JPS58197224A - Manufacture of base plate for tin plate and tin-free steel plate by continuous annealing - Google Patents
Manufacture of base plate for tin plate and tin-free steel plate by continuous annealingInfo
- Publication number
- JPS58197224A JPS58197224A JP7658682A JP7658682A JPS58197224A JP S58197224 A JPS58197224 A JP S58197224A JP 7658682 A JP7658682 A JP 7658682A JP 7658682 A JP7658682 A JP 7658682A JP S58197224 A JPS58197224 A JP S58197224A
- Authority
- JP
- Japan
- Prior art keywords
- tin
- plate
- rolling
- continuous annealing
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【発明の詳細な説明】
不発・明は、ぶりき及びティンフリー鋼板用原板の製造
方法に関し、特に本発明は連続焼鈍による調質度T1〜
T3を有するぶりき及びティンフリー鋼板用原板の製造
方法に関するものである。[Detailed Description of the Invention] The present invention relates to a method for manufacturing a base plate for tinplate and tin-free steel plate, and in particular, the present invention relates to a method for manufacturing a base plate for tinplate and tin-free steel plate, and in particular, the present invention relates to a method for producing a base plate for tinplate and tin-free steel plate.
The present invention relates to a method for producing a base plate for tinplate and tin-free steel plate having T3.
ぶりきはその調質度がJI8G3303によって規定さ
れており、ロックウェル硬度(HR−30T)で軟質な
ものから、TI(49±3)、T2(53±3)。The tempering degree of tinplate is specified by JI8G3303, which ranges from soft Rockwell hardness (HR-30T) to TI (49±3) and T2 (53±3).
T3(57±3)、、T4(61±3)、’r5(・6
5±3)及びT6(69±3)に区分されている。この
うちT1〜T3のいわゆる軟質板は箱焼鈍法により、T
4〜T6の硬質板は連続焼鈍法により製造されている。T3(57±3), T4(61±3),'r5(・6
5±3) and T6 (69±3). Among these, the so-called soft plates of T1 to T3 are manufactured by the box annealing method.
Hard plates of 4 to T6 are manufactured by continuous annealing.
ところで従来の連続焼鈍炉は急冷帯及び過時効処理帯を
有しないため、従来の連続焼鈍炉によれば14以上の硬
質板しか製造されていなかった。By the way, since the conventional continuous annealing furnace does not have a quenching zone and an overaging treatment zone, only 14 or more hard plates could be manufactured using the conventional continuous annealing furnace.
しかし最近になり急冷帯及び過時効処理帯を有する連続
焼鈍炉の稼動が開始され、T3以下の軟質板を製造する
技術についての特許公開がなされているが、かかる連続
焼鈍炉によれば一般に使われている虹キルド鋼あるいは
M含有量の少ないソフトキルド鋼を使りてもT2相幽の
硬度のものだけしか得られていない。従ってT1相当材
は依然箱焼鈍法によらざるを得なかった。しかしながら
、以下に述べるように箱焼鈍法には種々の問題があった
ことから、連続焼鈍法によりT1〜T3材を製造する方
法の開発が要望されていた。However, recently, continuous annealing furnaces with a quenching zone and an overaging zone have been put into operation, and patents have been published for the technology for manufacturing soft plates of T3 or less. Even if we use rainbow-killed steel or soft-killed steel with a low M content, we can only obtain a hardness of T2-grade steel. Therefore, T1-equivalent materials still have no choice but to use the box annealing method. However, as described below, there were various problems with the box annealing method, so there was a demand for the development of a method for manufacturing T1 to T3 materials by a continuous annealing method.
すなわち箱焼鈍法には下記(1)〜(3)に示すような
欠点があることが知られている。That is, it is known that the box annealing method has the following drawbacks (1) to (3).
(1) タイトコイル状態で焼鈍が施されるために焼
鈍温度を高くすると焼付き欠陥(StickingBr
eak )が生じて歩留が低下する。(1) Since annealing is performed in a tight coil state, increasing the annealing temperature may cause sticking defects (StickingBr).
eak ) occurs and the yield decreases.
(2)均熱には数時間以上が必要であるため、焼鈍中に
鋼板表面の結晶粒界へC,”Mu等が富化濃縮され、そ
の結果グラファイトに起因する表面欠陥、:
が発生したり、またぶりきの耐食性が劣化することがあ
った。(2) Because soaking requires several hours or more, C, Mu, etc. are enriched and concentrated in the grain boundaries on the surface of the steel sheet during annealing, and as a result, surface defects caused by graphite occur. In some cases, the corrosion resistance of tinplate may deteriorate.
(3) コイルの温度は外巻部と内巻線は高温になり
、中巻部は低温になるため、コイル内硬度のばらつきが
大きくなり均質な原板を得ることは困難であり、その結
果平坦度も劣下していた。(3) The temperature of the coil is high in the outer and inner windings, and low in the middle winding, so the variation in the internal hardness of the coil becomes large and it is difficult to obtain a homogeneous original plate, resulting in flatness. It was also worse.
以上述べたことから判るように従来箱焼鈍法によれば良
質のT1−T3級のいわゆる軟質ぶりき原板の製造は困
難であった。As can be seen from the above, it has been difficult to manufacture so-called soft tin blanks of good quality T1-T3 grade using the conventional box annealing method.
さて、軟質ぶりきは主に3ピ一ス缶の胴板などに使用さ
れているが、プレス加工で製缶される缶体にも壕だ使用
される。缶体に使用される場合には軟質であることのほ
かにプレス加工性に優れていることも必要であり、特に
r値の面内異方性が小さいことが要求される。一般にぶ
りきにプレス加工を施すと表面の錫層はプレス加工の潤
滑の役目を果すために、r値はそれほど大きいことは必
要ではないが、面内異方性が大きいとイヤリングが大き
くなシ、歩留が低下して経済的でない。Soft tin is mainly used for the bodies of three-piece cans, but it is also used for can bodies made by press working. When used for can bodies, in addition to being soft, it must also have excellent press workability, and in particular, it is required that the in-plane anisotropy of the r value be small. Generally, when press working is applied to tinplate, the tin layer on the surface plays the role of lubrication during the press process, so the r value does not need to be very large, but if the in-plane anisotropy is large, the earrings will not be large enough. , yield is reduced and it is not economical.
本発明は、従来の連続焼鈍法はもとより箱焼鈍法によっ
ても元分に満足し得る品質の調質度T1〜T3ぶりきお
よびティンフリー鋼板用原板を製造することができなか
ったととに鑑み、連続焼鈍法によって良質の調質度T1
〜T3のプレス加工性に優れる軟質ぶりきおよびティン
フリー鋼板用原板の製造方法を提供することを目的とす
るものであり、特許請求の範囲記載の方法を提供するこ
とにより、前記目的を達成することができる。The present invention is based on the fact that not only the conventional continuous annealing method but also the box annealing method has not been able to produce tinplate and tin-free steel plates with a quality that satisfies the element content. Continuous annealing method achieves high quality T1 heat quality.
The object of the present invention is to provide a method for manufacturing a soft tin plate and a tin-free steel plate material having excellent press workability of T3, and the above object is achieved by providing the method described in the claims. be able to.
すなわち、本発明は、C0,004係以下、 Si0
.04%以下、 Mn 0.05〜0.3%、80.0
2%以下。That is, the present invention provides C0,004 and below, Si0
.. 04% or less, Mn 0.05-0.3%, 80.0
Less than 2%.
但しMn/8比8以上、Po、02%以下、1L10.
02〜0.15%、 N O,004%以下、必要によ
りNbをNb/C原子比で0.3〜1含有し、残部実質
的にFeからなる連続鋳造鋼片に熱間圧延を施す際の仕
上温度を700〜880 t:’となし、さらに巻取温
度500〜640 Cで巻堆す、次いで酸洗、冷間圧延
を順次施した後に690〜8201:l’で連続焼鈍を
施し、さらに調質圧延を施すことを特徴とする連続焼鈍
による調質度T1〜T3を有する軟質ぶりき及びナイン
フリー鋼板用原板の製造方法に関するものである。However, Mn/8 ratio is 8 or more, Po is 0.02% or less, 1L10.
02 to 0.15%, N O, 004% or less, when hot rolling is applied to a continuously cast steel billet containing Nb at an Nb/C atomic ratio of 0.3 to 1 if necessary, and the remainder substantially consisting of Fe. The finishing temperature was set at 700 to 880 t:', and the material was rolled up at a coiling temperature of 500 to 640 C, and then sequentially subjected to pickling and cold rolling, followed by continuous annealing at 690 to 8201:l'. The present invention also relates to a method for producing original plates for soft tinplate and nine-free steel sheets having a temper degree of T1 to T3 by continuous annealing, which is further characterized by performing temper rolling.
次に本発明の詳細な説明する。Next, the present invention will be explained in detail.
本発明者らは、製鋼時に真空脱ガス処理を有効に駆使し
て、C量を極微量にした虹キルド鋼ス5−
ラブを使用することにより連続焼鈍法によっても調質度
T1の原板を製造することができること、ならびに上記
虹キルr鋼スラブに炭化物形成元素であるNbを必要に
より含有させた酸キルド鋼スラブを使用することにより
、r値が大きく、△rが小さいことによって絞シ加工に
よって製缶するにより適した素材を連続焼鈍法を用いて
調質度T1の原板を製造することができることに想到し
て、本発明を完成した。The present inventors have successfully made use of vacuum degassing treatment during steel manufacturing to use rainbow-killed steel slabs with an extremely small amount of C, thereby producing an original plate with a tempering degree of T1 even by continuous annealing. In addition, by using an acid-killed steel slab in which Nb, a carbide-forming element, is optionally added to the Niji-killed steel slab, the r value is large and △r is small, making it possible to draw. The present invention was completed based on the idea that it is possible to manufacture an original plate with a heat treatment degree of T1 using a continuous annealing method using a material more suitable for making cans.
本発明者らは、ぶりきの硬度に及ぼす固溶C9Nおよび
結晶粒径との関係を系統的に調べた結果、固溶C,Nが
少なく結晶粒径が大きくなると軟質になることを知見し
、この知見に基いて焼鈍後に固溶Cを少なくするため出
発材である連続鋳造鋼片製造用溶鋼中のCを少なくすれ
ばよいと考えた。The present inventors systematically investigated the relationship between solid solute C9N and crystal grain size on the hardness of tinplate, and found that the smaller the solid solute C and N and the larger the crystal grain size, the softer it becomes. Based on this knowledge, it was thought that in order to reduce the amount of solid solute C after annealing, the amount of C in the starting material, molten steel for continuous casting billet production, should be reduced.
一方、虹キルド鋼連続鋳造スラブを用いて通常工程によ
り冷延鋼板となしたものに箱焼鈍を施すと、Cについて
は焼鈍後の冷却速度が小さいためにCの溶解温度域にお
いて溶解したCも十分に析出することができるので、固
溶Cの残存量が微小 6−
になる。またNは虹N析出温度(4000以上)域での
焼鈍温度ならびに時間ともに十分であるために、はとん
どすべてUNとして析出し、また焼鈍時間が長いので十
分な粒成長をも計ることができ、従って箱焼鈍後の原板
は軟質で非時効性となるためにぶりきの硬度も十分に軟
質になることが知られている。On the other hand, when box annealing is performed on a cold-rolled steel plate made from a continuous casting slab of Niji-killed steel using the normal process, the cooling rate after annealing is slow for C, so that the C melted in the C melting temperature range is also Since sufficient precipitation is possible, the remaining amount of solid solution C becomes minute. In addition, since the annealing temperature and time in the rainbow N precipitation temperature range (4000 or higher) are sufficient, almost all of the N is precipitated as UN, and the long annealing time makes it difficult to measure sufficient grain growth. Therefore, it is known that the original plate after box annealing becomes soft and non-aging, so that the hardness of the tin plate becomes sufficiently soft.
本発明者らは、先に連続焼鈍法による軟質ぶりき原板の
製造方法を発明して、特願昭56−125996号によ
って特許出願した。前記方法によれば、へ量が少なく、
かつC量をある程度含有した酸キルド鋼材を用い、熱間
圧延に際しては仕上温度をα十γ共存領域あるいはγ領
域で、さらに巻取温度は炭化物が凝集しない範囲で中温
にして得られだ熱延板を用い、急冷帯と過時効処理帯を
有する連続焼鈍炉で再結晶温度以上で焼鈍を施すことに
よって軟質な原板を得ることができた。しかし、ぶりき
の硬度としてはT2〜T3になって、T1のものを得る
ことはできなかった。その理由は、焼鈍時に溶解した固
溶Cを析出させるために、析出サイト(Site)とし
てのセメンタイトを密に分布させるために、C量をある
程度以上含み、巻取温度は中温以下にして連続焼鈍炉に
おいて過時効処理を施してもセメンタイトが十分に析出
するに至らないだめであった。前記セメンタイトの析出
を促進するためには過時効処理時間を長くすることが考
えられるが、そのためには過時効処理設備の長さを長く
する必要があり、とのことは工業的規模では実施が困難
である。また固溶C,Nが残存しためつき原板は次工程
の調質圧延によって加工硬化を受けるばかゆでなく、さ
らにめっき後のりフロー処理(溶錫化処理)によりめっ
き鋼板は約400Cからの水焼入れを受けて歪時効硬化
が加わるので、硬度の増加は固溶元素量に比例して犬き
くなる。したがって軟質ぶりき原板を製造するためには
固溶元素の残存量を箱焼鈍材並みに調整することが肝要
であることに本発明者らは想到した。The present inventors previously invented a method for manufacturing a soft tin blank plate by continuous annealing and filed a patent application for the same in Japanese Patent Application No. 125996/1982. According to the above method, the amount of fat is small;
In addition, an acid-killed steel material containing a certain amount of C is used, and during hot rolling, the finishing temperature is set to the α-10-γ coexistence region or the γ region, and the coiling temperature is set to a medium temperature within a range where carbides do not agglomerate. A soft original plate could be obtained by annealing the plate at a temperature higher than the recrystallization temperature in a continuous annealing furnace having a quenching zone and an overaging zone. However, the hardness of tinplate was T2 to T3, and it was not possible to obtain a tinplate with a hardness of T1. The reason for this is that in order to precipitate the solid solute C dissolved during annealing, in order to densely distribute cementite as precipitation sites, continuous annealing is performed with a certain amount of C included and the coiling temperature below medium temperature. Even if over-aging treatment was performed in a furnace, cementite was not sufficiently precipitated. In order to promote the precipitation of cementite, it is possible to lengthen the overaging treatment time, but this requires increasing the length of the overaging treatment equipment, which is difficult to implement on an industrial scale. Have difficulty. In addition, the plated steel plate in which solid solution C and N remain does not simply undergo work hardening in the next process of temper rolling, but also undergoes water quenching from about 400C due to flow treatment (molten tin treatment) after plating. As a result, strain age hardening is added, so the increase in hardness increases in proportion to the amount of solid solution elements. Therefore, the present inventors have come to the conclusion that in order to produce a soft tin plate, it is important to adjust the residual amount of solid solution elements to the same level as that of box annealed material.
以上の考察から本発明者らは鋭意研究を重ねた結果、同
一の素材を使用して連続焼鈍条件を変えることによって
、ぶりきの調質度がT1〜T3に、さらにまた焼鈍によ
り調質度T1になるぶりき原板を製造して、この原板に
調質圧延の圧下率をそれぞれ変えることによって、T1
〜T3の原板にそれぞれ作り分けることのできることを
新規に知見して本発明を完成した。Based on the above considerations, the inventors of the present invention have conducted intensive research and found that by using the same material and changing the continuous annealing conditions, the tempering degree of tinplate can be increased from T1 to T3, and further annealing can increase the tempering degree of tinplate to T1 to T3. By manufacturing a tin plate with a T1 value and changing the reduction ratio of temper rolling on this plate, a T1 plate is produced.
The present invention was completed based on the new finding that T3 original plates can be made separately.
一般にぶりきをプレス加工により製缶する際にr値を高
くすることも重要であるが、さらに△rを小さくするこ
とが重要であることは前述のとおりである。本発明者ら
は、ぶりき原板のΔrをさらに小さくする方法を検討し
た結果、第1図に示す如く熱延巻取温度を高温にするこ
とが有効であり、さらにまた鋼に必要によりNbをNb
/C原子比で0.3〜1.0を含有させることも有効で
あることを知見した。熱延巻取温度を高温にするとΔr
が小さくなる理由は明らかでないが、鋼中のCはセメン
タイト(Fe3C)としてフェライト粒界に粗大析出し
、フェライト中の固溶C量が少なくなるためにr値が向
上するとともに、Δrも小さくなるものと考えられる。In general, it is important to increase the r value when making tinplate cans by press working, but as described above, it is also important to reduce Δr. The present inventors investigated a method for further reducing Δr of the tin plate, and found that it is effective to increase the hot-rolling temperature as shown in Fig. 1, and also add Nb to the steel if necessary. Nb
It has been found that it is also effective to contain a /C atomic ratio of 0.3 to 1.0. When the hot rolling coiling temperature is increased, Δr
Although it is not clear why the value becomes smaller, C in steel coarsely precipitates at the ferrite grain boundaries as cementite (Fe3C), and the amount of solid solute C in the ferrite decreases, which improves the r value and reduces Δr. considered to be a thing.
またNbを含有させる効果は上記と同様であシ、Nbは
炭化物形、成元素である9−
ので、NbCの析出による影響であると考えられる。Further, the effect of containing Nb is similar to that described above, and since Nb is a carbide-form element, it is thought that the effect is due to the precipitation of NbC.
次に出発素材である連続鋳造鋼片の成分元素の挙動なら
びに成分組成を限定する理由を説明する。Next, the behavior of the constituent elements of the continuous cast steel billet, which is the starting material, and the reason for limiting the composition will be explained.
Cは再結晶温度を大きく支配し再結晶粒径の成長を抑制
する重要な元素であり、箱焼鈍法によればC量を多くす
ると結晶粒径は小さくなって硬質化するが、連続焼鈍法
による場合にはC量が多くなるに従って硬質化するとい
う単純な傾向は見られない。第2図にぶりき硬度に及ぼ
すC量の影響を熱延仕上温度(以下この温度をFTと称
す)および熱延巻取温度(以下この温度なCTと称す)
と連続焼鈍(以下この焼鈍をCALと称す)の再結晶温
度との関係で示すが、同図から判るよ゛うに非常に複雑
な傾向を示す。これを冶金学的に説明すると、C量が約
0.004%以下の極微量になるに従って軟質化し、一
方C量が増加すると約o、ox4において最も硬度が高
くな“るピークが見られ、C量がさらに多くなる□に従
って逆に硬度は低くなり、C量0.03〜0.06%の
範囲内で谷となり、さらにC量が多くなるとまた硬度が
高くなる。C量が約 10−
0、004%以下で軟質になる理由は焼鈍時にCの溶解
温度での溶解量の絶対値が少ないことにより、Cによる
歪時効硬化が小さくなるためと考えられる。またC量0
.01%でピークが現れる理由は溶解したCを析出させ
るに際し、C量が少ないので析出核としてのFe5Cが
少ないために析出移動距離が長くなって、これにより冷
却過程での析出量が少なくなり多く残存するからである
。したがって0.01%を超えるある程度のC量を含ん
でいるものが軟質化するに際して有効である。しかしさ
らにC量が多くなるとFe5Cは十分存在するが結晶粒
径が小さくなるので硬質化する。C is an important element that greatly controls the recrystallization temperature and suppresses the growth of the recrystallized grain size. According to the box annealing method, increasing the amount of C causes the grain size to become smaller and become harder, but in the continuous annealing method In this case, there is no simple tendency for the steel to become harder as the amount of C increases. Figure 2 shows the effect of C content on tinplate hardness at hot rolling finishing temperature (hereinafter referred to as FT) and hot rolling winding temperature (hereinafter referred to as CT at this temperature).
It is shown in relation to the recrystallization temperature of continuous annealing (hereinafter referred to as CAL), and as can be seen from the figure, it shows a very complicated tendency. To explain this from a metallurgical perspective, as the amount of C decreases to a very small amount of about 0.004% or less, it becomes softer, while as the amount of C increases, a peak of the highest hardness is seen at about 0.0 x 4. On the contrary, as the C content increases, the hardness decreases, reaching a trough within the C content range of 0.03 to 0.06%, and as the C content increases, the hardness increases again.When the C content is approximately 10- The reason why it becomes soft when it is less than 0.004% is thought to be that the absolute value of the amount of C dissolved at the melting temperature during annealing is small, so that strain age hardening due to C becomes small.
.. The reason why a peak appears at 01% is that when dissolving C is precipitated, the amount of C is small, so there is less Fe5C as a precipitate nucleus, so the precipitate travel distance becomes longer, and as a result, the amount of precipitate during the cooling process decreases and increases. This is because it remains. Therefore, a material containing a certain amount of C exceeding 0.01% is effective for softening. However, when the amount of C increases further, although Fe5C is present in sufficient quantity, the crystal grain size becomes smaller and becomes hard.
従って連続焼鈍炉により調質度T3以下の軟質ぶりき原
板を製造するためには、C0,004%以下にする必要
がある。Therefore, in order to produce a soft tin plate with a refining degree of T3 or less using a continuous annealing furnace, it is necessary to reduce the C to 0.004% or less.
Siはぶりきの耐食性を劣化させるほか、さらに材質を
極端に硬質化する元素であるので、Siを過剰に含有さ
せることは避けるべきである。よって製鋼段階でできる
だけ少なくなるよう圧することが肝要であり、耐火物中
の8i02が溶鋼中の虹に゛よって還元されるのを抑制
するために、従来使用されているシャモツト質耐火物に
代えてジルコン質耐火物を用いる等の注意を要する。す
なわち、Siは0.04%より多いと硬質化して調質度
T1〜T3のぶりき原板を製造することができないので
Siは0.04%以下にする必要がある。Si is an element that not only deteriorates the corrosion resistance of tinplate but also makes the material extremely hard, so it should be avoided to contain Si in excess. Therefore, it is important to apply pressure so that the amount of 8i02 in the refractory is reduced as much as possible during the steelmaking stage. Care must be taken, such as using zircon refractories. That is, if Si exceeds 0.04%, it will become hard and it will not be possible to produce a tin plate with a heat treatment degree of T1 to T3, so it is necessary to keep the Si content at 0.04% or less.
Mnは熱延コイルの耳割れ発生を防止するために添加す
る必要があるが、上記耳割れは直接的にはSによって支
配され、このSによる耳割れの発生をMnの添加によっ
て抑制している。したがってSiが少なければ敢えてM
nを添加する必要はないが、鋼中にはSが不可避的に含
有されていることからMnを添加する必要がある。Mn
が0.05係より少ないと耳割れの発生を防止するとと
′ができず、一方Mnが0.3%より多いと硬質化する
のでMnは0.05〜0.3%の範囲内にする必要があ
る。Mn needs to be added to prevent the occurrence of edge cracks in hot-rolled coils, but the above edge cracks are directly controlled by S, and the addition of Mn suppresses the occurrence of edge cracks caused by S. . Therefore, if Si is small, M
Although it is not necessary to add n, it is necessary to add Mn because S is inevitably contained in steel. Mn
If the Mn is less than 0.05%, it will not be possible to prevent the occurrence of ear cracks, while if the Mn is more than 0.3%, it will become hard, so the Mn should be within the range of 0.05 to 0.3%. There is a need.
SはMn量との関係において過剰に含有すると熱延コイ
ルの耳割れを生成させ、またS系介在物となってプレス
欠陥となるのでSは0.02%以下にする必要があり、
特にMn/S比で8より少ないと上記耳割れ、あるいは
プレス欠陥が発生するのでMn/Sは8以七にする必要
がある。In relation to the amount of Mn, if excessive S is contained, it will cause edge cracks in the hot-rolled coil, and it will also become S-based inclusions that will cause press defects, so S needs to be kept at 0.02% or less.
In particular, if the Mn/S ratio is less than 8, the above-mentioned edge cracking or pressing defects will occur, so Mn/S must be 8 or more.
Pは材質を硬質化させ、かつぶりきの耐食性を劣化させ
る元素であるので、過剰の含有は好ましくなく、Pは0
.02%以下にする必要がある。P is an element that hardens the material and deteriorates the corrosion resistance of tin plate, so excessive content is undesirable, and P is 0.
.. It is necessary to keep it below 0.02%.
Mは鋼の製造過程において脱酸剤の機能を発揮する元素
であり、鋼中の含有量が多くなるに従って鋼の清浄度が
高くなるが過剰の添加は経済的に好ましくないし、さら
に再結晶粒径の成長を抑制するので、υは0.15%以
下にする必要がある。M is an element that performs the function of a deoxidizing agent in the steel manufacturing process, and as its content increases, the purity of the steel increases, but excessive addition is economically unfavorable, and it also reduces recrystallized grains. In order to suppress the growth of the diameter, υ needs to be 0.15% or less.
一方虹の下限量としては、本質的には溶鋼中の固溶酸素
量に見合った量の虹を添加して脱酸を完了させることが
できればよいことから金属虹として鋼中に残存させる必
要はないことになるが、このようにするとぶりきの清浄
度が悪くなる。さらに軟質ぶりきを得るだめには固溶N
を虹によって固定し、その残存量を減らす必要がある。On the other hand, as for the lower limit amount of rainbow, it is essentially enough to complete deoxidation by adding an amount of rainbow corresponding to the amount of solid solution oxygen in molten steel, so there is no need for it to remain in the steel as metallic rainbow. Although this will not happen, the cleanliness of the tinplate will deteriorate if you do this. Furthermore, to obtain soft tinplate, solid solution N is added.
It is necessary to fix it with a rainbow and reduce its remaining amount.
虹が0.02%より少ないと鋼中の固溶N量が多くなる
ので、htは0.02%以上にする必要がある。If the rainbow is less than 0.02%, the amount of solid solution N in the steel will increase, so ht needs to be 0.02% or more.
よって虹はOO2〜0.15%の範囲内に限定する。Therefore, rainbow is limited to the range of OO2 to 0.15%.
13−
Nは鋼の製造過程において空気中のNが混入する結果含
有されるが、Nが鋼中に固溶していると軟質な鋼板が得
られずNは不必要な元素であるので、製鋼過程で空気中
からのNの混入を極力抑制してNは0.004 %以下
にする必要がある。13-N is contained as a result of N mixed in the air during the manufacturing process of steel, but if N is dissolved in steel, a soft steel plate cannot be obtained and N is an unnecessary element. It is necessary to suppress the incorporation of N from the air during the steelmaking process to the extent possible to reduce the N content to 0.004% or less.
Nbは炭化物形成元素であって、固溶Cの残存量を少な
くする機能を有し、一方、多量添加すると製造コストが
上昇することになるので、Nbは必要最低限にすること
が望ましい。Nbの添加により前述のようにr値の向上
と共に△rを小さくすることができる。また連続焼鈍時
の再結晶温度をNbを添加しないものに比べて低温にし
ても、同水準の硬度のものが得られる。よってぶりきの
用途により板厚の薄いものを製造する場合には連続焼鈍
温度を高くすると曳・1通板作業性が悪くなるのでNb
を添加して焼鈍温度を下げる方法が採用される。N b
/C原子比が0.3より小さいと上記Nb添加による効
果が得られず、一方、1より大きいと不経済であるので
Nb/C原子比は0.3〜1の範囲内にする必要がある
。Nb is a carbide-forming element and has the function of reducing the remaining amount of solid solution C. On the other hand, if a large amount is added, the manufacturing cost will increase, so it is desirable to keep Nb to the minimum necessary. By adding Nb, it is possible to improve the r value and reduce Δr as described above. Furthermore, even if the recrystallization temperature during continuous annealing is lower than that of a material without Nb added, the same level of hardness can be obtained. Therefore, when producing thin plates depending on the purpose of tinplate, if the continuous annealing temperature is raised, the workability of pulling and passing the plate will deteriorate, so Nb
A method is adopted in which the annealing temperature is lowered by adding . Nb
If the Nb/C atomic ratio is smaller than 0.3, the effect of Nb addition cannot be obtained, while if it is larger than 1, it is uneconomical, so the Nb/C atomic ratio needs to be within the range of 0.3 to 1. be.
= 14−
本発明の出発素材である鋼を製造するにはC量を0.0
04%以下の微量となすことに注意する必要があり、こ
のためには真空脱ガス処理法によって脱炭反応を生起さ
せてCを低下させる方法がある。= 14- To manufacture the steel that is the starting material of the present invention, the amount of C is 0.0.
Care must be taken to keep the amount of C to 0.4% or less, and for this purpose, there is a method of causing a decarburization reaction using a vacuum degassing treatment method to lower the C content.
一方通常の脱ガス法によれば長時間を要し、さらにCO
,004%以下にすることが困難であると共に、脱ガス
処理中に溶鋼の温度低下が大きくなって、次工程の連続
鋳造工程において鋳造作業が困難になるばかりでなく、
溶鋼温度の低下により介在物の浮上分離性が悪く鋼の清
浄度が劣化するので満足できる品質のぶりきが得られな
くなる。したがって本発明において用いられる出発素材
を得るには溶鋼を真空脱ガス処理することにより脱ガス
効率を向上させることが肝要になる。このためには底吹
転炉による場合には吹止Cを0.03%以下に低下させ
ること、ならびに脱ガス溶鋼の環流速度を上昇させるこ
とが有効であり、かかる速度上昇、)えい□よ脱、ユ用
環流7ノ量ヶ増大ヶ、お。とが重要である。本発明者ら
の実験によれば、CO,03%の溶鋼を脱炭する通常の
真空脱ガス処理において取鍋溶鋼を5回転環流させても
o、oos%CK4でしか下がらなかったのに対し、上
記の如く環流ガス量を増大して環流速度を上昇させるこ
とにより、同一回転環流によってCO,004%以下に
することができるばかりでなく、短時間で同一回転環流
処理が達成され、さらにまた温度低下も最小に抑制する
ことができる。On the other hand, the normal degassing method takes a long time and also
,004% or less, and the temperature of the molten steel decreases significantly during the degassing process, which not only makes casting work difficult in the next continuous casting process.
As the temperature of the molten steel decreases, the floating separation of inclusions becomes poor and the cleanliness of the steel deteriorates, making it impossible to obtain tinplate of satisfactory quality. Therefore, in order to obtain the starting material used in the present invention, it is important to improve the degassing efficiency by subjecting molten steel to vacuum degassing treatment. For this purpose, in the case of a bottom-blowing converter, it is effective to reduce the blow-off C to 0.03% or less and to increase the circulation speed of degassed molten steel. After removal, increase the amount of recirculation by 7 hours. is important. According to experiments conducted by the present inventors, in normal vacuum degassing treatment for decarburizing molten steel with CO, 03%, even if the ladle molten steel was circulated 5 times, the o, oos% CK decreased only to 4. By increasing the amount of reflux gas and increasing the reflux speed as described above, not only can CO2 be reduced to 4% or less with the same rotational reflux, but also the same rotational reflux treatment can be achieved in a short time. Temperature drop can also be suppressed to a minimum.
本発明において用いる連続鋳造鋼片は、上述の如く転炉
溶鋼に環流速度を大きくした真空脱ガス処理を施L、次
に連続鋳造して得ることができる。The continuously cast steel billet used in the present invention can be obtained by subjecting molten steel in a converter to vacuum degassing treatment at a high recirculation rate as described above, and then continuously casting the steel.
このようにして得られた鋼片に熱間圧延を施す際FTを
700〜880tl:’、CTを500〜640Cで巻
取る必要がある。When hot-rolling the steel slab obtained in this way, it is necessary to wind it at a FT of 700 to 880 tl:' and a CT of 500 to 640 C.
ところでFTとCTとは冶金学的には下記のような作用
を有する。すなわち通常のCiの鋼片はγ(オーステナ
イト)領域で圧延を施すか、α(フェライト)+γ領域
で圧延を施すかによって結晶粒径と絞り加工性に影響を
及ぼす集合組織に大きな影響が与えられる。しかし本発
明によれば、C量が0.004%以下と非常に低いため
にFTによる再結晶粒径には余り大きな差異はみられな
かったが、r値には差がみられ、FT高温のものはr値
が大きくなると共に△rが小さくなることも判った。一
方CTは中温にしたものはより結晶粒径も大きくなるし
、r値も大きく、△rも小さくなる傾向がみられ、CT
が580〜640Cの温度範囲内でその効果が十分みら
れたので、それ以上て高温にする必要がないことが判っ
た。なお、高温にすると酸洗効率も悪くなることは当然
のことである。By the way, FT and CT have the following metallurgical effects. In other words, whether a normal Ci steel billet is rolled in the γ (austenite) region or in the α (ferrite) + γ region has a large effect on the grain size and texture, which affects drawability. . However, according to the present invention, since the C content was very low at 0.004% or less, there was not much difference in the recrystallized grain size by FT, but there was a difference in r value, and FT high temperature It was also found that as the r value increases, Δr decreases. On the other hand, when CT is heated to medium temperature, the grain size becomes larger, the r value becomes larger, and △r tends to become smaller.
Since the effect was sufficiently observed within the temperature range of 580 to 640C, it was found that there was no need to raise the temperature higher than that. Note that, as a matter of course, when the temperature is increased, the pickling efficiency also deteriorates.
以上の結果、3ピ一ス缶の胴板のように折り曲げ、フラ
ンジ出し加工のみの用途のものにはFT。As a result of the above, FT is used for items that only need to be bent and flanged, like the body of a 3-piece can.
CTは低温であってもよいが、プレス加工により製缶す
るもの、あるいは板厚が薄く高温焼鈍が難しいものには
CTを中温すなわち580〜540 Cにして、結晶粒
径の粗大化を計ったものが適している。この効果は結晶
粒径を大きくすることによる(111)集合組織の発達
に加え、炭化物を大きくして粒内な清浄化し、さらに焼
鈍時にCが溶解する量を妨げる効果と、CTを中温にす
ることによってA7Nの析出率を高くして固溶Nを少な
くできる17−
効果も加わったものと考えられる。址た調質度T1を得
るためにはCTを中温すなわち580〜640Cにした
ものが適している。CT can be carried out at a low temperature, but for cans made by press working or plates that are thin and difficult to annealing at high temperatures, CT is set to medium temperature, i.e. 580 to 540 C, in order to coarsen the crystal grain size. things are suitable. This effect is due to the development of the (111) texture by increasing the grain size, the increase in the size of carbides, the cleaning of the grains, the effect of inhibiting the amount of C dissolved during annealing, and the effect of increasing the CT temperature to medium. This is considered to have the additional effect of increasing the precipitation rate of A7N and reducing the amount of solid solution N. In order to obtain a high thermal quality T1, it is suitable to use CT at a medium temperature, that is, 580 to 640C.
このようにして製造された熱延銅帯を通常の酸洗で脱ス
ケール後、これに冷間圧延を施した後、連続焼鈍を施す
がC量が微量であるため再結晶温度が高くなる。第3図
はCTとHMVとの関係を示す図であり、C量と再結晶
温度との関係が判り、C量が少なくなるに従って再結晶
温度が高くなることが判る。かかる現象が生起する原因
はC量が少なくなることによって転移密度が小さく、内
部歪エネルギーが小さくなるからである。従って調質度
T Iの最も軟質なものを得るためには、CTを中温に
した素材を用いて750C以上の高温焼鈍を施して十分
再結晶させることが必要である。しかし焼鈍を700C
で施すと一部に未再結晶組織が残って若干硬質になるの
で結果的には調質度はT3相当になることを本発明者ら
は知見した。従って熱延温度と連続焼鈍温度を組合せる
ことによって従来不可能とされていた連続焼鈍による調
質度18−
TIも得られるに至り、また調質度T3も過時効処理を
施すことなく得られるに至った。The hot-rolled copper strip produced in this way is descaled by ordinary pickling, then cold rolled and then continuously annealed, but the recrystallization temperature becomes high because the amount of C is small. FIG. 3 is a diagram showing the relationship between CT and HMV, and shows the relationship between the amount of C and the recrystallization temperature, and it can be seen that the recrystallization temperature becomes higher as the amount of C decreases. The reason why this phenomenon occurs is that as the amount of C decreases, the dislocation density decreases and the internal strain energy decreases. Therefore, in order to obtain the softest material with a tempering degree TI, it is necessary to sufficiently recrystallize by annealing at a high temperature of 750 C or higher using a material made of medium-temperature CT. However, annealing at 700C
The inventors of the present invention have found that if the steel is applied with a heat treatment, an unrecrystallized structure remains in some parts and becomes slightly hard, resulting in a refining degree equivalent to T3. Therefore, by combining the hot rolling temperature and the continuous annealing temperature, it has become possible to obtain a heat quality of 18-TI, which was previously considered impossible, through continuous annealing, and a heat quality of T3 can also be obtained without performing overaging treatment. reached.
さらに前述のように連続焼鈍後T1和尚の材質が得られ
る軟質材を用いて調質圧延による加工硬化を利用して第
4図に示すようにT1〜T3を作り分けることができる
ことも知見した。この軟質材はほとんど非時効性である
ため調質圧延の圧延率を高くすることによってだけで硬
質化することができることが判った。Furthermore, as mentioned above, it was also found that T1 to T3 can be separately produced as shown in FIG. 4 by using a soft material that can obtain the material of T1 after continuous annealing and utilizing work hardening by temper rolling. It has been found that since this soft material is almost non-aging, it can be made hard simply by increasing the rolling rate in temper rolling.
一方ぶりきのめつき工程においてリフロー処理を施すが
、その処理による硬度の上昇は約1ポイント(r−tR
−3o ’I’ )以下であり、ティンフリー鋼板のよ
うにリフロー処理を施さないものも、以上に述べた考え
ならびに方針で十分に作ることができることが判った。On the other hand, in the tinplate plating process, reflow treatment is applied, but the increase in hardness due to this treatment is approximately 1 point (r-tR
-3o'I') or less, and it was found that products that are not subjected to reflow treatment, such as tin-free steel plates, can be sufficiently manufactured using the above-mentioned ideas and policies.
次に本発明を実施例について比較例と対比して説明する
。Next, the present invention will be explained by comparing examples with comparative examples.
実施例
表に示す如き成分組成の鋼を270を底吹き転炉により
溶製し、C0,03%となして出鋼した。続いてR,−
H真空脱ガス処理を施してC08005%以下に脱炭し
た後、虹を添加し続いてNbを添加するものとNbを添
加しないものとを作った。これらをそれぞれ連続鋳造機
を用いて介在物の浮上分離を促進して鋳込んで清浄塵に
優れた鋼片を得た。Steel 270 having the composition shown in the Examples table was melted in a bottom blowing converter, and the steel was tapped to a CO of 0.03%. Then R, -
After performing H vacuum degassing treatment to decarburize to below C08005%, Niji was added and then Nb was added, and Nb was not added. Each of these was cast using a continuous casting machine to promote flotation and separation of inclusions to obtain steel slabs with excellent cleanliness and dust.
これらの鋼片を表に示す熱延温度でそれぞれ圧延し2.
6瓢厚の熱延コイルとなした後、酸洗して脱スケールし
た。次に6スタンドタンデム冷間圧延機にて0.3rn
m(冷間圧延率87.7%)の極薄板厚に圧延した後、
連続焼鈍を施した。熱サイクルは650C,700C,
750t;、 800Cそれぞれ60秒の水準であっ
た。続、いて調質圧延機にて圧延率1%及び実施例16
〜21については焼鈍までは同一条件下で行ったものを
圧延率のみを1.3.5%の3水準となし加工硬化によ
る高調質度を求めた。These steel pieces were rolled at the hot rolling temperatures shown in the table.2.
After forming a hot-rolled coil with a thickness of 6 mm, it was descaled by pickling. Next, 0.3rn in a 6-stand tandem cold rolling mill
After rolling to an ultra-thin plate thickness of m (cold rolling rate 87.7%),
Continuous annealing was performed. Heat cycles are 650C, 700C,
750t; and 800C for 60 seconds each. Subsequently, the rolling rate was 1% in a temper rolling mill and Example 16
-21 were subjected to the same conditions up to annealing, and only the rolling reduction was set to 3 levels of 1.3.5% to determine the high degree of thermal refinement due to work hardening.
調質圧延を施した後、ハロゲンタイプの電気錫めっき工
程にて#25錫めっきおよびリフロー処理(溶錫化処理
)を連続して施して、ぶりきに仕上げた。ぶりきから供
試材を採取し硬度([IR−3oT)r、Δr(Δr=
−ワ辷九皐ビゴη)−)を測定し、また曲げ加工を施し
て耐フルーテイングテストを行った。フルーティングテ
ストの評価は缶の胴の成形に相当するように曲げ加工を
施し、胴体に発生した折れが商品として屋るに耐えない
程度のもの(×印で表示)とそうでないもの(O印で表
示)に判定した。After temper rolling, #25 tin plating and reflow treatment (molten tin treatment) were successively performed in a halogen-type electrolytic tin plating process to produce tinplate. Sample materials were collected from tinplate and hardness ([IR-3oT) r, Δr (Δr=
-The length of each piece was measured, and a fluting resistance test was conducted by bending the sample. In the fluting test, the bending process is performed to correspond to the shaping of the body of a can, and the bending process is performed on cases where the body is bent to the extent that it cannot be sold as a product (marked with an X) and cases where it is not (marked with an O). ).
表により明らかな如く、焼鈍温度が650 Gのものは
温度が低いために硬質化し、フルーティング性も悪かっ
た。またC量が0.005%と本発明によらないものは
硬度が高く、軟質ぶりきを得ることができなかった。−
力木発明によるものは倒れも軟質ぶりきになっており、
さ゛らに次の特徴が見られる。As is clear from the table, the annealing temperature of 650 G resulted in hardness due to the low temperature and poor fluting properties. Moreover, the hardness of a material not according to the present invention with a C content of 0.005% was high, and it was not possible to obtain a soft tinplate. −
The ones invented by the strength wood are made of soft tin that can be bent easily.
The following characteristics can be seen.
(イ)焼鈍温度750C以上のものは調質度T1になる
が、700tZ:のものは調質度’r2.’[’3に相
当する硬度になっている。この原因は十分再結晶しなか
ったために硬質になったためであると考えられる。従っ
て焼鈍前まで同じ条件で製造した素材を焼鈍温度を2水
準に変えることによりT1. T、2゜T3と作り分け
ることができるので、素材を統合21−
するととができるという大きなメリットがある。(a) Those with annealing temperature of 750C or higher have a refining degree of T1, but those with an annealing temperature of 700tZ: have a refining degree of 'r2. '['The hardness is equivalent to 3. The reason for this is thought to be that it became hard because it was not sufficiently recrystallized. Therefore, by changing the annealing temperature to two levels for the material manufactured under the same conditions before annealing, T1. Since it can be made separately into T, 2° and T3, there is a big advantage that it can be made by integrating the materials.
60)焼鈍後1%の圧延率で調質圧延を施して調質度T
1が得られる素材を用いて圧延率をより高くすることに
より調質度TI、 T3. T5と作り分けることがで
きる。従ってかかる方法を用いる場合にも素材の統合が
可能になり、大きなメリットとなる。60) After annealing, temper rolling is performed at a rolling rate of 1% to achieve temper degree T.
By using a material that can obtain T1 and increasing the rolling rate, the tempering degree TI, T3. It can be made separately from T5. Therefore, even when such a method is used, materials can be integrated, which is a great advantage.
(ハ)また、Nbを添加しないと若干材質は劣化するも
のの、十分本発明の目的を満足するぶりき原板を得るこ
とができる。(c) Furthermore, if Nb is not added, although the material quality deteriorates slightly, it is possible to obtain a tin plate that fully satisfies the object of the present invention.
に)プレス加工によって製缶するものにあってはr値が
一定値以上を有すると共に△rの小さいものが適してい
るが、このためにはFT、 CTを高くして作ったもの
が適しており、またNb添加材が優れていることが判る
。2) For cans made by press working, it is suitable to have an r value of a certain value or more and a small △r, but for this purpose, it is suitable to make cans with high FT and CT. It can also be seen that the Nb-added material is superior.
22−
以上本発明によれば、調質度T1〜T3を有するぶシき
およびティンフリー鋼板用原板を製造することができる
と共に調質度T1となる出発素材より調質度T1〜T3
の原板を自由に作り分けることができる。22- According to the present invention, it is possible to produce base sheets for brushed and tin-free steel sheets having a heat treatment degree of T1 to T3, and to obtain heat treatment degrees of T1 to T3 from a starting material having a heat treatment degree of T1.
You can freely create different original plates.
第1図は熱延板の巻取温度Cと△rとの関係を示す図、
第2図はぶりき硬度に及ぼすC量の影響をFTおよびC
TとCALの再結晶温度との関係を示す図、第3図は硬
度HMVとCTならびに再結晶温度との関係を示す図、
第4図は調質圧延率(%)とぶりきの硬度との関係を示
す図である。
特許出願人 川崎製鉄株式会社
代理人弁理士 村 1) 政 治24−FIG. 1 is a diagram showing the relationship between the coiling temperature C of a hot-rolled sheet and Δr,
Figure 2 shows the influence of C amount on tinplate hardness by FT and C
A diagram showing the relationship between T and recrystallization temperature of CAL, Figure 3 is a diagram showing the relationship between hardness HMV and CT and recrystallization temperature,
FIG. 4 is a diagram showing the relationship between temper rolling ratio (%) and tinplate hardness. Patent applicant Kawasaki Steel Co., Ltd. Representative patent attorney Mura 1) Politics 24-
Claims (1)
、 Mn O,’05〜0.3qb、 so、o2%以
下、但しMn/Sn/S上。 Po、02%以下、 At0.02〜0.15%、
N、0.004%以下、必要によすNbをNb/C原子
比で0.3〜1含有し、残部実質的にFeよりなる連続
鋳造鋼片に熱間圧延を施す際仕上温度を700〜880
Cとなし、500〜640Cの巻取温度で巻取り、次い
で酸洗。 冷間圧延を順次施した後690〜820 Cで連続焼鈍
を施し、さらに調質圧延を施すことを特徴とする連続焼
鈍による調質度T1〜T3を有するぶりきおよびティン
フリー鋼板用原板の製造方法。 コ、前記連続鋳造鋼片に熱間圧延を施す際仕上温度を7
00〜880Cとなし、580〜640 tl:’の巻
取温度で巻取り、次いで酸洗、冷間圧延を順次施した後
、740〜820Cで連続焼鈍を施し、次いで圧延率1
〜5係の範囲内で調質圧延を施すことを特徴とする特許
請求の範囲第1項記載の製造方法。[Claims] /, CO, 004% or less, 8i 0.04% or less, Mn O, '05 to 0.3qb, so, o2% or less, provided that on Mn/Sn/S. Po, 0.02% or less, At0.02-0.15%,
Contains N, 0.004% or less, Nb as necessary at a Nb/C atomic ratio of 0.3 to 1, and the remainder is substantially Fe when hot rolled at a finishing temperature of 700. ~880
C, rolled at a winding temperature of 500-640C, then pickled. Production of original plates for tinplate and tin-free steel sheets having a temper degree of T1 to T3 by continuous annealing, characterized in that cold rolling is performed sequentially, followed by continuous annealing at 690 to 820 C, and further temper rolling is performed. Method. When hot rolling the continuously cast steel billet, the finishing temperature is set to 7.
00 to 880C, coiled at a winding temperature of 580 to 640 tl:', then pickled and cold rolled sequentially, then continuously annealed at 740 to 820C, and then rolled at a rolling rate of 1
The manufacturing method according to claim 1, characterized in that skin pass rolling is performed within the range of .about.5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7658682A JPS58197224A (en) | 1982-05-10 | 1982-05-10 | Manufacture of base plate for tin plate and tin-free steel plate by continuous annealing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7658682A JPS58197224A (en) | 1982-05-10 | 1982-05-10 | Manufacture of base plate for tin plate and tin-free steel plate by continuous annealing |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58197224A true JPS58197224A (en) | 1983-11-16 |
JPH0152450B2 JPH0152450B2 (en) | 1989-11-08 |
Family
ID=13609389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7658682A Granted JPS58197224A (en) | 1982-05-10 | 1982-05-10 | Manufacture of base plate for tin plate and tin-free steel plate by continuous annealing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58197224A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0164263A2 (en) * | 1984-06-08 | 1985-12-11 | Kawasaki Steel Corporation | Production of a base steel sheet to be surface-treated which is to produce no stretcher strain |
JPS6169928A (en) * | 1984-09-12 | 1986-04-10 | Kawasaki Steel Corp | Manufacture of steel plate for ironing by continuous annealing |
JPS61207520A (en) * | 1985-03-13 | 1986-09-13 | Kawasaki Steel Corp | Production of soft blank plate for surface treatment |
JPS6263619A (en) * | 1985-09-17 | 1987-03-20 | Kawasaki Steel Corp | Manufacture of soft nonaging steel sheet |
JPH0324296A (en) * | 1989-06-21 | 1991-02-01 | Toyo Kohan Co Ltd | Electrolytic chromated steel sheet for welded can |
GB2263705A (en) * | 1991-07-29 | 1993-08-04 | Toyo Kohan Co Ltd | Method for manufacturing a tin-plated steel sheet useful in making a high strength drawn and ironed can |
JPH06212356A (en) * | 1993-01-18 | 1994-08-02 | Kawasaki Steel Corp | Plating original sheet excellent in secondary workability and its production |
KR100338709B1 (en) * | 1997-03-13 | 2002-11-14 | 주식회사 포스코 | Method for manufacturing tin plating plate used in dome and adona of aerosol |
KR100515048B1 (en) * | 2000-12-22 | 2005-09-14 | 주식회사 포스코 | High strength packaging steel for 2-piece can |
KR100946132B1 (en) * | 2002-09-30 | 2010-03-10 | 주식회사 포스코 | A manufacturing method of tinplate |
JP2011058036A (en) * | 2009-09-09 | 2011-03-24 | Nippon Steel Corp | Steel sheet for drawn can, and plated steel sheet for drawn can |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0491660U (en) * | 1990-05-14 | 1992-08-10 |
-
1982
- 1982-05-10 JP JP7658682A patent/JPS58197224A/en active Granted
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0164263A2 (en) * | 1984-06-08 | 1985-12-11 | Kawasaki Steel Corporation | Production of a base steel sheet to be surface-treated which is to produce no stretcher strain |
JPS60262918A (en) * | 1984-06-08 | 1985-12-26 | Kawasaki Steel Corp | Manufacture of surface treating raw sheet without causing stretcher strain |
JPS6330368B2 (en) * | 1984-06-08 | 1988-06-17 | Kawasaki Steel Co | |
JPS6169928A (en) * | 1984-09-12 | 1986-04-10 | Kawasaki Steel Corp | Manufacture of steel plate for ironing by continuous annealing |
JPS61207520A (en) * | 1985-03-13 | 1986-09-13 | Kawasaki Steel Corp | Production of soft blank plate for surface treatment |
JPH0152452B2 (en) * | 1985-03-13 | 1989-11-08 | Kawasaki Steel Co | |
JPS6263619A (en) * | 1985-09-17 | 1987-03-20 | Kawasaki Steel Corp | Manufacture of soft nonaging steel sheet |
JPH0249373B2 (en) * | 1985-09-17 | 1990-10-30 | Kawasaki Steel Co | |
JPH0324296A (en) * | 1989-06-21 | 1991-02-01 | Toyo Kohan Co Ltd | Electrolytic chromated steel sheet for welded can |
JPH0637714B2 (en) * | 1989-06-21 | 1994-05-18 | 東洋鋼鈑株式会社 | Electrolytic chromic acid treated steel plate for welding can |
GB2263705A (en) * | 1991-07-29 | 1993-08-04 | Toyo Kohan Co Ltd | Method for manufacturing a tin-plated steel sheet useful in making a high strength drawn and ironed can |
GB2263705B (en) * | 1991-07-29 | 1995-07-12 | Toyo Kohan Co Ltd | Method for manufacturing a high strength drawn and ironed can |
JPH06212356A (en) * | 1993-01-18 | 1994-08-02 | Kawasaki Steel Corp | Plating original sheet excellent in secondary workability and its production |
KR100338709B1 (en) * | 1997-03-13 | 2002-11-14 | 주식회사 포스코 | Method for manufacturing tin plating plate used in dome and adona of aerosol |
KR100515048B1 (en) * | 2000-12-22 | 2005-09-14 | 주식회사 포스코 | High strength packaging steel for 2-piece can |
KR100946132B1 (en) * | 2002-09-30 | 2010-03-10 | 주식회사 포스코 | A manufacturing method of tinplate |
JP2011058036A (en) * | 2009-09-09 | 2011-03-24 | Nippon Steel Corp | Steel sheet for drawn can, and plated steel sheet for drawn can |
Also Published As
Publication number | Publication date |
---|---|
JPH0152450B2 (en) | 1989-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0073092B1 (en) | Method of manufacturing t-3 grade low temper blackplates | |
JPS58197224A (en) | Manufacture of base plate for tin plate and tin-free steel plate by continuous annealing | |
CN107177788A (en) | A kind of secondary cold-rolling tin plate and its production method | |
JPS5938336A (en) | Production of ultra thin steel sheet for can having high yield strength and drawability | |
JPS6114213B2 (en) | ||
JPS59113123A (en) | Production of ultra-hard extra-thin cold rolled steel sheet | |
CN114107787A (en) | High magnetic induction oriented silicon steel and manufacturing method thereof | |
JPS5827934A (en) | Production of mild blackplate having excellent corrosion resistance by continuous annealing | |
JPS5842249B2 (en) | Manufacturing method of soft cold-rolled steel sheet for pressing by continuous annealing | |
JPS6114216B2 (en) | ||
JPS62161919A (en) | Manufacture of hard sheet steel for can excellent in drawability and minimized in anisotropy | |
JPS6126724A (en) | Manufacture of dead soft base sheet for surface treatment by continuous annealing | |
JPH01275736A (en) | Continuously cast steel plate for enameling having excellent workability and its manufacture | |
JPS6330969B2 (en) | ||
JPS593528B2 (en) | Manufacturing method of galvanized steel sheet for deep drawing with excellent formability | |
JPH07228921A (en) | Production of starting sheet for surface treated steel sheet, excellent in workability | |
JPS59133324A (en) | Manufacture of high-tension cold-rolled steel plate with superior formability | |
JP4283574B2 (en) | Steel plate for high age-hardening containers with excellent canability and method for producing the same | |
JPS5974237A (en) | Production of galvanized steel sheet for deep drawing having excellent formability | |
JPH02197523A (en) | Manufacture of steel sheet for can | |
JPS6263619A (en) | Manufacture of soft nonaging steel sheet | |
JP3273383B2 (en) | Cold rolled steel sheet excellent in deep drawability and method for producing the same | |
JPS5974236A (en) | Production of galvanized steel sheet for deep drawing having excellent formability | |
JPS5857491B2 (en) | Method for producing thermosetting cold-rolled steel sheet for deep drawing | |
JPS5858413B2 (en) | Manufacturing method for high-tensile galvanized steel sheets with excellent formability |