JPS63134645A - Steel sheet for di can excellent in stretch-flange formability - Google Patents

Steel sheet for di can excellent in stretch-flange formability

Info

Publication number
JPS63134645A
JPS63134645A JP27976186A JP27976186A JPS63134645A JP S63134645 A JPS63134645 A JP S63134645A JP 27976186 A JP27976186 A JP 27976186A JP 27976186 A JP27976186 A JP 27976186A JP S63134645 A JPS63134645 A JP S63134645A
Authority
JP
Japan
Prior art keywords
processing
steel
cans
less
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27976186A
Other languages
Japanese (ja)
Inventor
Kuniaki Maruoka
丸岡 邦明
Takeshi Kono
河野 彪
Shoji Nosaka
野坂 詔二
Yasuhiko Yamashita
康彦 山下
Senkichi Tsujimura
辻村 銑吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27976186A priority Critical patent/JPS63134645A/en
Priority to AU81605/87A priority patent/AU592481B2/en
Priority to NO874886A priority patent/NO874886L/en
Priority to ES8703381A priority patent/ES2008353A6/en
Publication of JPS63134645A publication Critical patent/JPS63134645A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To improve stretch-flange formability after DI working and also to uniformize material quality, by specifying respective quantities of C, Mn, P, Al, N, and Fe and also by carrying out continuous annealing under the prescribed conditions. CONSTITUTION:This steel sheet for DI cans has a composition consisting of, by weight, 0.004-0.06% C, 0.05-0.5% Mn, <=0.02% P, 0.02-0.1% acid-soluble Al, <=0.007% N, and the balance Fe. Subsequently, recrystallization annealing is applied, e.g., at a temp. between the recrystallization temp. and 850 deg.C for 5-180sec, followed by cooling at 5-250 deg.C/sec cooling rate and overaging treatment at 250-500 deg.C. In this way, the steel sheet for DI cans having a tensile strength of <=42kgf/mm<2> and a grain structure of JIS grain size number 8.5-11.5 can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はDI缶(Draw & Ironed Can
 )用鋼板に関し、DI加工後の伸びフランジ成形性に
優れ、DI加工が容易であり、DI加工後の塗装焼付時
に硬化することによって耐圧強度が向上するDI缶用鋼
板に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is applied to DI cans (Draw & Ironed Cans).
) This relates to a steel plate for DI cans that has excellent stretch flange formability after DI processing, is easy to perform DI processing, and has improved pressure resistance by hardening during paint baking after DI processing.

(従来の技術) 鋼板に錫メッキを施したブリキ鋼板あるいはクロム酸処
理を施したティン・フリー・ステイール(以下T、 F
、 Sと称す)のごとき表面処理鋼板が食缶やエアゾー
ル缶、イージーオープン缶(二条用されている。
(Conventional technology) Tin-plated steel sheets are tin-plated steel sheets, or tin-free steel sheets are treated with chromic acid (hereinafter referred to as T and F).
Surface-treated steel sheets such as steel sheets (referred to as "S") are used in food cans, aerosol cans, and easy-open cans (two-line cans).

これら表面処理鋼板は近年多段絞り加工あるいはDI加
工(DrawとIroning 加工即ち深絞り加工後
にしごき加工が施される)など、きびしい加工が行われ
るようにな9、単に耐食性のみならず、優れた加工性を
も具備する必要がある。
In recent years, these surface-treated steel sheets have been subjected to severe processing such as multi-stage drawing processing or DI processing (Draw and Ironing processing, i.e., ironing processing is performed after deep drawing processing)9. It is also necessary to possess gender.

DI缶の製缶加工は、鋼板をポンチとダイスを用いて浅
絞りしてカップを成形後、このカップの側壁の厚さより
クリアランスが小さいポンチとダイスを用いて側壁をし
ごき引伸し、側壁の淳さを減少させること(二より所定
深さの容器(カップ)を成形し、さらにカップ端に蓋を
捲線めのためのフランジ出しを行なう加工が行なわれる
The manufacturing process for DI cans involves shallow drawing a steel plate using a punch and die to form a cup, and then using a punch and die with a clearance smaller than the thickness of the side wall of the cup to draw and stretch the side wall. (2) A container (cup) with a predetermined depth is formed, and the end of the cup is flanged for winding a lid.

DI缶用鋼板に要求される特性としては、まずDI加工
時の加工性がよく、かじりの発生がなく加工エネルギー
が小さいこと、DI加工後の伸びフランジ成形性が優れ
ていること、および缶体として耐圧強度が高いことが要
求される。
The characteristics required for steel sheets for DI cans include good workability during DI processing, no galling and low processing energy, excellent stretch flange formability after DI processing, and can body As such, high pressure resistance is required.

斯かるDI缶用材料としては従来は、例えばB添加At
キルド鋼を箱焼鈍したもの(特開昭53−48913)
、 Cu添加低炭素鋼を箱焼鈍したもの(特公昭52−
16965)のように箱焼鈍材が殆んど適用されていた
。それは箱焼鈍材の方が伸び、深絞り性に優れており、
一般(二DI加工用途にも適していると考えられていた
からである。
Conventionally, materials for such DI cans include, for example, B-added At.
Killed steel box annealed (Japanese Patent Application Laid-open No. 53-48913)
, box annealed Cu-added low carbon steel (Special Publication No. 1972-
16965), box-annealed materials were mostly used. Box-annealed materials elongate better and have better deep drawability.
This is because it was thought to be suitable for general (2DI) processing applications.

特に、01缶の成形加工では伸びフランジ成形性の良い
ことはきわめて重要視され、その不良率は数10 pp
m以下に抑える必要がある。そのため鋼板として伸び、
r値の優れた、また鋼中の固溶Cの少ない箱焼鈍材が従
来から適用されていた。
In particular, good stretch flange formability is extremely important in the molding process of 01 cans, and the defect rate is several tens of pp.
It is necessary to keep it below m. Therefore, it stretches as a steel plate,
Box-annealed materials with excellent r-values and low solid solution C in steel have been used in the past.

(発明が解決しようとする問題点) 一方近年DI缶は板厚がますます薄手化されつつあり、
耐圧強度を高めることの要求も非常に強くなりつつちる
(Problems to be solved by the invention) On the other hand, in recent years, the thickness of DI cans has become thinner and thinner.
The demand for increasing pressure resistance is also becoming increasingly strong.

缶体の耐圧強度は(板厚)2×(強度)で決り、薄手化
するには素材強度を高める必要があるが、箱焼鈍材は一
般に軟質であり、薄手化への対応が難しい。強度の向上
を図ろうとすれば強度化元素を添加し比較的高合金の成
分にする必要があり、この場合にはDI加工性が劣化す
る問題がある。
The compressive strength of the can body is determined by (plate thickness) x (strength), and to make it thinner, it is necessary to increase the strength of the material, but box annealed materials are generally soft and it is difficult to make them thinner. In order to improve the strength, it is necessary to add a strengthening element to make the alloy a relatively high alloy component, and in this case, there is a problem that DI workability deteriorates.

また鋼板を高強度化するとDI加工時にかじシが発生し
やすくなり、また加工エネルギーも増加する欠点が生ず
る。
Furthermore, if the strength of the steel plate is increased, it becomes more likely to cause scuffing during DI processing, and the processing energy also increases.

最近では、DI缶用鋼板を連続焼鈍にて製造することが
検討されているが、DI缶加工時のフランジ成形の小さ
いクラックの発生防止を満足し得るまでに到ってなく、
またかじり発生も散見される。
Recently, manufacturing steel sheets for DI cans by continuous annealing has been considered, but it has not yet been achieved to prevent small cracks from forming during flange forming during DI can processing.
In addition, galling is also observed here and there.

本発明の目的は、伸び7ランジ成形性(二優れ、かじり
が発生せずDI加工が容易でありかつDI加工後の耐圧
強度の高いDI缶用容器材料を提供することにある。
An object of the present invention is to provide a container material for DI cans, which has excellent elongation 7 lunge formability, does not cause galling, is easy to perform DI processing, and has high pressure resistance after DI processing.

(問題点を解決するための手段) 本発明者らは、01缶に要求される緒特性(二ついて種
々研究した結果、DI缶用鋼板については、DI成形性
および01缶の実用特性を総合すると、むしろ鋼板の強
度、結晶粒度を特定した連続焼鈍材の方が優れているこ
とを新規に知見し、本発明を完成したものである。
(Means for Solving the Problems) The present inventors have determined that, as a result of various studies, we have determined that the steel sheet for DI cans has the following properties: As a result, they newly discovered that a continuously annealed steel sheet with specific strength and grain size is superior, and the present invention was completed based on this new finding.

本発明者らはまずDI加工後の伸び7ランジ成形性につ
いて深く研究した結果、DI加工後すなわち著しい加工
後の伸びフランジ成形性は鋼板そのものの伸びフランジ
成形性と異なり、むしろ従来の知見とは逆に鋼板の抗張
力が42Klif/−以下、結晶粒度番号が8.5〜1
1.5で、C: 0.0040〜0.0600%、Mn
 : 0.05〜0.50%、7V、二0.020〜0
.100%、P:0.020’チ以下、N:0.007
0%以下の鋼成分の連続焼鈍材の方が、固溶Cを有する
にもかかわらずDI加工後の伸びフランジ性の優れてい
ることを新規に見出した。
The present inventors first deeply studied the stretch flange formability after DI processing, and found that the stretch flange formability after DI processing, that is, after significant processing, is different from the stretch flange formability of the steel sheet itself, and is rather different from conventional knowledge. On the other hand, if the tensile strength of the steel plate is 42Klif/- or less and the grain size number is 8.5 to 1
1.5, C: 0.0040-0.0600%, Mn
: 0.05~0.50%, 7V, 20.020~0
.. 100%, P: 0.020' or less, N: 0.007
It has been newly discovered that a continuously annealed material with a steel composition of 0% or less has better stretch flangeability after DI processing despite having solid solution C.

該連続焼鈍材では、DI加工後施される塗装焼付けによ
って缶体の強度が著しく上昇し、その結果、耐圧強度も
上昇する(以下この特性をBH性と称する)ことを本発
明者らは見出した。すなわち箱焼鈍材より軟質の該連続
焼鈍材を使用すること:;よりDI加工時はやわらかく
従ってDI加工性に優れ、塗装焼付は後耐圧強度が箱焼
鈍付以上にできるという優れた特徴が得られることが判
明した。このことは、素材強度が同一であれば缶体の耐
圧強度は連続焼鈍材の方が高くできることを意味するの
で、この工業的価値は非常に太きい。
The present inventors discovered that in the continuously annealed material, the strength of the can body is significantly increased by the paint baking applied after DI processing, and as a result, the pressure resistance strength is also increased (hereinafter this property is referred to as BH property). Ta. In other words, by using the continuous annealing material which is softer than the box annealing material: it is softer during DI processing, and therefore has excellent DI workability, and after painting baking, it has the excellent characteristics of having a post-compressive strength higher than that of box annealing. It has been found. This means that if the strength of the material is the same, the pressure resistance of the can body can be higher with the continuously annealed material, so this has great industrial value.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

まず製品板(鋼板)の抗張力について第1図を参照し説
明する。抗張力が大きいとDI加工時の成形荷重および
成形エネルギーが大きくなって加工しく二くく、またか
じりが発生しやすくなるのでその上限を42Kqf/−
とする。好ましい範囲は抗張力40Kyf/−以下であ
る。
First, the tensile strength of the product plate (steel plate) will be explained with reference to FIG. If the tensile strength is large, the forming load and forming energy during DI processing will become large, making processing difficult and galling more likely to occur, so the upper limit is set at 42Kqf/-
shall be. A preferred range is a tensile strength of 40 Kyf/- or less.

第1図は、c : 0.0040〜o、oso%、 M
n:O,15〜0.60%、P : 0.006〜0.
030%、At: 0.005〜0.070%、N:0
.0070%以下の鋼を真空溶解炉で溶製し、実験室パ
イロットライン(二て製造したDI加工用鋼板について
、裂凸版の抗張力とDI試験成形機(=おける全成形エ
ネルギー、成形後塗装焼付処理を行なったDI缶の耐圧
強度の関係を焼鈍方法との関連で示す。
Figure 1 shows c: 0.0040~o, oso%, M
n: O, 15-0.60%, P: 0.006-0.
030%, At: 0.005-0.070%, N: 0
.. 0.0070% or less steel is melted in a vacuum melting furnace, and the steel plate for DI processing manufactured on the laboratory pilot line (2) is measured by the tensile strength of the fission plate and the total forming energy in the DI test forming machine (= total forming energy in the post-forming paint baking treatment). The relationship between the compressive strength and the annealing method of the DI cans is shown below.

第1図かられかるように、抗張力が42にダf/Iul
を越えると全成形エネルギーが著しく上昇し、かじりが
多発する結果DI成形が困難となる。全成形エネルギー
を安定して低く抑えるため(=は、抗張力を40に9f
/−以下、降伏点を36 h f /mj以下、より好
ましくは抗張力37Kgf/−以下、降伏点30Kqf
/−以下(二することが好ましい。
As can be seen from Figure 1, the tensile strength is 42 f/Iul.
If the value exceeds 1, the total molding energy increases significantly and galling occurs frequently, making DI molding difficult. In order to keep the total forming energy stably low (= tensile strength is 40 to 9f)
/- or less, the yield point is 36 h f /mj or less, more preferably the tensile strength is 37 Kgf/- or less, the yield point is 30 Kqf
/- or less (preferably two).

まだ耐圧強度は抗張力が大きいほど増大するが、連続焼
鈍材は箱焼鈍材に比べて抗張力が同じでも耐圧強度は約
1〜2 K9flcrl高い。このようなりH性を確保
するため(二製凸版の固溶C量は5.0ppm以上含む
ことが好ましい。
Still, the compressive strength increases as the tensile strength increases, but the compressive strength of the continuously annealed material is about 1 to 2 K9flcrl higher than that of the box annealed material even if the tensile strength is the same. In order to ensure H properties as described above, it is preferable that the amount of solid solute C in the Nisei relief plate is 5.0 ppm or more.

次に結晶粒度について説明する。Next, crystal grain size will be explained.

第2図はC: 0.0044〜0.080%、Mn:0
.16〜0.57%、p : o、o o s 〜0.
030%、Aε:0.007〜o、oeo%、N:0.
0020〜0.0070%の鋼を真空溶解炉で溶製し、
実験室パイロットラインにて製造したDI加工用表面処
理鋼板(二ついて、JIS結晶粒度番号とDI加工後の
伸びフランジ成形における破断発生までの加工率および
耐圧強度の関係を焼鈍方法との関連で示す。
Figure 2 shows C: 0.0044-0.080%, Mn: 0
.. 16-0.57%, p: o, o o s ~0.
030%, Aε: 0.007~o, oeo%, N: 0.
0020~0.0070% steel is melted in a vacuum melting furnace,
Surface-treated steel sheets for DI machining manufactured on a laboratory pilot line (two of them) show the relationship between the JIS grain size number, the processing rate until breakage occurs in stretch flange forming after DI machining, and the pressure resistance strength in relation to the annealing method. .

伸びフランジ加工率は、本発明者らの実験室における測
定法の場合9.0−以上が需要家においても合格と評価
されることがわかっている。
It has been found that a stretch flange processing rate of 9.0 or more is evaluated as acceptable even by consumers in the laboratory measurement method of the present inventors.

第2図かられかるように、伸びフランジ加工率は細粒で
あるほど(結晶粒度番号が大きいほど)向上し、伸びフ
ランジ加工率9.0%以上を確保するには連続焼鈍材の
場合、結晶粒度番号8.5以上が必要である。また予想
に反し連続焼鈍材の方が箱焼鈍材よりむしろ伸びフラン
ジ加工性が良好である。一方細粒°になるほど伸びフラ
ンジ加工性および耐圧強度は向上するが鋼が硬質化し、
結晶粒度番号が11.5番を越えるとDI成形時の全成
形エネルギーが著しく増大し、かじりが発生するためD
I加工が困難となる。したがって結晶粒度番号を8.5
〜11.51−特定する。好ましい範囲は9.0〜11
.0番である。
As can be seen from Fig. 2, the stretch flanging rate improves as the grain becomes finer (the larger the grain size number), and in order to secure a stretch flanging rate of 9.0% or more, in the case of continuously annealed material, A grain size number of 8.5 or more is required. Also, contrary to expectations, the stretch-flange formability of the continuously annealed material is better than that of the box-annealed material. On the other hand, the finer the grain, the better the stretch flange formability and pressure resistance, but the harder the steel becomes.
If the grain size number exceeds 11.5, the total forming energy during DI forming will increase significantly and galling will occur.
I processing becomes difficult. Therefore, the grain size number is 8.5
~11.51-Specify. The preferred range is 9.0-11
.. It is number 0.

次に鋼成分について説明する。Next, the steel components will be explained.

Cは鋼を硬化するので、その上限をo、o6oo%とす
る。Cをより少なくすることは軟質化に有効であるが、
Cを0.0040%未満に減じると固溶Cが著しく減少
しBH性が得られないので下限を0.0040%とする
。好ましい範囲は0.0040〜0.0400%である
。MnはSによる熱間脆性を防止するため0.05%以
上含有させる必要があるが、0.50%を超えるとCと
同様に鋼を硬質化し、本発明の特徴を失う。好ましい範
囲は0.10〜0.30チである。Al!は加工性に有
害である酸化物系介在物を低減するため、脱酸剤として
、また鋼中のN固定を通じて、表面処理時の歪時効によ
る硬質化を抑制するため、少なくとも酸可溶Mとして0
.020%含有させる必要がある。しかし0.100%
を超えると鋼を硬質化し、また表面疵も増加する。
Since C hardens steel, its upper limit is set to o, o6oo%. Reducing the amount of C is effective for softening, but
If C is reduced to less than 0.0040%, solid solution C will decrease significantly and BH properties cannot be obtained, so the lower limit is set to 0.0040%. The preferred range is 0.0040-0.0400%. Mn needs to be contained in an amount of 0.05% or more to prevent hot embrittlement caused by S, but if it exceeds 0.50%, it will harden the steel like C and lose the characteristics of the present invention. The preferred range is 0.10 to 0.30 inches. Al! is used as a deoxidizing agent to reduce oxide inclusions that are harmful to workability, and at least as an acid-soluble M to suppress hardening due to strain aging during surface treatment by fixing N in steel. 0
.. It is necessary to contain 0.020%. But 0.100%
Exceeding this will harden the steel and increase surface flaws.

好ましい範囲は0.030〜o、oso%である。Pと
Nは鋼を著しく硬化させる元素であり、PとNを共に低
くすることによって従来考えられていた以上の顕著な軟
質化の効果が得られる。本発明特定のDI加工用鋼板を
得るためには、Pの上限を0.020%、Nの上限を0
.0070%とする。Nの好−ましい範囲は0.003
0%以下である。
The preferred range is 0.030 to o.o.so%. P and N are elements that significantly harden steel, and by lowering both P and N, a more remarkable softening effect than previously thought can be obtained. In order to obtain a steel plate for DI processing specific to the present invention, the upper limit of P is 0.020% and the upper limit of N is 0.02%.
.. 0070%. The preferred range of N is 0.003
It is 0% or less.

特に抗張力37Kgf/aj以下、降伏点30 K9 
f/−i以下のより軟質でDI加工性に優れた鋼板を製
造する場合は、c : 0.0040〜0.0800%
、Mn : 0.10〜0.25 %、酸可溶A! :
 0.030〜0.080 %、P:O,015%以下
、N:0.0025%以下とすることが好ましい。
Especially tensile strength 37Kgf/aj or less, yield point 30K9
When manufacturing a steel plate that is softer than f/-i and has excellent DI workability, c: 0.0040 to 0.0800%.
, Mn: 0.10-0.25%, acid soluble A! :
Preferably, the content is 0.030 to 0.080%, P:O, 015% or less, and N: 0.0025% or less.

本発明における鋼成分は上述の通りであるが、Sは鋼中
の介在物となり、鋼板の表面欠陥、加工時のワレ発生の
原因となるので、O,015%以下とすることが好まし
い。まだ必要(二より本発明の鋼成分にさらに炭窒化物
形成元素である0、0050%以下のBおよび0.10
%以下のCrのうち一種または二種を添加することも可
能である。これらの元素を添加することによりDI加工
性の優れた鋼板が安定して製造可能である。
The steel components in the present invention are as described above, but since S becomes inclusions in the steel and causes surface defects of the steel plate and cracking during processing, it is preferable that the content is 0.015% or less. Still necessary (from the second point, the steel components of the present invention further contain not more than 0.050% of B, which is a carbonitride-forming element, and 0.10%).
% or less of Cr. By adding these elements, a steel plate with excellent DI workability can be stably manufactured.

本発明鋼の製造法について述べる。The method for manufacturing the steel of the present invention will be described.

前記特定成分の鋼を通常の方法で浴製し、連続鋳造法ま
たは造塊および分塊圧延法にて鋼片とし、熱間圧延に供
する。熱間圧延に先立つ鋼片の熱処理条件は通常行われ
るいかなる方法もとシ得る。
The steel having the above-mentioned specific components is bath-produced by a conventional method, and is made into a steel billet by a continuous casting method or an ingot-forming and blooming rolling method, and is subjected to hot rolling. The heat treatment conditions for the steel billet prior to hot rolling may be any conventional method.

すなわち熱片を直送して圧延してもよく、加熱炉で再加
熱してもよい。特に軟質でDI加工性および伸び7ラン
ジ成形性の優れたDI加工用鋼板を製造するには、連続
鋳造法で鋼片とし、Ar、変態点未満まで冷却したのち
1150°C以下の温度域に再加熱して熱間圧延に供す
ることが好ましい。
That is, the hot piece may be directly sent and rolled, or may be reheated in a heating furnace. In order to produce a steel plate for DI processing that is particularly soft and has excellent DI workability and elongation 7 lunge formability, it is necessary to produce a steel plate using a continuous casting method, cool it to below the Ar transformation point, and then heat it in a temperature range of 1150°C or less. It is preferable to reheat and subject to hot rolling.

熱間圧延は通常行われるいかなる方法もとり得るが、6
00〜710°Cの温度で捲取ることが好ましい。
Hot rolling can be done by any conventional method, but 6
It is preferable to roll it up at a temperature of 00 to 710°C.

次いで通常の方法で脱スケール後冷間圧延し、連続焼鈍
に供する。
Then, it is cold rolled after being descaled by a conventional method and subjected to continuous annealing.

連続焼鈍は、製品が板の抗張力が42Kgf/−以下、
結晶粒度番号が8.5〜11.5を満たす限りいかなる
方法もとり得るが、再結晶温度以上850°C以下の温
度で5秒〜180秒間の再結晶焼鈍を行ったのち、5〜
250°C/秒の冷却速度で冷却し、250〜500’
Cの温度で20〜IF50秒の過時効処理を施すことが
好ましく、以上の範囲内で製品板の特性を請だすごとく
焼鈍条件を決定すればよい。
Continuous annealing allows the product to have a plate tensile strength of 42Kgf/- or less,
Any method can be used as long as the grain size number satisfies 8.5 to 11.5, but after performing recrystallization annealing for 5 seconds to 180 seconds at a temperature above the recrystallization temperature and below 850 ° C.
Cooled at a cooling rate of 250°C/sec, 250-500'
It is preferable to perform an overaging treatment at a temperature of C for 20 to IF 50 seconds, and the annealing conditions may be determined within the above range so as to obtain the characteristics of the product sheet.

次いで通常の方法で調質圧延し、通常行われる表面処理
を施す。
Then, it is temper rolled in a conventional manner and subjected to a conventional surface treatment.

(実施例) 第1表に本発明の実施例を示す。(Example) Table 1 shows examples of the present invention.

第1表記載の成分を有する鋼を転炉で浴製し、連続鋳造
した鋼片を3. Ownまで熱間圧延し、酸洗し、次い
で0.32mまで冷間圧延し、次いで第1表記載の焼鈍
条件で焼鈍し、次いで1.0チの調質圧延を行ない、電
気すずめつきを行った。同じく第1表(−1それぞれの
条件で製造された電気すずめつき製品の結晶粒度、抗張
力を示しだ。
3. Steel having the components listed in Table 1 was bath-produced in a converter and continuously cast. Hot rolled to 1.0 inch, pickled, then cold rolled to 0.32 m, annealed under the annealing conditions listed in Table 1, then temper rolled to 1.0 inch, and electroplated. Ta. Similarly, Table 1 (-1) shows the crystal grain size and tensile strength of the electric tinned products manufactured under each condition.

このようにして製造された電気すずめつき鋼板を実験室
のDI加工機にてDI缶に成形した場合の全成形エネル
ギーを第1表に示す。該全成形エネルギーが小さいほど
、またかじり発生のないほどDI加工性にすぐれること
を表わす。
Table 1 shows the total forming energy when the electric tinned steel sheet manufactured in this way was formed into a DI can using a DI processing machine in a laboratory. The smaller the total molding energy and the less occurrence of galling, the better the DI processability.

さらに該DI缶の耐圧強度および伸びフランジ加工率を
実験室にて測定した結果を同じく第1表に示す。伸びフ
ランジ加工率は、本発明者らの実験室(二おける測定法
の場合9.0%以上が需要家においても合格と判定され
ることがわかっている。
Furthermore, the pressure resistance and stretch flange processing rate of the DI cans were measured in a laboratory and the results are also shown in Table 1. It has been found that a stretch flange processing rate of 9.0% or more is determined to be acceptable by the customer in the case of the measurement method conducted by the present inventors' laboratory.

第1表かられかるように、本発明鋼は全成形エネルギー
が小さくかじりが発生せず耐圧強度が充分高く、伸びフ
ランジ加工率がきわめて高く伸びフランジ成形性に特に
すぐれていることがわかる。
As can be seen from Table 1, the steel of the present invention has a small total forming energy, no galling, sufficiently high pressure resistance, extremely high stretch flanging rate, and particularly excellent stretch flanging formability.

一方比較鋼については、箱焼鈍材(Nl113〜14)
は全成形エネルギーが小さくかじシ発生もないが伸び7
ランジ加工率および耐圧強度が劣る。箱焼鈍材(Nal
 5 )は結晶粒度番号が本発明外であるため全成形エ
ネルギーが高く、かじりが発生する。
On the other hand, for comparison steel, box annealed material (Nl113~14)
The total forming energy is small and there is no galling, but the elongation is 7.
Lunge processing rate and pressure resistance are poor. Box annealed material (Nal
5) has a grain size number outside the scope of the present invention, so the total forming energy is high and galling occurs.

比較鋼の連続焼鈍材の随16は、全成形エネルギーが小
さくかじり発生もないが、結晶粒度番号が本発明外の粗
粒であるため伸びフランジ成形性が劣る。比較鋼の連続
焼鈍材のNQ17〜1Bは耐圧強度が高く伸びフランジ
成形性にもすぐれるが、抗張力が本発明外であるため全
成形エネルギーが高く、かじりが発生する。
Continuously annealed comparative steel No. 16 has a small total forming energy and does not cause galling, but has poor stretch flange formability because the grain size number is coarse, which is outside the scope of the present invention. Continuously annealed comparative steels NQ17-1B have high pressure resistance and excellent stretch flange formability, but their tensile strength is outside the scope of the present invention, so the total forming energy is high and galling occurs.

なお、本発明鋼はBH硬化により耐圧強度のみならず、
缶の垂直方向での座屈強度も上昇するので箱焼鈍材に比
して素材強度が同一であれば座屈強度も優れていること
を付言しておく。さら(二本発明鋼は伸び7ランジ成形
性に特に優れるため、単化伸び7ランジ加工での不良率
が低いばかりでなく、さらに厳しい伸びフランジ加工に
も耐えるトが安く、製品材質の均一性にすぐれ、かつか
じりの発生がなくDI加工が容易であり、DI加工後の
伸びフランジ成形性に優れ、DI加工後の塗装焼付時に
硬化することによって耐圧強度が著しく向上するDI缶
用鋼板を提供するものであり、その工業的効果は甚大で
ある。
In addition, the steel of the present invention has not only high pressure strength due to BH hardening, but also
It should be added that since the buckling strength in the vertical direction of the can also increases, the buckling strength is also superior to that of box annealed materials if the material strength is the same. Furthermore, the steel of the present invention has particularly excellent elongation 7 flange formability, so it not only has a low defect rate in single elongation 7 lange processing, but also has a low cost that can withstand even more severe stretch flange processing, and has a uniform product material. To provide a steel sheet for DI cans that has excellent properties, is easy to perform DI processing without causing galling, has excellent stretch flange formability after DI processing, and has significantly improved pressure resistance by hardening during paint baking after DI processing. The industrial effect is enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実機製造ラインにて製造したDI缶用鋼板に
ついて、製品板の抗張力、DI試験成形機における全成
形エネルギー、成形後塗装焼付処理を行なったDI缶の
耐圧強度、および焼鈍方法の関係を示した図、 第2図は、実機製造ラインにて製造したDI缶用鋼板に
ついて、JIS結晶粒度番号、DI缶の耐圧強度、DI
加工後の伸びフランジ成形における破断発生までの加工
率、および焼鈍方法の関係を示した図である。 第1図 抗張力(kgf/mm  )
Figure 1 shows the tensile strength of the product plate, the total forming energy in the DI test forming machine, the compressive strength of the DI can that was subjected to post-forming paint baking treatment, and the annealing method for steel plates for DI cans manufactured on the actual manufacturing line. Figure 2 shows the relationship between the JIS grain size number, the compressive strength of the DI can, and the DI can steel plate manufactured on the actual manufacturing line.
FIG. 2 is a diagram showing the relationship between the processing rate until breakage occurs in stretch flange forming after processing and the annealing method. Figure 1 Tensile strength (kgf/mm)

Claims (1)

【特許請求の範囲】 重量%で C:0.0040〜0.0600% Mn:0.05〜0.50% P:0.020%以下 液可溶Al:0.020〜0.100% N:0.0070%以下、 残部がFeおよび不可避的不純物から成る成分を有し、
42Kgf/mm^2以下の抗張力およびJIS結晶粒
度番号8.5以上11.5以下の結晶粒組織を有する連
続焼鈍で製造された伸びフランジ成形性の優れたDI缶
用鋼板。
[Claims] C: 0.0040-0.0600% Mn: 0.05-0.50% P: 0.020% or less Liquid-soluble Al: 0.020-0.100% N : 0.0070% or less, with the remainder consisting of Fe and unavoidable impurities,
A steel sheet for DI cans with excellent stretch flange formability manufactured by continuous annealing and having a tensile strength of 42 Kgf/mm^2 or less and a grain structure with a JIS grain size number of 8.5 or more and 11.5 or less.
JP27976186A 1986-11-26 1986-11-26 Steel sheet for di can excellent in stretch-flange formability Pending JPS63134645A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP27976186A JPS63134645A (en) 1986-11-26 1986-11-26 Steel sheet for di can excellent in stretch-flange formability
AU81605/87A AU592481B2 (en) 1986-11-26 1987-11-23 Steel strip or sheet for di cans and production method thereof
NO874886A NO874886L (en) 1986-11-26 1987-11-24 STEEL BAND OR PLATE FOR DRAWN AND GLASSED BOXES, AND MANUFACTURE FOR THE SAME.
ES8703381A ES2008353A6 (en) 1986-11-26 1987-11-26 Steel sheet for di can excellent in stretch-flange formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27976186A JPS63134645A (en) 1986-11-26 1986-11-26 Steel sheet for di can excellent in stretch-flange formability

Publications (1)

Publication Number Publication Date
JPS63134645A true JPS63134645A (en) 1988-06-07

Family

ID=17615535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27976186A Pending JPS63134645A (en) 1986-11-26 1986-11-26 Steel sheet for di can excellent in stretch-flange formability

Country Status (4)

Country Link
JP (1) JPS63134645A (en)
AU (1) AU592481B2 (en)
ES (1) ES2008353A6 (en)
NO (1) NO874886L (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184252A (en) * 1988-01-18 1989-07-21 Nippon Steel Corp Steel sheet for di can excellent in stretch-flange formability
EP0457423A2 (en) * 1990-05-16 1991-11-21 Toyo Seikan Kaisha Limited Thickness-reduced draw-formed can
JPH04202643A (en) * 1990-11-30 1992-07-23 Nkk Corp Stainless steel having high strength and high toughness and its production
EP1022347A1 (en) * 1998-07-09 2000-07-26 Nkk Corporation Method for producing raw plate for surface treatment plate for can using continuous annealing
EP1607490A1 (en) * 2004-06-18 2005-12-21 Nippon Steel Corporation Steel sheet suitable for tin-plating steel sheet having excellent formability and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU611883B2 (en) * 1987-02-02 1991-06-27 John Lysaght (Australia) Limited Steel suited to cintinuous casting and annealing

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5525934A (en) * 1978-08-12 1980-02-25 Matsushita Electric Works Ltd Device for lighting discharge lamp with illumination controller
JPS5831034A (en) * 1981-08-17 1983-02-23 Sumitomo Metal Ind Ltd Production of cold rolled steel plate for drawing
JPS5852435A (en) * 1981-09-21 1983-03-28 Nippon Steel Corp Production of cold rolled steel plate of high ductility for deep drawing by continuous annealing
JPS58217659A (en) * 1982-06-11 1983-12-17 Nippon Steel Corp Can-making steel plate with reduced lug generation
JPS5935632A (en) * 1982-08-21 1984-02-27 Nippon Steel Corp Production of blackplate having excellent processability
JPS5938338A (en) * 1982-08-30 1984-03-02 Kawasaki Steel Corp Production of ultra thin steel sheet having high yield strength and drawability
JPS5938336A (en) * 1982-08-26 1984-03-02 Kawasaki Steel Corp Production of ultra thin steel sheet for can having high yield strength and drawability
JPS59159936A (en) * 1983-03-03 1984-09-10 Nippon Steel Corp Manufacture of cold rolled steel sheet with superior press formability
JPS59159935A (en) * 1983-03-03 1984-09-10 Nippon Steel Corp Manufacture of cold rolled steel sheet with superior press workability
JPS59208025A (en) * 1983-05-13 1984-11-26 Nippon Steel Corp Manufacture of cold rolled steel sheet with superior workability
JPS59219415A (en) * 1983-05-25 1984-12-10 Nippon Steel Corp Manufacture of cold rolled steel sheet with superior workability
JPS6043431A (en) * 1983-08-19 1985-03-08 Nippon Steel Corp Manufacture of soft steel sheet for surface treatment with superior fluting resistance by continuous annealing
JPS60262918A (en) * 1984-06-08 1985-12-26 Kawasaki Steel Corp Manufacture of surface treating raw sheet without causing stretcher strain
JPS6123719A (en) * 1984-07-09 1986-02-01 Nippon Steel Corp Manufacture of soft steel sheet for surface treatment superior in fluting resistance by continuous annealing
JPS6126724A (en) * 1984-07-18 1986-02-06 Nippon Steel Corp Manufacture of dead soft base sheet for surface treatment by continuous annealing
JPS6169928A (en) * 1984-09-12 1986-04-10 Kawasaki Steel Corp Manufacture of steel plate for ironing by continuous annealing
JPS61124533A (en) * 1984-11-20 1986-06-12 Kawasaki Steel Corp Manufacture of nonaging cold rolled steel sheet having good workability by continuous annealing
JPS61195919A (en) * 1985-02-27 1986-08-30 Nippon Steel Corp Manufacture of cold rolled steel sheet having superior stretcher strain resistance
JPS61238919A (en) * 1985-04-15 1986-10-24 Kawasaki Steel Corp Manufacture of cold rolled deep drawing steel sheet having low anisotropy in plane
JPS6267119A (en) * 1985-09-19 1987-03-26 Kawasaki Steel Corp Manufacture of steel sheet for di can having good flanging property and baking hardenability
JPS62139822A (en) * 1985-12-11 1987-06-23 Kobe Steel Ltd Production of cold rolled steel sheet for deep drawing having excellent uniformity of material quality
JPS62161919A (en) * 1986-01-10 1987-07-17 Kawasaki Steel Corp Manufacture of hard sheet steel for can excellent in drawability and minimized in anisotropy
JPS6333522A (en) * 1986-07-26 1988-02-13 Nippon Steel Corp Production of raw plate for t-1 to t-3 class soft quality surface treatment for di works

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827933A (en) * 1981-08-13 1983-02-18 Kawasaki Steel Corp Production of t-3 mild blackplate having excellent corrosion resistance by continuous annealing

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5525934A (en) * 1978-08-12 1980-02-25 Matsushita Electric Works Ltd Device for lighting discharge lamp with illumination controller
JPS5831034A (en) * 1981-08-17 1983-02-23 Sumitomo Metal Ind Ltd Production of cold rolled steel plate for drawing
JPS5852435A (en) * 1981-09-21 1983-03-28 Nippon Steel Corp Production of cold rolled steel plate of high ductility for deep drawing by continuous annealing
JPS58217659A (en) * 1982-06-11 1983-12-17 Nippon Steel Corp Can-making steel plate with reduced lug generation
JPS5935632A (en) * 1982-08-21 1984-02-27 Nippon Steel Corp Production of blackplate having excellent processability
JPS5938336A (en) * 1982-08-26 1984-03-02 Kawasaki Steel Corp Production of ultra thin steel sheet for can having high yield strength and drawability
JPS5938338A (en) * 1982-08-30 1984-03-02 Kawasaki Steel Corp Production of ultra thin steel sheet having high yield strength and drawability
JPS59159936A (en) * 1983-03-03 1984-09-10 Nippon Steel Corp Manufacture of cold rolled steel sheet with superior press formability
JPS59159935A (en) * 1983-03-03 1984-09-10 Nippon Steel Corp Manufacture of cold rolled steel sheet with superior press workability
JPS59208025A (en) * 1983-05-13 1984-11-26 Nippon Steel Corp Manufacture of cold rolled steel sheet with superior workability
JPS59219415A (en) * 1983-05-25 1984-12-10 Nippon Steel Corp Manufacture of cold rolled steel sheet with superior workability
JPS6043431A (en) * 1983-08-19 1985-03-08 Nippon Steel Corp Manufacture of soft steel sheet for surface treatment with superior fluting resistance by continuous annealing
JPS60262918A (en) * 1984-06-08 1985-12-26 Kawasaki Steel Corp Manufacture of surface treating raw sheet without causing stretcher strain
JPS6123719A (en) * 1984-07-09 1986-02-01 Nippon Steel Corp Manufacture of soft steel sheet for surface treatment superior in fluting resistance by continuous annealing
JPS6126724A (en) * 1984-07-18 1986-02-06 Nippon Steel Corp Manufacture of dead soft base sheet for surface treatment by continuous annealing
JPS6169928A (en) * 1984-09-12 1986-04-10 Kawasaki Steel Corp Manufacture of steel plate for ironing by continuous annealing
JPS61124533A (en) * 1984-11-20 1986-06-12 Kawasaki Steel Corp Manufacture of nonaging cold rolled steel sheet having good workability by continuous annealing
JPS61195919A (en) * 1985-02-27 1986-08-30 Nippon Steel Corp Manufacture of cold rolled steel sheet having superior stretcher strain resistance
JPS61238919A (en) * 1985-04-15 1986-10-24 Kawasaki Steel Corp Manufacture of cold rolled deep drawing steel sheet having low anisotropy in plane
JPS6267119A (en) * 1985-09-19 1987-03-26 Kawasaki Steel Corp Manufacture of steel sheet for di can having good flanging property and baking hardenability
JPS62139822A (en) * 1985-12-11 1987-06-23 Kobe Steel Ltd Production of cold rolled steel sheet for deep drawing having excellent uniformity of material quality
JPS62161919A (en) * 1986-01-10 1987-07-17 Kawasaki Steel Corp Manufacture of hard sheet steel for can excellent in drawability and minimized in anisotropy
JPS6333522A (en) * 1986-07-26 1988-02-13 Nippon Steel Corp Production of raw plate for t-1 to t-3 class soft quality surface treatment for di works

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184252A (en) * 1988-01-18 1989-07-21 Nippon Steel Corp Steel sheet for di can excellent in stretch-flange formability
JPH0478714B2 (en) * 1988-01-18 1992-12-11 Nippon Steel Corp
EP0457423A2 (en) * 1990-05-16 1991-11-21 Toyo Seikan Kaisha Limited Thickness-reduced draw-formed can
JPH04202643A (en) * 1990-11-30 1992-07-23 Nkk Corp Stainless steel having high strength and high toughness and its production
EP1022347A1 (en) * 1998-07-09 2000-07-26 Nkk Corporation Method for producing raw plate for surface treatment plate for can using continuous annealing
EP1022347A4 (en) * 1998-07-09 2004-05-06 Jfe Steel Corp Method for producing raw plate for surface treatment plate for can using continuous annealing
EP1607490A1 (en) * 2004-06-18 2005-12-21 Nippon Steel Corporation Steel sheet suitable for tin-plating steel sheet having excellent formability and manufacturing method thereof
US7501031B2 (en) 2004-06-18 2009-03-10 Nippon Steel Corporation Steel sheet for tin plated steel sheet and tin-free steel sheet each having excellent formability and manufacturing method thereof
US8012276B2 (en) 2004-06-18 2011-09-06 Nippon Steel Corporation Method for manufacturing a steel sheet for tin plated steel sheet and tin-free steel sheet each having excellent formability

Also Published As

Publication number Publication date
ES2008353A6 (en) 1989-07-16
AU8160587A (en) 1988-06-02
NO874886L (en) 1988-05-27
AU592481B2 (en) 1990-01-11
NO874886D0 (en) 1987-11-24

Similar Documents

Publication Publication Date Title
WO2010113333A1 (en) Steel sheet for high‑strength container and manufacturing method thereof
EP2468909B1 (en) Highly processable steel sheet for three-piece welded can and method for producing same
JPH08246060A (en) Production of steel sheet for can
KR101645840B1 (en) Three-piece can and method for producing same
JP4853325B2 (en) Thin wall cold-rolled steel sheet for drums and method for producing the same
EP2671962B1 (en) Steel sheet for bottom of aerosol cans with high resistance to pressure and high formability and method for manufacturing the same
JP2009007607A (en) Steel sheet for extrathin vessel
JP2023507810A (en) Tin-plated base plate for processing and method for producing the same
JP2001335888A (en) Steel sheet for lightweight two-piece can, and its production method
JP4486414B2 (en) Thin steel plate for cans with strong can body strength and good press workability and method for producing the same
JPS63134645A (en) Steel sheet for di can excellent in stretch-flange formability
JPH01184229A (en) Production of steel sheet for di can having excellent stretch flanging property
JPH08127816A (en) Production of starting steel sheet for vessel, excellent in wrinkling resistance
JPH01184252A (en) Steel sheet for di can excellent in stretch-flange formability
KR102587650B1 (en) Steel sheet for cans and method of producing same
JP3108615B2 (en) Method for producing steel sheet for welded can with excellent flanging and neck formability
CN115135795B (en) High-strength tin-plated original plate and manufacturing method thereof
JP5803510B2 (en) High-strength, high-formability steel plate for cans and method for producing the same
US20180112295A1 (en) Steel sheet for can lid and method for producing the same (as amended)
JP2010255021A (en) Cold-rolled steel sheet for steel sheet for can, steel sheet for can and method for producing them
JP3474647B2 (en) Manufacturing method of steel sheet for thin containers
JPS63140039A (en) Production of steel sheet for di can
JPH05345925A (en) Production of extra thin steel sheet for dwi can excellent in flange workability
JP3456731B2 (en) Steel plate for multistage drawn cans with excellent crack resistance during spinning neck processing
JPS63286522A (en) Production of steel sheet for di can