JPH0217614B2 - - Google Patents

Info

Publication number
JPH0217614B2
JPH0217614B2 JP19842781A JP19842781A JPH0217614B2 JP H0217614 B2 JPH0217614 B2 JP H0217614B2 JP 19842781 A JP19842781 A JP 19842781A JP 19842781 A JP19842781 A JP 19842781A JP H0217614 B2 JPH0217614 B2 JP H0217614B2
Authority
JP
Japan
Prior art keywords
steel
rolled
cold
hot
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19842781A
Other languages
Japanese (ja)
Other versions
JPS58100629A (en
Inventor
Kunio Watanabe
Toyohiko Sato
Kyoshi Saito
Shigeki Wakabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19842781A priority Critical patent/JPS58100629A/en
Publication of JPS58100629A publication Critical patent/JPS58100629A/en
Publication of JPH0217614B2 publication Critical patent/JPH0217614B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は加工用連続鋳造冷延鋼板の製造方法に
関するものである。 従来冷延鋼板素材として表面性状が良好なリム
ド、キヤツプド鋼が主として用いられて来たが、
連続鋳造技術の進歩により鋳片の表面、内部性状
ともに大幅に改善され、コスト、均質性に優れた
連鋳材に移行して来ている。 連鋳材の冷延板素材にはAlキルド、Siキルド
鋼などが使われて来たが、従来のリムド・キヤツ
プド鋼の特性を全て代替できていない。すなわ
ち、加工性、硬度、冷延板テンパーカラー、亜鉛
メツキ密着性、浸炭焼入性などに問題があり、こ
れらの特性を満し得るAl、Nレベルが低い(Al
0.02%、N40ppm)鋼種(以下低Al鋼と呼
ぶ)が要求される。低Al鋼はリムド・キヤツプ
ド鋼が使用されていた広い用途に適用できるが、
箱焼鈍材においてコイル外周部を加工する際肌荒
れが生じ易いという問題を生ずる。この理由は低
Al鋼においては、Alの歩留、適中精度を向上さ
せるため真空脱ガス処理が一般的に行われる。し
たがつて低Al鋼中の酸素レベルはリムド・キヤ
ツプド鋼よりはるかに低く、酸化物系介在物が少
いいわゆる清浄鋼となる。この場合の低Al鋼焼
鈍時の再結晶挙動は通常Alキルド鋼と異なり延
伸粒を生ぜず、Al窒化物は一次再結晶粒抑制効
果を示すため細粒でまたN固定が十分でないため
硬質になり易い。これらを改善するため焼鈍温度
を上昇させると、コイル外周部のように高温度に
長時間置かれる部分では、比較的大きな粒を核と
して著しい結晶粒の粗大化を起し、加工時に肌荒
れを生ずるため加工用鋼板には不適当となる。 発明者らは低Al鋼箱焼鈍時に結晶粒の粗大化
が起らない方法を種々研究した結果、連続鋳造鋳
片を高温状態から直接圧延または保熱、軽加熱の
単独あるいは組合せた工程を経た後に圧延しした
熱延鋼帯を冷延素材とした場合、従来の再加熱後
圧延された熱延鋼帯を使用した場合に生じる箱焼
鈍時の肌荒れが防止される場合があることを明ら
かにし、この知見を用いて加工用低Al連鋳冷延
鋼板を発明するに至つた。 すなわち本発明を構成するところは、C0.03〜
0.07%、Mn0.22〜0.35%、Al、Nを第1図のイに
示す範囲すなわち座標点a,b,c,d,e,
f,g,hで囲まれる範囲含有し、残部が鉄およ
び不可避不純物からなる鋼を連続鋳造して得られ
る高温鋳片を直接、もしくは該高温鋳片を保熱工
程または軽加熱工程のいずれかもしくは保熱およ
び軽加熱の両工程を経たのち、Ar3点以上の温度
で熱間圧延した熱延鋼帯を酸洗又は他の手段で脱
スケールした後冷延し、箱焼鈍することを特徴と
する加工用連続鋳造冷延鋼板の製造方法である。 以下本発明の構成要件の限定理由を説明する。
Cは加工用冷延鋼板であつては加工性の点から低
くなければならず上限は0.07%となる。一方下限
はCが低過ぎると肌荒れが著しく発生し易くなる
ので0.03%以上が必要である。Mnの上限は硬化
および延性低下を防ぐため0.35%に、下限は通常
量のS量(約0.015%)による熱間加工性低下防
止に必要な最小量(Sの15倍)から0.22%とな
る。Al、Nは本発明において添加量の適正値が
組合せ効果として決まるため、その適正範囲を第
1図に示した。 図において横軸はAl含有量(単位10-3%)、縦
軸はN含有量(単位ppm)であり、その適正な範
囲は斜線で示すイの範囲すなわちa(7、40)、b
(15、40)、c(15、28)、d(22、20)、e(30、
20)、f(30、12)、g(15、12)、h(7、17)の各
座標点で囲まれる範囲である。このAl、N量の
範囲が連続鋳片の直接圧延または軽加熱または保
熱および軽加熱後圧延した(以下直接圧延などと
総称する)熱延鋼帯では、冷延板の箱焼鈍時に結
晶粒の粗大化が防止されることを第2図に示し
た。第2図は上記条件の熱延鋼帯と通常再加熱工
程による熱延鋼帯から製造した冷延板(冷延率70
%)を、750℃×6hr焼鈍したときの結晶粗大化
(肌荒れ発生)状況を示す。 これらのことから連続鋳造後直接圧延などを行
うときは上記のAl、N量の範囲イで焼鈍時に粗
大粒は発生しないが、再加熱材では粗粒化する。
本発明のAl、Nの範囲より右上の範囲ロは連鋳
後再加熱を行つた場合にも結晶が粗大化しない本
発明でのべる連鋳後の直接圧延などの効果を特別
に必要としない範囲、また左下の範囲ハは本発明
の連鋳後の直接圧延などによる粗粒化防止効果が
およばない範囲であつて、ともに本発明のAl、
N範囲に含まれない。 本発明において製鋼・熱延の工程が中心をなす
要件であり、本発明でのべる直接圧延が可能な設
備配置を必要とする製鋼においては、通常の製鋼
炉を用いて上記成分鋼を溶製、脱酸成分調整され
るが、この過程で真空脱ガス装置を用いることは
差支えない。このようにして得られた溶鋼を連続
鋳片が直接、鋳片を短時間保熱する工程、
鋳片の均熱化のため行う軽加熱工程、保熱・軽
加熱を組合せた工程のいずれかを経た後に熱延設
備に送られて圧延されることが本発明の必須構成
条件となることは先に説明した。こゝで短時間保
熱とは通常の加熱時間よりはるかに短いせいぜい
1時間以内で鋳片自身の保有熱により温度を均一
化し温度の低下を防止するため、鋳片移送ライン
に設けられた例えば保護カバーまたはその他の保
熱手段を用いた保熱を意味する。また均熱のため
軽加熱とは鋳片表面または端部など温度が低下し
た部分を局部的に急速に加熱するための例えばガ
スバーナーまたは誘導加熱などの手段による加熱
である。 以上の熱延は各鋼のAr3点以上の温度で行われ
るが、これは熱延温度が低下すると冷延鋼板の材
質下を招くからである。上記の方法で製造された
熱延鋼帯は通常の酸洗などの脱スケール後、冷延
率40〜90%、好ましくは50〜80%で冷延し、更に
必要に応じて種々の洗浄方法で洗浄化した後、箱
焼鈍が行われる。このときの焼鈍条件は加工用の
冷延鋼板の材質レベルを満足するために必要な温
度・時間から決定される。 こゝで同一のAl、N量であるのに熱延前のプ
ロセスの差が冷延鋼板材質を決定する焼鈍時に現
われる理由は次のように考えられる。先づ低Al
鋼で高温長時間の焼鈍(コイル外周部相当)時に
結晶粒が異常に成長する現象は二次再結晶と呼ば
れており、一次再結晶が微細でしかもその中に粗
い粒が含まれているときに生じ易い。本発明鋼と
同一成分鋼を再加熱工程で製造した熱延鋼帯から
得られた冷延板は、熱延板中または焼鈍加熱時に
析出する微細なAlNにより一次再結晶粒の成長
が抑制され二次再結晶が起り易い状態となる。こ
れに対しては直接圧延などで製造された熱延板中
のAlN析出はほとんどなく焼鈍加熱中の析出も
おくれるため、一次再結晶粒の成長はAlNによ
つて妨げられず、二次再結晶が起り難くなる。こ
のようにしてAl、N量と熱延前の製造前のプロ
セスが相互に関係して本発明の効果をもたらして
いることが理解される。 次に本発明の効果を実施例により説明する。 第1表に供試鋼成分・プロセス・熱延条件およ
び焼鈍による肌荒れ発生部(加工用途向不合格
部)長さを示す。なおこの実施例における熱延板
板厚は2.7mm、冷延率70%(冷延板板厚0.8mm)、
焼鈍条件は700℃で4時間の箱焼鈍である。鋼A
はAl、N量が本発明の範囲より高くて従来の再
加熱圧延された素材によつても肌荒れ発生が小さ
いが、この例は高温鋳片を保熱・軽加熱して熱延
した素材を用いた場合である。鋼C,Eはそれぞ
れ同一成分の再加熱圧延された比較鋼B,Dの肌
荒れ発生が著しいのに対し、素材の連鋳高温鋳片
の軽加熱または保熱後圧延した効果により肌荒れ
発生が小さくなつている。鋼FはAl量が低いた
め、連鋳高温鋳片の軽加熱後の圧延で得られた素
材によつても肌荒れ発生が防げなかつた例であ
る。 第2表は第1表と同一鋼板の機械的性質(コイ
ル内平均値)を示す。本発明鋼は比較鋼Aと同等
程度の機械的性質を示しており、加工用冷延鋼板
として充分な特性を示している。 以上で詳細に述べたように本発明は比較的低い
量のAl、Nを含み、連続鋳造後の高温鋳片を直
接または保熱・軽加熱工程のいずれかまたは両方
を経た後に熱延した鋼帯を素材とした冷延鋼板の
製造方法であつて、箱焼鈍時の異常粗大粒発生に
よる歩留低下が小さく、材質が優れているとゝも
に、鋳片再加熱工程省略による燃料コストの低
減、省力省工程化などのコスト低下メリツトが大
きい経済的にも優れた方法である。
The present invention relates to a method for producing a continuous cast cold rolled steel sheet for processing. Traditionally, rimmed and capped steels with good surface properties have been mainly used as materials for cold-rolled steel sheets.
Advances in continuous casting technology have significantly improved both the surface and internal properties of slabs, leading to a transition to continuous casting materials that are superior in cost and homogeneity. Al-killed and Si-killed steels have been used as cold-rolled plate materials for continuous casting, but they have not been able to replace all of the properties of conventional rimmed and capped steels. In other words, there are problems with workability, hardness, cold-rolled plate temper color, galvanizing adhesion, carburizing hardenability, etc., and the Al and N levels that can satisfy these characteristics are low (Al
0.02%, N40ppm) steel type (hereinafter referred to as low-Al steel) is required. Low-Al steel can be applied to a wide range of applications where rimmed and capped steels were used;
When processing the outer periphery of a coil in a box annealed material, a problem arises in that roughness tends to occur. The reason for this is low
For Al steel, vacuum degassing treatment is generally performed to improve Al yield and accuracy. Therefore, the oxygen level in low-Al steel is much lower than in rimmed capped steel, making it a so-called clean steel with fewer oxide inclusions. In this case, the recrystallization behavior during annealing of low-Al steel is different from normal Al-killed steel, in that it does not produce elongated grains, and Al nitrides exhibit a primary recrystallization grain suppressing effect, resulting in fine grains and insufficient N fixation, resulting in hardness. It's easy. If the annealing temperature is increased to improve these problems, in parts such as the outer periphery of the coil that are exposed to high temperatures for a long period of time, the crystal grains will coarsen considerably with relatively large grains as cores, resulting in rough skin during processing. Therefore, it is unsuitable for processing steel sheets. The inventors researched various methods to prevent coarsening of grains during annealing of low-Al steel boxes, and found that continuous cast slabs were directly rolled from high-temperature conditions, or subjected to heat retention and light heating alone or in combination. It was revealed that when a hot-rolled steel strip that has been subsequently rolled is used as a cold-rolled material, roughness during box annealing that occurs when using a conventional hot-rolled steel strip that has been rolled after reheating may be prevented. Using this knowledge, we invented a low-Al continuous cast cold-rolled steel sheet for machining. In other words, what constitutes the present invention is C0.03~
0.07%, Mn 0.22~0.35%, Al, and N in the range shown in Figure 1 A, that is, coordinate points a, b, c, d, e,
A high-temperature slab obtained by continuous casting of steel containing the range surrounded by f, g, and h with the remainder consisting of iron and unavoidable impurities is directly cast, or the high-temperature slab is subjected to either a heat retention process or a light heating process. Alternatively, after passing through both heat retention and light heating processes, hot rolled steel strip is hot rolled at a temperature of Ar 3 or higher, descaled by pickling or other means, cold rolled, and box annealed. This is a method for producing continuously cast cold rolled steel sheets for processing. The reasons for limiting the constituent elements of the present invention will be explained below.
In cold-rolled steel sheets for processing, C must be low from the viewpoint of workability, and the upper limit is 0.07%. On the other hand, the lower limit needs to be 0.03% or more because if C is too low, skin roughness is likely to occur significantly. The upper limit of Mn is 0.35% to prevent hardening and deterioration of ductility, and the lower limit is 0.22% from the minimum amount (15 times S) required to prevent deterioration of hot workability due to the normal amount of S (approximately 0.015%). . In the present invention, the appropriate values of the addition amounts of Al and N are determined as a combination effect, and the appropriate ranges are shown in FIG. In the figure, the horizontal axis is the Al content (unit: 10 -3 %), and the vertical axis is the N content (unit: ppm), and the appropriate range is the shaded range a (7, 40), b
(15, 40), c (15, 28), d (22, 20), e (30,
20), f (30, 12), g (15, 12), and h (7, 17). In hot-rolled steel strips that are formed by direct rolling of continuous slabs or by light heating or heat retention and rolling after light heating (hereinafter collectively referred to as direct rolling, etc.), crystal grains are formed during box annealing of cold-rolled sheets. Figure 2 shows that the coarsening of the particles is prevented. Figure 2 shows a cold-rolled sheet manufactured from a hot-rolled steel strip under the above conditions and a hot-rolled steel strip subjected to a normal reheating process (cold rolling rate: 70
%) is annealed at 750°C for 6 hours. For these reasons, when performing direct rolling after continuous casting, coarse grains are not generated during annealing when the Al and N amounts are in the above range A, but coarse grains occur in the reheated material.
The upper right range B of the Al and N ranges of the present invention is a range in which the crystals do not become coarse even when reheated after continuous casting, and there is no special need for effects such as direct rolling after continuous casting, which is described in the present invention. , and the lower left range C is a range in which the effect of preventing grain coarsening by direct rolling after continuous casting of the present invention does not reach, and both are the range where Al,
Not included in N range. In the present invention, the steelmaking and hot rolling processes are the main requirements, and in steelmaking that requires an equipment arrangement that allows direct rolling as described in the present invention, the above component steel is melted using an ordinary steelmaking furnace. Although the deoxidizing components are adjusted, a vacuum degassing device may be used in this process. A process in which the molten steel obtained in this way is directly heated by a continuous slab for a short period of time,
It is an essential condition of the present invention that the slab be sent to a hot rolling facility and rolled after going through either a light heating process for soaking the slab or a process that combines heat retention and light heating. I explained it earlier. In this case, short-term heat retention is a heating process installed in the slab transfer line, for example, in order to equalize the temperature by using the heat retained in the slab itself within one hour, which is much shorter than the normal heating time, and to prevent a drop in temperature. means heat retention using a protective cover or other heat retention means. Furthermore, light heating for uniform heating refers to heating using a means such as a gas burner or induction heating to locally rapidly heat a portion where the temperature has decreased, such as the surface or end of the slab. The above hot rolling is carried out at a temperature of 3 or more Ar points for each steel, because if the hot rolling temperature decreases, the material quality of the cold rolled steel sheet deteriorates. The hot rolled steel strip produced by the above method is descaled by ordinary pickling, etc., then cold rolled at a cold rolling ratio of 40 to 90%, preferably 50 to 80%, and further subjected to various cleaning methods as necessary. After cleaning, box annealing is performed. The annealing conditions at this time are determined from the temperature and time necessary to satisfy the material quality level of the cold rolled steel plate for processing. The reason why differences in the process before hot rolling appear during annealing, which determines the material quality of the cold rolled steel sheet, is thought to be as follows, even though the amounts of Al and N are the same. First low Al
The phenomenon in which crystal grains grow abnormally during high-temperature, long-term annealing (corresponding to the outer circumference of a coil) in steel is called secondary recrystallization, and the primary recrystallization is fine, but it contains coarse grains. It can sometimes occur. In cold-rolled sheets obtained from hot-rolled steel strips produced by reheating steel with the same composition as the steel of the present invention, the growth of primary recrystallized grains is suppressed by fine AlN precipitated in the hot-rolled sheets or during annealing. This creates a state in which secondary recrystallization is likely to occur. On the other hand, there is almost no AlN precipitation in hot-rolled sheets manufactured by direct rolling, and precipitation during annealing is delayed, so the growth of primary recrystallized grains is not hindered by AlN, and secondary recrystallization Crystals are less likely to form. In this way, it is understood that the amounts of Al and N and the pre-manufacturing process before hot rolling are interrelated to bring about the effects of the present invention. Next, the effects of the present invention will be explained using examples. Table 1 shows the sample steel composition, process, hot rolling conditions, and length of the part where surface roughness occurs due to annealing (part rejected for processing purposes). In this example, the hot rolled sheet thickness was 2.7 mm, the cold rolling rate was 70% (cold rolled sheet thickness 0.8 mm),
The annealing conditions are box annealing at 700°C for 4 hours. Steel A
The Al and N contents are higher than the range of the present invention, and surface roughness is small even with the conventional reheat-rolled material, but in this example, the material is hot-rolled by retaining and lightly heating a high-temperature cast slab. This is the case when it is used. In contrast to steels C and E, which have the same composition and are reheated and rolled for comparative steels B and D, the occurrence of surface roughness is significant, whereas the occurrence of surface roughness is small due to the effect of lightly heating the continuous cast high-temperature slab of the raw material or rolling it after heat retention. It's summery. Since Steel F has a low Al content, this is an example in which the occurrence of surface roughness could not be prevented even with the material obtained by lightly heating and rolling a continuously cast high-temperature slab. Table 2 shows the mechanical properties (average values within the coil) of the same steel sheets as in Table 1. The steel of the present invention exhibits mechanical properties comparable to those of Comparative Steel A, and exhibits sufficient properties as a cold-rolled steel sheet for processing. As described in detail above, the present invention is a steel that contains relatively low amounts of Al and N and is hot-rolled from a high-temperature slab after continuous casting or after passing through one or both of heat retention and light heating processes. This is a manufacturing method for cold-rolled steel sheets using strips as raw materials.The yield loss due to the generation of abnormally coarse grains during box annealing is small, the material quality is excellent, and fuel costs are reduced by omitting the slab reheating process. It is an economically excellent method that has great cost reduction benefits such as reduction in production costs, labor savings, and process savings.

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いられる鋼のAl、Nの範
囲を示す図、第2図はAl、Nの範囲、熱延鋼帯
製造プロセスと750゜×6時間の箱焼鈍条件におけ
る異常粗大粒(肌荒)発生状況の関係を示す図で
ある。
Figure 1 shows the range of Al and N in the steel used in the present invention, Figure 2 shows the range of Al and N, the hot rolled steel strip manufacturing process, and abnormal coarse grains in the 750° x 6 hour box annealing conditions. (Rough skin) is a diagram showing the relationship between occurrence conditions.

Claims (1)

【特許請求の範囲】[Claims] 1 C0.03〜0.07%、Mn0.22〜0.35%、Al、Nを
第1図の座標点a,b,c,d,e,f,g,h
で囲まれる範囲を含有し、残部が鉄および不可避
不純物からなる鋼を連続鋳造して得られる高温鋳
片を、直接もしくは該高温鋳片を保熱工程または
軽加熱工程のいずれかもしくは保熱および軽加熱
の両工程を経たのちに、Ar3点以上の温度で熱間
圧延して得られた熱延鋼帯を冷延後箱焼鈍するこ
とを特徴とする加工用連続鋳造冷延鋼板の製造方
法。
1 C0.03~0.07%, Mn0.22~0.35%, Al, N at the coordinate points a, b, c, d, e, f, g, h in Figure 1.
A high-temperature slab obtained by continuous casting of steel containing the range surrounded by , the remainder consisting of iron and unavoidable impurities, is directly or directly subjected to a heat retention process, a light heating process, or a heat retention and Manufacture of continuous casting cold rolled steel sheet for processing, characterized in that the hot rolled steel strip obtained by hot rolling at a temperature of Ar 3 or higher after passing through both steps of light heating is subjected to cold rolling and box annealing. Method.
JP19842781A 1981-12-11 1981-12-11 Production of continuously cast and cold rolled steel plate for working Granted JPS58100629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19842781A JPS58100629A (en) 1981-12-11 1981-12-11 Production of continuously cast and cold rolled steel plate for working

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19842781A JPS58100629A (en) 1981-12-11 1981-12-11 Production of continuously cast and cold rolled steel plate for working

Publications (2)

Publication Number Publication Date
JPS58100629A JPS58100629A (en) 1983-06-15
JPH0217614B2 true JPH0217614B2 (en) 1990-04-23

Family

ID=16390908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19842781A Granted JPS58100629A (en) 1981-12-11 1981-12-11 Production of continuously cast and cold rolled steel plate for working

Country Status (1)

Country Link
JP (1) JPS58100629A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59110722A (en) * 1982-12-16 1984-06-26 Nippon Kokan Kk <Nkk> Direct hot rolling of aluminum killed steel
JPS62287017A (en) * 1986-06-04 1987-12-12 Nippon Steel Corp Production of cold rolled steel sheet having excellent deep drawability

Also Published As

Publication number Publication date
JPS58100629A (en) 1983-06-15

Similar Documents

Publication Publication Date Title
JPH05306430A (en) Steel sheet for galvanizing and its production
EP0050356B1 (en) Method for producing ferritic stainless steel sheets or strips containing aluminum
JPH0768583B2 (en) High-tensile cold-rolled steel sheet manufacturing method
US4420347A (en) Process for producing an austenitic stainless steel sheet or strip
JPH0152450B2 (en)
JPH0217614B2 (en)
JP2512650B2 (en) Method for producing Cr-Ni type stainless steel thin plate excellent in material and surface quality
JPS61133323A (en) Production of thin steel sheet having excellent formability
JPS62161919A (en) Manufacture of hard sheet steel for can excellent in drawability and minimized in anisotropy
JPS61264136A (en) Manufacture of al killed steel sheet for deep drawing with very low carbon content having reduced in-plane anisotropy
JP2825864B2 (en) Manufacturing method of cold rolled steel sheet with excellent ductility
KR910003878B1 (en) Making process for black plate
JPH0125379B2 (en)
JPH0160531B2 (en)
JPH0257128B2 (en)
JPS6153411B2 (en)
JP2980486B2 (en) Manufacturing method of steel plate for non-aging low earring container
JPS59575B2 (en) Manufacturing method for high-strength cold-rolled steel sheets with excellent formability
JPH02197523A (en) Manufacture of steel sheet for can
JPH058257B2 (en)
JPH08311557A (en) Production of ferritic stainless steel sheet free from ridging
JPH05148548A (en) Production of high-toughness ferritic stainless steel strip
JPH01177321A (en) Manufacture of cold rolled steel sheet excellent in deep drawability
JPS6235462B2 (en)
JPH01177322A (en) Manufacture of cold rolled steel sheet extremely excellent in deep drawability