇を招くため、その上限を0.1%とす
る。Nは、C同様平均r値にとって好ましくない元素で
あるので、0.01%以下とする。
If S is too large, it not only causes cracking during hot rolling, but also causes deterioration of the average r value. Therefore, the content of S should be reduced as much as possible. Al is 0.005 for deoxidation of molten steel.
However, if added in a large amount, not only increases nonmetallic inclusions and deteriorates ductility, but also increases cost, so the upper limit is set to 0.1%. N is an element unfavorable for the average r value like C, so N is set to 0.01% or less.

【0015】Tiは、本発明における最も重要な添加元
素の一つである。Tiは、オーステナイト温度域におい
てTiN、TiS、Ti4 2 2 等として析出物を形
成するが、Δr値を小さくするために、前記析出物の析
出温度域より低温域で析出するTiCを有効利用する。
特定の条件下の連続焼鈍で再結晶時にr値の面内異方性
にとって好ましくない{110}〈100〉方位および
{100}〈110〉方位が核生成し成長するが、この
温度域および時間にTiCを微細に析出させれば、これ
らの方位の成長を抑制することができる。再結晶時に有
効にTiCを析出させるために、Tiの添加量はTi−
48×(N/14+S/32)≧0.02とする。一
方、0.1%超添加すると、r値の面内異方性を小さく
する効果が飽和してしまうだけでなく、表面性状や化成
処理性が劣化するので、Tiの上限は0.1%以下とす
る。溶融亜鉛めっき用途では、Tiは、0.06%超添
加すると溶融亜鉛めっきの密着性を悪くし、プレス成形
時にパウダリングを起こすので、0.06%以下とする
のが好ましい。
[0015] Ti is one of the most important additive elements in the present invention. Ti forms precipitates as TiN, TiS, Ti 4 C 2 S 2, etc. in the austenite temperature range, but in order to reduce the Δr value, TiC deposited in a lower temperature range than the precipitate temperature range of the precipitates is effective. Use.
During continuous annealing under specific conditions, the {110} <100> orientation and the {100} <110> orientation, which are unfavorable for the in-plane anisotropy of the r value during recrystallization, grow and nucleate. If TiC is finely precipitated, the growth in these orientations can be suppressed. In order to effectively precipitate TiC during recrystallization, the amount of Ti added is Ti-
48 × (N / 14 + S / 32) ≧ 0.02. On the other hand, if added in excess of 0.1%, not only the effect of reducing the in-plane anisotropy of the r value is saturated, but also the surface properties and the chemical conversion property deteriorate, so the upper limit of Ti is 0.1%. The following is assumed. In hot-dip galvanizing applications, the addition of more than 0.06% of Ti deteriorates the adhesion of hot-dip galvanizing and causes powdering during press molding.

【0016】Nbは、TiCと同様にΔr値を小さくす
るのに有効なNbCを析出させるため、必要に応じて添
加する。ただし、0.1%超添加すると、r値の面内異
方性を小さくする効果が飽和してしまうので、上限を
0.1%とする。なお、Nbは、0.03%超添加する
と焼鈍時の再結晶温度が著しく上昇するので、再結晶温
度を低下させる必要がある場合は、0.03%以下とす
るのが好ましい。なお、本発明において、上記以外の成
分はFeとなるが、スクラップ等の溶製原料から混入す
る不可避的不純物の含有は許容される。
Nb is added as necessary to precipitate NbC effective for reducing the Δr value similarly to TiC. However, the addition of more than 0.1% saturates the effect of reducing the in-plane anisotropy of the r value, so the upper limit is made 0.1%. When Nb is added in excess of 0.03%, the recrystallization temperature during annealing rises significantly. Therefore, if it is necessary to lower the recrystallization temperature, it is preferably set to 0.03% or less. In the present invention, the other components are Fe, but the inclusion of unavoidable impurities mixed from the smelting raw material such as scrap is allowed.

【0017】次に、本発明の製造方法の限定理由につい
て以下に詳細に述べる 本発明は、溶鋼に添加元素を単体または母合金の形で目
的の成分含有量になるように添加し、鋳込むことによっ
て得たスラブを、高温鋳片のまま熱間圧延機に直送して
もよいし、室温まで冷却後に加熱炉にて再加熱した後に
熱間圧延してもよい。再加熱温度については特に制限は
ないが、1200℃未満であると、Ti 4 2 2 をは
じめとする析出物が再固溶せず、焼鈍時に活用するTi
Cの量が減少するので、再加熱温度は1200℃以上が
望ましい。
Next, the reasons for limiting the production method of the present invention will be described.
In the present invention, the additive element is added to molten steel in the form of a simple substance or a master alloy.
By adding and casting to achieve the target component content.
The slab obtained in this way is sent directly to a hot rolling mill as
Or after reheating in a heating furnace after cooling to room temperature
Hot rolling may be performed. There are no particular restrictions on the reheating temperature
However, if the temperature is lower than 1200 ° C., Ti FourCTwoSTwoIs
Precipitate precipitates do not form a solid solution again, and Ti used during annealing
Since the amount of C decreases, the reheating temperature should be 1200 ° C or more.
desirable.

【0018】熱間圧延工程は、仕上げ圧延最終パス温度
(FT)が800℃以上の温度域で終了する必要があ
る。熱間圧延中に圧延温度が800℃を切ると、熱延板
表層近傍においてα域圧延となり表層近傍の粒径が粗大
化して板厚方向の材質のばらつきが顕著になりプレス成
形時における材料の表面品位低下につながるためであ
る。ただし、Nbを添加するとα相での再結晶が抑制さ
れるため、冷延後の再結晶時にr値の面内異方性にとっ
て好ましくない{110}〈100〉方位および{10
0}〈110〉方位が生成し易い方位が熱延板段階で残
ってしまうので、Ar3 点以上の温度域で熱間圧延を終
了する必要がある。
The hot rolling step needs to be completed in a temperature range in which the final rolling final pass temperature (FT) is 800 ° C. or higher. If the rolling temperature falls below 800 ° C. during hot rolling, the α-rolling occurs near the surface layer of the hot-rolled sheet, the grain size near the surface layer becomes coarse, and the material variation in the sheet thickness direction becomes remarkable. This is because the surface quality is reduced. However, when Nb is added, recrystallization in the α phase is suppressed, so that the {110} <100> orientation and the {10}
Since the orientation in which the 0} <110> orientation is easily generated remains in the hot-rolled sheet stage, it is necessary to end the hot rolling in a temperature range of Ar 3 or more.

【0019】仕上げ圧延後の巻取温度は、750℃超で
は、熱延板中に固溶しているCが、TiC、NbCなど
の析出物として粗大に析出し、焼鈍時にΔr値を小さく
するために有効な固溶C、または微細なTiC、NbC
が確保できないので、巻取温度は、750℃以下と限定
する。酸洗後の冷延工程では、圧延率70%以上、95
%以下の冷間圧延を施す。圧延率が70%未満である
と、後の焼鈍工程において十分に再結晶をしないので延
性が劣化する。また、95%超の圧延率で冷間圧延を行
っても、かえって面内異方性が大きくなる。従って、冷
延工程での圧延率は70%以上、95%以下とする。
When the winding temperature after the finish rolling is higher than 750 ° C., C solid-dissolved in the hot-rolled sheet coarsely precipitates as precipitates such as TiC and NbC and reduces the Δr value during annealing. Effective for solid solution C or fine TiC, NbC
Therefore, the winding temperature is limited to 750 ° C. or less. In the cold rolling process after pickling, the rolling reduction is 70% or more,
% Cold rolling. If the rolling reduction is less than 70%, recrystallization is not sufficiently performed in the subsequent annealing step, so that ductility is deteriorated. In addition, even if cold rolling is performed at a rolling ratio of more than 95%, the in-plane anisotropy is rather increased. Therefore, the rolling reduction in the cold rolling process is set to 70% or more and 95% or less.

【0020】本発明における焼鈍工程は、連続焼鈍を前
提としている。特定の条件で連続焼鈍を行うと再結晶時
にr値の面内異方性にとって好ましくない{110}
〈100〉方位および{100}〈110〉方位の粒成
長が起こるが、この際、TiCを微細に析出させること
によってこの粒成長を抑制することができる。昇温速度
が5℃/s未満であると面内異方性にとって好ましくな
い{110}〈100〉方位および{100}〈11
0〉方位の結晶粒が核生成してしまうので、昇温速度は
5℃/s以上と限定する。
The annealing step in the present invention is based on continuous annealing. Performing continuous annealing under specific conditions is not preferable for in-plane anisotropy of r value during recrystallization {110}
Grain growth in the <100> orientation and the {100} <110> orientation occurs. At this time, the grain growth can be suppressed by finely depositing TiC. If the rate of temperature rise is less than 5 ° C./s, unfavorable in-plane anisotropy {110} <100> orientation and {100} <11
Since the crystal grains having the <0> orientation generate nuclei, the heating rate is limited to 5 ° C./s or more.

【0021】焼鈍温度における保持時間は、5分超であ
ると面内異方性にとって好ましくない{110}〈10
0〉方位および{100}〈110〉方位の結晶粒成長
を押さえているTiCおよびNbCなどが粗大に成長し
てしまい結晶粒成長抑制効果が失われるので焼鈍温度に
おける保持時間は5分以内と限定する。焼鈍温度は、A
3 点超の温度であると、γ域あるいはα+γの二相域
での焼鈍になってしまい結晶粒の粗大化が起こり、強度
と延性が共に劣化するだけでなく面内異方性の小さい再
結晶集合組織の形成を著しく阻害するためAc3 点以下
とする。また、再結晶温度未満では、再結晶が起こらず
延性が劣化するだけでなく、面内異方性の小さい再結晶
集合組織の形成が起こらないので焼鈍温度は、再結晶温
度以上とする。
If the holding time at the annealing temperature exceeds 5 minutes, {110} <10 is not preferable for in-plane anisotropy.
The holding time at the annealing temperature is limited to 5 minutes or less since TiC and NbC, which suppress the crystal grain growth in the 0> and {100} <110> directions, grow coarsely and lose the effect of suppressing the crystal grain growth. I do. The annealing temperature is A
c If the temperature is higher than 3 points, annealing occurs in the γ region or α + γ two-phase region, causing coarsening of crystal grains, which not only deteriorates strength and ductility but also reduces in-plane anisotropy. Since the formation of the recrystallized texture is significantly inhibited, the Ac point is set to 3 or less. If the temperature is lower than the recrystallization temperature, not only recrystallization does not occur but ductility is deteriorated, but also the formation of a recrystallized texture with small in-plane anisotropy does not occur.

【0022】焼鈍後の冷却速度(一次冷却速度)は、5
℃/s未満であるとTiCおよびNbCなどが粗大に成
長してしまい結晶粒成長抑制効果が失われ、面内異方性
にとって好ましくない{110}〈100〉方位および
{100}〈110〉方位の結晶粒成長起こるので一次
冷却速度は5℃/s以上と限定する。過時効処理は、面
内異方性について影響を与えないが、過飽和に存在して
いる固溶Cをセメンタイトとして析出させることによっ
て、延性が改善されるので、250〜500℃の温度域
で10分以下の過時効処理をする。ただし、500℃超
であると析出するセメンタイトの量が少なく固溶Cが残
ってしまい延性が得られないので、500℃以下とする
必要がある。一方、250℃未満であると十分にセメン
タイトを析出させるためには、過時効時間を著しく長く
する必要があり現実的でないため、250℃以上と限定
する。また、上記処理温度で10分超の過時効処理を行
っても、過時効の効果は飽和するため、処理時間は10
以下とする。
The cooling rate after annealing (primary cooling rate) is 5
If the temperature is lower than ℃ / s, TiC and NbC grow coarsely and the effect of suppressing the growth of crystal grains is lost, and the {110} <100> orientation and {100} <110> orientation which are not preferable for in-plane anisotropy. Therefore, the primary cooling rate is limited to 5 ° C./s or more. The overaging treatment does not affect the in-plane anisotropy, but the ductility is improved by precipitating solute C present in supersaturation as cementite. Overage for less than a minute. However, when the temperature exceeds 500 ° C., the amount of precipitated cementite is small, so that solid solution C remains and ductility cannot be obtained. On the other hand, if the temperature is lower than 250 ° C., in order to sufficiently precipitate cementite, it is necessary to significantly increase the overaging time, which is not realistic. Further, even if the overaging treatment is performed for more than 10 minutes at the above-mentioned processing temperature, the effect of the overaging is saturated.
The following is assumed.

【0023】本発明では、円筒もしくは角筒などの深絞
り部品に成形する際に耳の高さが大きいと、成形部品の
板厚が圧延方向によって変動し、部品としての十分な均
一性が得られないという品質の問題や、材料歩留りが悪
いなどの経済性の問題が顕在化してくるため、r値を用
いた面内異方性の指標Δrは0.1以下とする必要があ
る。さらに、前記指標Δrを0.1以下とするために
は、圧延方向と平行な断面における焼鈍再結晶粒の展伸
度は1.4以上とする必要がある。
In the present invention, when forming a deep drawn part such as a cylinder or a square tube, if the height of the ear is large, the thickness of the formed part varies depending on the rolling direction, and sufficient uniformity as a part is obtained. Since the quality problem that the material cannot be obtained and the economic problem such as a poor material yield become apparent, the in-plane anisotropy index Δr using the r value needs to be 0.1 or less. Further, in order to set the index Δr to 0.1 or less, it is necessary that the degree of extension of the annealing recrystallized grains in a section parallel to the rolling direction is 1.4 or more.

【0024】[0024]

【実施例】以下に、実施例により本発明をさらに説明す
る。 (実施例1)表1に示す化学成分を有するA〜Oの鋼
は、鉄鉱石を原料として高炉にて出銑し、転炉にて溶製
して、連続鋳造後、加熱温度1230℃で再加熱し、表
2に示すように850℃〜900℃の仕上げ圧延温度で
6.0mmに圧延した後、表2に示す温度でそれぞれ巻
取った。酸洗後、0.8mmまで冷間圧延を施し(圧延
率86.7%)、連続焼鈍ライン(最高加熱温度760
〜780℃、スキンパス圧延率0.8%)を通板した。
ただし、CおよびEの鋼については、冷延後溶融亜鉛め
っきライン(最高加熱温度770〜780℃、溶融亜鉛
めっき460℃、合金化処理520℃×20秒、スキン
パス圧延率0.8%)を通板した。ただし、化学組成に
ついての表示は重量%で窒素Nは重量ppmである。こ
のようにして得られた焼鈍板の引張試験は、供試材を、
まず、JIS Z 2201記載の5号試験片に加工
し、JIS Z 2241記載の試験方法に従って行っ
た。
The present invention will be further described below with reference to examples. (Example 1) Steels of A to O having the chemical components shown in Table 1 were tapped in a blast furnace using iron ore as a raw material, melted in a converter, continuously cast, and heated at a temperature of 1230 ° C. After reheating and rolling at a finish rolling temperature of 850 ° C. to 900 ° C. to 6.0 mm as shown in Table 2, each was wound at a temperature shown in Table 2. After pickling, cold rolling is performed to 0.8 mm (rolling ratio 86.7%), and a continuous annealing line (maximum heating temperature 760)
7780 ° C., skin pass rolling ratio 0.8%).
However, for steels C and E, hot-dip galvanizing line after cold rolling (maximum heating temperature 770-780 ° C, hot-dip galvanizing 460 ° C, alloying treatment 520 ° C × 20 seconds, skin pass rolling ratio 0.8%) I passed through. However, the indication of the chemical composition is% by weight and nitrogen N is ppm by weight. The tensile test of the annealed plate obtained in this way, the test material,
First, it was processed into a No. 5 test piece described in JIS Z 2201, and the test was performed according to the test method described in JIS Z 2241.

【0025】[0025]

【表1】 [Table 1]

【0026】表2にその試験結果を示す。ただし、表中
の記号は、FT:仕上げ圧延終了温度、CT:巻取温
度、ST:焼鈍温度、YP:降伏強度、TS:引張強
さ、El:破断伸び、r:平均ランクフォード値、Δ
r:面内異方性指標の絶対値、e:結晶粒の展伸度であ
る。本発明に沿うものは、A〜Kの11鋼であり、圧延
方向と平行な断面における焼鈍再結晶粒の展伸度が1.
4以上であり、r値を用いた面内異方性の指標Δrが
0.1以下の面内異方性が小さく成形性に優れた冷延鋼
板が得られている。上記以外の鋼は、以下の理由によっ
て本発明の範囲外である。鋼Nは、Tiの添加量が本発
明の範囲より少ないために〔Ti−48(N/14+S
/32)=0.015〕、また、鋼L、M、Oは、巻取
温度が本発明の範囲より高いために、熱延板中に固溶し
ているCが、TiC、NbCなどの析出物として粗大に
析出し、焼鈍時にΔr値を小さくするために有効な固溶
C、または微細なTiC、NbCが確保できず、圧延方
向と平行な断面における焼鈍再結晶粒の展伸度が1.4
未満であり、r値を用いた面内異方性の指標Δrが0.
1超となっている。
Table 2 shows the test results. However, the symbols in the table are FT: finish rolling end temperature, CT: winding temperature, ST: annealing temperature, YP: yield strength, TS: tensile strength, El: elongation at break, r: average Rankford value, Δ
r: Absolute value of in-plane anisotropy index, e: Extensibility of crystal grains. According to the present invention, there are 11 steels A to K, each having a degree of elongation of annealed recrystallized grains of 1. in a section parallel to the rolling direction.
A cold rolled steel sheet having an in-plane anisotropy index of not less than 4 and an in-plane anisotropy index r using an r value of 0.1 or less and having excellent formability is obtained. Steels other than the above are outside the scope of the present invention for the following reasons. Steel N has a Ti-48 (N / 14 + S
/32)=0.015] In addition, since steel L, M, and O have a higher winding temperature than the range of the present invention, C in solid solution in the hot-rolled sheet is changed to TiC, NbC, or the like. Precipitates are coarsely precipitated and solid solution C or fine TiC and NbC effective for reducing the Δr value during annealing cannot be secured, and the elongation of the recrystallized annealing grains in a cross section parallel to the rolling direction is reduced. 1.4
And the index Δr of in-plane anisotropy using the r value is not more than 0.
It is more than one.

【0027】[0027]

【表2】 [Table 2]

【0028】(実施例2)表1に示した化学組成のスラ
ブのうち、鋼A、B、C、D、EおよびFについて、実
施例1で行った製造条件と異なる条件によって冷延−焼
鈍板を製造した。まず、加熱炉にて様々な温度まで再加
熱し、2.0〜10.0mmまで圧延して巻き取った。
酸洗後、0.8mmまで冷間圧延を施し、連続焼鈍ライ
ン(スキンパス圧延率0.8%)を通板した。ただし、
C−3、C−4およびE−3の鋼については、冷延後、
溶融亜鉛めっきライン(溶融亜鉛めっき460℃、合金
化処理520℃×20秒、スキンパス圧延率0.8%)
を通板した。製造条件の詳細については、表3に示す。
ただし、表中の記号は、SRT:スラブ加熱温度、F
T:仕上げ圧延終了温度、CT:巻取温度、CR:冷延
率、ST:焼鈍温度、YP:降伏強度、TS:引張強
さ、El:破断伸び、r:平均ランクフォード値、Δ
r:面内異方性の絶対値、e:結晶粒の展伸度である。
(Example 2) Among the slabs having the chemical compositions shown in Table 1, steels A, B, C, D, E and F were cold rolled and annealed under conditions different from the production conditions performed in Example 1. Boards were manufactured. First, it was reheated to various temperatures in a heating furnace, rolled to 2.0 to 10.0 mm, and wound.
After the pickling, cold rolling was performed to 0.8 mm, and the sheet was passed through a continuous annealing line (skin pass rolling reduction 0.8%). However,
For steels C-3, C-4 and E-3, after cold rolling,
Hot-dip galvanizing line (hot-dip galvanizing 460 ° C, alloying treatment 520 ° C x 20 seconds, skin pass rolling rate 0.8%)
Passed through. Table 3 shows details of the manufacturing conditions.
However, the symbols in the table are SRT: slab heating temperature, F
T: Finish rolling end temperature, CT: Winding temperature, CR: Cold rolling reduction, ST: Annealing temperature, YP: Yield strength, TS: Tensile strength, El: Elongation at break, r: Average Rankford value, Δ
r: Absolute value of in-plane anisotropy, e: Elongation degree of crystal grains.

【0029】また、実施例1と同様にして、引張試験を
行った。試験結果を表3に示す。なお、表中の記号は、
実施例1の表1と同様である。本発明鋼は、鋼A−2、
A−1、A−2、A−3、B−1、B−2、B−3、B
−4、B−5、C−3、D−1、D−2、D−3、E−
1であり、圧延方向と平行な断面における焼鈍再結晶粒
の展伸度が1.4以上であり、r値を用いた面内異方性
の指標Δrが0.1以下の面内異方性が小さく成形性に
優れた冷延鋼板が得られている。
A tensile test was performed in the same manner as in Example 1. Table 3 shows the test results. The symbols in the table are
This is the same as Table 1 in the first embodiment. The steel of the present invention is steel A-2,
A-1, A-2, A-3, B-1, B-2, B-3, B
-4, B-5, C-3, D-1, D-2, D-3, E-
1, the in-plane anisotropy index of the in-plane anisotropy Δr using the r value is 0.1 or less, the elongation of the recrystallized annealing grains in a cross section parallel to the rolling direction is 1.4 or more. A cold rolled steel sheet having low formability and excellent formability has been obtained.

【0030】比較鋼は、各々以下に述べる理由により本
発明の範囲外である。鋼B−6、E−2は、仕上げ圧延
の終了温度が本発明範囲の下限値を割っているので、結
晶粒の展伸度が本発明の範囲外であり、従って面内異方
性Δr値が本発明の範囲外である。鋼C−4、F−1
は、巻取温度が本発明範囲の上限値を超えているのでT
iCの析出が有効に作用せず、結晶粒の展伸度が本発明
の範囲外であり、従って面内異方性Δr値が本発明の範
囲外である。鋼A−4、C−2、E−3は、冷間圧延に
おける圧延率が本発明範囲の下限値を割っているので、
再結晶の駆動力が小さいことに加えて圧延集合組織の形
成が十分でなく、従って面内異方性Δr値が本発明の範
囲外である。鋼C−1は、焼鈍温度が再結晶温度に達し
ていないので、再結晶が十分に起こらず、十分な延性が
ないばかりか、TiCの析出が十分でなく、従って面内
異方性Δr値が本発明の範囲外である。
The comparative steels are outside the scope of the present invention for the following reasons. In steels B-6 and E-2, the finish temperature of the finish rolling is lower than the lower limit of the range of the present invention, and thus the elongation of crystal grains is out of the range of the present invention, and therefore, the in-plane anisotropy Δr Values are outside the scope of the invention. Steel C-4, F-1
Is T because the winding temperature exceeds the upper limit of the range of the present invention.
Precipitation of iC does not act effectively, and the elongation of the crystal grains is out of the range of the present invention, and therefore, the in-plane anisotropy Δr value is out of the range of the present invention. For steels A-4, C-2, and E-3, since the rolling reduction in cold rolling is lower than the lower limit of the range of the present invention,
In addition to the low driving force for recrystallization, the formation of a rolling texture is not sufficient, and thus the in-plane anisotropy Δr value is out of the range of the present invention. Since the annealing temperature of steel C-1 has not reached the recrystallization temperature, recrystallization does not sufficiently occur and not only does not have sufficient ductility, but also TiC precipitation is not sufficient, and therefore, the in-plane anisotropy Δr value Is outside the scope of the present invention.

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【発明の効果】本発明は、上述したように面内異方性が
小さく成形性に優れた冷延鋼板およびその製造方法を提
供するもので、これらの冷延鋼板を用いることで、円筒
もしくは角筒などの深絞り形状に成形される自動車部品
等の成形性に大幅な改善が期待でき、工業的価値が高い
発明である。
As described above, the present invention provides a cold-rolled steel sheet having a small in-plane anisotropy and excellent formability, and a method for producing the same. The invention is expected to greatly improve the moldability of automobile parts and the like formed into a deep drawing shape such as a rectangular cylinder, and has high industrial value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に至る予備実験の結果を、圧延方向と平
行な断面における焼鈍後の再結晶粒の展伸度eと面内異
方性Δr値の関係で示す図である。
FIG. 1 is a diagram showing the results of preliminary experiments leading to the present invention in the relationship between the elongation e of recrystallized grains after annealing in a cross section parallel to the rolling direction and the in-plane anisotropy Δr value.

【図2】本発明の実施例について、圧延方向と平行な断
面における焼鈍後の再結晶粒の展伸度eと面内異方性Δ
r値の関係と本発明の範囲を示す図である。
FIG. 2 shows the elongation e and the in-plane anisotropy Δ of the recrystallized grains after annealing in a cross section parallel to the rolling direction in Examples of the present invention.
It is a figure which shows the relationship of r value and the range of this invention.

【手続補正書】[Procedure amendment]

【提出日】平成8年11月1日[Submission date] November 1, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Correction target item name] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項3[Correction target item name] Claim 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】本発明は、上記知見により構成したもの
で、その要旨は、 (1)重量%にて、C=0.02〜0.06%、Si≦
0.5%、Mn=0.05〜2.0%、P≦0.10
%、S≦0.02%、Al=0.005〜0.1%、N
≦0.01%を含み、さらに、Tiを、Ti−48×
(N/14+S/32)≧0.02、かつTi≦0.1
%なる条件を満たす範囲で含有し、残部がFe及び不可
避的不純物からなり、圧延方向と平行な断面における焼
鈍再結晶粒の展伸度が1.4以上であり、ランクフォー
ド値を用いた面内異方性の指標Δrの絶対値が0.1以
下であることを特徴とする面内異方性が小さく成形性に
優れた冷延鋼板。(2)さらに、重量%にて、Nb≦
0.1%を含有することを特徴とする上記(1)に記載
の面内異方性が小さく成形性に優れた冷延鋼板。
The present invention has been made on the basis of the above findings, and the gist thereof is as follows: (1) In terms of% by weight, C = 0.02 to 0.06%, and Si ≦
0.5%, Mn = 0.05-2.0%, P ≦ 0.10
%, S ≦ 0.02%, Al = 0.005 to 0.1%, N
≦ 0.01%, and further, Ti is added to Ti-48 ×
(N / 14 + S / 32) ≧ 0.02 and Ti ≦ 0.1
%, The balance being Fe and unavoidable impurities, the elongation of the recrystallized annealing grains in a section parallel to the rolling direction being 1.4 or more, and a surface using the Rankford value. A cold-rolled steel sheet having small in-plane anisotropy and excellent formability, wherein the absolute value of the index Δr of in-plane anisotropy is 0.1 or less. (2) Further, in weight%, Nb ≦
The cold-rolled steel sheet according to the above (1), which has a small in-plane anisotropy and excellent formability, comprising 0.1%.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0010】(3)重量%にて、C=0.02〜0.0
6%、Si≦0.5%、Mn=0.05〜2.0%、P
≦0.10%、S≦0.02%、Al=0.005〜
0.1%、N≦0.01%を含み、さらに、Tiを、T
i−48×(N/14+S/32)≧0.02、かつT
i≦0.1%なる条件を満たす範囲で含有し、残部がF
e及び不可避的不純物からなる鋼を、800℃以上の温
度域で熱間圧延した後、750℃以下で巻き取り、酸洗
して、圧延率70%以上、95%以下の冷間圧延を施
し、さらに、昇温速度5℃/s以上で再結晶温度以上、
Ac点以下の温度域に加熱し、該温度域で5分以下保
持した後、冷却速度5℃/s以上で250〜500℃の
温度域まで冷却し、該温度域で10分以下の過時効処理
をすることを特徴とする、圧延方向と平行な断面におけ
る焼鈍再結晶粒の展伸度が1.4以上であり、ランクフ
ォード値を用いた面内異方性の指標Δrの絶対値が0.
1以下である面内異方性が小さく成形性に優れた冷延鋼
板の製造方法。
(3) C = 0.02 to 0.0% by weight
6%, Si ≦ 0.5%, Mn = 0.05-2.0%, P
≦ 0.10%, S ≦ 0.02%, Al = 0.005
0.1%, N ≦ 0.01%.
i−48 × (N / 14 + S / 32) ≧ 0.02 and T
i ≦ 0.1% is contained within the range satisfying the condition, and the balance is F
e, and a steel consisting of unavoidable impurities is hot-rolled in a temperature range of 800 ° C. or more, then wound at 750 ° C. or less, pickled, and subjected to cold rolling at a rolling ratio of 70% or more and 95% or less. And further, at a heating rate of 5 ° C./s or more, at a recrystallization temperature or more,
Ac is heated to a temperature range of 3 points or less, maintained at the temperature range for 5 minutes or less, cooled to a temperature range of 250 to 500 ° C. at a cooling rate of 5 ° C./s or more, and cooled to a temperature range of 10 minutes or less at the temperature range. The aging treatment is performed, wherein the elongation of the recrystallized grains in a section parallel to the rolling direction is 1.4 or more, and the absolute value of the in-plane anisotropy index Δr using the Rankford value Is 0.
A method for producing a cold-rolled steel sheet having a small in-plane anisotropy of 1 or less and excellent in formability.

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Correction target item name] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0023】本発明では、円筒もしくは角筒などの深絞
り部品に成形する際に耳の高さが大きいと、成形部品の
板厚が圧延方向によって変動し、部品としての十分な均
一性が得られないという品質の問題や、材料歩留りが悪
いなどの経済性の問題が顕在化してくるため、r値を用
いた面内異方性の指標Δrの絶対値は0.1以下とする
必要がある。さらに、前記指標Δrの絶対値を0.1以
下とするためには、圧延方向と平行な断面における焼鈍
再結晶粒の展伸度は1.4以上とする必要がある。
In the present invention, when forming a deep drawn part such as a cylinder or a square tube, if the height of the ear is large, the thickness of the formed part varies depending on the rolling direction, and sufficient uniformity as a part is obtained. Since the quality problem that the material cannot be obtained and the economic problem such as poor material yield become apparent, the absolute value of the in-plane anisotropy index Δr using the r value needs to be 0.1 or less. is there. Furthermore, in order to set the absolute value of the index Δr to 0.1 or less, the elongation of the recrystallized annealing grains in a cross section parallel to the rolling direction needs to be 1.4 or more.

【手続補正6】[Procedure amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0026】表2にその試験結果を示す。ただし、表中
の記号は、FT:仕上げ圧延終了温度、CT:巻取温
度、ST:焼鈍温度、YP:降伏強度、TS:引張強
さ、E1:破断伸び、r:平均ランクフォード値、Δ
r:面内異方性指標の絶対値、e:結晶粒の展伸度であ
る。本発明に沿うものは、A〜Kの11鋼であり、圧延
方向と平行な断面における焼鈍再結晶粒の展伸度が1.
4以上であり、r値を用いた面内異方性の指標Δrの絶
対値が0.1以下の面内異方性が小さく成形性に優れた
冷延鋼板が得られている。上記以外の鋼は、以下の理由
によって本発明の範囲外である。鋼Nは、Tiの添加量
が本発明の範囲より少ないために〔Ti−48(N/1
4+S/32)=0.015〕、また、鋼L、M、O
は、巻取温度が本発明の範囲より高いために、熱延板中
に固溶しているCが、TiC、NbCなどの析出物とし
て粗大に析出し、焼鈍時にΔr値を小さくするために有
効な固溶C、または微細なTiC、NbCが確保でき
ず、圧延方向と平行な断面における焼鈍再結晶粒の展伸
度が1.4未満であり、r値を用いた面内異方性の指標
Δrの絶対値が0.1超となっている。
Table 2 shows the test results. However, the symbols in the table are FT: finish rolling end temperature, CT: winding temperature, ST: annealing temperature, YP: yield strength, TS: tensile strength, E1: elongation at break, r: average Rankford value, Δ
r: Absolute value of in-plane anisotropy index, e: Extensibility of crystal grains. According to the present invention, there are 11 steels A to K, each having a degree of elongation of annealed recrystallized grains of 1. in a section parallel to the rolling direction.
4 or more, and the index Δr of in- plane anisotropy using the r value
Cold-rolled steel sheet is obtained which pair value and excellent small formability plane anisotropy of 0.1 or less. Steels other than the above are outside the scope of the present invention for the following reasons. Steel N has a content of Ti-48 (N / 1
4 + S / 32) = 0.015] and steel L, M, O
Is because, because the winding temperature is higher than the range of the present invention, C solid-dissolved in the hot-rolled sheet is coarsely precipitated as precipitates such as TiC and NbC to reduce the Δr value during annealing. Effective solid solution C or fine TiC and NbC could not be secured, the degree of elongation of the annealing recrystallized grains in a section parallel to the rolling direction was less than 1.4, and in-plane anisotropy using r value Is greater than 0.1.

【手続補正7】[Procedure amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Correction target item name] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0029】また、実施例1と同様にして、引張試験を
行った。試験結果を表3に示す。なお、表中の記号は、
実施例1の表1と同様である。本発明鋼は、鋼A−2、
A−1、A−2、A−3、B−1、B−2、B−3、B
−4、B−5、C−3、D−1、D−2、D−3、E−
1であり、圧延方向と平行な断面における焼鈍再結晶粒
の展伸度が1.4以上であり、r値を用いた面内異方性
の指標Δrの絶対値が0.1以下の面内異方性が小さく
成形性に優れた冷延鋼板が得られている。
A tensile test was performed in the same manner as in Example 1. Table 3 shows the test results. The symbols in the table are
This is the same as Table 1 in the first embodiment. The steel of the present invention is steel A-2,
A-1, A-2, A-3, B-1, B-2, B-3, B
-4, B-5, C-3, D-1, D-2, D-3, E-
1, the elongation of the annealing recrystallized grains in a cross section parallel to the rolling direction is 1.4 or more, and the absolute value of the in-plane anisotropy index Δr using the r value is 0.1 or less. A cold rolled steel sheet having small internal anisotropy and excellent formability has been obtained.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%にて、 C:0.02〜0.06%、 Si≦0.5%、 Mn:0.05〜2.0%、 P ≦0.10%、 S ≦0.02%、 Al:0.005〜0.1%、 N ≦0.01% を含み、さらに、Tiを、Ti−48×(N/14+S
/32)≧0.02、かつ、Ti≦0.1%なる条件を
満たす範囲で含有し、残部がFe及び不可避的不純物か
らなり、圧延方向と平行な断面における焼鈍再結晶粒の
展伸度が1.4以上であり、ランクフォード値(r値)
を用いた面内異方性の指標Δrが0.1以下であること
を特徴とする、面内異方性が小さく成形性に優れた冷延
鋼板。
C .: 0.02 to 0.06%, Si ≦ 0.5%, Mn: 0.05 to 2.0%, P ≦ 0.10%, S ≦ 0. 02%, Al: 0.005 to 0.1%, N ≦ 0.01%, and Ti is further converted to Ti-48 × (N / 14 + S
/ 32) ≧ 0.02 and Ti ≦ 0.1% in the range that satisfies the conditions, the balance being Fe and unavoidable impurities, and the elongation of the recrystallized annealing grains in a cross section parallel to the rolling direction. Is 1.4 or more, and the Rankford value (r value)
A cold-rolled steel sheet having small in-plane anisotropy and excellent in formability, characterized in that the index Δr of in-plane anisotropy using is 0.1 or less.
【請求項2】 さらに、重量%にて、 Nb≦0.1% を含有することを特徴とする請求項1記載の面内異方性
が小さく成形性に優れた冷延鋼板。
2. The cold-rolled steel sheet according to claim 1, further comprising Nb ≦ 0.1% by weight in terms of in-plane anisotropy and excellent formability.
【請求項3】 重量%にて、 C:0.02〜0.06%、 Si≦0.5%、 Mn:0.05〜2.0%、 P ≦0.10%、 S ≦0.02%、 Al:0.005〜0.1%、 N ≦0.01% を含み、さらに、Tiを、Ti−48×(N/14+S
/32)≧0.02、かつ、Ti≦0.1%なる条件を
満たす範囲で含有し、残部がFe及び不可避的不純物か
らなる鋼を、800℃以上の温度域で熱間圧延した後、
750℃以下で巻き取り、酸洗して、圧延率70%以
上、95%以下の冷間圧延を施し、さらに、昇温速度5
℃/s以上で再結晶温度以上、Ac3 点以下の温度域に
加熱し、該温度域で5分以下保持した後、冷却速度5℃
/s以上で250〜500℃の温度域まで冷却し、該温
度域で10分以下の過時効処理をすることを特徴とす
る、圧延方向と平行な断面における焼鈍再結晶粒の展伸
度が1.4以上であり、ランクフォード値を用いた面内
異方性の指標Δrが0.1以下である面内異方性が小さ
く成形性に優れた冷延鋼板の製造方法。
3. In% by weight, C: 0.02 to 0.06%, Si ≦ 0.5%, Mn: 0.05 to 2.0%, P ≦ 0.10%, S ≦ 0. 02%, Al: 0.005 to 0.1%, N ≦ 0.01%, and Ti is further converted to Ti-48 × (N / 14 + S
/32)≧0.02, and a steel containing Ti in a range satisfying the condition of 0.1% or less, with the balance being Fe and unavoidable impurities, after hot rolling in a temperature range of 800 ° C. or more,
It is wound up at 750 ° C. or less, pickled, cold rolled at a rolling ratio of 70% or more and 95% or less, and further heated at a rate of 5%.
After heating to a temperature range of not less than the recrystallization temperature and not more than 3 points of Ac at a temperature of not less than 5 ° C. and holding at the temperature range of not more than 5 minutes, a cooling rate of 5 ° C.
/ S is cooled to a temperature range of 250 to 500 ° C. at a temperature of not less than 250 ° C., and an overaging treatment is performed in the temperature range for 10 minutes or less. A method for producing a cold-rolled steel sheet having a small in-plane anisotropy and an excellent formability, wherein the index Δr of the in-plane anisotropy using the Rankford value is not more than 1.4.
【請求項4】 前記鋼が、重量%にて、さらに、Nb≦
0.1%を含有するとともに、熱間圧延終了温度がAr
3 変態点温度以上であることを特徴とする請求項3記載
の面内異方性が小さく成形性に優れた冷延鋼板の製造方
法。
4. The steel according to claim 1, further comprising: Nb ≦
0.1% and the hot rolling end temperature is Ar
4. The method for producing a cold-rolled steel sheet having a small in-plane anisotropy and an excellent formability according to claim 3, wherein the temperature is three or more transformation points.
JP28068996A 1996-10-23 1996-10-23 Cold rolled steel sheet reduced in inplane anisotropy and excellent in formability, and its production Pending JPH10130780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28068996A JPH10130780A (en) 1996-10-23 1996-10-23 Cold rolled steel sheet reduced in inplane anisotropy and excellent in formability, and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28068996A JPH10130780A (en) 1996-10-23 1996-10-23 Cold rolled steel sheet reduced in inplane anisotropy and excellent in formability, and its production

Publications (1)

Publication Number Publication Date
JPH10130780A true JPH10130780A (en) 1998-05-19

Family

ID=17628577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28068996A Pending JPH10130780A (en) 1996-10-23 1996-10-23 Cold rolled steel sheet reduced in inplane anisotropy and excellent in formability, and its production

Country Status (1)

Country Link
JP (1) JPH10130780A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100504369B1 (en) * 2000-12-22 2005-07-28 주식회사 포스코 Low carbon cold rolled steel sheets and its manufacturing method having low plastic deformation and anisotropy index
JP2007009272A (en) * 2005-06-30 2007-01-18 Jfe Steel Kk Steel sheet having low anisotropy, and manufacturing method therefor
KR100729125B1 (en) * 2005-12-28 2007-06-14 현대하이스코 주식회사 High strength steets which have good average plastic strain ratio and the method of developing those steels

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100504369B1 (en) * 2000-12-22 2005-07-28 주식회사 포스코 Low carbon cold rolled steel sheets and its manufacturing method having low plastic deformation and anisotropy index
JP2007009272A (en) * 2005-06-30 2007-01-18 Jfe Steel Kk Steel sheet having low anisotropy, and manufacturing method therefor
JP4552775B2 (en) * 2005-06-30 2010-09-29 Jfeスチール株式会社 Steel plate with small anisotropy and method for producing the same
KR100729125B1 (en) * 2005-12-28 2007-06-14 현대하이스코 주식회사 High strength steets which have good average plastic strain ratio and the method of developing those steels

Similar Documents

Publication Publication Date Title
KR101638719B1 (en) Galvanized steel sheet and method for manufacturing the same
US7959747B2 (en) Method of making cold rolled dual phase steel sheet
US8449698B2 (en) Dual phase steel sheet and method of manufacturing the same
KR101264574B1 (en) Method for producing high-strength steel plate having superior deep drawing characteristics
JP5043248B1 (en) High-strength bake-hardening cold-rolled steel sheet and manufacturing method thereof
KR100723165B1 (en) Cold rolled steel sheet having increased plastic anisotropy and process for producing the same
KR101561358B1 (en) High-strength cold rolled steel sheet having excellent deep drawability and bake hardenability and method for manufacturing the same
JP5408314B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and material uniformity in the coil and method for producing the same
WO2013088692A1 (en) Steel sheet with excellent aging resistance, and method for producing same
CN103975082A (en) Method for manufacturing high-strength cold-rolled steel sheet having excellent aging resistance and bake hardenability
KR20140044938A (en) High strength hot dip galvanized steel sheet having excellent deep-drawability, and method for producing same
JP3528716B2 (en) High-strength cold-rolled steel sheet, high-strength galvanized steel sheet excellent in surface properties and press formability, and manufacturing method thereof
CN112400033B (en) Hot-rolled plated steel sheet having high strength, high formability, and excellent bake hardenability, and method for producing same
JPH10130780A (en) Cold rolled steel sheet reduced in inplane anisotropy and excellent in formability, and its production
JP5655436B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JPH06179922A (en) Production of high tensile strength steel sheet for deep drawing
KR0143469B1 (en) The making method of cold rolling steel plate with forming
JPH0849038A (en) Baking hardening type cold rolled steel sheet excellent in deep drawability and its production
KR20190022127A (en) Ferritic stainless steel with improved impact toughness at low temperature and method of manufacturing the same
US9011615B2 (en) Bake hardening steel with excellent surface properties and resistance to secondary work embrittlement, and preparation method thereof
KR100398383B1 (en) Manufacturing method of high strength cold rolled steel sheet with excellent formability
JP4218598B2 (en) High tensile alloyed hot dip galvanized steel sheet with excellent plating characteristics
JP3471407B2 (en) Manufacturing method of hot rolled steel sheet with excellent workability
JP2005015882A (en) High-strength cold rolled steel sheet for deep drawing and method for manufacturing the same
KR20020040214A (en) A high strength bake-hardenable cold rolled steel sheet, and a method for manufacturing it

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021008