JPS5938336A - Production of ultra thin steel sheet for can having high yield strength and drawability - Google Patents

Production of ultra thin steel sheet for can having high yield strength and drawability

Info

Publication number
JPS5938336A
JPS5938336A JP14680982A JP14680982A JPS5938336A JP S5938336 A JPS5938336 A JP S5938336A JP 14680982 A JP14680982 A JP 14680982A JP 14680982 A JP14680982 A JP 14680982A JP S5938336 A JPS5938336 A JP S5938336A
Authority
JP
Japan
Prior art keywords
temperature
rolled
less
hot
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14680982A
Other languages
Japanese (ja)
Inventor
Hideo Kukuminato
久々湊 英雄
Tomohiko Akiyama
知彦 秋山
Sadao Izumiyama
泉山 禎男
Takashi Ono
小野 高司
Akiya Yagishima
柳島 章也
Hikosaku Matsunaga
松永 彦作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14680982A priority Critical patent/JPS5938336A/en
Publication of JPS5938336A publication Critical patent/JPS5938336A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To obtain a titled ultra thin steel sheet by hot rolling a continuous casting billet contg. specific amts. of C, Si, Mn, P, S, Al, N, coiling the same in a specific temp. range to form a hot rolled steel strip, cold rolling the steel strip at a specific draft after pickling to produce cold rolled steel plate then treating the steel strip in a continuous annealing furnace under specific conditions. CONSTITUTION:A continuous casting billet is composed, by weight, of <0.1 C, <0.06 Si, <0.5 Mn, <0.03 P, <0.03 S, <0.15 Al, <0.008 N, and the balance Fe. The billet is hot rolled at the finish rolling temp. of the Ar3 point or above and is coiled at 640-700 deg.C coiling temp. to a hot rolled steel strip. The steel strip is cold rolled at 80-95% draft after pickling. The resulted cold rolled steel strip is held for >=20sec at >=680 deg.C in a continuous annealing furnace, is cooled at 10-500 deg.C/sec cooling rate down to <=500 deg.C, is held at 500-350 deg.C for >=20sec and is cooled down to a room temp.

Description

【発明の詳細な説明】 本発明は、絞り加工による製缶の素材としての極薄鋼板
の製造方法に関するものであり、特に製缶に際し、素材
のr値が大きく、かつAr値が小さいために絞り加工性
に優れるとともに、製造した缶の品質に優れ、特に素材
鋼板にお番つる面内異方性により生じる耳が従来のもの
に比べて小さい缶が得られるようにした缶素材の極薄鋼
板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an ultra-thin steel plate as a raw material for can making by drawing. The ultra-thin can material has excellent drawing workability and the quality of the produced cans.In particular, the can material has smaller selvage, which is caused by the in-plane anisotropy of the steel sheet, compared to conventional cans. This invention relates to a method for manufacturing steel plates.

食用缶には、古くから胴部、大部(ふた)I地部(底)
から成る3ピ一ス缶が主体となっており、一部には、ブ
レス成彩により胴t′JlNと地部を一体に成形したも
のに天部を接合した、いわゆるλピース缶がある。
Edible cans have traditionally had bodies, large parts (lids), and base parts (bottoms).
The main body is a three-piece one-piece can, and some are so-called λ-piece cans, in which the body t'JlN and base are integrally molded using breath painting, and the top is joined to the body.

コピース街は、缶の機能が優れていること及び製缶能率
が高いというメリットがあるため、近年その製缶法が見
間されてきた。また、従来のよううな素材には調質度(
JIS C+3Jo3において、四ツフラニルT硬さH
R30Tの値をもってこれを表すことが規定されている
)が、T1〜T3.板厚0.2〜Q−41wm程度のも
のが使われている・。しかし、最近コスト削減の目的か
ら、素材の使用量を少なくするために、板厚がより薄い
ものが使われだした。
In recent years, the can-making method has been attracting attention because the Kopis-gai method has the advantages of excellent can functionality and high can-making efficiency. In addition, conventional materials have a degree of tempering (
In JIS C+3Jo3, four furanyl T hardness H
(It is specified that this is expressed by the value of R30T) is T1 to T3. Plate thicknesses of approximately 0.2 to Q-41wm are used. However, recently, in order to reduce costs and reduce the amount of material used, thinner plates have begun to be used.

2ピ一ス缶は絞り加工前の平板で塗装、印刷が施される
が、その方式はロール・コーターで行われるため、従来
法による鋼板の降伏強度が低いので塗装後に進行方向に
反り、その直後の焼付工程では反った塗装板どうしがi
;Z It して、すりキズが発生するという問題があ
った。この傾向は板厚が薄くなると更に助長される。し
たがって絞り加工用鋼板といえども、缶用鋼板には降伏
強度のより高いものが適していることになる。
2-piece cans are painted and printed on a flat plate before drawing, but this method is done using a roll coater, so the yield strength of the steel plate used in the conventional method is low, so it warps in the direction of travel after painting. In the baking process immediately after, the warped painted plates are
; Z It There was a problem that scratches were generated. This tendency is further exacerbated as the plate thickness becomes thinner. Therefore, even though it is a steel sheet for drawing, a steel sheet with a higher yield strength is suitable as a steel sheet for cans.

一般に絞り加工によって製缶される缶求材として使用さ
れる極薄鋼板の絞り加工性は、自動車の車体などに用い
られる絞り加工用冷延鋼板と同様に、一般的にはr値が
大きいことが望ましいとされている。また、製缶後のフ
ランジ部のトリミング化を小さ°くして材料歩留を向上
させるために容器7ランジ部に耳の発生の少ない、いわ
ゆるr値の面内異方性(Δr)の小さい極薄鋼板が要求
されている。
The drawability of ultra-thin steel sheets used as material for cans that are generally made by drawing is that they generally have a large r value, similar to cold-rolled steel sheets for drawing used for automobile bodies. is considered desirable. In addition, in order to reduce the amount of trimming of the flange part after can manufacturing and improve material yield, we have developed a material with a small r-value in-plane anisotropy (Δr), which has less ears on the flange part of the container 7. Thin steel plates are required.

なおr値とは、冷延沖1板の深絞り加工性を示す一つの
指標であって、引張試験における幅方向の歪と厚さ方向
の歪の比で示される。このr値は、引張り試験ハの採取
方向によって異なり、低炭素Alキルド鋼冷延鋼板では
、圧延方向に対し?。。
Note that the r value is an index indicating the deep drawing workability of a cold-rolled Oki 1 sheet, and is expressed as the ratio of strain in the width direction to strain in the thickness direction in a tensile test. This r value differs depending on the sampling direction of the tensile test. . .

の方向に採取したものが最も高く、次いで□。方向が高
< 、4I3 ’方向が最も低いという異方性のものが
多い。この異方性の稈度は鋼板の製造方法により異なる
The one taken in the direction of is the highest, followed by □. There are many cases of anisotropy in which the direction is high< and the 4I3' direction is the lowest. The degree of culm of this anisotropy differs depending on the manufacturing method of the steel sheet.

そこでr値については、前記各方向におけるr値から、
その平均値7へを次式により求めてこれをもって仕j板
の絞り性を評価している。
Therefore, regarding the r value, from the r value in each direction,
The average value 7 is calculated using the following formula and used to evaluate the drawability of the blank.

rl、 +r□+コrD グ ここにrL:圧延方向と平行な方向におけるr値ro:
圧延方向と直角な方向におけるr値rD:圧延方向と9
5°の方向におけるr値一方、絞り加工後の缶フランジ
部は円周方向の板厚分布と高さに異方性が現われ、かか
る現象はr値の面内異方性のために生じる。すなわち、
深絞り中の円周方向の圧縮に対して、r値の小さし)方
向は板厚が増加しやすく、半径方向に材料が伸びにくい
。一方r値の大きい方向では逆に板厚が増加しに<<、
半径方向に材料が伸びやすい。したがってr値の大きい
方向に缶が高く(耳の山部)、r値の小さい方向に缶が
低く(耳の谷部)なる。
rl, +r□+korD Here rL: r value ro in the direction parallel to the rolling direction:
r value rD in the direction perpendicular to the rolling direction: rolling direction and 9
r value in the 5° direction On the other hand, anisotropy appears in the circumferential thickness distribution and height of the can flange portion after drawing, and this phenomenon occurs due to the in-plane anisotropy of the r value. That is,
In contrast to the compression in the circumferential direction during deep drawing, the plate thickness tends to increase in the direction where the r value is small, and the material is difficult to stretch in the radial direction. On the other hand, in the direction of large r value, the plate thickness increases and <<,
The material tends to stretch in the radial direction. Therefore, the can becomes higher in the direction of the larger r value (the peak of the ear), and becomes lower (the trough of the ear) in the direction of the smaller r value.

耳の高さは加工条件によってもかなり異なるが、このr
値の異方性を示すΔrの大きい極M6LFi板程大きな
耳となり、歩留が低下する。
The height of the ears varies considerably depending on the processing conditions, but this r
The larger the M6LFi plate has a larger Δr, which shows the anisotropy of the value, the larger the edge becomes, and the yield decreases.

なお、Δrは次の式で定義される。Note that Δr is defined by the following formula.

r値は網板の結晶集合組織と密接な関係があり、したが
ってΔr値も同様に結晶集合組織と密接な関係がある。
The r value has a close relationship with the crystal texture of the net plate, and therefore the Δr value also has a close relationship with the crystal texture.

このΔγ値は(1)冷間圧延の圧下率、(2)冷延前の
熱間圧延温度、(3) AJNなどの析出物の再結晶過
程における析出挙動や分散状態等により大きく変化する
ことが知られている。
This Δγ value varies greatly depending on (1) the reduction ratio of cold rolling, (2) the hot rolling temperature before cold rolling, and (3) the precipitation behavior and dispersion state of precipitates such as AJN during the recrystallization process. It has been known.

このことから、金型の工夫に合せてΔrの小さい極M鋼
板を用いることにより容器フランジ部の耳発生を最小限
に改善することができる。しかし一般にΔrの小さいF
T5薄鋼板はr値が悪くなり、深絞り加工そのものを阻
害するという欠点があり、更に、降伏強度を高くするた
めにi′ll: 、結晶粒径を小さくする必要があり、
この結果r随も悪くなる。
From this, it is possible to minimize the occurrence of selvage at the container flange by using a very M steel plate with a small Δr in accordance with the design of the mold. However, in general, F with small Δr
T5 thin steel sheets have the disadvantage of having a poor r value, which inhibits deep drawing itself.Furthermore, in order to increase the yield strength, it is necessary to reduce the grain size.
As a result, the r-accuracy also deteriorates.

従来、r値の尚い絞り用配置板の製造は低炭素Atキル
ド111を用い、熱間仕上圧延温度(FT)はA r 
3変態点以上、巻取温度(CT)はSりo ’C程度の
低温で、焼鈍は箱焼鈍法で行われてきた。しかし、この
製造法では〒イ1?(は高くなるが、降伏強度は低いと
いう欠点があった。降伏強度が低くて、r値が高いもの
は、自動車の車体などに使う場合は好ましい品質希゛性
であるが、缶用鋼板では前述のよう□に塗装工程で生ず
る反りのため、好ましくない。
Conventionally, low carbon At killed 111 was used to manufacture a drawing arrangement plate with a small r value, and the hot finish rolling temperature (FT) was A r
3 transformation point or higher, the coiling temperature (CT) is as low as Sio'C, and annealing has been performed by a box annealing method. However, with this manufacturing method, (The yield strength is high, but the yield strength is low.) Low yield strength and high r value are desirable quality rarity when used for automobile bodies, etc., but they are used for can steel sheets. As mentioned above, □ is unfavorable because of the warping that occurs during the painting process.

降伏強1隻が低くなる原因は箱焼鈍によって非時効性に
なるためである。他方、降伏強度を高くする焼鈍法とし
ては、連続焼鈍(CAL )法がある。従来法ではCA
Lは再結晶後、室温まで単純に冷却する熱サイクルで行
われるが、この方法で焼鈍したものは、降伏強度は高く
なるが下値が低く、絞り加工用としては使うことが録し
かった。しかし、CAL法でも熱サイクルにおいて再結
晶後に急速冷却と過時効処理とを付加すると、降伏強度
が高くなるとともに下値も高くなることが分かる。しか
し、下値のばらつきは大きい。
The reason why the yield strength is low is that the box annealing makes it non-aging. On the other hand, as an annealing method for increasing the yield strength, there is a continuous annealing (CAL) method. In the conventional method, CA
After recrystallization, L is carried out through a thermal cycle in which the steel is simply cooled to room temperature, and although the yield strength of the steel annealed using this method is high, the yield strength is low, and it was concluded that it could not be used for drawing. However, it can be seen that even in the CAL method, when rapid cooling and overaging treatment are added after recrystallization in the thermal cycle, the yield strength increases and the lower value also increases. However, the dispersion of the bottom price is large.

本発明は、上記従来方が;による欠点を改善し、降伏強
度が高い一方、絞り加工性にa!れた、Vなわち下値が
大きく、かつ4rの小さい(すなわち面内異方i生の小
さい)缶用iJi!薄幽板の@漬方法を提供することを
目的とするものである。
The present invention improves the drawbacks of the above-mentioned conventional method due to; and has a high yield strength while having a! iJi! The object of the present invention is to provide a method for pickling thin yui-ban.

すなわら、本発明の要旨とするものは、次のとおりであ
る。
In other words, the gist of the present invention is as follows.

0 : 0.70%以下+ Si : 0.04%以下
IM21I:0、A:0%以下r P’ : 0.03
%以下、 3 : 0.03%以下、 kl : 0.
/g%以下+ N :’o、θog%以下を含有し残部
は実質的にFeである連絞柄造貢片を、熱間111J:
、延仕上温度をA r 3変態点以上として熱間圧延し
、)!取温度を4110″C〜700″Cとして巻取っ
て熱延調帯となし、次いで酸洗いした後、圧下率イ0〜
R%で冷間圧延し、得られた冷廷鋼板を連続焼鈍炉内で
Agθ°C以上の温度に20秒以上保持し、引続きso
o℃以下の温度までIO”C/ sec = !;00
”C/eeaの冷却速度で冷却し、更にsoo′c〜3
Sθ゛Cの温度にに秒以上保持し、次いで室温まで冷却
することを特徴とする、降伏強度が旨くかつ紋り加工性
に優れた、特に面内異方性の小さい缶用極薄鋼板の製造
方法。
0: 0.70% or less + Si: 0.04% or less IM21I: 0, A: 0% or less r P': 0.03
% or less, 3: 0.03% or less, kl: 0.
Hot 111J:
, hot-rolled at a finishing temperature of A r 3 transformation point or higher, )! The temperature was set at 4110"C to 700"C, the coiling was carried out to form a hot-rolled strip, and after pickling, the rolling reduction was 0 to 700"C.
The cold-rolled steel sheet obtained by cold rolling at R% is held at a temperature of Agθ°C or higher for 20 seconds or more in a continuous annealing furnace, and then so
IO”C/sec = !;00 to temperature below o℃
``Cooled at a cooling rate of C/eea, and further soo'c~3
An ultra-thin steel sheet for cans with good yield strength and excellent warp workability, especially with small in-plane anisotropy, which is maintained at a temperature of Sθ゛C for more than a second and then cooled to room temperature. Production method.

以下、本づ0明について詳細に説明する。Hereinafter, Honzuo Akira will be explained in detail.

本発明者らは、降伏強度が高<−C,Lかも下値が大き
く、かつΔrの小さい絞り加工用極薄銅板をつくるため
に、利質に影響を及ぼすと考えられる(1) ki板成
分、(2)熱間圧延条件(仕上温度FT ’+巻取温度
OT)、(3)焼鈍条件(箱焼鈍、過時効処理を施さな
い通常の連続焼鈍法を急速冷却と過時効処理を施す連続
焼鈍法)について鋭意研究を重ねた結果、以下に示す事
実を突きとめて上記要旨のとおりの本発明に想到した。
In order to produce an ultra-thin copper plate for drawing with a high yield strength of high <-C, L, and a low value of Δr, the present inventors considered that (1) ki plate component affects the yield strength. , (2) hot rolling conditions (finishing temperature FT' + coiling temperature OT), (3) annealing conditions (box annealing, normal continuous annealing method without over-aging treatment, continuous with rapid cooling and over-aging treatment) As a result of intensive research on the annealing method, the following facts were discovered and the present invention as summarized above was conceived.

第7図は、通常の低炭素AjキルドfM連鋳材を用い、
熱間圧延はFTをg5θ℃、OTをSコo ’c〜10
0″Cで行って得た熱延鋼帯を冷間圧延後に3種の焼鈍
を行った際の、それらの焼鈍条件についての7値と降伏
強度との関係を示す図表である。図中、ハツチのある区
域は3“しわ°も耳も少なく、塗装性も問題がない領域
を示す。
Figure 7 shows the use of ordinary low carbon Aj killed fM continuous cast material.
For hot rolling, FT is g5θ℃, OT is Sco'c~10
It is a chart showing the relationship between the 7 values and yield strength for the annealing conditions when three types of annealing were performed after cold rolling of a hot rolled steel strip obtained by performing the rolling at 0"C. In the figure, Areas with hatches indicate areas with few wrinkles or ears and no problems with paintability.

第1図によれば、上記連続鋳造質片を素材とする連続焼
鈍鋼板は、ある熱延条件と過時効処理条件を選択するこ
とによって、大きな下値と高い降伏強度を得ることがで
きることが分かる。
According to FIG. 1, it can be seen that a continuously annealed steel plate made from the continuously cast mass can obtain a large lower value and a high yield strength by selecting certain hot rolling conditions and overaging treatment conditions.

第2図は、低炭素Anキルド柄の連続鋳凸材から熱間圧
延を冷間圧延を経て、図示の条件により連続焼鈍を施し
た鋼板におけるΔrと7に及ぼすC量とOTの影響を示
した図表であり、図中、ハツチのある区域は第7図と同
様である。
Figure 2 shows the effects of C content and OT on Δr and 7 in a steel plate that has been hot-rolled, cold-rolled, and continuously annealed under the conditions shown in the figure from a continuously cast convex material with a low-carbon An-killed handle. The hatched areas in the figure are the same as in Figure 7.

同図によ孔ば、平均して下値が高くなるに従ってΔrが
小さくなっているが、特に下値が大きく、かつΔrが小
さくなる条件があり、それはO垣が約0.70%以下で
、OTをt、 g o oO,、’と(したものである
According to the figure, Δr becomes smaller on average as the lower value becomes higher, but there is a condition in which the lower value is especially large and Δr becomes small. t, go oO,,'.

この条件により、下値が大きくΔrが小となる現象は、
CTが高くなるとコイル吠態で生ずる自己焼鈍によって
結晶粒径が大きくなること、及び炭化物が凝集粗大化す
ることによると考えられる。
Under this condition, the phenomenon in which the lower value is large and Δr is small is as follows.
This is thought to be due to the fact that when the CT becomes high, the crystal grain size increases due to self-annealing that occurs in the coil burr state, and the carbides aggregate and coarsen.

以上の結果から、降伏強度が高くて、ロール・コータ一
方式による塗装においても反りが発生することなく、シ
かも絞り加害法による製缶法においで、安定した絞り性
が得られ、更に耳が小さくなる極薄鋼板の製造条件につ
いて、低炭素A/キルド銅連鋳材を使用することを前提
として、研究を重ねた結果、熱延条件が重要であり、特
にFTをAr3変態点以上として、A’lO″C以上の
高温で巻取り、酸洗、冷低後、連続焼鈍により再結晶→
急速冷却−過時効処理を施すことによって所望の製缶用
極薄61板が製造できることを新規に知見したのである
From the above results, the yield strength is high, warping does not occur even when coating with a roll coater, stable drawing properties are obtained in the can manufacturing method using the Shikamaka drawing damage method, and the edges are smooth. Regarding the manufacturing conditions of ultra-thin steel sheets, which are becoming smaller, we have conducted repeated research on the premise of using low-carbon A/killed copper continuous cast material, and have found that hot rolling conditions are important, especially by setting FT to the Ar3 transformation point or higher. After winding at a high temperature of A'lO''C or higher, pickling, cooling, and recrystallization by continuous annealing →
It was newly discovered that the desired ultra-thin 61 plate for can manufacturing can be manufactured by performing rapid cooling/overaging treatment.

しかして本発明は、前掲のようにまず素材の連続鋳造H
片の成分組成範囲を限定する。この組成範囲は、得られ
る極薄鋼板に目的の性質を与えるのに必要なものである
。各成分について組成範囲を限定した理由を説明する。
However, as mentioned above, the present invention first involves continuous casting of the material.
Limit the composition range of the pieces. This composition range is necessary to impart the desired properties to the resulting ultra-thin steel sheet. The reason for limiting the composition range for each component will be explained.

Qは、再結晶粒の成長を抑制する重要な成分でありC量
を多くすると結晶粒径は小さくなり、調質度の高いもの
が得られるが、一方過剰のG klは所要の調質度を超
えてより硬くシ、また下値を低下さセるので、Cは0.
10%以下の含有にする必要がある。
Q is an important component that suppresses the growth of recrystallized grains.If the amount of C is increased, the grain size becomes smaller and a product with a high degree of thermal refinement can be obtained. If the value exceeds 0, the value becomes harder and the lower value decreases, so C becomes 0.
The content must be 10% or less.

Slは、ブリキの耐食性を劣化させ、更に材質を極端に
硬質化させて冷間圧延を妨げ、また目的の調質度も外れ
るので、Slは0806%以下の含有にする必要がある
。したがって、製81時にあえて添加する必要はなく耐
火物中の8102が溶鋼中のAIで貸元されて残留する
程度にとどめる必要がある。
Sl deteriorates the corrosion resistance of tinplate, makes the material extremely hard, impedes cold rolling, and deviates from the desired degree of tempering, so the content of Sl must be 0.806% or less. Therefore, it is not necessary to intentionally add 8102 at the time of manufacturing, and it is necessary to limit the amount of 8102 in the refractory to the extent that it is lent by AI in the molten steel and remains.

Mnは、脱Sを促し熱延コイルの耳割れ発生をUjぐた
めにも添加する必要がある。ただし、S量が少なければ
過剰の添加は経済的に好ましくないので耳割れ発生を防
止する程度となし、MnはO,SO%OTの含有にする
必要がある。
Mn needs to be added to promote removal of S and to prevent edge cracking in the hot rolled coil. However, if the amount of S is small, excessive addition is economically undesirable, so it is necessary to limit the amount to prevent the occurrence of edge cracking, and Mn needs to be contained in an amount of O, SO% OT.

Pは、材質を硬化させ、更にブリキ等の1耐食性を劣化
させるため、Pは0.03%以下に抑える必要がある。
Since P hardens the material and further deteriorates the corrosion resistance of tinplate etc., it is necessary to suppress P to 0.03% or less.

Sは−,)4nとの関係において過剰に含有すると熱延
コイルに耳割れやMnS系介在物が存在し、製缶時に割
れ欠陥の原因となり好ましくないので、Sは0.03%
以下に抑える必要がある。
If S is contained excessively in relation to -,)4n, edge cracks and MnS-based inclusions will be present in the hot rolled coil, causing cracking defects during can manufacturing, which is undesirable, so S is 0.03%.
It is necessary to keep it below.

AJは、鋼の製造渦程において脱酸剤の役目を果す成分
であり、鋼中の含量が多くなるに従い鋼の清浄度は高く
なるが、過剰に添加することは好ましくなく、更に再結
晶粒成長を抑制するので、AJは0./!i%以下の含
有にする必要がある。なおA4は少ない程好ましく、?
L#1中の溶解酸素量に見合った量を添加し脱酸を完了
できればよく、実質的に金1iAIとして残す必要はな
い。しかし、残留した金M )l (1) 量が少なす
ぎる場合においては、そのままの鋼は清浄度が悪くなる
ので、l@銅鋼中介在物の浮上分離を促進させる必要が
ある。その方法の一つどしては、真空脱ガス処理等で溶
鋼を強制攪拌する方法があるが、この工程は近年はぼ標
準化された作業であり、これにより清浄度の高い低A7
!li4を製造することは容易である。
AJ is a component that plays the role of a deoxidizing agent in the steel manufacturing process, and as the content in the steel increases, the cleanliness of the steel increases, but it is not preferable to add it in excess, and it also reduces recrystallized grains. Since growth is suppressed, AJ is 0. /! It is necessary to make the content less than i%. In addition, the less A4 is, the better.
It is sufficient to complete deoxidation by adding an amount commensurate with the amount of dissolved oxygen in L#1, and there is no need to substantially leave gold 1iAI. However, if the amount of residual gold M )l (1) is too small, the cleanliness of the steel as it is will be poor, so it is necessary to promote the flotation and separation of inclusions in the l@copper steel. One of the methods is to forcibly stir the molten steel through vacuum degassing treatment, etc., but this process has become standardized in recent years, and it allows for low A7 steel with high cleanliness.
! It is easy to manufacture li4.

化させるのでNはθ、oog%以下に抑える必要がある
Therefore, it is necessary to suppress N to θ, oog% or less.

上記成分範囲の鋼は、各種転炉→真空脱ガス処理一連続
鋳造の工程により容易に製造することかできる。
Steel having the above-mentioned composition range can be easily produced by a process of various types of converters, vacuum degassing treatment, and continuous casting.

次いで、本発明は前述のように熱延条件として熱延仕上
温度(FT )と巻取温度(OT)を限定する。この限
定された熱延条件が本発明において最も重要である。以
下にその限定理由を説明する。
Next, in the present invention, as described above, the hot rolling finishing temperature (FT) and the winding temperature (OT) are limited as the hot rolling conditions. This limited hot rolling condition is the most important in the present invention. The reason for this limitation will be explained below.

熱延仕上温度: Ar3変態点以上 FTをA r 3変態点より低い温(9)にすると、〒
値カ小すくなるのでAr3変態点以上にする必要がある
Hot rolling finishing temperature: Ar3 transformation point or higher When FT is set to a temperature (9) lower than Ar3 transformation point,
Since the value becomes small, it is necessary to set it above the Ar3 transformation point.

巻取温度(OT ) : blIo’c 〜too°c
OTは結晶粒を大きくして絞り加工性を向上させるため
に、AQO”C:、〜700”Cの範囲にする必要があ
る。すなわち、自己焼鈍で結晶粒を大きくさせるOTの
下限は490℃であって、より高温にすると粒径は一層
大きくなる。しがしGTが高くなるに従って鋼板表面の
スケールが厚くなり、次工程での酸洗性が悪くなるので
余り高温は好ましくない。そこで酸洗性を極端に悪くし
ないために7θ0°Cを上限とする。
Winding temperature (OT): blIo'c ~ too°c
OT needs to be in the range of AQO''C: ~700''C in order to enlarge the crystal grains and improve drawing workability. That is, the lower limit of OT for enlarging crystal grains by self-annealing is 490° C., and the grain size becomes even larger when the temperature is higher. Excessively high temperatures are not preferred because as the GT increases, the scale on the surface of the steel sheet becomes thicker, and the pickling properties in the next step deteriorate. Therefore, the upper limit is set at 7θ0°C in order not to deteriorate the pickling property extremely.

冷延圧下率:イo−95% 続く冷間圧延では、圧下率をざ。〜95%とする。Cold rolling reduction ratio: io-95% In the subsequent cold rolling, the rolling reduction ratio is adjusted. ~95%.

これは、通常の極薄鋼板用6スタンドクンデムミルでは
、その圧下能力がgo〜95%であるので1本発明にお
いてもこれに従ったのである。
This is because a normal 6-stand Kundem mill for ultra-thin steel sheets has a rolling capacity of go~95%, so this was also followed in the present invention.

連続焼鈍条件 再結晶焼鈍:Aざθ°C以上で咥秒以上保持次に焼鈍は
、連続焼鈍を採用しtg。°C以上の温度に、20秒以
上保持することによって、再結晶を行うとともに結晶粒
の成長を行なって粒径を大きくする。これにより絞り加
工性が向上する。焼鈍温度がAtO”Cより低いが、ま
た保持時間が〃秒より短いと、粒径を大きくすることが
できず、したがって硬質化させ絞り加工性を劣化させる
Continuous annealing conditions Recrystallization annealing: A temperature of θ°C or more, held for more than a second, then continuous annealing was used. By holding the temperature at a temperature of .degree. C. or higher for 20 seconds or more, recrystallization is performed and crystal grains are grown to increase the grain size. This improves drawing workability. If the annealing temperature is lower than AtO''C, but the holding time is shorter than 2 seconds, the grain size cannot be increased, which results in hardening and deterioration of drawability.

冷却速度! IO”C/ see 〜!;00’C,/
 sea急冷停止温度:500℃以下 再結晶焼鈍後の冷却条件として、10″C/sea以上
、SOO″C/F3ec以下の冷却速度で夕oo”c以
下の温度まで冷却する必要がある。その理由は、次のと
おりである。
Cooling speed! IO"C/see ~!;00'C,/
Sea quenching stop temperature: 500℃ or less As cooling conditions after recrystallization annealing, it is necessary to cool to a temperature of 10''C or less and a cooling rate of 10''C/sea or more and SOO''C/F3ec or less to a temperature of 00''C or less.The reason is as follows.

すなわち、10″C/sθ0より遅い冷a速度では、冷
却中にセメンタイトが中途半端に析出し、0の過飽和度
が低くなるためその後の過時効が十分に進行しない。一
方、SOθ”C/n e oを超える急速冷却を行うと
、ぶりき板の表面形状が著しく悪化するので好ましくな
い。更に、soO’cを超える高い温度テ急冷を中止す
るとその温度でのフェライト中の0の平衡溶解度近傍ま
でCの固溶度が減少し、この場合も過時効が進行しない
。したがって、再結晶焼鈍後は10℃/ sea = 
!;00°C/geeの冷却速度でSOO″C以下の温
度まで急冷して、Cの過飽和度を高めることが重要であ
る。
That is, at a cooling rate slower than 10"C/s θ0, cementite precipitates halfway during cooling, and the degree of supersaturation of 0 becomes low, so subsequent overaging does not proceed sufficiently. On the other hand, SOθ"C/n Rapid cooling exceeding e o is not preferable because the surface shape of the tin plate will deteriorate significantly. Furthermore, if quenching is stopped at a temperature higher than soO'c, the solid solubility of C decreases to near the equilibrium solubility of 0 in ferrite at that temperature, and overaging does not proceed in this case either. Therefore, after recrystallization annealing, 10℃/sea =
! It is important to rapidly cool to a temperature below SOO''C at a cooling rate of 00°C/gee to increase the degree of supersaturation of C.

過時効処理:soo”c〜3so℃2.20秒以上引続
くめ時効処理の条件としては、次の理由によりsoo”
c〜3so″Cの温度に、20秒以上保持すべきである
。すなわち、310 ’Cより低い温度では0の拡散速
度が小さく、過時効が進行せず、他方SOO℃を超す高
い温度ではCの固溶限が大きいので固溶0量を低く抑え
ることができず、時効硬化を起こす。更に保持時間が咥
秒に達しないと、十分に過時効ダ完遂しないことになる
Over-aging treatment: soo”c~3so℃2.The conditions for continuous aging treatment for 20 seconds or more are soo” for the following reasons.
It should be held at a temperature of c~3so''C for more than 20 seconds. That is, at temperatures lower than 310'C, the diffusion rate of 0 is small and overaging does not proceed, while at temperatures higher than SOO℃ Since the solid solubility limit is large, the amount of solid solubility cannot be kept low, causing age hardening.Furthermore, if the holding time does not reach one second, overaging will not be fully completed.

以上の連続焼鈍によって、鋼板は、C及びNの析出によ
って軟質化するとともに、下値が大きくなり他方Δrは
小さくなる。更に軟質化はするものの、従来の箱焼鈍鋼
板に比べて固溶Cの残存量が大きく、そして粒径が小さ
くなっているため、降伏強度はより高くなっている。
Through the continuous annealing described above, the steel plate becomes softer due to the precipitation of C and N, and the lower value becomes larger, while Δr becomes smaller. Although it is further softened, the yield strength is higher because the residual amount of solid solution C is larger and the grain size is smaller than that of conventional box-annealed steel sheets.

実施例 下記第1表に示す成分組成を有する鋼片を転炉で溶製し
た。特に0が。、0量%のものは、溶製後真空脱ガス処
理を行って連続鋳造機にて清浄度の優れた鋼片とした。
Example Steel slabs having the composition shown in Table 1 below were melted in a converter. Especially 0. , 0% by weight was subjected to vacuum degassing treatment after melting, and was made into a steel billet with excellent cleanliness using a continuous casting machine.

これら鋼片を第1表に示す熱延条件で熱間圧延してコ、
3闘の熱延鋼帯とした後酸洗シて脱スケールを行った。
These steel pieces were hot rolled under the hot rolling conditions shown in Table 1.
After making it into a hot-rolled steel strip, it was pickled and descaled.

次いで6スタンドタンデムミルにて□、J四に冷間圧延
(圧下率約t7・%)シ、絖いて第2表に示す各種焼鈍
条件で焼鈍を行った。
Then, it was cold rolled (reduction ratio of about t7.%) to □ and J4 in a 6-stand tandem mill, and then annealed under various annealing conditions shown in Table 2.

/ /′ / / /″ 第  −表 なお、第1表?第一表中、”CAL−A”は再結晶後急
冷して過時効処理を施す連続焼鈍であり、”0AL−B
” は再結晶後、室温まで冷却する単純サイクルの連続
焼鈍であり、゛°箱焼鈍”はバッチ式焼鈍炉で昇温から
再結晶、続く室温までの冷却の全工程を約100時間か
けて行う方法である。
/ /' / / /'' Table - Table 1?In Table 1, "CAL-A" is continuous annealing in which an overaging treatment is performed by rapid cooling after recrystallization, and "0AL-B"
"Box annealing" is a continuous annealing process with a simple cycle of cooling to room temperature after recrystallization, and "box annealing" is a batch annealing furnace in which the entire process from temperature rise to recrystallization and subsequent cooling to room temperature is performed over approximately 100 hours. It's a method.

なお、調質圧延は圧下率1%で行った。Note that the temper rolling was performed at a reduction ratio of 1%.

このようにして得られたブリキ原板に対し、ハロゲン型
電気スズめっきラインで、スズめっきを施した後、試料
を採取した。
The thus obtained tin plate was subjected to tin plating using a halogen electrolytic tin plating line, and then samples were taken.

各試料について引張試験を行って降伏強度を測定し、別
に引張試験を行って下値、Δr値を求め、更に硬度を測
定した。また実際にロールコータ一方式で塗装を施して
コーター反りの発生による塗装面上のすりキズの発生状
況を調べた。
A tensile test was conducted on each sample to measure the yield strength, a separate tensile test was conducted to determine the lower value and the Δr value, and the hardness was further measured. In addition, we actually applied the coating using a single roll coater and investigated the occurrence of scratches on the painted surface due to coater warping.

続いて試料を絞り加工して一ピース缶用に製缶して缶と
しての評価を行った。缶に発生した欠陥トシては、次の
3項目がある。
Subsequently, the sample was drawn and made into a one-piece can, and the can was evaluated. There are three types of defects that occur in cans:

破断:絞り途中において缶胴のいづれかの位置で破断し
て缶にならなかったもの。
Broken: Cans that break at some point on the can body during squeezing and do not become a can.

しわ発生:缶に成形することができたが、缶胴壁に°゛
しわ”が発生したもの。
Wrinkling: A can that could be formed into a can, but wrinkles appeared on the can body wall.

耳発生ニブレス加工後の7ラング部における耳の程度を
示す。
The degree of ears in the 7-rung part after the ear-forming nibless processing is shown.

以上の総合判定を第1表に示した。第1表中、アンダー
ラインのあるものは、本発明における条件に適合してい
ないものである。
The above comprehensive judgments are shown in Table 1. In Table 1, the underlined items are those that do not meet the conditions of the present invention.

第1表に示した実施例と比較例との対比から明らかなよ
うに、本発明の方法により製造された極薄鋼板は、高い
降伏強度を有するとともに、下値が大きく、Δr値が小
さいという絞り加工性に優れており、これを使用して塗
装後、絞り加工を行って得た缶は、その表面にロールコ
ータ−反りによる“すりキズ”や゛しゎ”の発生がなく
て表面品質に優れており、がっ耳も小であった。また絞
り加工において破断が生じなかった。
As is clear from the comparison between the examples and comparative examples shown in Table 1, the ultra-thin steel sheets produced by the method of the present invention have a high yield strength, a large lower value, and a small Δr value. It has excellent processability, and the cans obtained by drawing after painting with this coating have good surface quality, with no scratches or blemishes caused by roll coater warping. It was excellent, and the bulge was small.Furthermore, no breakage occurred during the drawing process.

【図面の簡単な説明】[Brief explanation of drawings]

第7図は、極薄鋼板の降伏強度Y、 P、と下値に及ぼ
す焼鈍法の種類の影響を示す図表であり、第一図は、極
薄鋼板の7値とΔγ値に及ぼすr41と巻取温度OTの
影響を示す図表である。 特許出願人 川崎製鉄株式会社 代理人弁理士  村  1) 政  治jI)2図
Figure 7 is a chart showing the influence of the type of annealing method on the yield strengths Y, P, and lower values of ultra-thin steel plates, and Figure 1 shows the effects of r41 and volume on the 7 value and Δγ value of ultra-thin steel plates. It is a chart showing the influence of taken temperature OT. Patent applicant Kawasaki Steel Co., Ltd. Representative patent attorney Mura 1) Politics jI) Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、 0 + 0.70%以下、 Si : 0.0/
、%以下+ Mn: O,SO%以下、 P : 0.
03%以下、 S : 0.03%以下、 A/ : 
o、is%以下、 N : 0.00g%以下を含有し
、残部は実質的にFeである連続鋳造鋼片を、熱間圧姫
仕上温度をAr3変態点以上として熱間圧延し、巻取温
度をt、qo″C〜7oo”cとして巻取って熱延温帯
となし、次いで酸洗いした後、圧下率gθ〜95%で冷
間圧勉し、得られた冷延鋼板を連続焼鈍炉内でAgO”
C,IJJ、上の湿度に20秒以上保持し、引続き□s
oo℃以上の温度まで70℃/sec = soo℃/
 n e cの冷却速度で冷却し、更にSOO″C〜3
りO′Cの温度に〃秒以上保持し、次いで室温まで冷却
することを特徴とする、降伏強度が高くかつ絞り加工性
に優れた、特に面内異方性の小さい缶用極薄鋼板の製造
方法。
1, 0 + 0.70% or less, Si: 0.0/
, % or less + Mn: O, SO% or less, P: 0.
0.03% or less, S: 0.03% or less, A/:
A continuously cast steel billet containing N: 0.00 g% or less and the remainder being substantially Fe is hot rolled at a hot rolling finish temperature of Ar3 transformation point or higher, and then rolled up. The temperature is t, qo''C ~ 7oo''c, and the steel sheet is rolled into a hot-rolled temperate zone, then pickled, and then cold-rolled at a rolling reduction of gθ~95%, and the obtained cold-rolled steel sheet is passed through a continuous annealing furnace. AgO”
C, IJJ, keep at the above humidity for more than 20 seconds, and then continue □s
70℃/sec to temperature above oo℃ = soo℃/
Cooled at a cooling rate of n e c, and further cooled to SOO″C~3
An ultra-thin steel sheet for cans with high yield strength and excellent drawing workability, especially with small in-plane anisotropy, which is maintained at a temperature of O'C for more than 1 second and then cooled to room temperature. Production method.
JP14680982A 1982-08-26 1982-08-26 Production of ultra thin steel sheet for can having high yield strength and drawability Pending JPS5938336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14680982A JPS5938336A (en) 1982-08-26 1982-08-26 Production of ultra thin steel sheet for can having high yield strength and drawability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14680982A JPS5938336A (en) 1982-08-26 1982-08-26 Production of ultra thin steel sheet for can having high yield strength and drawability

Publications (1)

Publication Number Publication Date
JPS5938336A true JPS5938336A (en) 1984-03-02

Family

ID=15416013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14680982A Pending JPS5938336A (en) 1982-08-26 1982-08-26 Production of ultra thin steel sheet for can having high yield strength and drawability

Country Status (1)

Country Link
JP (1) JPS5938336A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0171197A2 (en) * 1984-07-09 1986-02-12 Nippon Steel Corporation Process for producing, by continuous annealing, soft blackplate for surface treatment
JPS6134159A (en) * 1984-07-25 1986-02-18 Nippon Steel Corp Steel sheet for weld can superior in flanging property and its manufacture
JPS61110747A (en) * 1984-11-01 1986-05-29 Dainippon Printing Co Ltd Rolled steel foil for etching
JPS61272347A (en) * 1985-05-28 1986-12-02 Nippon Steel Corp Hot-rolled steel sheet excelling in press formability and baking hardening
JPS62139848A (en) * 1985-12-11 1987-06-23 Kobe Steel Ltd High strength and high ductility cold rolled steel sheet for automobile strengthening member
JPS63134645A (en) * 1986-11-26 1988-06-07 Nippon Steel Corp Steel sheet for di can excellent in stretch-flange formability
JPH03285044A (en) * 1990-03-30 1991-12-16 Kawasaki Steel Corp Manufacture of steel sheet for three-piece can and three-piece can
JP2001335888A (en) * 2000-03-23 2001-12-04 Kawasaki Steel Corp Steel sheet for lightweight two-piece can, and its production method
WO2009035120A1 (en) * 2007-09-10 2009-03-19 Nippon Steel Corporation High-strength steel sheet for can manufacturing and process for manufaturing the sheet
CN102560238A (en) * 2010-12-15 2012-07-11 鞍钢股份有限公司 Production method of cold-rolled thin strip steel plate for heat radiating fin
CN103194591A (en) * 2013-03-28 2013-07-10 鞍钢股份有限公司 Method for producing paper-thin steel for auto radiator by continuous annealing line

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0171197A2 (en) * 1984-07-09 1986-02-12 Nippon Steel Corporation Process for producing, by continuous annealing, soft blackplate for surface treatment
JPS6134159A (en) * 1984-07-25 1986-02-18 Nippon Steel Corp Steel sheet for weld can superior in flanging property and its manufacture
JPH058264B2 (en) * 1984-07-25 1993-02-01 Nippon Steel Corp
JPS61110747A (en) * 1984-11-01 1986-05-29 Dainippon Printing Co Ltd Rolled steel foil for etching
JPH0377257B2 (en) * 1985-05-28 1991-12-10 Nippon Steel Corp
JPS61272347A (en) * 1985-05-28 1986-12-02 Nippon Steel Corp Hot-rolled steel sheet excelling in press formability and baking hardening
JPS62139848A (en) * 1985-12-11 1987-06-23 Kobe Steel Ltd High strength and high ductility cold rolled steel sheet for automobile strengthening member
JPS63134645A (en) * 1986-11-26 1988-06-07 Nippon Steel Corp Steel sheet for di can excellent in stretch-flange formability
JPH03285044A (en) * 1990-03-30 1991-12-16 Kawasaki Steel Corp Manufacture of steel sheet for three-piece can and three-piece can
JP2001335888A (en) * 2000-03-23 2001-12-04 Kawasaki Steel Corp Steel sheet for lightweight two-piece can, and its production method
WO2009035120A1 (en) * 2007-09-10 2009-03-19 Nippon Steel Corporation High-strength steel sheet for can manufacturing and process for manufaturing the sheet
CN102560238A (en) * 2010-12-15 2012-07-11 鞍钢股份有限公司 Production method of cold-rolled thin strip steel plate for heat radiating fin
CN103194591A (en) * 2013-03-28 2013-07-10 鞍钢股份有限公司 Method for producing paper-thin steel for auto radiator by continuous annealing line

Similar Documents

Publication Publication Date Title
JP5162924B2 (en) Steel plate for can and manufacturing method thereof
JPS5938336A (en) Production of ultra thin steel sheet for can having high yield strength and drawability
JP4943244B2 (en) Steel sheet for ultra-thin containers
JP2001107186A (en) High strength steel sheet for can and its producing method
JPS593526B2 (en) Manufacturing method of cold rolled steel sheet for deep drawing
JPS58197224A (en) Manufacture of base plate for tin plate and tin-free steel plate by continuous annealing
JP3852210B2 (en) Steel plate for modified 3-piece can and manufacturing method thereof
JPS5938338A (en) Production of ultra thin steel sheet having high yield strength and drawability
JP4193228B2 (en) Steel plate for can and manufacturing method thereof
JPS58151426A (en) Manufacture of ultrathin steel sheet for can having low anisotropy in plane
JP3826442B2 (en) Manufacturing method of steel plate for can making with good workability and no rough skin
JPS6114213B2 (en)
JPS59113123A (en) Production of ultra-hard extra-thin cold rolled steel sheet
JP3728911B2 (en) Raw material for surface-treated steel sheet having excellent aging resistance and low ear occurrence rate, and method for producing the same
JP4045602B2 (en) Manufacturing method of steel sheet for cans with excellent drawability
JPS62161919A (en) Manufacture of hard sheet steel for can excellent in drawability and minimized in anisotropy
JPS6114216B2 (en)
JPH08283863A (en) Production of hard steel sheet for can excellent in uniformity of material
JP3257390B2 (en) Method for producing two-piece steel sheet with small in-plane anisotropy
JPH07228921A (en) Production of starting sheet for surface treated steel sheet, excellent in workability
JPS6330969B2 (en)
JP3273383B2 (en) Cold rolled steel sheet excellent in deep drawability and method for producing the same
JP3593728B2 (en) Manufacturing method of ultra low carbon cold rolled steel sheet with excellent formability
JP3632182B2 (en) Method for producing DTR can compatible steel sheet with excellent side wall break resistance
JP3814865B2 (en) Manufacturing method of steel plate for battery outer cylinder with excellent material uniformity and corrosion resistance