JPH0637714B2 - Electrolytic chromic acid treated steel plate for welding can - Google Patents

Electrolytic chromic acid treated steel plate for welding can

Info

Publication number
JPH0637714B2
JPH0637714B2 JP1156876A JP15687689A JPH0637714B2 JP H0637714 B2 JPH0637714 B2 JP H0637714B2 JP 1156876 A JP1156876 A JP 1156876A JP 15687689 A JP15687689 A JP 15687689A JP H0637714 B2 JPH0637714 B2 JP H0637714B2
Authority
JP
Japan
Prior art keywords
chromium
tfs
welding
chromic acid
weldability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1156876A
Other languages
Japanese (ja)
Other versions
JPH0324296A (en
Inventor
信義 清水
輝則 藤本
廣美 垰田
信幸 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP1156876A priority Critical patent/JPH0637714B2/en
Publication of JPH0324296A publication Critical patent/JPH0324296A/en
Publication of JPH0637714B2 publication Critical patent/JPH0637714B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、飲料缶、食料缶などの食缶関係、あるいは、
18缶、美術缶などの雑缶関係の分野で使用される溶
接缶用電解クロム酸処理鋼板に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to food cans such as beverage cans and food cans, or
The present invention relates to an electrolytic chromic acid-treated steel plate for welding cans used in fields related to miscellaneous cans such as 18 cans and art cans.

〔従来の技術〕[Conventional technology]

鋼板表面に金属クロム層およびクロム水和酸化物層の2
層皮膜を有する電解クロム酸処理鋼板(以下TFS−C
Tという)は飲料缶、食缶、美術缶、18缶などの分
野に、ブリキの代替品として、近年ますます重用されつ
つある。これは、TFS−CTがブリキに比べて安価で
あると共に、優れた塗装下地用鋼板としての機能を有し
ているためである。しかしながら、このTFS−CTを
溶接缶用材料として使用する場合、金属クロム、クロム
水和酸化物からなる皮膜を溶接直前に機械的に研削など
の手段で除去することが必要である。溶接前に皮膜を除
去することは製缶コスト上、品質上、衛生上の問題があ
る。クロム水和酸化物皮膜を研削除去せずに、溶接可能
なTFS−CTおよびその製造方法については種々の方
法が提案されている。例えば、特公昭57−1975
2、特公昭57−36986、特開昭61−21339
8、特開昭63−186894などがすでに公知であ
る。
2 layers of metallic chromium layer and chromium hydrate oxide layer on the surface of steel sheet
Electrolytic chromic acid treated steel sheet having a layer coating (hereinafter TFS-C
T) has been increasingly used in recent years as an alternative to tin in fields such as beverage cans, food cans, art cans, and 18 cans. This is because TFS-CT is less expensive than tinplate and has an excellent function as a steel plate for coating base. However, when this TFS-CT is used as a material for a welding can, it is necessary to mechanically remove the coating made of chromium metal and chromium hydrate oxide just before welding by means such as grinding. Removing the coating before welding has problems in can manufacturing cost, quality, and hygiene. Various methods have been proposed for a TFS-CT that can be welded without grinding and removing the hydrated chromium oxide film and a manufacturing method thereof. For example, Japanese Patent Publication No. 57-1975
2, JP-B-57-36986, JP-A-61-21339
8, JP-A-63-186894 and the like are already known.

特公昭57−19752は、鋼板表面に3〜40mg/m2
の金属クロム層とその上部にクロムとして2〜15mg/m
2のクロム酸化物を主体とする非金属クロム層からな
り、金属クロム層をポーラスにすることを特徴とするも
のである。しかしながら、このように金属クロム量を単
純に少なくし、金属クロム層をポーラスにすると、耐食
性が低下する。また、表面に塗布した塗料のキュアーの
ため施される加熱により、金属クロム層のポアーから露
出した鋼板表面が酸化されるため、意図的に露出させた
鋼板表面が溶接性の改良に寄与しないという欠点があ
る。
Japanese Examined Patent Publication No. 57-19752 has 3-40 mg / m 2 on the steel plate surface.
2 to 15 mg / m of chromium on top of the metal chrome layer
It is characterized in that it is composed of a non-metallic chromium layer composed mainly of chromium oxide of 2 and that the metallic chromium layer is made porous. However, if the amount of metallic chromium is simply reduced in this way and the metallic chromium layer is made porous, the corrosion resistance is lowered. Further, the heating applied for curing the paint applied to the surface oxidizes the steel plate surface exposed from the pores of the metal chromium layer, so that the intentionally exposed steel plate surface does not contribute to the improvement of weldability. There are drawbacks.

特公昭57−36986は、硫酸イオン、硝酸イオン、
塩素イオンなどの陰イオンを意図的には添加しないクロ
ム酸、重クロム酸などを主成分とする水溶液中で、鋼板
表面に0.5〜30mg/m2の金属クロムと、クロムとし
て2〜50mg/m2のクロム水和酸化物を生成することを
特徴とする塗装性、溶接性、加工性に優れたTFS−C
Tの製造方法に関するものである。これは、溶接性、加
工性の向上のために、金属クロム量を少なくし、それに
よる耐食性の低下をクロム水和酸化物を主体とする非金
属クロム層の改質によって補うものである。しかしなが
ら、溶接性の観点から見ると、前述の特公昭57−19
572と同様に、金属クロム層にポアーが多く、塗料の
キュアーのための加熱により露出した鋼板表面が酸化さ
れ、溶接性が低下するおそれがある。
JP-B-57-36986 is a sulfate ion, a nitrate ion,
In an aqueous solution containing chromic acid, dichromic acid, etc., which does not intentionally add anions such as chlorine ions, 0.5 to 30 mg / m 2 of metallic chromium on the surface of the steel sheet and 2 to 50 mg of chromium as chromium. TMS-C with excellent paintability, weldability and workability, characterized by producing hydrated chromium oxide of 1 / m 2
The present invention relates to a method of manufacturing T. This is to reduce the amount of metallic chromium in order to improve the weldability and workability, and to compensate the decrease in corrosion resistance due to the modification by modifying the non-metallic chromium layer mainly containing hydrated chromium oxide. However, from the viewpoint of weldability, the aforementioned Japanese Patent Publication No. 57-19
Similar to 572, the metal chromium layer has many pores, and the exposed surface of the steel sheet is oxidized by heating for curing the paint, which may reduce the weldability.

特開昭61−213398は、鋼板表面に10〜40mg
/m2の平滑な金属クロム層と3〜30mg/m2の均一な厚み
のクロム水和酸化物層を形成させた塗装耐食性の優れた
溶接缶用TFS−CTに関するものである。その製造方
法は、析出した金属クロム層の一部を陽極処理によっ
て、溶解させることを特徴としている。しかしながら、
公知のクロム酸浴を用い、10〜40mg/m2の金属クロ
ムの析出でポーラス状でなく連続的に鋼板表面を被覆す
ることは非常に難しく、また、一度析出した金属クロム
を陽極処理によって溶解させる方法は、かえって金属ク
ロム層のポアーを増加させ、鋼板表面の露出率を増加さ
せる結果になる。
Japanese Patent Laid-Open No. 61-213398 discloses 10-40 mg on the surface of a steel sheet.
relates / m 2 of smooth metallic chromium layer and 3 to 30 mg / m superior welded cans for TFS-CT painting corrosion resistance were formed hydrated chromium oxide layer having a uniform thickness of 2. The manufacturing method is characterized in that a part of the deposited metal chromium layer is dissolved by anodizing. However,
Using a known chromic acid bath, it is very difficult to continuously coat the surface of the steel sheet by deposition of 10-40 mg / m 2 of metallic chromium, not porous, and once deposited metallic chromium is dissolved by anodizing. This method rather increases the pores of the metallic chromium layer, resulting in an increase in the exposure rate of the steel plate surface.

特開昭63−186894は、鋼板表面に50〜150
mg/m2の金属クロム層と、クロムとして5〜20mg/m2
クロム酸化皮膜を有し、かつ金属クロムの一部に突起部
を持つことを特徴とする溶接缶用TFS−CTに関する
ものである。金属クロム層に突起部を持たせると接触電
気抵抗値(以下、Rc値という)が小さくなり、その結
果、溶接性が良くなるという考えのもとに見出されたも
のであるが、金属クロムの平滑状のあるいは突起状など
の析出形態が異なる場合を含めると、Rc値と溶接性には
相関関係があるとは言えない。また、突起部分では金属
クロム層は極端に厚く、また突起のない部分は極端に薄
いため、金属クロムの薄い部分では、鉄露出率が高くな
る。
Japanese Unexamined Patent Publication No. 63-186894 discloses that the surface of a steel sheet is 50-150.
and mg / m 2 of metallic chromium layer has a chromium oxide film of 5 to 20 mg / m 2 as chromium, and relates welded cans for TFS-CT which is characterized by having a protruding portion on a part of the metallic chromium Is. It was discovered that the contact electric resistance value (hereinafter referred to as the Rc value) is reduced by providing the metal chrome layer with a protrusion, and as a result, the weldability is improved. It cannot be said that there is a correlation between the Rc value and the weldability, including the case where the precipitation morphology such as the smooth shape or the projection shape is different. Further, since the metal chrome layer is extremely thick in the protruding portion and the portion without the protrusion is extremely thin, the iron exposure rate becomes high in the thin portion of the metal chrome.

溶接缶用TFS−CTを製造する方法が開示されていな
がら、いまだに実用化されていないことは、溶接缶用材
料として種々の問題点があることを示唆している。
The fact that a method for producing TFS-CT for a welding can is disclosed but has not yet been put into practical use suggests that there are various problems as a material for a welding can.

従来の技術は、金属クロム量の減少または金属クロム層
の形態により、溶接性を改良し、同時にクロム水和酸化
物の改質により耐食性、塗装耐食性、塗料密着性を付与
する技術思想であったが、加熱時の鋼板表面の酸化の観
点から溶接性に影響する因子に対する詳細な検討は必ず
しも十分になされていなかったと考えられる。
The conventional technology was a technical idea of improving the weldability by reducing the amount of metallic chromium or the form of the metallic chromium layer, and at the same time imparting corrosion resistance, coating corrosion resistance, and coating adhesion by modifying chromium hydrated oxide. However, it is considered that the detailed examination of the factors affecting the weldability from the viewpoint of the oxidation of the steel sheet surface during heating has not been carried out sufficiently.

また、従来の技術はいずれも上述のように、TFS−C
Tの皮膜組成や皮膜形態の改善により溶接性を改良する
ものであり、溶接性に多きな影響を及ぼす鋼中の炭素量
に全く着目していなかった。ところが、鋼中の炭素量の
影響は、ぶりきなどの溶接性に優れた表面処理鋼板の場
合は、あまり顕著にあらわれなかったが、従来の技術に
開示されている溶接缶用TFS−CTのような難溶接性
の表面処理鋼板の場合は、非常に大きいことがわかっ
た。従来、缶用材料に使用されている通常の連続鋳造剤
の炭素量は0.03〜0.10%の範囲にあり、良好な
溶接性の得られる鋼中炭素量の範囲を越えたところにあ
った。
In addition, as described above, all of the conventional techniques are TFS-C.
The weldability was improved by improving the coating composition and coating morphology of T, and no attention was paid to the carbon content in the steel, which has a large effect on the weldability. However, the effect of the carbon content in the steel was not so remarkable in the case of the surface-treated steel sheet having excellent weldability such as tinplate, but it was not found in the conventional TFS-CT for welding cans disclosed in the prior art. It has been found that such a surface-treated steel sheet having poor weldability is extremely large. Conventionally, the amount of carbon of a usual continuous casting agent used for can materials is in the range of 0.03 to 0.10%, and when the amount of carbon in steel exceeds the range in which good weldability is obtained. there were.

〔本発明が解決しようとする課題〕[Problems to be Solved by the Present Invention]

溶接缶用TFS−CTの実用化のため、すでに記したよ
うに種々の努力がなされているが、溶接缶用材料として
実用に供せられる程に広い溶接可能電流範囲を有するも
のは得られていない。
Although various efforts have been made to make the TFS-CT for welding cans practical, as described above, those having a wide weldable current range that can be practically used as a material for welding cans have been obtained. Absent.

本発明は、十分に広い溶接可能電流範囲を得るための鋼
中の炭素含有量とTFS−CTの最適な皮膜構成を決定
することにより、高速溶接性に優れた電解クロム酸化処
理鋼板を提供することを目的としている。
The present invention provides an electrolytic chromium oxidation-treated steel sheet excellent in high-speed weldability by determining the carbon content in steel for obtaining a sufficiently wide weldable current range and the optimum film composition of TFS-CT. Is intended.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的を達成するために、本発明は鋼中の炭素含有量
を0.001〜0.02%の範囲に規定した冷延鋼板を
使用し、鋼板上に平滑で、被覆率の高い45〜90mg/m
2の金属クロム層を形成し、引き続き、最表層の易溶性
クロム水和酸化物を溶解させることにより、クロムとし
て1〜10mg/m2の均一な難溶性のクロム水和酸化物層
を形成するものである。
In order to achieve the above-mentioned object, the present invention uses a cold-rolled steel sheet in which the carbon content in the steel is specified in the range of 0.001 to 0.02%, and the steel sheet is smooth and has a high coverage of 45 to 90 mg / m
By forming a metallic chromium layer of No. 2 and subsequently dissolving the easily soluble chromium hydrated oxide of the outermost layer, a uniform hardly soluble chromium hydrated oxide layer of 1 to 10 mg / m 2 as chromium is formed. It is a thing.

以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

TFS−CTの製造方法は、フッ素化合物、硫酸などの
助剤を添加したクロム酸100g/以上の高濃度クロム
酸浴を用い鋼板表面に金属クロムを析出後、同様の助剤
を含む低濃度クロム酸浴中で陰極電解し、主としてクロ
ム水和酸化物皮膜を形成させる2液法と、フッ素化合
物、硫酸などの助剤を添加したクロム酸100g/以下
のクロム酸浴中で陰極電解し、同時に金層クロム属とク
ロム水和酸化物層を形成させる1液法の2つの方法が知
られている。熱アルカリ溶液でクロム水和酸化物を溶解
除去した金属クロム層について、金属クロム量と金属ク
ロム属のポアーからの鋼板表面の露出率との関係をみる
と、第1図に示したように、(A)CrO3−弗化物浴 (B)Cr
O3−弗化物−硫酸浴(C)CrO3−硫酸浴の順にポアーの少
ない金属クロム層が得られる。したがって、本発明にお
いて、鋼板上に被覆率の高い金属クロム層を析出させる
ためには、フッ素化合物と硫酸を添加したクロム酸浴、
より好ましくはフッ素化合物のみを添加したクロム酸浴
の使用が好ましい。フッ素化合物と硫酸を添加したクロ
ム酸浴は、被覆率はやや劣るが、浴中の不純物イオンの
影響を受け難いため、操業性には優れている。
TFS-CT is produced by using a high-concentration chromic acid bath containing fluoric acid, sulfuric acid, and other auxiliaries, and using a high-concentration chromic acid bath containing 100 g / mol or more of chromic acid. Cathodic electrolysis in an acid bath to mainly form a chromium hydrate oxide film, and cathodic electrolysis in a chromic acid bath containing 100 g / or less of chromic acid to which an auxiliary agent such as a fluorine compound or sulfuric acid is added. Two methods are known, a one-liquid method for forming a chromium layer of the gold layer and a hydrated chromium oxide layer. Regarding the metal chromium layer obtained by dissolving and removing the hydrated chromium oxide in a hot alkaline solution, the relationship between the amount of metal chromium and the exposure rate of the steel plate surface from the pores of the metal chromium group is as shown in FIG. (A) CrO 3 − Fluoride bath (B) Cr
O 3 -fluoride-sulfuric acid bath (C) CrO 3 -sulfuric acid bath gives a metallic chromium layer with less pores in that order. Therefore, in the present invention, in order to deposit a metal chromium layer having a high coverage on the steel sheet, a chromic acid bath containing a fluorine compound and sulfuric acid is added,
It is more preferable to use a chromic acid bath to which only a fluorine compound is added. A chromic acid bath containing a fluorine compound and sulfuric acid has a slightly inferior coverage, but is excellent in operability because it is hardly affected by impurity ions in the bath.

本発明のTFS−CTは溶接缶用材料として提供される
ものであり、必ず塗装して使用される。塗装の焼付工程
の加熱を受けなければ、第2図に示すように、溶接性の
良否の一指標となるRc値は、金属クロム量の減少と共に
低くなる。しかしながら、塗装焼付を想定して210℃
で20分の加熱を施すと、金属クロム量が45〜90mg
/m2の範囲において、Rc値が小さくなり、溶接性に最適
範囲が存在することが推定される。この理由は、金属ク
ロム量が45mg/m2以下では、第1図に示したように、
鉄露出率が金属クロムの減少とともに著しく増加し、加
熱により鋼板表面に導電性の悪い酸化鉄が生成するため
と考えられる。また、金属クロム量が90mg/m2以上で
は、鋼板の露出面積は減少するが、電極ロールによる加
圧で、厚い金属クロム層に微細な割れを生じにくいた
め、Rc値が大きくなるものと考えられる。
The TFS-CT of the present invention is provided as a material for welding cans, and is always used by painting. If it is not heated in the baking process of coating, as shown in FIG. 2, the Rc value, which is an index of the weldability, becomes lower as the amount of metallic chromium decreases. However, assuming coating baking, 210 ℃
When heated for 20 minutes, the amount of metallic chromium is 45 to 90 mg.
In the range of / m 2 , the Rc value becomes small, and it is estimated that there is an optimum range for weldability. The reason for this is that when the amount of metallic chromium is 45 mg / m 2 or less, as shown in FIG.
It is considered that the iron exposure rate remarkably increases with the decrease of metallic chromium, and iron oxide having poor conductivity is generated on the surface of the steel sheet by heating. Also, when the amount of metallic chromium is 90 mg / m 2 or more, the exposed area of the steel sheet decreases, but it is considered that the Rc value increases because it is difficult for fine cracks to occur in the thick metallic chromium layer when pressed by the electrode roll. To be

第3図は、難溶性のクロム水和酸化物皮膜量が一定のも
とで、金属クロム量と210℃で20分加熱した後のT
FS−CTの溶接時の溶接可能電流範囲の関係を示すも
のであり、この範囲は溶接時にスプラッシュが発生しは
じめる電流を溶接上限とし、十分な接合強度が得られは
じめる電流を溶接下限として求めたものである。この溶
接範囲が広いほど溶接性が優れていることを示してい
る。溶接可能電流範囲の広さとRc値の関係は、第2図と
第3図からわかるように相関関係がある。
FIG. 3 shows the amount of metallic chromium and T after heating at 210 ° C. for 20 minutes under a constant amount of the poorly soluble chromium hydrate oxide film.
This figure shows the relationship of the weldable current range during FS-CT welding, and this range was determined as the welding upper limit, the current at which splashing begins to occur during welding, and the welding lower limit as the current at which sufficient joint strength begins to be obtained. It is a thing. It shows that the wider the welding range, the better the weldability. The relationship between the width of the weldable current range and the Rc value has a correlation as can be seen from FIGS. 2 and 3.

したがって、一般に、Rc測定による簡便な方法により、
溶接可能電流範囲の評価がなされている。平滑な金属ク
ロム層を形成したTFS−CTの場合は、Rc値と溶接可
能電流範囲とに、非常に良い相関関係が認められる。し
かしながら、金属クロム層の析出形態を変えた場合、例
えば、特開昭63−186894に開示されたような方法
で得られた金属クロム層の一部に突起部を持つTFS−CT
の場合にはこの関係は明瞭でない。金属クロム層の一部
に突起部を持つ金属クロム層の突起部の厚さは、平滑部
の厚さの3〜10倍になっている。したがって、突起部
では鋼の鍛接性を妨げ、平滑部では、鉄露出率が高いた
めに加熱により鋼板表面に酸化鉄が生成しやすい。この
ような理由により、金属クロム層の一部に突起部を持つ
TFS−CTは、Rc値がかなり小さいにもかかわらず、
溶接可能電流範囲が狭いものと考えられる。
Therefore, in general, by a simple method by Rc measurement,
Weldable current range is evaluated. In the case of TFS-CT having a smooth metallic chromium layer, a very good correlation is recognized between the Rc value and the weldable current range. However, when the deposition form of the metal chromium layer is changed, for example, TFS-CT having a protrusion on a part of the metal chromium layer obtained by the method disclosed in JP-A-63-186894.
In the case of, this relationship is not clear. The thickness of the protrusion of the metal chromium layer having a protrusion on a part of the metal chromium layer is 3 to 10 times the thickness of the smooth portion. Therefore, in the protruding portion, the forgeability of steel is impeded, and in the smooth portion, the iron exposure rate is high, so that iron oxide is easily generated on the surface of the steel sheet by heating. For this reason, TFS-CT having a protrusion on a part of the metal chromium layer has a relatively small Rc value,
It is considered that the current range for welding is narrow.

以上説明したように、本発明の溶接性に優れたTFS−
CTの金属クロム層は加熱時に鋼板が直接空気にさらさ
れて酸化されるのを防ぐとともに、溶接時の電極ロール
の加圧で破壊され易いように、平滑で薄く、かつ被覆率
の高いことを必要とする。
As described above, the TFS- which has excellent weldability according to the present invention.
The metal chrome layer of CT prevents the steel sheet from being directly exposed to the air during heating and is oxidized, and is smooth, thin, and has a high coverage so that it is easily broken by the pressure of the electrode roll during welding. I need.

つぎに、本発明のTFS−CTにおいて、平滑で被覆率
の高い45〜90mg/m2の金属クロム層の上に形成され
るクロム水和酸化物は、電解液に難溶性のものが均一性
に優れており、溶接性に優れているため、電解後の浸漬
を必要とする。電解直後のクロム水和酸化物層は、最表
面に助剤の含有量の多い電解液に易溶性のものと、その
下に助剤の含有量の少ない電解液に難溶性のものとから
構成されている。最表層の易溶性のクロム水和酸化物
は、浴組成、浴温、電流密度などの電解条件や、液の撹
拌状態によって生成量が変動し易いため、鋼板の幅方
向、長手方向で不均一析出を生じ易い。これに対して、
その下にある難溶性のクロム水和酸化物の生成量は、電
解条件や撹拌状態によらずほぼ一定であり、更に好都合
なことに、電気量を多くしてもある一定の厚み以上には
生成しないため、板幅方向、長手方向の均一性に優れて
いる。また、更に詳細に見方をすると、電子顕微鏡で観
察される鋼の結晶方位ごとの難溶性クロム水和酸化物の
厚みの差は、電解直後のクロム水和酸化物の結晶方位ご
との厚みの差に比べて均一性に優れている。このよう
に、電解直後のクロム水和酸化物層は、均一な厚みの難
溶性クロム水和酸化物層の上に、不均一な厚みの易溶性
クロム水和酸化物層を形成しているため、全体として不
均一な厚みとなり、溶接時の局部発熱の原因となるため
好ましくない。したがって、同一量のクロム水和酸化物
量であっても、電解直後のTFS−CTよりも、電解
後、電解液に十分浸漬して易溶性のクロム水和酸化物を
溶解除去したTFS−CTの方が著しく溶接性に優れて
おり、従来の技術に開示されているような単なるクロム
水和酸化物量の規定では、安定した溶接性は得られない
ことがわかった。難溶性のクロム水和酸化物を得るため
には、電解後、少なくとも2秒以上、電解液に浸漬する
必要がある。第4図に示したように、易溶性のクロム水
和酸化物は、電解終了後、2秒以内に大部分が溶解し、
難溶性のクロム水和酸化物のみとなる。易溶性のクロム
水和酸化物を溶解させる溶液は、電解液のほかに、25
g/以上のクロム酸溶液を使用することができる。温度
は高い方が好ましいが、常温でも易溶性のクロム水和酸
化物を溶解できる。
Next, in the TFS-CT of the present invention, the chromium hydrated oxide formed on the smooth and high coverage 45-90 mg / m 2 metallic chromium layer is uniformly soluble in the electrolyte solution. It has excellent weldability and requires dipping after electrolysis. The chromium hydrated oxide layer immediately after electrolysis is composed of one that is easily soluble in the electrolyte solution containing a large amount of the auxiliary agent on the outermost surface and one that is poorly soluble in the electrolyte solution below that containing a small amount of the auxiliary agent. Has been done. The amount of easily soluble chromium hydrate oxide in the outermost layer is likely to vary depending on the electrolytic conditions such as bath composition, bath temperature and current density, and the stirring state of the liquid, so it is not uniform across the width and length of the steel sheet. Easy to cause precipitation. On the contrary,
The amount of poorly soluble chromium hydrate oxide thereunder is almost constant regardless of the electrolysis conditions and the stirring state, and more conveniently, even if the amount of electricity is increased, it is above a certain thickness. Since it is not generated, it has excellent uniformity in the width direction and the longitudinal direction. Also, in more detail, the difference in the thickness of the refractory chromium hydrate oxide for each crystal orientation of the steel observed by an electron microscope is the difference in the thickness for each crystal orientation of the chromium hydrate oxide immediately after electrolysis. Excellent in uniformity compared to. As described above, the hydrated chromium hydrate oxide layer immediately after electrolysis forms the easily soluble chromium hydrated oxide layer having a nonuniform thickness on the hardly soluble chromium hydrated oxide layer having a uniform thickness. However, the thickness becomes uneven as a whole, which causes local heat generation during welding, which is not preferable. Therefore, even with the same amount of chromium hydrate oxide, TFS-CT obtained by sufficiently dipping the easily soluble chromium hydrate oxide by electrolysis after electrolysis is more than that of TFS-CT immediately after electrolysis. It was found that the weldability is remarkably excellent, and stable weldability cannot be obtained by simply defining the amount of hydrated chromium oxide as disclosed in the prior art. In order to obtain a sparingly soluble chromium hydrate oxide, it is necessary to immerse it in an electrolytic solution for at least 2 seconds after electrolysis. As shown in FIG. 4, most of the easily soluble chromium hydrate oxide was dissolved within 2 seconds after the electrolysis was completed.
Only the sparingly soluble chromium hydrate oxide. In addition to the electrolyte solution, 25
Chromic acid solutions of g / g or higher can be used. The higher the temperature is, the more easily soluble chromium hydrate oxide can be dissolved at room temperature.

難溶性クロム水和酸化物量は、溶接性の観点からは少な
い方が良いが、長時間、高濃度のクロム酸浴中に浸漬し
てもクロムとして1mg/m2以下に下げることはできな
い。また、クロムとして10mg/m2を超えると、均一性
が良くても難溶性クロム水和酸化物皮膜が厚くなりすぎ
て溶接性が低下する。したがって、難溶性のクロム水和
酸化物量は、1〜10mg/m2と規定される。
From the viewpoint of weldability, it is preferable that the amount of the sparingly soluble chromium hydrated oxide is small, but even if it is immersed in a high-concentration chromic acid bath for a long time, it cannot be reduced to 1 mg / m 2 or less as chromium. On the other hand, when the chromium content exceeds 10 mg / m 2 , the poorly soluble chromium hydrated oxide film becomes too thick even if the uniformity is good, and the weldability deteriorates. Therefore, the amount of poorly soluble chromium hydrate oxide is specified as 1 to 10 mg / m 2 .

このようにして得られた難溶性のクロム水和酸化物皮膜
は、均一性に優れるため、溶接電流の分布が均一とな
り、溶接性が向上するものと考えられる。
Since the poorly soluble chromium hydrate oxide film thus obtained has excellent uniformity, it is considered that the distribution of the welding current becomes uniform and the weldability is improved.

TFS−CTの最適な皮膜組成と、皮膜形態に関する上
述の知見にもとづき、先に「鋼板表面に45〜90mg/m
2の平滑に析出させた金属クロム層と、クロムとして1
〜10mg/m2の難溶性のクロム水和酸化物層を形成させ
ることを特徴とする溶接性に優れた電解クロム酸処理鋼
板の製造方法について、特願昭63−261440に出
願した。この出願に使用した冷延鋼板は、缶用材料に使
用される通常の化学組成の鋼板であり、鋼中の炭素量が
0.05%のものであった。
Based on the optimum film composition of TFS-CT and the above-mentioned findings regarding the film morphology, first, "45-90 mg / m
2 smooth deposited metal chrome layer and 1 as chrome
A method for producing an electrolytic chromic acid-treated steel sheet having excellent weldability, which is characterized by forming a poorly soluble chromium hydrated oxide layer of 10 mg / m 2 , was filed in Japanese Patent Application No. 63-261440. The cold-rolled steel sheet used in this application was a steel sheet having a normal chemical composition used for can materials, and had a carbon content of 0.05%.

ところが、溶接性に影響を与える材料側の因子につい
て、さらに詳細な検討を行ったところ、鋼中に含有され
るC,Si,Mn,P,S,Cu,Al,Nなどの微量成分の内、特に炭素
が溶接性に大きな影響を及ぼすことが明らかとなった。
However, as a result of a more detailed examination of the factors on the material side that affect the weldability, it was found that among the trace elements such as C, Si, Mn, P, S, Cu, Al, N contained in the steel. In particular, it became clear that carbon has a great influence on weldability.

従来より、鋼中の炭素量が溶接熱影響部の機械的性質を
左右することや、鋼中の炭素量が0.10%以上になる
と鍛接性の悪くなることは知られていたが、0.10%
未満の範囲で、鋼中の炭素量と溶接性に関する詳細な検
討はなされていなかった。従来、溶接缶用材料にはぶり
きが使用されていたが、ぶりきのように塗装焼付の加熱
後も多量の金属錫が残存する材料は溶接性が良好であ
り、鋼中の炭素量と溶接性の関係は比較的相関があらわ
れにくい。また、通常のTFS−CTの場合は、皮膜組
成が不適切なため、鋼中の炭素量を低減させても溶接は
できない。従来の技術に開示された溶接缶用TFS−C
Tの場合は、炭素量を低減させると、溶接可能な電流範
囲は広くなる傾向にあるが、いまだ十分な溶接性を有し
ていない。一方、特願昭63−261440に出願した
溶接性に優れたTFS−CTの場合には、鎖中の炭素量
の影響が顕著にあらわれ、炭素量を従来の0.03〜
0.10%の範囲から、0.001〜0.02%の範囲
に低融させることにより、さらに溶接性が改良されるこ
とがわかった。
It has been conventionally known that the carbon content in steel influences the mechanical properties of the weld heat affected zone, and that if the carbon content in the steel becomes 0.10% or more, the forgeability deteriorates. 10%
Within the range of less than, no detailed study was conducted on the carbon content in steel and weldability. Traditionally, tinplate has been used as a material for welding cans, but materials such as tinplate that retain a large amount of metallic tin even after heating during coating baking have good weldability, and the amount of carbon in steel The relationship of weldability is relatively unlikely to appear. Further, in the case of ordinary TFS-CT, since the coating composition is inappropriate, welding cannot be performed even if the carbon content in the steel is reduced. TFS-C for welding can disclosed in the prior art
In the case of T, when the amount of carbon is reduced, the current range that can be welded tends to be wide, but it does not yet have sufficient weldability. On the other hand, in the case of TFS-CT, which was applied to Japanese Patent Application No. 63-261440 and has excellent weldability, the effect of the amount of carbon in the chain was remarkably exhibited, and the amount of carbon in the conventional range of 0.03 to
It was found that the weldability was further improved by lowering the melting point from the range of 0.10% to the range of 0.001 to 0.02%.

第5図は、鋼中の炭素量と溶接可能電流範囲の関係を示
したものであり、難溶性クロム水和酸化物量が一定の時
は炭素量の増加と共に溶接可能電流範囲が狭くなること
がわかる。
FIG. 5 shows the relationship between the amount of carbon in steel and the weldable current range. When the amount of refractory chromium hydrate oxide is constant, the weldable current range may narrow as the carbon amount increases. Recognize.

また、図中に従来の技術により製造した溶接缶用TFS
−CTの溶接可能電流範囲を示したが、単に鋼中の炭素
量を減少させただけでは、本願発明のような良好な溶接
性が得られないことがわかる。
In addition, the TFS for welding cans manufactured by the conventional technology in the figure
Although the weldable current range of -CT is shown, it can be seen that good weldability as in the present invention cannot be obtained by simply reducing the amount of carbon in steel.

以上の結果より、鋼板表面に平滑で被覆性の良い45〜
90mg/m2の金属クロム層と、クロムとして1〜10mg/
m2の難溶性のクロム水和酸化物層を形成させたTFS−
CTにおいて、鋼中の炭素量を0.001〜0.02%
の範囲に規定したTFS−CTは良好な溶接性を有するこ
とがわかる。このように、TFS−CTの最適な皮膜構
成と炭素量を限定した鋼とを組み合わせることにより、
高速溶接性に優れた電解クロム酸処理鋼板を提供するこ
とができる。
From the above results, 45-
90 mg / m 2 metallic chromium layer and 1-10 mg / chromium as chromium
TFS-with a poorly soluble chromium hydrate oxide layer of m 2 formed
In CT, the carbon content in the steel is 0.001-0.02%
It can be seen that TFS-CT defined in the range of 1 has good weldability. In this way, by combining the optimum film structure of TFS-CT and steel with a limited carbon content,
It is possible to provide an electrolytic chromic acid-treated steel sheet having excellent high-speed weldability.

〔実施例〕〔Example〕

以下、本発明の内容を実施例および比較例で具体的に説
明する。
Hereinafter, the content of the present invention will be specifically described with reference to Examples and Comparative Examples.

鋼中の炭素量の異なる熱延鋼板を使用して、板厚、0.
22mm、テンパーT−4の冷延鋼板を第1表に示す条件
により作成した。この冷延鋼板に通常の脱脂、酸洗を施
した後、クロム酸浴中で陰極電解して、鋼板表面に45
〜90mg/m2の平滑な金属クロム層と、クロムとして1
〜10mg/m2の難溶性クロム水和酸化物層を有するTF
S−CTを製造した。同時に、鋼中の炭素量の異なる冷
延鋼板を使用して、先行技術の代表的な実施例にしたが
って、比較例1〜3に示すTFS−CTを製造した。
Using hot-rolled steel sheets with different carbon contents in steel, the sheet thickness, 0.
A cold rolled steel sheet of 22 mm and temper T-4 was prepared under the conditions shown in Table 1. After normal degreasing and pickling of this cold-rolled steel sheet, cathodic electrolysis is performed in a chromic acid bath to remove 45
~ 90mg / m 2 smooth metallic chrome layer and 1 as chrome
TF with -10 to 10 mg / m 2 layer of poorly soluble chromium hydrate oxide
S-CT was manufactured. At the same time, TFS-CT shown in Comparative Examples 1 to 3 was manufactured according to typical examples of the prior art using cold-rolled steel sheets having different carbon contents in the steel.

これらのTFS−CTの皮膜量、溶接性、耐食性などを
第2表に示した。第2表から明らかなように、鋼中の炭
素量が0.001〜0.02%の鋼板を基板とし、45
〜90mg/m2の平滑な金属クロム層と、クロムとして1
〜10mg/m2の難溶性クロム水和酸化物層を形成させた
本発明のTFS−CTは、十分に広い溶接可能電流範囲
を有し、著しく溶接性に優れている。
Table 2 shows the coating amount, weldability, corrosion resistance, etc. of these TFS-CT. As is clear from Table 2, a steel plate having a carbon content in the steel of 0.001 to 0.02% was used as a substrate, and
~ 90mg / m 2 smooth metallic chrome layer and 1 as chrome
The TFS-CT of the present invention in which a poorly soluble chromium hydrate oxide layer of 10 mg / m 2 is formed has a sufficiently wide weldable current range and is extremely excellent in weldability.

比較例1は特開昭61−213398の実施例で開示さ
れた製造方法にしたがって製造したものである。比較例
3は特願昭63−261440の製造方法にしたがって
製造したものである。これらは、いずれも通常の例延鋼
板を使用し、鋼中の炭素量が0.05%であった。比較
例2は特開昭61−213398の実施例にしたがって製
造したものであるが、鋼中の炭素量を0.01%に低減
した例延鋼板を基板としている。比較例2からわかるよ
うに、単に、鋼中の炭素量を低減させただけでは良好な
溶接性を有するTFS−CTは得られないことがわか
る。また、耐食性の点でも実施例1〜5に示したTFS
−CTは比較例1〜2に示したTFS−CTよりも優れ
ている。
Comparative Example 1 is manufactured according to the manufacturing method disclosed in the Example of JP-A-61-213398. Comparative Example 3 is manufactured according to the manufacturing method of Japanese Patent Application No. 63-261440. All of these used ordinary example rolled steel sheets, and the carbon content in the steel was 0.05%. Comparative Example 2 is manufactured according to the example of JP-A-61-213398, but uses an example rolled steel sheet in which the carbon content in the steel is reduced to 0.01% as a substrate. As can be seen from Comparative Example 2, it is understood that TFS-CT having good weldability cannot be obtained simply by reducing the carbon content in steel. Also, in terms of corrosion resistance, the TFS shown in Examples 1 to 5 was used.
-CT is superior to TFS-CT shown in Comparative Examples 1-2.

次に、実施例、比較例を示した第2表の評価項目の評価
方法について述べる。
Next, the evaluation method of the evaluation items in Table 2 showing Examples and Comparative Examples will be described.

(1) 金属クロム層のポアーからの鉄露出率 95℃の7.5N−NaOH溶液中にTFS−CTを5分間
浸漬し、最表層のクロム水和酸化物を完全に溶解除去す
る。続いて、試料の30mmφを残してテープでシール
し、1M−NaH2PO4溶液中にて125mV/minの分極速度
で陽分極した時の不動態化する直前の電流を読み取る。
別に求めた鉄の露出率と不動態化電流の検量線から、鉄
の露出率を求めた。
(1) Iron exposure rate from pores of metallic chromium layer TFS-CT is immersed in a 7.5N-NaOH solution at 95 ° C for 5 minutes to completely dissolve and remove chromium hydrate oxide on the outermost layer. Subsequently, the sample was sealed with tape leaving 30 mmφ, and the current immediately before passivation was read when positively polarized in a 1M-NaH 2 PO 4 solution at a polarization rate of 125 mV / min.
The exposure rate of iron was calculated from the calibration curve of the exposure rate and passivation current of iron which were separately determined.

(2) 溶接可能電流範囲 TFS−CTを210℃で20分空焼後、実験用切板溶
接機で、周波数60Hz、ラップ幅0.4mm、速度5m/
分、加圧力50Kg重の条件で溶接を行った後、溶接部の
接合状態を評価した。溶接電流を25Aきざみで上げて
いって、スプラッシュが発生し始める電流を溶接上限と
し、溶接電流を下げていって、溶接部の接合強度が母材
の破断強度より低くなる直前の電流を溶接下限として、
この電流の差を溶接可能電流範囲とした。
(2) Weldable current range TFS-CT was air-baked at 210 ° C for 20 minutes, and then it was used as a cutting plate welding machine for experiment, frequency 60Hz, lap width 0.4mm, speed 5m /
After the welding was performed under the conditions of a pressure of 50 kg and a pressure of 50 kg, the joint state of the welded portion was evaluated. The welding current is increased in steps of 25 A, the current at which splash starts to be the welding upper limit, the welding current is lowered, and the current immediately before the joint strength of the weld becomes lower than the fracture strength of the base metal is the welding lower limit. As
This difference in current was defined as the welding possible current range.

(3) 接触電気抵抗(Rc) TFS−CTを210℃で20分空焼後、手製の接触電
気抵抗測定機でRcを測定した。測定方法は、2つの銅製
円盤電極の接触部位に2枚重ねした試料板を挟み、電極
間を50kg重で加圧したまま周速5m/分で回転させて、
試料板を移動させながら、電極間に5Aの直流電流を流
して電極間の電圧を測定し、Rc値を求めた。
(3) Contact electric resistance (Rc) After TFS-CT was air-baked at 210 ° C. for 20 minutes, Rc was measured with a hand-made contact electric resistance measuring instrument. The measuring method is as follows: sandwich two sample plates in the contact area of two copper disc electrodes, rotate them at a peripheral speed of 5 m / min while applying a pressure of 50 kg between the electrodes,
While moving the sample plate, a DC current of 5 A was passed between the electrodes to measure the voltage between the electrodes to obtain the Rc value.

(4) 糸状腐食 TFS−CTにエポキシ・フェノール系塗料を約60mg/d
m2塗布し、210℃で10分間焼付けた後、クロスカッ
トを入れ、エリキセン試験機で5mm張り出す。サンプル
を3%NaClに浸漬した後、サンプル台に立てて、温度4
5℃、湿度85%の雰囲気中に10日間放置して、錆の
発生状態を観察した。
(4) Filiform corrosion Approximately 60 mg / d of epoxy phenolic paint on TFS-CT
After applying m 2 and baking at 210 ° C. for 10 minutes, a cross cut is put and it is projected by 5 mm with an Erichsen tester. After immersing the sample in 3% NaCl, stand it on the sample table and
After standing in an atmosphere of 5 ° C. and a humidity of 85% for 10 days, the state of rust generation was observed.

(5) 塩水噴霧試験 TFS−CTを210℃で10分間加熱した後、塩水噴
霧試験器に入れる。35℃の3%NaCl溶液を1時間噴霧
した時の錆の発生状態を評価した。
(5) Salt Spray Test TFS-CT is heated at 210 ° C. for 10 minutes and then placed in a salt spray tester. The generation state of rust when a 3% NaCl solution at 35 ° C. was sprayed for 1 hour was evaluated.

(6) 塗膜下腐食 糸状腐食試験と同様の方法で得た塗装板に、幅10μ
m、深さ15μmのクロスカットを入れ、クエン酸1.
5%、食塩1.5%からなる腐食液に38℃で2週間浸漬
し、カット部の腐食状態を評価した。
(6) Corrosion under coating A coated plate obtained by the same method as the filiform corrosion test has a width of 10 μm.
m, depth of 15 μm cross-cut, citric acid 1.
It was immersed in a corrosive liquid consisting of 5% and 1.5% of salt at 38 ° C. for 2 weeks, and the corrosion state of the cut part was evaluated.

〔発明の効果〕〔The invention's effect〕

本発明のTFS−CTは、金属クロム層の被覆性とクロ
ム水和酸化物皮膜の均一性に優れており、かつ、鋼中の
炭素量が少ないために低温での接合性に優れ、非常に優
れた溶接性の有するため、ぶりきより安価な溶接缶用材
料として広範囲の用途に適用することを可能にし、産業
上の効果は極めて大きい。
INDUSTRIAL APPLICABILITY The TFS-CT of the present invention is excellent in the coverage of the metal chromium layer and the uniformity of the hydrated chromium oxide film, and because of the small amount of carbon in the steel, it is excellent in the bondability at low temperatures, Since it has excellent weldability, it can be applied to a wide range of applications as a material for welding cans that is cheaper than tinplate, and has an extremely large industrial effect.

【図面の簡単な説明】[Brief description of drawings]

第1図は、TFS−CTの表層のクロム水和酸化物皮膜
を加熱したアルカリ溶液で溶解除去後の金属クロム層の
ポアーからの鉄露出率と、金属クロム量の関係を示す
図、第2図は、210℃で20分加熱前後の接触電気抵抗
(Rc)値と金属クロム量の関係を示す図、第3図は難溶
性クロム水和酸化物量を一定にしたTFS−CTについ
て、210℃で20分加熱後の溶接可能電流範囲と金属ク
ロム量の関係を示す図、第4図は、電解後のクロム水和
酸化物皮膜の電解液中への溶解速度の例を示す図、第5
図は、難溶性クロム水和酸化物量を一定にしたTFS−
CTについて、210℃で20分加熱後の溶接可能電流
範囲と鋼中の炭素量の関係を示す図である。
FIG. 1 is a diagram showing the relationship between the iron exposure rate from the pores of the metallic chromium layer after the dissolution and removal of the chromium hydrated oxide film on the surface layer of TFS-CT in a heated alkaline solution, and the amount of metallic chromium. The figure shows the relationship between the contact electric resistance (Rc) value before and after heating at 210 ° C for 20 minutes and the amount of metallic chromium, and Fig. 3 shows TFS-CT with the amount of refractory chromium hydrate oxide kept constant at 210 ° C. Showing the relationship between the weldable current range and the amount of metallic chromium after heating for 20 minutes at 40 ° C., FIG. 4 is a diagram showing an example of the dissolution rate of the hydrated chromium oxide film in the electrolytic solution after electrolysis, FIG.
The figure shows TFS- with a constant amount of poorly soluble chromium hydrate oxide.
It is a figure which shows the relationship between the weldable electric current range after heating 20 minutes at 210 degreeC, and the amount of carbon in steel about CT.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鋼板を脱脂、酸洗後、フッ素化合物または
フッ素化合物と少量の硫酸を添加したクロム酸浴中で陰
極電解した後、引き続き2秒以上、25g/以上のク
ロム酸を含有する溶液中に浸漬して、易溶性のクロム水
和酸化物を溶解させることにより、鋼板表面に45〜9
0mg/m2の平滑に析出させた金属クロム層と、クロムと
して、1〜10mg/m2の難溶性クロム水和酸化物層を形
成させた電解クロム酸処理鋼板において、鋼板中の炭素
量を0.001〜0.02%の範囲に低減したことを特徴とする
溶接缶用電解クロム酸処理鋼板。
1. A steel plate after degreasing and pickling, followed by cathodic electrolysis in a chromic acid bath containing a fluorine compound or a fluorine compound and a small amount of sulfuric acid, followed by a solution containing 25 g / or more chromic acid for 2 seconds or more. By immersing it in the steel plate and dissolving the easily soluble chromium hydrate oxide, 45 to 9
In the electrolytic chromic acid treated steel sheet in which 0 mg / m 2 of the metal chromium layer deposited smoothly and 1-10 mg / m 2 of a poorly soluble chromium hydrated oxide layer were formed as chromium, the carbon content in the steel sheet was An electrolytic chromic acid treated steel sheet for welding cans, which has been reduced to a range of 0.001 to 0.02%.
JP1156876A 1989-06-21 1989-06-21 Electrolytic chromic acid treated steel plate for welding can Expired - Fee Related JPH0637714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1156876A JPH0637714B2 (en) 1989-06-21 1989-06-21 Electrolytic chromic acid treated steel plate for welding can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1156876A JPH0637714B2 (en) 1989-06-21 1989-06-21 Electrolytic chromic acid treated steel plate for welding can

Publications (2)

Publication Number Publication Date
JPH0324296A JPH0324296A (en) 1991-02-01
JPH0637714B2 true JPH0637714B2 (en) 1994-05-18

Family

ID=15637322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1156876A Expired - Fee Related JPH0637714B2 (en) 1989-06-21 1989-06-21 Electrolytic chromic acid treated steel plate for welding can

Country Status (1)

Country Link
JP (1) JPH0637714B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197224A (en) * 1982-05-10 1983-11-16 Kawasaki Steel Corp Manufacture of base plate for tin plate and tin-free steel plate by continuous annealing
JPS61213398A (en) * 1985-03-15 1986-09-22 Kawasaki Steel Corp Tin-free steel sheet for welded can and its production
JPS6215610A (en) * 1985-07-15 1987-01-24 Hitachi Ltd Traveling control method for autonomous traveling robot

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197224A (en) * 1982-05-10 1983-11-16 Kawasaki Steel Corp Manufacture of base plate for tin plate and tin-free steel plate by continuous annealing
JPS61213398A (en) * 1985-03-15 1986-09-22 Kawasaki Steel Corp Tin-free steel sheet for welded can and its production
JPS6215610A (en) * 1985-07-15 1987-01-24 Hitachi Ltd Traveling control method for autonomous traveling robot

Also Published As

Publication number Publication date
JPH0324296A (en) 1991-02-01

Similar Documents

Publication Publication Date Title
KR102313040B1 (en) Steel plate for cans and manufacturing method thereof
US6129995A (en) Zinciferous coated steel sheet and method for producing the same
US5861218A (en) Zinciferous plated steel sheet and method for manufacturing same
JPH0216397B2 (en)
JPS5825758B2 (en) Steel plate for welded painted cans
JPH04247897A (en) Production of surface treated steel sheet excellent in weldability and adhesion property with coating material
JPS5930798B2 (en) Steel plate for welded can containers and its manufacturing method
JPS62174397A (en) Thin sn plated steel sheet for container having excellent corrosion resistance and weldability
JPH0637714B2 (en) Electrolytic chromic acid treated steel plate for welding can
JPS6136595B2 (en)
JPS5932556B2 (en) Manufacturing method of chromate-coated steel sheet for containers with excellent weldability and corrosion resistance after painting
JPS5931598B2 (en) New welded can and manufacturing method
JPS6144158B2 (en)
JPS634635B2 (en)
US5374488A (en) Welded tin-free steel can
JPH0431037B2 (en)
JPH11200091A (en) Production of tin-free steel excellent in corrosion resistance
JP2583297B2 (en) Ultra-thin welding can material with excellent seam weldability, paint adhesion and post-paint corrosion resistance
JPH11197704A (en) Plating steel plate having excellent color tone, adhesion and weldability and its manufacture
JPS5947040B2 (en) Steel plate for containers with excellent weldability and corrosion resistance after painting and its manufacturing method
JPH02111899A (en) Production of electrolytically chromated steel sheet having excellent weldability
JPS6013098A (en) Production of surface treated steel sheet for seam welded can
EP0492319B1 (en) Surface treated steel sheet for welded cans
JPS6353288A (en) Low-cost surface treated steel sheet having superior weldability
JP3224457B2 (en) Material for welding cans with excellent high-speed seam weldability, corrosion resistance, heat resistance and paint adhesion

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees