JPH0152450B2 - - Google Patents

Info

Publication number
JPH0152450B2
JPH0152450B2 JP7658682A JP7658682A JPH0152450B2 JP H0152450 B2 JPH0152450 B2 JP H0152450B2 JP 7658682 A JP7658682 A JP 7658682A JP 7658682 A JP7658682 A JP 7658682A JP H0152450 B2 JPH0152450 B2 JP H0152450B2
Authority
JP
Japan
Prior art keywords
less
rolling
temperature
steel
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7658682A
Other languages
Japanese (ja)
Other versions
JPS58197224A (en
Inventor
Hideo Kukuminato
Sadao Izumyama
Hideo Sunami
Akya Yagishima
Yoshio Nakazato
Takashi Obara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7658682A priority Critical patent/JPS58197224A/en
Publication of JPS58197224A publication Critical patent/JPS58197224A/en
Publication of JPH0152450B2 publication Critical patent/JPH0152450B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、錫めつきあるいはテインフリー鋼板
の製造方法に関し、特に本発明は連続焼鈍による
調質度T1〜T3を有する錫めつきあるいはテイン
フリー鋼板の製造方法に関するものである。 ぶりきはその調質度がJISG3303によつて規定
されており、ロツクウエル硬度(HR−30T)で
軟質なものから、T1(49±3)、T2(53±3)、T3
(57±3)、T4(61±3)、T5(65±3)及びT6(69
±3)に区分されている。このうちT1〜T3のい
わゆる軟質板は箱焼鈍法により、T4〜T6の硬質
板は連続焼鈍法により製造されている。 ところで従来の連続焼鈍炉は急冷帯及び過時効
処理帯を有しないため、従来の連続焼鈍炉によれ
ばT4以上の硬質板しか製造されていなかつた。
しかし最近になり急冷帯及び過時効処理帯を有す
る連続焼鈍炉の稼動が開始され、T3以下の軟質
板を製造する技術についての特許公開がなされて
いるが、かかる連続焼鈍炉によれば一般に使われ
ているAlキルド鋼あるいはAl含有量の少ないソ
フトキルド鋼を使つてもT2相当の硬度のものだ
けしか得られていない。従つてT1相当材は依然
箱焼鈍法によらざるを得なかつた。しかしなが
ら、以下に述べるように箱焼鈍法には種々の問題
があつたことから、連続焼鈍法によりT1〜T3
を製造する方法の開発が要望されていた。 すなわち箱焼鈍法には下記(1)〜(3)に示すような
欠点があることが知られている。 (1) タイトコイル状態で焼鈍が施されるために焼
鈍温度を高くすると焼付き欠陥(Sticking
Break)が生じて歩留が低下する。 (2) 均熱には数時間以上が必要であるため、焼鈍
中に鋼板表面の結晶粒界へC,Mn等が富化濃
縮され、その結果グラフアイトに起因する表面
欠陥が発生したり、またぶりきの耐食性が劣化
することがあつた。 (3) コイルの温度は外巻部と内巻部は高温にな
り、中巻部は低温になるため、コイル内硬度の
ばらつきが大きくなり均質な原板を得ることは
困難であり、その結果平坦度も劣下していた。 以上述べたことから判るように従来箱焼鈍法に
よれば良質のT1〜T3級のいわゆる軟質ぶりき原
板の製造は困難であつた。 さて、軟質ぶりは主に3ピース缶の胴板などに
使用されているが、プレス加工で製缶される缶体
にもまた使用される。缶体に使用される場合には
軟質であることのほかにプレス加工性に優れてい
ることも必要であり、特にr値の面内異方性が小
さいことが要求される。一般にぶりきにプレス加
工を施すと表面の錫層はプレス加工の潤滑の役目
を果すために、r値はそれほど大きいことは必要
ではないが、面内異方性が大きいとイヤリングが
大きくなり、歩留が低下して経済的でない。 本発明は、従来の連続焼鈍法はもとより箱焼鈍
法によつても充分に満足し得る品質の調質度T1
〜T3を有する錫めつきあるいはテインフリー鋼
板を製造することができなかつたことに鑑み、連
続焼鈍法によつて良質の調質度T1〜T3のプレス
加工性に優れる軟質錫めつきあるいはテインフリ
ー鋼板の製造方法を提供することを目的とするも
のであり、特許請求の範囲記載の方法を提供する
ことにより、前記目的を達成することができる。 すなわち、本発明は、C0.004%以下、Si0.04%
以下、Mn0.05〜0.3%、S0.02%以下、但しMn/
S比8以上、P0.02%以下、Al0.02〜0.15%、
N0.004%以下を含有し、残部実質的にFeからな
る連続鋳造鋼片に熱間圧延を施す際の仕上温度を
700〜880℃となし、さらに巻取温度500〜640℃で
巻取り、次いで酸洗、冷間圧延を順次施した後に
690〜820℃で連続焼鈍を施し、さらに圧延率1〜
5%の範囲内の調質圧延を施した後、錫めつきあ
るいはテインフリー処理を施すことを特徴とする
連続焼鈍による調質度T1〜T3を有する軟質ぶり
き及びテインフリー鋼板の製造方法を特定発明と
するものである。 次に本発明を詳細に説明する。 本発明者らは、製鋼時に真空脱ガス処理を有効
に駆使して、C量を極微量にしたAlキルド鋼ス
ラブを使用することにより連続焼鈍法によつても
調質度T1の原板を製造することができること、
ならびに上記Alキルド鋼スラブに炭化物形成元
素であるNbを必要により含有させたAlキルド鋼
スラブを使用することにより、r値が大きく、△
rが小さいことによつて絞り加工によつて製缶す
るにより適した素材を連続焼鈍法を用いて調質度
T1の原板を製造することができることに想到し
て、本発明を完成した。 本発明者らは、ぶりきの硬度に及ぼす固溶C,
Nおよび結晶粒径との関係を系統的に調べた結
果、固溶C,Nが少なく結晶粒径が大きくなると
軟質になることを知見し、この知見に基いて焼鈍
後に固溶Cを少なくするため出発材である連続鋳
造鋼片製造用溶鋼中のCを少なくすればよいと考
えた。 一方、Alキルド鋼連続鋳造スラブを用いて通
常工程により冷延鋼板となしたものに箱焼鈍を施
すと、Cについては焼鈍後の冷却速度が小さいた
めにCの溶解温度域において溶解したCも十分に
析出することができるので、固溶Cの残存量が微
小になる。またNはAlN析出温度(400℃以上)
域での焼鈍温度ならびに時間ともに十分であるた
めに、ほとんどすべてAlNとして析出し、また
焼鈍時間が長いので十分な粒成長をも計るここと
ができ、従つて箱焼鈍後の原板は軟質で非時効性
となるためにぶりきの硬度も十分に軟質になるこ
とが知られている。 本発明者らは、先に連続焼鈍法による軟質ぶり
き原板の製造方法を発明して、特願昭56−125996
号によつて特許出願した。前記方法によれば、N
量が少なく、かつC量をある程度含有したAlキ
ルド鋼材を用い、熱間圧延に際しては仕上温度を
α+γ共存領域あるいはγ領域で、さらに巻取温
度は炭化物が凝集しない範囲で中温にして得られ
た熱延板を用い、急冷帯と過時効処理帯を有する
連続焼鈍炉で再結晶温度以上で焼鈍を施すことに
よつて軟質な原板を得ることができた。しかし、
ぶりきの硬度としてはT2〜T3になつて、T1のも
のを得ることはできなかつた。その理由は、焼鈍
時に溶解した固溶Cを析出させるために、析出サ
イト(Site)としてのセメンタイトを密に分布さ
せるために、C量をある程度以上含み、巻取温度
は中温以下にして連続焼鈍炉において過時効処理
を施してもセメンタイトが十分に析出するに至ら
ないためであつた。前記セメンタイトの析出を促
進するためには過時効処理時間を長くすることが
考えられるが、そのためには過時効処理設備の長
さを長くする必要があり、このことは工業的規模
では実施が困難である。また固溶C,Nが残存し
ためつき原板は次工程の調質圧延によつて加工硬
化を受けるばかりでなく、さらにめつき後のリフ
ロー処理(溶錫化処理)によりめつき鋼板は約
400℃からの水焼入れを受けて歪時効硬化が加わ
るので、硬度の増加は固溶元素量に比例して大き
くなる。したがつて軟質ぶりき原板を製造するた
めには固溶元素の残存量を箱焼鈍材並みに調整す
ることが肝要であることに本発明者らは想到し
た。 以上の考察から本発明者らは鋭意研究を重ねた
結果、同一の素材を使用して連続焼鈍条件を変え
ることによつて、ぶりきの調質度がT1〜T3に、
さらにまた焼鈍により調質度T1になるぶりき原
板を製造して、この原板に調質圧延の圧下率をそ
れぞれ変えることによつて、T1〜T3の原板にそ
れぞれ作り分けることのできることを新規に知見
して本発明を完成した。 一般にぶりきをプレス加工により製缶する際に
r値を高くすることも重要であるが、さらに△r
を小さくすることが重要であることは前述のとお
りである。本発明者らは、ぶりき原板の△rをさ
らに小さくする方法を検討した結果、第1図に示
す如く熱延巻取温度を高温にすることが有効であ
り、さらにまた鋼に必要によりNbをNb/C原子
比で0.3〜1.0を含有させることも有効であること
を知見した。熱延巻取温度を高温にすると△rが
小さくなる理由は明らかでないが、鋼中のCはセ
メンタイト(Fe3C)としてフエライト粒界に粗
大析出し、フエライト中の固溶C量が少なくなる
ためにr値が向上するとともに、△rも小さくな
るものと考えられる。またNbを含有させる効果
は上記と同様であり、Nbは炭化物形成元素であ
るので、NbCの析出による影響であると考えら
れる。 次に出発素材である連続鋳造鋼片の成分元素の
挙動ならびに成分組成を限定する理由を説明す
る。 Cは再結晶温度を大きく支配し再結晶粒径の成
長を抑制する重要な元素であり、箱焼鈍法によれ
ばC量を多くすると結晶粒径は小さくなつて硬質
化するが、連続焼鈍法による場合にはC量が多く
なるに従つて硬質化するという単純な傾向は見ら
れない。第2図にぶりき硬度に及ぼすC量の影響
を熱延仕上温度(以下この温度をFTと称す)お
よび熱延巻取温度(以下この温度をCTと称す)
と連続焼鈍(以下この焼鈍をCALと称す)の再
結晶温度との関係で示すが、同図から判るように
非常に複雑な傾向を示す。これを冶金学的に説明
すると、C量が約0.004%以下の極微量になるに
従つて軟質化し、一方C量が増加すると約0.01%
において最も硬度が高くなるピークが見られ、C
量がさらに多くなるに従つて逆に硬度は低くな
り、C量0.03〜0.06%の範囲内で谷となり、さら
にC量が多くなるとまた硬度が高くなる。C量が
約0.004%以下で軟質になる理由は焼鈍時にCの
溶解温度での溶解量の絶対値が少ないことによ
り、Cによる歪時効硬化が小さくなるためと考え
られる。またC量0.01%でピークが現れる理由は
溶解したCを析出させるに際し、C量が少ないの
で析出核としてのFe3Cが少ないために析出移動
距離が長くなつて、これにより冷却過程での析出
量が少なくなり多く残存するからである。したが
つて0.01%を超えるある程度のC量を含んでいる
ものが軟質化するに際して有効である。しかしさ
らにC量が多くなるとFe3Cは十分存在するが結
晶粒径が小さくなるので硬質化する。 従つて連続焼鈍炉により調質度T3以下の軟質
ぶりき原板を製造するためには、C0.004%以下に
する必要がある。 Siはぶりきの耐食性を劣化させるほか、さらに
材質を極端に硬質化する元素であるので、Siを過
剰に含有させることは避けるべきである。よつて
製鋼段階でできるだけ少なくなるようにすること
が肝要であり、耐火物中のSiO2が溶鋼中のAlに
よつて還元されるのを抑制するために、従来使用
されているシヤモツト質耐火物に代えてジルコン
質耐火物を用いる等の注意を要する。すなわち、
Siは0.04%より多いと硬質化して調質度T1〜T3
のぶりき原板を製造することができないのでSiは
0.04%以下にする必要がある。 Mnは熱延コイルの耳割れ発生を防止するため
に添加する必要があるが、上記耳割れは直接的に
はSによつて支配され、このSによる耳割れの発
生をMnの添加によつて抑制している。したがつ
てS量が少なければ敢えてMnを添加する必要は
ないが、鋼中にはSが不可避的に含有されている
ことからMnを添加する必要がある。Mnが0.05%
より少ないと耳割れの発生を防止することができ
ず、一方Mnが0.3%より多いと硬質化するので
Mnは0.05〜0.3%の範囲内にする必要がある。 SはMn量との関係において過剰に含有すると
熱延コイルの耳割れを生成させ、またS系介在物
となつてプレス欠陥となるのでSは0.02%以下に
する必要があり、特にMn/S比で8より少ない
と上記耳割れ、あるいはプレス欠陥が発生するの
でMn/Sは8以上にする必要がある。 Pは材質を硬質化させ、かつぶりきの耐食性を
劣化させる元素であるので、過剰の含有は好まし
くなく、Pは0.02%以下にする必要がある。 Alは鋼の製造過程において脱酸剤の機能を発
揮する元素であり、鋼中の含有量が多くなるのに
従つて鋼の清浄度が高くなるが過剰の添加は経済
的に好ましくないし、さらに再結晶粒径の成長を
抑制するので、Alは0.15%以下にする必要があ
る。一方、Alの下限量としては、本質的には溶
鋼中の固溶酸素量に見合つた量のAlを添加して、
脱酸を完了させることができればよいことから金
属Alとして鋼中に残存させる必要はないことに
なるが、このようにするとぶりきの清浄度が悪く
なる。さらに軟質ぶりきを得るためには固溶Nを
Alによつて固定し、その残存量を減らす必要が
ある。Alが0.02%より少ないと鋼中の固溶N量が
多くなるので、Alは0.02%以上にする必要があ
る。よつてAlは0.02〜0.15%の範囲内に限定す
る。 Nは鋼の製造過程において空気中のNが混入す
る結果含有されるが、Nが鋼中に固溶していると
軟質な鋼板が得られずNは不必要な元素であるの
で、製鋼過程で空気中からのNの混入を極力抑制
してNは0.004%以下にする必要がある。 Nbは炭化物形成元素であつて、固溶Cの残存
量を少なくする機能を有し、一方、多量添加する
と製造コストが上昇することになるので、Nbは
必要最低限にすることが望ましい。Nbの添加に
より前述のように値の向上と共に△rを小さく
することができる。また連続焼鈍時の再結晶温度
をNbを添加しないものに比べて低温にしても、
同水準の硬度のものが得られる。よつてぶりきの
用途により板厚の薄いものを製造する場合には連
続焼鈍温度を高くすると、通板作業性が悪くなる
のでNbを添加して焼鈍温度を下げる方法が採用
される。Nb/C原子比が0.3より小さいと上記
Nb添加による効果が得られず、一方、1より大
きいと不経済であるのでNb/C原子比は0.3〜1
の範囲内にする必要がある。 本発明の出発素材である鋼を製造するにはC量
を0.004%以下の微量となすことに注意する必要
があり、このためには真空脱ガス処理法によつて
脱炭反応を生起させてCを低下させる方法があ
る。一方通常の脱ガス法によれば長時間を要し、
さらにC0.004%以下にすることが困難であると共
に、脱ガス処理中に溶鋼の温度低下が大きくなつ
て、次工程の連続鋳造工程において鋳造作業が困
難になるばかりでなく、溶鋼温度の低下により介
在物の浮上分離性が悪く鋼の清浄度が劣化するの
で満足できる品質のぶりきが得られなくなる。し
たがつて本発明において用いられる出発素材を得
るには溶鋼を真空脱ガス処理することにより脱ガ
ス効率を向上させることが肝要になる。このため
には底吹転炉による場合には吹止Cを0.03%以下
に低下させること、ならびに脱ガス溶鋼の環流速
度を上昇させることが有効であり、かかる速度上
昇のためには脱ガス用環流ガス量を増大させるこ
とが重要である。本発明者らの実験によれば、
C0.03%の溶鋼を脱炭する通常の真空脱ガス処理
において取鍋溶鋼を5回転環流させても0.005%
Cにまでしか下がらなかつたのに対し、上記の如
く環流ガス量を増大して環流速度を上昇させるこ
とにより、同一回転環流によつてC0.004%以下に
することができるばかりでなく、短時間で同一回
転環流処理が達成され、さらにまた温度低下も最
小に抑制することができる。 本発明において用いる連続鋳造鋼片は、上述の
如く転炉溶鋼に環流速度を大きくした真空脱ガス
処理を施し、次に連続鋳造して得ることができ
る。このようにして得られた鋼片に熱間圧延を施
す際FTを700〜880℃、CTを500〜640℃で巻取る
必要がある。 ところでFTとCTとは冶金学的には下記のよう
な作用を有する。すなわち通常のC量の鋼片はγ
(オーステナイト)領域で圧延を施すか、α(フエ
ライト)+γ領域で圧延を施すかによつて結晶粒
径と絞り加工性に影響を及ぼす集合組織に大きな
影響が与えられる。しかし本発明によれば、C量
が0.004%以下と非常に低いためにFTによる再結
晶粒径には余り大きな差異はみられなかつたが、
r値には差がみられ、FT高温のものはr値が大
きくなると共に△rが小さくなることも判つた。
一方CTは中温にしたものはより結晶粒径も大き
くなるし、r値も大きく、△rも小さくなる傾向
がみられ、CTが580〜640℃の温度範囲内でその
効果が十分にみられたので、それ以上に高温にす
る必要がないことが判つた。なお、高温にすると
酸洗効率も悪くなることは当然のことである。 以上の結果、3ピース缶の胴板のように折り曲
げ、フランジ出し加工のみの用途のものにはFT,
CTは低温であつてもよいが、プレス加工により
製缶するもの、あるいは板厚が薄く高温焼鈍が難
しいものにはCTを中温すなわち580〜640℃にし
て、結晶粒径の粗大化を計つたものが適してい
る。この効果は結晶粒径を大きくすることによる
(111)集合組織の発達に加え、炭化物を大きくし
て粒内を清浄化し、さらに焼鈍時にCが溶解する
量を妨げる効果と、CTを中温にすることによつ
てAlNの析出率を高くして固溶Nを少なくでき
る効果も加わつたものと考えられる。また調質度
T1を得るためにはCTを中温すなわち580〜640℃
にしたものが適している。 このようにして製造された熱延鋼帯を通常の酸
洗で脱スケール後、これに冷間圧延を施した後、
連続焼鈍を施すがC量が微量であるため再結晶温
度が高くなる。第3図はCTとHMVとの関係を
示す図であり、C量と再結晶温度との関係が判
り、C量が少なくなるに従つて再結晶温度が高く
なることが判る。かかる現象が生起する原因はC
量が少なくなることによつて転移密度が小さく、
内部歪エネルギーが小さくなるからである。従つ
て調質度T1の最も軟質なものを得るためには、
CTを中温にした素材を用いて750℃以上の高温焼
鈍を施して十分再結晶させることが必要である。
しかし焼鈍を700℃で施すと一部に未再結晶組織
が残つて若干硬質になるので結果的には調質度は
T3相当になることを本発明者らは知見した。従
つて熱延温度と連続焼鈍温度を組合せることによ
つて従来不可能とされていた連続焼鈍による調質
度T1も得られるに至り、また調質度T3も過時効
処理を施すことなく得られるに至つた。 さらに前述のように連続焼鈍後T1相当の材質
が得られる軟質材を用いて調質圧延による加工硬
化を利用して第4図に示すようにT1〜T3を作り
分けることができることも知見した。この軟質材
はほとんど非時効性であるため調質圧延の圧延率
を高くすることによつてだけで硬質化することが
できることが判つた。 一方ぶりきのめつき工程においてリフロー処理
を施すが、その処理による硬度の上昇は約1ポイ
ント(HR−30T)以下であり、テインフリー鋼
板のようにリフロー処理を施さないものも、以上
に述べた考えならびに方針で十分に作ることがで
きることが判つた。 次に本発明を実施例について比較例と対比して
説明する。 実施例 表に示す如き成分組成の鋼を270t底吹き転炉に
より溶製し、C0.03%となして出鋼した。続いて
R−H真空脱ガス処理を施してC0.005%以下に脱
炭した後、Alを添加し続いてNbを添加するもの
とNbを添加しないものとを作つた。これらをそ
れぞれ連続鋳造機を用いて介在物の浮上分離を促
進して鋳込んで清浄度に優れた鋼片を得た。これ
らの鋼片を表に示す熱延温度でそれぞれ圧延し
2.6mm厚の熱延コイルとなした後、酸洗して脱ス
ケールした。次に6スタンドタンデム冷間圧延機
にて0.3mm(冷間圧延率87.7%)の極薄板厚に圧
延した後、連続焼鈍を施した。熱サイクルは650
℃、700℃、750℃、800℃それぞれ60秒の水準で
あつた。続いて調質圧延機にて圧延率1%及び実
施例16〜21については焼鈍までは同一条件下で行
つたものを圧延率のみを1,3,5%の3水準と
なし加工硬化による高調質度を求めた。調質圧延
を施した後、ハロゲンタイプの電気錫めつき工程
にて#25錫めつきおよびリフロー処理(溶錫化処
理)を連続して施して、ぶりきに仕上げた。ぶり
きから供試材を採取し硬度(HR−30T),r,△
r(△r=rL+rC−2rD/2)を測定し、また曲げ加 工を施して耐フルーテイングテストを行つた。フ
ルーテイングテストの評価は缶の胴の成形に相当
するように曲げ加工を施し、胴体に発生した折れ
が商品として見るに耐えない程度のもの(×印で
表示)とそうでないもの(〇印で表示)に判定し
た。 表により明らかな如く、焼鈍温度が650℃のも
のは温度が低いために硬質化し、フルーテイング
性も悪かつた。またC量が0.005%と本発明によ
らないものは硬度が高く、軟質ぶりきを得ること
ができなかつた。一方本発明によるものは何れも
軟質ぶりきになつており、さらに次の特徴が見ら
れる。 (イ) 焼鈍温度450℃以上のものは調質度T1になる
が、700℃のものは調質度T2,T3に相当する硬
度になつている。この原因は十分再結晶しなか
つたために硬質になつたためであると考えられ
る。従つて焼鈍前まで同じ条件で製造した素材
を焼鈍温度を2水準に変えることによりT1
T2,T3と作り分けることができるので、素材
を統合することができるという大きなメリツト
がある。 (ロ) 焼鈍後1%の圧延率で調質圧延を施して調質
度T1が得られる素材を用いて圧延率をより高
くすることにより調質度T1,T2,T3と作り分
けることができる。従つてかかる方法を用いる
場合にも素材の統合が可能となり、大きなメリ
ツトとなる。 (ハ) また、Nbを添加しないと若干材質は劣化す
るものの、十分本発明の目的を満足するぶりき
原板を得ることができる。 (ニ) プレス加工によつて製缶するものにあつては
r値が一定値以上を有すると共に△rの小さい
ものが適しているが、このためにはFT,CTを
高くして作つたものが適しており、またNb添
加材が優れていることが判る。 さらに前述の錫めつきの代りにテインフリー処
理を常法により施して、テインフリー鋼板を製造
して、ぶりきについて行なつたと同様の諸種の特
性を測定したが、前述のぶりきについての(イ)〜(ニ)
の特徴とほぼ同等のものが得られた。
The present invention relates to a method for manufacturing a tin-plated or stain-free steel sheet, and more particularly, the present invention relates to a method for manufacturing a tin-plated or stain-free steel sheet having a tempering degree of T 1 to T 3 by continuous annealing. The tempering degree of tinplate is specified by JISG3303, from soft Rockwell hardness (H R -30T) to T 1 (49±3), T 2 (53±3), and T 3.
(57±3), T 4 (61±3), T 5 (65±3) and T 6 (69
±3). Among these, the so-called soft plates T 1 to T 3 are manufactured by the box annealing method, and the hard plates T 4 to T 6 are manufactured by the continuous annealing method. By the way, since conventional continuous annealing furnaces do not have a quenching zone or an overaging treatment zone, only hard plates of T 4 or higher have been manufactured using conventional continuous annealing furnaces.
However, recently, continuous annealing furnaces with a quenching zone and an overaging zone have been put into operation, and patents have been published for the technology to manufacture soft plates with T3 or less. Even with the currently used Al-killed steel or soft-killed steel with a low Al content, only a hardness equivalent to T 2 can be obtained. Therefore, T1 - equivalent materials still had to be produced using the box annealing method. However, as described below, the box annealing method has had various problems, so there has been a demand for the development of a method for producing T1 to T3 materials by a continuous annealing method. That is, it is known that the box annealing method has the following drawbacks (1) to (3). (1) Since annealing is performed in a tight coil state, increasing the annealing temperature may cause sticking defects (sticking defects).
Break) occurs and the yield decreases. (2) Because soaking requires several hours or more, C, Mn, etc. are enriched and concentrated in the grain boundaries on the surface of the steel sheet during annealing, resulting in surface defects caused by graphite. In addition, the corrosion resistance of tinplate sometimes deteriorated. (3) The temperature of the coil is high at the outer and inner windings, and low at the middle winding, so the internal hardness of the coil varies widely and it is difficult to obtain a homogeneous original plate. It was also worse. As can be seen from the foregoing, it has been difficult to manufacture so-called soft tin blanks of good quality T 1 to T 3 class by conventional box annealing methods. Soft yellowtail is mainly used for the bodies of three-piece cans, but it is also used for can bodies made by press working. When used for can bodies, in addition to being soft, it must also have excellent press workability, and in particular, it is required that the in-plane anisotropy of the r value be small. Generally, when press working is applied to tinplate, the tin layer on the surface serves as a lubricant during the press process, so the r value does not need to be very large, but if the in-plane anisotropy is large, the earrings will become large. It is not economical because the yield decreases. The present invention provides a heat treatment degree T 1 that can be sufficiently satisfied not only by the conventional continuous annealing method but also by the box annealing method.
In view of the fact that it has not been possible to produce tin-plated or stain-free steel sheets with a temperature of ~T 3 , we developed a soft tin-plated steel plate with a high quality tempering degree of T 1 ~ T 3 and excellent press workability using a continuous annealing method. Alternatively, the object is to provide a method for manufacturing a stain-free steel plate, and by providing the method described in the claims, the above object can be achieved. That is, in the present invention, C0.004% or less and Si0.04%
Below, Mn0.05-0.3%, S0.02% or less, however, Mn/
S ratio 8 or more, P 0.02% or less, Al 0.02 to 0.15%,
The finishing temperature when hot rolling a continuously cast steel billet containing 0.004% or less of N and the remainder essentially consisting of Fe.
After rolling at a temperature of 700 to 880℃, then winding at a winding temperature of 500 to 640℃, then pickling and cold rolling in sequence.
Continuous annealing is performed at 690 to 820℃, and further the rolling rate is 1 to 820℃.
Production of soft tin plate and stain-free steel sheet having a temper degree of T 1 to T 3 by continuous annealing, which is characterized by performing temper rolling within a range of 5% and then tin plating or stain-free treatment. The method is a specified invention. Next, the present invention will be explained in detail. The present inventors have made effective use of vacuum degassing during steel manufacturing to use Al-killed steel slabs with an extremely small amount of C, thereby making it possible to produce original plates with a tempering degree of T 1 even by continuous annealing. that it can be manufactured;
In addition, by using the Al-killed steel slab in which Nb, which is a carbide-forming element, is optionally added to the Al-killed steel slab, the r value is large and △
Due to the small r value, the material is more suitable for making cans by drawing, and the material is tempered by continuous annealing.
The present invention was completed based on the idea that a T1 original plate could be manufactured. The present inventors have investigated the effect of solid solution C on the hardness of tinplate,
As a result of systematically investigating the relationship between N and grain size, we found that the less solid solute C and N are present and the larger the grain size becomes, the softer the material becomes.Based on this knowledge, we reduced the amount of solid solute C after annealing. Therefore, it was thought that it would be better to reduce the amount of C in the starting material, molten steel for producing continuously cast billets. On the other hand, when box annealing is performed on a cold-rolled steel plate made from an Al-killed steel continuous casting slab using the normal process, the cooling rate after annealing is slow, so that the C melted in the C melting temperature range is also reduced. Since the solid solution C can be sufficiently precipitated, the remaining amount of solid solution C becomes minute. Also, N is AlN precipitation temperature (400℃ or higher)
Since the annealing temperature and time in the box annealing area are sufficient, almost all of the particles precipitate as AlN, and the annealing time is long, so sufficient grain growth can be measured. It is known that the hardness of tinplate becomes sufficiently soft to allow aging. The present inventors previously invented a method for manufacturing soft tinplate blanks by continuous annealing, and filed a patent application for patent application No. 56-125999.
A patent application was filed under No. According to the method, N
Using Al-killed steel material with a small amount of C and a certain amount of C, the finishing temperature during hot rolling was set in the α + γ coexistence region or γ region, and the coiling temperature was set to a medium temperature within the range in which carbides do not agglomerate. By using a hot-rolled sheet and annealing it at a temperature higher than the recrystallization temperature in a continuous annealing furnace having a quenching zone and an overaging zone, a soft original sheet could be obtained. but,
The hardness of tinplate was T 2 to T 3 , and it was not possible to obtain one of T 1 . The reason for this is that in order to precipitate the solid solute C dissolved during annealing, in order to densely distribute cementite as a precipitation site, the C content is higher than a certain level, and the coiling temperature is set to a medium temperature or lower during continuous annealing. This was because cementite was not sufficiently precipitated even if over-aging treatment was performed in a furnace. In order to promote the precipitation of cementite, it is possible to lengthen the overaging treatment time, but this requires increasing the length of the overaging treatment equipment, which is difficult to implement on an industrial scale. It is. In addition, the plated steel sheet with residual solid solution C and N not only undergoes work hardening in the next process of temper rolling, but also undergoes reflow treatment (molten tin treatment) after plating, which makes the plated steel sheet approximately
Since strain age hardening is added after water quenching at 400°C, the increase in hardness increases in proportion to the amount of dissolved elements. Therefore, the present inventors have come to the conclusion that in order to produce a soft tin plate, it is important to adjust the residual amount of solid solution elements to the same level as that of box annealed material. Based on the above considerations, the inventors of the present invention have conducted extensive research and found that by using the same material and changing the continuous annealing conditions, the tempering degree of tinplate can be increased from T 1 to T 3 .
Furthermore, by producing a tin plate with a temper degree of T 1 through annealing, and by changing the rolling reduction ratio of the temper rolling on this plate, it is possible to separately produce plates of T 1 to T 3 . The present invention was completed based on the new findings. In general, it is important to increase the r value when making tinplate by press working, but in addition, △r
As mentioned above, it is important to make the value small. The present inventors investigated a method of further reducing △r of the tin plate, and found that it is effective to increase the hot rolling winding temperature as shown in Figure 1, and furthermore, if necessary, Nb It has been found that it is also effective to contain Nb/C in an atomic ratio of 0.3 to 1.0. It is not clear why △r becomes smaller when the hot rolling coiling temperature is increased, but C in steel coarsely precipitates as cementite (Fe 3 C) at ferrite grain boundaries, and the amount of solid solute C in ferrite decreases. Therefore, it is thought that the r value improves and Δr also decreases. Further, the effect of containing Nb is the same as above, and since Nb is a carbide-forming element, it is thought that the effect is due to the precipitation of NbC. Next, the behavior of the constituent elements of the continuous cast steel billet, which is the starting material, and the reason for limiting the composition will be explained. C is an important element that greatly controls the recrystallization temperature and suppresses the growth of the recrystallized grain size. According to the box annealing method, increasing the amount of C causes the grain size to become smaller and become harder, but in the continuous annealing method In this case, there is no simple tendency for the steel to become harder as the amount of C increases. Figure 2 shows the effect of C content on tinplate hardness at hot rolling finishing temperature (hereinafter referred to as FT) and hot rolling winding temperature (hereinafter referred to as CT).
It is shown in relation to the recrystallization temperature of continuous annealing (hereinafter referred to as CAL), and as can be seen from the figure, it shows a very complicated tendency. To explain this from a metallurgical perspective, as the amount of C decreases to an extremely small amount of approximately 0.004% or less, it becomes softer, while as the amount of C increases, it becomes approximately 0.01%.
A peak with the highest hardness can be seen in C
On the contrary, as the amount of carbon increases, the hardness decreases, reaching a valley within the range of 0.03 to 0.06%, and as the amount of carbon increases, the hardness increases again. The reason why the steel becomes soft when the amount of C is about 0.004% or less is thought to be that the absolute value of the amount dissolved at the melting temperature of C during annealing is small, so that strain age hardening due to C becomes small. Also, the reason why a peak appears at a C content of 0.01% is that when dissolving C is precipitated, the amount of C is small, so there are few Fe 3 C as precipitation nuclei, so the migration distance of the precipitation becomes longer, and this causes precipitation to occur during the cooling process. This is because the amount decreases and more remains. Therefore, those containing a certain amount of C exceeding 0.01% are effective for softening. However, when the amount of C increases further, although Fe 3 C is present in sufficient quantity, the crystal grain size becomes smaller and becomes hard. Therefore, in order to produce a soft tin plate with a refining degree of T 3 or less using a continuous annealing furnace, it is necessary to reduce the C content to 0.004% or less. Si is an element that not only deteriorates the corrosion resistance of tinplate but also makes the material extremely hard, so excessive Si content should be avoided. Therefore, it is important to reduce the amount of SiO 2 as much as possible during the steelmaking stage, and in order to suppress the reduction of SiO 2 in the refractory by Al in the molten steel, the SiO2 refractory used conventionally is used. Care must be taken, such as using zircon refractories instead. That is,
If Si is more than 0.04%, it will become hard and the tempering degree will be T 1 to T 3.
Since it is not possible to manufacture a blank base plate, Si is
Must be 0.04% or less. Mn needs to be added to prevent edge cracking in hot-rolled coils, but the edge cracking mentioned above is directly controlled by S, and the addition of Mn can suppress the occurrence of edge cracking caused by S. It's suppressed. Therefore, if the amount of S is small, there is no need to intentionally add Mn, but since S is inevitably contained in steel, it is necessary to add Mn. Mn 0.05%
If it is less than 0.3%, it will not be possible to prevent ear cracking, while if it is more than 0.3%, it will become hard.
Mn needs to be within the range of 0.05-0.3%. In relation to the Mn content, excessive S content will cause edge cracks in the hot-rolled coil, and S-based inclusions will result in press defects, so S must be kept at 0.02% or less, especially when Mn/S If the ratio is less than 8, the above-mentioned edge cracks or press defects will occur, so Mn/S must be 8 or more. Since P is an element that hardens the material and deteriorates the corrosion resistance of the tin plate, it is not preferable to contain it in excess, and the P content must be kept at 0.02% or less. Al is an element that functions as a deoxidizer in the steel manufacturing process, and as its content increases, the purity of the steel increases, but adding too much is economically undesirable, and Since it suppresses the growth of recrystallized grain size, Al needs to be 0.15% or less. On the other hand, the lower limit of Al is essentially added in an amount commensurate with the amount of solid solution oxygen in molten steel.
Since it is sufficient to complete deoxidation, there is no need for Al to remain in the steel as metallic Al, but if this is done, the cleanliness of the tin plate will deteriorate. Furthermore, in order to obtain soft tinplate, solid solution N is added.
It is necessary to fix it with Al and reduce its residual amount. If Al is less than 0.02%, the amount of solid solution N in the steel will increase, so Al needs to be 0.02% or more. Therefore, Al is limited to a range of 0.02 to 0.15%. N is contained as a result of N in the air being mixed in during the steel manufacturing process, but if N is dissolved in steel, a soft steel plate cannot be obtained and N is an unnecessary element, so Therefore, it is necessary to suppress the incorporation of N from the air as much as possible to reduce the N content to 0.004% or less. Nb is a carbide-forming element and has the function of reducing the residual amount of solid solution C. On the other hand, if a large amount is added, the manufacturing cost will increase, so it is desirable to keep Nb to the minimum necessary. By adding Nb, the value can be improved and Δr can be reduced as described above. In addition, even if the recrystallization temperature during continuous annealing is lower than that without adding Nb,
A product with the same level of hardness can be obtained. When manufacturing thin plates for use as tinplate, increasing the continuous annealing temperature will impair threading workability, so a method of lowering the annealing temperature by adding Nb is adopted. If the Nb/C atomic ratio is less than 0.3, the above
The effect of Nb addition cannot be obtained, and on the other hand, if it is larger than 1, it is uneconomical, so the Nb/C atomic ratio is 0.3 to 1.
Must be within the range. In order to manufacture steel, which is the starting material of the present invention, it is necessary to keep the C content to a very small amount of 0.004% or less, and for this purpose, a decarburization reaction must be caused by a vacuum degassing treatment method. There are ways to lower C. On the other hand, the conventional degassing method takes a long time,
Furthermore, it is difficult to reduce C to 0.004% or less, and the temperature of the molten steel decreases significantly during the degassing process, which not only makes casting work difficult in the next continuous casting process, but also reduces the temperature of the molten steel. This causes inclusions to float and separate, resulting in poor steel cleanliness, making it impossible to obtain tinplate of satisfactory quality. Therefore, in order to obtain the starting material used in the present invention, it is important to improve the degassing efficiency by subjecting the molten steel to vacuum degassing treatment. For this purpose, in the case of a bottom-blowing converter, it is effective to reduce the blow-off C to 0.03% or less and to increase the circulation speed of degassed molten steel. It is important to increase the amount of recirculated gas. According to the experiments of the present inventors,
In normal vacuum degassing treatment to decarburize molten steel with a carbon content of 0.03%, even if the ladle molten steel is circulated 5 times, the carbon content remains 0.005%.
However, by increasing the amount of recirculated gas and increasing the recirculation speed as described above, it is not only possible to reduce the C to 0.004% or less with the same rotational recirculation, but also to reduce the C in a short period of time. The same rotational reflux treatment can be achieved within an hour, and furthermore, the temperature drop can be suppressed to a minimum. The continuously cast steel billet used in the present invention can be obtained by subjecting molten steel in a converter to vacuum degassing treatment at a high recirculation rate as described above, and then continuously casting the steel. When hot rolling the steel billet obtained in this manner, it is necessary to roll the FT at 700 to 880°C and the CT at 500 to 640°C. By the way, FT and CT have the following metallurgical effects. In other words, a steel billet with a normal C content is γ
Depending on whether rolling is performed in the (austenite) region or in the α (ferrite) + γ region, the grain size and texture, which affects drawing workability, are greatly influenced. However, according to the present invention, since the C content was very low at 0.004% or less, no large difference was observed in the recrystallized grain size by FT.
It was also found that there were differences in the r value, and in the case of high temperature FT, as the r value increased, the Δr decreased.
On the other hand, when CT is heated to a medium temperature, the crystal grain size becomes larger, the r value becomes larger, and △r tends to become smaller. Therefore, it was found that there was no need to raise the temperature any higher than that. Note that it is a matter of course that the pickling efficiency deteriorates when the temperature is increased. As a result of the above, FT,
CT can be carried out at a low temperature, but for cans made by press working or plates that are thin and difficult to anneal at high temperatures, the CT should be set to a medium temperature, i.e. 580 to 640°C, in order to coarsen the grain size. things are suitable. This effect is due to the development of the (111) texture by increasing the crystal grain size, as well as the effect of increasing the size of carbides, cleaning the inside of the grains, and inhibiting the amount of C dissolved during annealing, and increasing the CT temperature to medium. This is thought to have the added effect of increasing the AlN precipitation rate and reducing the amount of solid solution N. Also, the degree of tempering
To obtain T 1 , CT should be heated to medium temperature i.e. 580-640℃
The one that is set is suitable. After descaling the hot-rolled steel strip produced in this way by ordinary pickling and then cold rolling it,
Although continuous annealing is performed, the recrystallization temperature becomes high because the amount of C is small. FIG. 3 is a diagram showing the relationship between CT and HMV, and shows the relationship between the amount of C and the recrystallization temperature, and it can be seen that as the amount of C decreases, the recrystallization temperature increases. The cause of this phenomenon is C.
The smaller the amount, the smaller the dislocation density,
This is because internal strain energy becomes smaller. Therefore, in order to obtain the softest tempering degree T 1 ,
It is necessary to perform high-temperature annealing at 750°C or higher using a medium-temperature CT material to sufficiently recrystallize it.
However, when annealing is performed at 700℃, unrecrystallized structures remain in some areas and become slightly hard, resulting in a lower degree of tempering.
The present inventors found that it becomes equivalent to T3 . Therefore, by combining the hot rolling temperature and the continuous annealing temperature, it has become possible to obtain a degree of thermal refinement T 1 due to continuous annealing, which was previously considered impossible, and a degree of thermal refinement T 3 can also be achieved by performing overaging treatment. I was able to get it without any problems. Furthermore, as mentioned above, by using a soft material that yields a material equivalent to T 1 after continuous annealing and by utilizing work hardening through skin pass rolling, T 1 to T 3 can be produced separately as shown in Figure 4. I found out. It has been found that since this soft material is almost non-aging, it can be made hard simply by increasing the rolling rate in temper rolling. On the other hand, in the tinplate plating process, reflow treatment is applied, but the increase in hardness due to that treatment is less than about 1 point (H R -30T), and even for materials that are not subjected to reflow treatment, such as stain-free steel sheets, It was found that the ideas and policies described above were sufficient. Next, the present invention will be explained by comparing examples with comparative examples. Example Steel having the composition shown in the table was melted in a 270t bottom blowing converter, and the steel was tapped with a carbon content of 0.03%. Subsequently, after performing R-H vacuum degassing treatment to decarburize carbon to below 0.005%, Al was added and then Nb was added, and Nb was not added. Each of these was cast using a continuous casting machine to promote flotation and separation of inclusions to obtain steel slabs with excellent cleanliness. These slabs were rolled at the hot rolling temperatures shown in the table.
After forming a hot-rolled coil with a thickness of 2.6 mm, it was descaled by pickling. Next, it was rolled to an extremely thin plate thickness of 0.3 mm (cold rolling ratio 87.7%) using a 6-stand tandem cold rolling mill, and then subjected to continuous annealing. The heat cycle is 650
℃, 700℃, 750℃, and 800℃ for 60 seconds each. Next, in a temper rolling mill, the rolling rate was 1%, and for Examples 16 to 21, the rolling rate was changed to three levels of 1, 3, and 5%, and the rolling rate was set to 3 levels, 1, 3, and 5%, and the work hardening was performed under the same conditions for Examples 16 to 21. The quality was determined. After temper rolling, #25 tin plating and reflow treatment (molten tin treatment) were sequentially performed in a halogen type electric tinning process to produce tinplate. A sample material was taken from tinplate and its hardness (H R -30T), r, △
r (△r=rL+rC- 2rD /2) was measured, and a fluting resistance test was performed by bending the sample. The evaluation of the fluting test involves bending the body to correspond to the shaping of the body of a can, and evaluating cases where the body is bent to the extent that it cannot be seen as a product (indicated by an x mark) and cases where it is not (indicated by an ○ mark). ). As is clear from the table, those with an annealing temperature of 650°C became hard due to the low temperature and had poor fluteability. In addition, a material having a C content of 0.005% and not according to the present invention had high hardness and could not obtain a soft tinplate. On the other hand, all of the products according to the present invention are made of soft tinplate, and have the following characteristics. (a) Those annealed at a temperature of 450°C or higher have a heat refining degree of T 1 , while those annealed at 700°C have a hardness corresponding to a heat refining degree of T 2 or T 3 . The reason for this is thought to be that it became hard because it was not sufficiently recrystallized. Therefore, by changing the annealing temperature to two levels for the material manufactured under the same conditions before annealing, T 1 ,
Since it can be made separately into T 2 and T 3 , it has the great advantage of being able to integrate the materials. (b) By using a material that can be temper-rolled at a rolling rate of 1% after annealing to obtain a temper degree T 1 , by increasing the rolling rate, temper degrees T 1 , T 2 , and T 3 can be obtained. Can be divided. Therefore, even when such a method is used, materials can be integrated, which is a great advantage. (c) Furthermore, if Nb is not added, although the material quality deteriorates slightly, it is possible to obtain a tin plate that fully satisfies the object of the present invention. (d) For cans made by press working, those with an r value of a certain value or more and a small △r are suitable, but for this purpose, cans made with high FT and CT are suitable. It can be seen that Nb-added material is suitable and that Nb-added material is superior. Furthermore, instead of the above-mentioned tin plating, a stain-free treatment was applied in a conventional manner to produce a stain-free steel plate, and various properties similar to those of the tin plate were measured. )~(d)
Almost the same characteristics were obtained.

【表】【table】

【表】 以上本発明によれば、調質度T1〜T3を有する
錫めつきあるいはテインフリー鋼板を製造するこ
とができると共に調質度T1となる出発素材より
調質度T1〜T3の鋼板を自由にに作り分けること
ができる。
[Table] According to the present invention, it is possible to produce a tin-plated or stain-free steel sheet having a heat treatment degree of T 1 to T 3 , and to produce a tin-plated or stain-free steel sheet having a heat treatment degree of T 1 to T 1 from a starting material having a heat treatment degree of T 1 to T 3 steel plates can be made freely.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は熱延板の巻取温度℃と△rとの関係を
示す図、第2図はぶりき硬度に及ぼすC量の影響
をFTおよびCTとCALの再結晶温度との関係を
示す図、第3図は硬度HMVとCTならびに再結
晶温度との関係を示す図、第4図は調質圧延率
(%)とぶりきの硬度との関係を示す図である。
Figure 1 shows the relationship between the hot-rolled sheet coiling temperature °C and △r, and Figure 2 shows the influence of the amount of C on the tinplate hardness and the relationship between FT, CT, and recrystallization temperature of CAL. Figure 3 is a diagram showing the relationship between hardness HMV and CT and recrystallization temperature, and Figure 4 is a diagram showing the relationship between temper rolling ratio (%) and tinplate hardness.

Claims (1)

【特許請求の範囲】 1 C0.004%以下、Si0.04%以下、Mn0.05〜0.3
%、S0.02%以下、但しMn/S比8以上、P0.02
%以下、Al0.02〜0.15%、N0.004%以下、残部実
質的にFeよりなる連続鋳造鋼片に熱間圧延を施
す際仕上温度を700〜880℃となし、500〜640℃の
巻取温度で巻取り、次いで酸洗、冷間圧延を順次
施した後690〜820℃で連続焼鈍を施し、さらに圧
延率1〜5%の範囲内で調質圧延を施した後、錫
めつきあるいはテインフリー処理を施すことを特
徴とする、連続焼鈍による調質度T1〜T3を有す
る錫めつきあるいはテインフリー鋼板の製造方
法。 2 C0.004%以下、Si0.04%以下、Mn0.05〜0.3
%、S0.02%以下、但しMn/S比8以上、P0.02
%以下、Al0.02〜0.15%、N0.004%以下、Nbを
Nb/C原子比で0.3〜1含有し、残部実質的にFe
よりなる連続鋳造鋼片に熱間圧延を施す際仕上温
度を700〜880℃となし、500〜640℃の巻取温度で
巻取り、次いで酸洗、冷間圧延を順次施した後
690〜820℃で連続焼鈍を施し、さらに圧延率1〜
5%の範囲内で調質圧延を施した後、錫めつきあ
るいはテインフリー処理を施すことを特徴とする
連続焼鈍による調質度T1〜T3を有する錫めつき
あるいはテインフリー鋼板の製造方法。
[Claims] 1 C 0.004% or less, Si 0.04% or less, Mn 0.05 to 0.3
%, S0.02% or less, however, Mn/S ratio 8 or more, P0.02
% or less, Al 0.02 to 0.15%, N 0.004% or less, and the balance substantially Fe. Coiling at a rolling temperature, followed by pickling and cold rolling, followed by continuous annealing at 690-820°C, followed by temper rolling at a rolling reduction of 1-5%, followed by tin plating. Alternatively, a method for manufacturing a tin-plated or stain-free steel sheet having a tempering degree of T 1 to T 3 by continuous annealing, characterized by subjecting it to a stain-free treatment. 2 C0.004% or less, Si0.04% or less, Mn0.05~0.3
%, S0.02% or less, however, Mn/S ratio 8 or more, P0.02
% or less, Al0.02~0.15%, N0.004% or less, Nb
Contains 0.3 to 1 in Nb/C atomic ratio, with the remainder being substantially Fe
When hot rolling a continuously cast steel billet made of
Continuous annealing is performed at 690 to 820℃, and further the rolling rate is 1 to 820℃.
Manufacture of tin-plated or tin-free steel sheet having a temper degree of T 1 to T 3 by continuous annealing, characterized by performing temper rolling within a range of 5% and then subjecting it to tin-plating or stain-free treatment. Method.
JP7658682A 1982-05-10 1982-05-10 Manufacture of base plate for tin plate and tin-free steel plate by continuous annealing Granted JPS58197224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7658682A JPS58197224A (en) 1982-05-10 1982-05-10 Manufacture of base plate for tin plate and tin-free steel plate by continuous annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7658682A JPS58197224A (en) 1982-05-10 1982-05-10 Manufacture of base plate for tin plate and tin-free steel plate by continuous annealing

Publications (2)

Publication Number Publication Date
JPS58197224A JPS58197224A (en) 1983-11-16
JPH0152450B2 true JPH0152450B2 (en) 1989-11-08

Family

ID=13609389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7658682A Granted JPS58197224A (en) 1982-05-10 1982-05-10 Manufacture of base plate for tin plate and tin-free steel plate by continuous annealing

Country Status (1)

Country Link
JP (1) JPS58197224A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0491660U (en) * 1990-05-14 1992-08-10

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262918A (en) * 1984-06-08 1985-12-26 Kawasaki Steel Corp Manufacture of surface treating raw sheet without causing stretcher strain
JPS6169928A (en) * 1984-09-12 1986-04-10 Kawasaki Steel Corp Manufacture of steel plate for ironing by continuous annealing
JPS61207520A (en) * 1985-03-13 1986-09-13 Kawasaki Steel Corp Production of soft blank plate for surface treatment
JPS6263619A (en) * 1985-09-17 1987-03-20 Kawasaki Steel Corp Manufacture of soft nonaging steel sheet
JPH0637714B2 (en) * 1989-06-21 1994-05-18 東洋鋼鈑株式会社 Electrolytic chromic acid treated steel plate for welding can
JP2571166B2 (en) * 1991-07-29 1997-01-16 東洋鋼鈑株式会社 Method for producing surface-treated steel sheet for DI can
JP2733423B2 (en) * 1993-01-18 1998-03-30 川崎製鉄株式会社 Plated sheet excellent in secondary workability and weldability and method for producing the same
KR100338709B1 (en) * 1997-03-13 2002-11-14 주식회사 포스코 Method for manufacturing tin plating plate used in dome and adona of aerosol
KR100515048B1 (en) * 2000-12-22 2005-09-14 주식회사 포스코 High strength packaging steel for 2-piece can
KR100946132B1 (en) * 2002-09-30 2010-03-10 주식회사 포스코 A manufacturing method of tinplate
JP5359709B2 (en) * 2009-09-09 2013-12-04 新日鐵住金株式会社 Steel plate for drawn cans and plated steel plate for drawn cans

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0491660U (en) * 1990-05-14 1992-08-10

Also Published As

Publication number Publication date
JPS58197224A (en) 1983-11-16

Similar Documents

Publication Publication Date Title
US4561909A (en) Method of manufacturing T-3 grade low temper black plates
JPH0152450B2 (en)
JPS6114213B2 (en)
JPH0341529B2 (en)
JPS5827934A (en) Production of mild blackplate having excellent corrosion resistance by continuous annealing
CN114107787A (en) High magnetic induction oriented silicon steel and manufacturing method thereof
JPS5842249B2 (en) Manufacturing method of soft cold-rolled steel sheet for pressing by continuous annealing
JPS62161919A (en) Manufacture of hard sheet steel for can excellent in drawability and minimized in anisotropy
JPS6048571B2 (en) Manufacturing method of alloyed galvanized steel sheet for deep drawing
JPS6114216B2 (en)
EP0119088B1 (en) Steel for use as material of cold-rolled steel sheet
JPH0317892B2 (en)
JPH01275736A (en) Continuously cast steel plate for enameling having excellent workability and its manufacture
JP2807994B2 (en) Manufacturing method of cold rolled steel sheet for deep printing
JPS6126724A (en) Manufacture of dead soft base sheet for surface treatment by continuous annealing
JPS59133324A (en) Manufacture of high-tension cold-rolled steel plate with superior formability
JPH02197523A (en) Manufacture of steel sheet for can
JP2740233B2 (en) Method for producing base sheet for soft surface-treated steel sheet with excellent corrosion resistance
JP3273383B2 (en) Cold rolled steel sheet excellent in deep drawability and method for producing the same
JPS59575B2 (en) Manufacturing method for high-strength cold-rolled steel sheets with excellent formability
JPH02415B2 (en)
JPS6263619A (en) Manufacture of soft nonaging steel sheet
JP3015843B2 (en) Manufacturing method of cold rolled steel sheet with excellent surface properties and workability
JPS5858413B2 (en) Manufacturing method for high-tensile galvanized steel sheets with excellent formability
JPS61157660A (en) Nonageable cold rolled steel sheet for deep drawing and its manufacture