JPH0478714B2 - - Google Patents

Info

Publication number
JPH0478714B2
JPH0478714B2 JP63006933A JP693388A JPH0478714B2 JP H0478714 B2 JPH0478714 B2 JP H0478714B2 JP 63006933 A JP63006933 A JP 63006933A JP 693388 A JP693388 A JP 693388A JP H0478714 B2 JPH0478714 B2 JP H0478714B2
Authority
JP
Japan
Prior art keywords
less
steel
processing
cans
stretch flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63006933A
Other languages
Japanese (ja)
Other versions
JPH01184252A (en
Inventor
Kuniaki Maruoka
Takeshi Kono
Yasuhiko Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP693388A priority Critical patent/JPH01184252A/en
Publication of JPH01184252A publication Critical patent/JPH01184252A/en
Publication of JPH0478714B2 publication Critical patent/JPH0478714B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はDI缶(Draw & Ironed Can)用
鋼板に関し、DI加工後の伸びフランジ成形性に
優れ、DI加工が容易であり、DI加工後の塗装焼
付時に硬化することによつて耐圧強度が向上する
DI缶用鋼板に関するものである。 (従来の技術) 鋼板に錫めつきを施したブリキ鋼板あるいはク
ロム酸処理を施したテイン・フリー・スチールの
ごとき表面処理鋼板が食缶やエアゾール缶、イー
ジーオープン缶に多用されている。 これら表面処理鋼板は近年多段絞り加工あるい
はDI加工(Draw & Ironing加工すなわち深
絞り加工後にしごき加工が施される)など、きび
しい加工が行なわれるようになり、単に耐食性の
みならず、優れた加工性をも要求されるようにな
つている。 DI缶の製缶加工は、鋼板をポンチとダイスを
用いて浅絞りしてカツプを成形後、このカツプの
側壁の厚さよりクリアランスが小さいポンチとダ
イスを用いて側壁をしごき引伸し、側壁の厚さを
減少させることにより所定深さの容器(カツプ)
を成形し、さらにカツプ端に蓋を巻締めるための
フランジ出し加工が行なわれる。 DI缶用鋼板に要求される特性としては、まず
DI加工時の加工性がよく、かじりの発生がなく
加工エネルギーが小さいこと、および缶体として
耐圧強度が高いことが要求される。 かかるDI缶用材料としては、従来は、例えば
B添加Alキルド鋼の箱焼鈍したもの(特開昭53
−48913)、Cu添加低炭素鋼を箱焼鈍したもの
(特公昭52−16965)のようにほとんど箱焼鈍材が
適用されていた。それは箱焼鈍材の方が伸び、深
絞り性に優れており、一般にDI加工用途にも適
していると考えられていたからである。 特に、DI缶の成形加工では伸びフランジ成形
性の良いことはきわめて重要視され、その不良率
は数10ppm以下に抑える必要がある。そのため鋼
板として伸び、r値の優れた箱焼鈍材が従来から
適用されていた。 (発明が解決しようとする問題点) 一方近年DI缶は板厚がますます薄手化されつ
つあり、耐圧強度を高めることの要求も非常に強
くなりつつある。 缶体の耐圧強度は(板厚)2×(強度)で決り、
薄手化するには素材強度を高める必要があるが、
箱焼鈍材は一般に軟質であり、薄手化への対応が
難しい。強度の向上を図ろうとすれば強化元素を
添加し比較的高合金の成分にする必要があり、こ
の場合にはDI加工性が劣化する問題がある。ま
た鋼板を高強度化するとDI加工時にかじりが発
生しやすくなり、また加工エネルギーも増加する
欠点が生ずる。 最近では、DI缶用鋼板を連続焼鈍にて製造す
ることが検討されているが、DI加工時のフラン
ジ成形の小さいクラツクの発生防止を満足し得る
までに至らず、またかじり発生も散見される。 本発明の目的は、伸びフランジ成形性に優れ、
かじりが発生せずDI加工が容易でありかつDI加
工後の耐圧強度の高いDI缶用容器材料を提供す
ることにある。 (問題点を解決するための手段) 本発明者らは、DI缶に要求される諸特性につ
いて種々研究した結果、DI缶用鋼板については、
DI成形性およびDI缶の実用特性を総合すると、
箱焼鈍材よりも、むしろ鋼板の強度、結晶粒度、
析出物寸法を特定した連続焼鈍材の方が優れてい
ることを新規に知見し、本発明を完成したもので
ある。 本発明者らはまずDI加工後の伸びフランジ成
形性について深く研究した結果、DI加工後すな
わち著しい加工後の伸びフランジ成形性は鋼板そ
のものの伸びフランジ成形性と異なり、むしろ従
来の知見とは逆に鋼板の抗張力が42Kgf/mm2
下、結晶粒度番号が8.5〜11.5,0.02μm以上0.40μ
m以下の平均寸法のMnSおよび0.005μm以上
0.20μm以下の平均寸法のAlNの析出物組織を有
し、C:0.0040〜0.0600%、Mn:0.05〜0.50%、
P:0.02%以下、S:0.015%以下、酸可溶Al:
0.020〜0.100%、N:0.0070%以下、ただし、
〔Mn重量%〕と〔P重量%〕との間に 10〔P重量%〕−0.03≦〔Mn重量%〕≦20〔P重量
%〕+0.14 なる関係を有する鋼成分の連続焼鈍材の方が、固
溶Cを有するにもかかわらずDI加工後の伸びフ
ランジ成形性の優れていることを新規に知見し
た。 該連続焼鈍材では、DI加工後施される塗装焼
付によつて缶体の強度が著しく上昇し、その結
果、耐圧強度も上昇する(以下この特性をBH性
と称する)ことを本発明者らは見出した。すなわ
ち箱焼鈍材より軟質の該連続焼鈍材を使用するこ
とによりDI加工時はやわらかく従つてDI加工性
にすぐれ、塗装焼付後耐圧強度が箱焼鈍材以上に
できるという優れた特徴が得られることが判明し
た。このことは、素材強度が同一であれば缶体の
耐圧強度は連続焼鈍材の方が高くできることを意
味するもので、この工業的価値は非常に大きい。 以下本発明を詳細に説明する。 まず製品板(鋼板)の抗張力について第1図を
参照し説明する。抗張力が大きいとDI加工時の
成形荷重および成形エネルギーが大きくなつて加
工しにくく、またかじりが発生しやすくなるの
で、その上限を42Kgf/mm2とする。好ましい範囲
は抗張力40Kgf/mm2以下である。 第1図はC:0.0040〜0.080%、Mn:0.15〜
0.60%、P:0.006〜0.030%、S:0.005〜0.015
%、酸可溶Al:0.005〜0.070%、N:0.0070%以
下の鋼を真空溶解炉で溶製し、実験室パイロツト
ラインにて製造したDI加工用鋼板について、製
品板の抗張力とDI試験成形機における全成形エ
ネルギー、成形後塗装焼付処理を行つたDI缶の
耐圧強度の関係を焼鈍方法との関連で示す。 第1図からわかるように、抗張力が42Kgf/mm2
を越えると全成形エネルギーが著しく上昇し、か
じりが多発する結果、DI加工が困難となる。全
成形エネルギーを安定して低く抑えるためには、
抗張力を40Kgf/mm2以下、降伏点を36Kgf/mm2
下、より好ましくは抗張力37Kgf/mm2以下、降伏
点30Kgf/mm2以下にすることが好ましい。 また耐圧強度は抗張力が大きいほど増大する
が、連続焼鈍材は箱焼鈍材に比べて抗張力が同じ
でも耐圧強度は約1〜2Kgf/cm2高い。このよう
なBH性を確保するために鋼板の固溶C量は
5.0ppm以上含むことが好ましい。 次に、結晶粒度について説明する。 第2図はC:0.0044〜0.076%、Mn:0.16〜
0.57%、P:0.008〜0.030%、S:0.005〜0.015
%、酸可溶Al:0.007〜0.080%、N:0.0020〜
0.0070%以下の鋼を真空溶解炉で溶製し、実験室
パイロツトラインにて製造したDI加工用鋼板に
ついて、JIS結晶粒度番号とDI加工後の伸びフラ
ンジ成形における破断発生までの加工率および耐
圧強度の関係を焼鈍方法との関係で示す。 伸びフランジ加工率は、本発明者らの実験室に
おける測定法の場合9.0%以上が需要家において
も合格と評価されることがわかつている。 第2図からわかるように、伸びフランジ加工率
は細粒であるほど(結晶粒度番号が大きいほど)
向上し、伸びフランジ加工率9.0%以上を確保す
るには連続焼鈍材の場合、結晶粒度番号8.5以上
が必要である。また予想に反し連続焼鈍材の方が
箱焼鈍材よりむしろ伸びフランジ成形性が良好で
ある。一方細粒になるほど伸びフランジ成形性お
よび耐圧強度は向上するが鋼が硬質化し、結晶粒
度番号が11.5番を越えるとDI加工時の全成形エネ
ルギーが著しく増大し、かじりが発生するため
DI加工が困難となる。したがつて結晶粒度番号
を8.5〜11.5に特定する。好ましくは範囲9.0〜
11.0番である。 次に鋼板の析出物寸法について説明する。 第3図はC:0.021〜0.045%、Mn:0.16〜0.30
%、S:0.005〜0.04%、P:0.008〜0.017%、酸
可溶Al:0.005〜0.100%、N:0.0010〜0.0070%
の鋼を真空溶解炉で溶製し、熱間圧延前および熱
間圧延巻き取り後に種々の条件で熱処理を行つて
MnSおよびAlNの析出物寸法を変化させ、実験
室パイロツトラインにて製造したDI加工用鋼板
について、膨大な枚数の電子顕微鏡写真から求め
たMnSおよびAlNの析出物平均寸法とDI加工後
の伸びフランジ成形における破断発生までの加工
率の関係を示す。図中の数字はその点のMnSお
よびAlNの平均寸法の析出物組織を持つ試料の
伸びフランジ加工率を表し、曲線は伸びフランジ
加工率の等高線を表す。 第3図からわかるように、MnSの平均析出物
寸法が0.02μm未満または0.40μm超、またはAlN
の平均析出物寸法が0.005μm未満または0.20μm
超になると伸びフランジ加工率が劣化する。した
がつてMnSの平均析出物寸法を0.02μm以上0.40μ
m以下、AlNの平均析出物寸法を0.005μm以上、
0.20μm以下に特定する。 次に鋼成分について説明する。 Cは鋼を硬化するので、その上限を0.0600%と
する。Cをより少なくすることは軟質化に有効で
あるが、Cを0.0040%未満に減じると固溶Cが著
しく減少しBH性が得られないので下限を0.0040
%とする。好ましい範囲は0.0040〜0.0400%であ
る。 MnはSによる熱間脆性を防止するため0.05%
以上含有させる必要があるが、0.50%を越えると
Cと同様に鋼を硬質化し、本発明の特徴と失う。
好ましい範囲は0.10〜0.30%である。 Alは加工性に有害である酸化物系介在物を低
減するため、脱酸剤として、また鋼中のN固定を
通じて、表面処理時の歪時効による硬質化を抑制
するため、少なくとも酸可溶Alとして0.020%含
有させる必要がある。しかし0.100%を越えると
鋼を硬質化し、また表面疵も増加する。好ましい
範囲は0.030〜0.080%である。 PとNはともに鋼を著しく硬化させる元素であ
り、PとNをともに低くすることによつて従来考
えられていた以上の顕著な軟質化の効果が得られ
る。本発明特定のDI缶用鋼板を得るためには、
Pの上限を0.020%、Nの上限を0.0070%とする。
Nの好ましい範囲は0.0030%以下である。 しかもMnとPには伸びフランジ成形性に関し
て特殊な相互作用があり、それぞれの含有量が上
記の範囲にあつても、Mn量およびP量がそれぞ
れ他方の量に比してアンバランスに多い場合は伸
びフランジ成形性が劣化することがわかつた。実
験により回帰式を求めた結果、良好な伸びフラン
ジ成形性を安定して確保するには、MnとPの含
有量の間に 10〔P重量%〕−0.03≦〔Mn重量%〕≦20〔P重量
%〕 +0.14 なる関係が成立する必要がある。 特に抗張力37Kgf/mm2以下、降伏点30Kgf/mm2
以下のより軟質でDI加工性に優れた鋼板を製造
する場合は、C:0.0040〜0.0400%、Mn:0.10〜
0.25%、酸可溶Al:0.030〜0.080%、P:0.015%
以下、S:0.015%以下、N:0.0025%以下とす
ることが好ましい。 Sは鋼中の介在物となり、鋼板の表面欠陥、加
工時のわれ、伸びフランジわれ発生、過大の平均
析出物寸法のMnS生成の原因となるので、上限
を0.015%とする。 本発明における鋼成分は上述の通りであるが、
必要により、本発明の鋼成分にさらに炭窒化物形
成元素である0.0050%以下のBおよび0.10%以下
のCrのうち一種または二種を添加することも可
能である。これらの元素を添加することにより
DI加工性の優れた鋼板が安定して製造可能であ
る。 本発明の製造方法について述べる。 前記特定成分の鋼を通常の方法で溶製し、連続
鋳造法または造塊および分塊圧延法にて鋼片と
し、熱間圧延に供する。熱間圧延に先立つ鋼片の
熱処理条件は通常行なわれるいかなる方法もとり
得る。すなわち熱片を直送して圧延してもよく、
加熱炉で再加熱してもよい。特に軟質でDI加工
性および伸びフランジ成形性の優れたDI缶用鋼
板を製造するには、連続鋳造法で鋼片とし、Ar3
変態点未満まで冷却したのち T*=6875/(3.865−log〔Al%+0.015〕)−
250を満たす温度T*℃以下の温度域に再加熱し
て熱間圧延に供することが好ましい。 熱間圧延は通常行なわれるいかなる方法もとり
得るが、600〜710℃の温度で巻き取ることが好ま
しい。 次いで通常の方法で脱スケール後冷間圧延し、
連続焼鈍に供する。 連続焼鈍は、製品板の抗張力が42Kgf/mm2
下、結晶粒度番号が8.5〜11.5を満たす限りいか
なる方法もとり得るが、再結晶温度以上850℃以
下の温度で5秒〜180秒間の再結晶焼鈍を行つた
のち、5〜250℃/秒の冷却速度で冷却し、300〜
500℃の温度で30〜180秒の過時効処理を施すこと
が好ましく、以上の範囲内で製品板の特性を満た
すごとく焼鈍条件を決定すればよい。 次いで通常の方法で調質圧延し、通常行なわれ
る表面処理を施す。 (実施例) 第1表に本発明の実施例を示す。 第1表記載の成分を有する鋼を転炉で溶製し、
連続鋳造した鋼片を3.0mmまで熱間圧延し、酸洗
し、次いで0.32mmまで冷間圧延し、次いで第1表
記載の焼鈍条件で焼鈍し、次いで1.0%の調質圧
延を行ない、電気すずめつきを行つた。同じく第
1表にそれぞれの条件で製造された電気すずめつ
き製品板の結晶粒度、抗張力を示した。 このようにして製造された電気すずめつき鋼板
を実験室のDI加工機にてDI缶に成形した場合の
全成形エネルギーを第1表に示す。該全成形エネ
ルギーが小さいほど、またかじり発生のないほど
DI加工性に優れることを表す。 さらに該DI缶の耐圧強度および伸びフランジ
加工率を実験室にて測定した結果を同じく第1表
に示す。伸びフランジ加工率は本発明者らの実験
室における測定法の場合9.0%以上が需要家にお
いても合格と評価されることがわかつている。 第1表からわかるように、本発明鋼は全成形エ
ネルギーが小さく、かじりが発生せず、耐圧強度
が充分高く、伸びフランジ加工率がきわめて高く
伸びフランジ成形性に優れていることがわかる。
一方比較鋼については、箱焼鈍材(No.13〜14)は
全成形エネルギーが小さく、かじり発生もない
が、伸びフランジ加工率および耐圧強度が劣る。
箱焼鈍材(No.15)は結晶粒度番号が本発明外であ
るため全成形エネルギーが高く、かじりが発生す
る。比較鋼の連続焼鈍材のNo.16は、全成形エネル
ギーが小さく、かじり発生もないが、結晶粒度番
号が本発明外の粗粒であるため伸びフランジ成形
性が劣る。比較鋼の連続焼鈍材のNo.17〜18は耐圧
強度が高く伸びフランジ成形性にも優れるが、抗
張力が本発明外であるため全成形エネルギーが高
く、かじりが発生する。比較鋼の連続焼鈍材のNo.
19〜20はMnとPの含有量のバランスが本発明外
であるため、伸びフランジ成形性がやや劣る。比
較鋼の連続焼鈍材のNo.21〜24はMnSおよびAlN
の析出物平均寸法が本発明外であるため、伸びフ
ランジ成形性がきわめて劣る。 なお、本発明鋼はBH硬化により耐圧強度のみ
ならず、缶の垂直方向での座屈強度も上昇するの
で、箱焼鈍材に比して素材強度が同一であれば座
屈強度も優れていることを付言しておく。さらに
本発明鋼は伸びフランジ成形性に特に優れるた
め、単に伸びフランジ成形での不良率が低いばか
りでなく、さらに厳しい伸びフランジ成形にも耐
える性能を有するものである。
(Field of Industrial Application) The present invention relates to a steel plate for DI cans (Draw & Ironed Cans), which has excellent stretch flange formability after DI processing, is easy to perform DI processing, and hardens during paint baking after DI processing. Compressive strength is improved by
This relates to steel plates for DI cans. (Prior Art) Surface-treated steel sheets, such as tin-plated steel sheets or tin-free steel sheets treated with chromic acid, are often used for food cans, aerosol cans, and easy-open cans. In recent years, these surface-treated steel sheets have been subjected to severe processing such as multi-stage drawing processing or DI processing (Draw & Ironing processing, i.e., ironing processing is performed after deep drawing processing). is also increasingly required. The manufacturing process for DI cans involves shallow drawing a steel plate using a punch and die to form a cup, and then drawing the side wall using a punch and die with a clearance smaller than the thickness of the side wall of the cup. Container (cup) of predetermined depth by decreasing
After that, a flange process is performed to wrap the lid around the end of the cup. The characteristics required for steel sheets for DI cans are:
It is required to have good workability during DI processing, no galling, low processing energy, and high pressure resistance as a can body. Conventionally, materials for such DI cans have been box-annealed, for example, B-added Al-killed steel (Japanese Patent Application Laid-Open No. 53
-48913) and box-annealed Cu-added low carbon steel (Special Publication No. 52-16965). This is because box-annealed materials have better elongation and deep drawability, and are generally considered suitable for DI processing applications. In particular, good stretch flange formability is extremely important in the molding process of DI cans, and the defective rate must be kept to a few tens of ppm or less. For this reason, box-annealed materials that elongate as steel plates and have excellent r-values have traditionally been used. (Problems to be Solved by the Invention) On the other hand, in recent years, the plate thickness of DI cans has become increasingly thinner, and the demand for increased pressure resistance has become extremely strong. The pressure resistance of the can body is determined by (plate thickness) 2 × (strength),
To make it thinner, it is necessary to increase the strength of the material, but
Box annealed materials are generally soft, making it difficult to make them thinner. In order to improve the strength, it is necessary to add reinforcing elements to make it a relatively high-alloy component, and in this case there is a problem that DI workability deteriorates. Furthermore, increasing the strength of the steel sheet has the disadvantage that galling is more likely to occur during DI processing, and processing energy also increases. Recently, manufacturing steel sheets for DI cans by continuous annealing has been considered, but it has not been possible to prevent the occurrence of small cracks in flange forming during DI processing, and galling has also been observed here and there. . The purpose of the present invention is to have excellent stretch flange formability,
To provide a container material for DI cans that does not cause galling, is easy to process through DI, and has high pressure resistance after DI processing. (Means for Solving the Problems) As a result of various studies on various characteristics required for DI cans, the present inventors found that regarding steel sheets for DI cans,
Considering the DI formability and the practical properties of DI cans,
Rather than box annealing material, the strength, grain size,
The present invention was completed based on the new finding that a continuously annealed material with a specified precipitate size is superior. The present inventors first deeply studied the stretch flange formability after DI processing, and found that the stretch flange formability after DI processing, that is, after significant processing, is different from the stretch flange formability of the steel sheet itself, and is rather contrary to conventional knowledge. The tensile strength of the steel plate is 42Kgf/ mm2 or less, the grain size number is 8.5-11.5, 0.02μm or more and 0.40μ
MnS with an average size of less than m and 0.005μm or more
It has an AlN precipitate structure with an average size of 0.20 μm or less, C: 0.0040 to 0.0600%, Mn: 0.05 to 0.50%,
P: 0.02% or less, S: 0.015% or less, acid-soluble Al:
0.020-0.100%, N: 0.0070% or less, however,
Continuously annealed steel material having a relationship between [Mn weight %] and [P weight %] as follows: 10 [P weight %] - 0.03 ≦ [Mn weight %] ≦ 20 [P weight %] + 0.14 It was newly discovered that the stretch flange formability after DI processing is excellent despite having solid solution C. The present inventors have discovered that in this continuous annealing material, the strength of the can body is significantly increased by the paint baking applied after DI processing, and as a result, the pressure resistance is also increased (hereinafter this property is referred to as BH property). found out. In other words, by using the continuously annealed material, which is softer than the box annealed material, it is soft during DI processing, and therefore has excellent DI workability, and has the excellent characteristics that the pressure resistance after painting is baked is higher than that of the box annealed material. found. This means that if the strength of the material is the same, the pressure resistance of the can body can be higher with the continuously annealed material, and this has great industrial value. The present invention will be explained in detail below. First, the tensile strength of the product plate (steel plate) will be explained with reference to FIG. If the tensile strength is large, the forming load and forming energy during DI processing will become large, making processing difficult and causing galling, so the upper limit is set at 42 Kgf/mm 2 . A preferred range is a tensile strength of 40 Kgf/mm 2 or less. Figure 1 shows C: 0.0040~0.080%, Mn: 0.15~
0.60%, P: 0.006-0.030%, S: 0.005-0.015
%, acid-soluble Al: 0.005 to 0.070%, N: 0.0070% or less steel was melted in a vacuum melting furnace and manufactured on a laboratory pilot line. Tensile strength and DI test forming of the product sheet. The relationship between the total forming energy in the machine and the pressure resistance strength of DI cans subjected to post-forming paint baking treatment is shown in relation to the annealing method. As you can see from Figure 1, the tensile strength is 42Kgf/mm 2
If it exceeds , the total forming energy increases significantly and galling occurs frequently, making DI processing difficult. In order to keep the total forming energy stable and low,
It is preferable that the tensile strength is 40 Kgf/mm 2 or less, the yield point is 36 Kgf/mm 2 or less, more preferably the tensile strength is 37 Kgf/mm 2 or less, and the yield point is 30 Kgf/mm 2 or less. Further, the compressive strength increases as the tensile strength increases, and the compressive strength of continuously annealed material is about 1 to 2 kgf/cm 2 higher than that of box annealed material even if the tensile strength is the same. In order to ensure such BH properties, the amount of solid solute C in the steel sheet is
It is preferable to contain 5.0 ppm or more. Next, crystal grain size will be explained. Figure 2 shows C: 0.0044~0.076%, Mn: 0.16~
0.57%, P: 0.008-0.030%, S: 0.005-0.015
%, acid soluble Al: 0.007~0.080%, N: 0.0020~
JIS grain size number, processing rate until breakage occurs in stretch flange forming after DI processing, and pressure resistance for steel plates for DI processing made by melting steel with a content of 0.0070% or less in a vacuum melting furnace and manufactured on a laboratory pilot line. The relationship is shown in relation to the annealing method. It has been found that a stretch flange processing rate of 9.0% or more is evaluated as acceptable by the customer using the measurement method conducted by the present inventors in the laboratory. As can be seen from Figure 2, the stretch flange processing rate increases as the grain becomes finer (the larger the grain size number).
In order to improve the stretch flange processing rate and ensure a stretch flange processing rate of 9.0% or higher, in the case of continuously annealed materials, a grain size number of 8.5 or higher is required. Also, contrary to expectations, the stretch-flange formability of the continuously annealed material is better than that of the box-annealed material. On the other hand, as the grain size becomes finer, the stretch flange formability and pressure resistance improve, but the steel becomes harder, and if the grain size number exceeds 11.5, the total forming energy during DI processing increases significantly, causing galling.
DI processing becomes difficult. Therefore, the grain size number is specified as 8.5 to 11.5. Preferably range 9.0~
It is number 11.0. Next, the dimensions of the precipitates on the steel plate will be explained. Figure 3 shows C: 0.021-0.045%, Mn: 0.16-0.30
%, S: 0.005-0.04%, P: 0.008-0.017%, acid-soluble Al: 0.005-0.100%, N: 0.0010-0.0070%
Steel is melted in a vacuum melting furnace and heat treated under various conditions before hot rolling and after hot rolling.
The average size of MnS and AlN precipitates and the stretch flange after DI processing determined from a huge number of electron micrographs of steel sheets for DI processing manufactured on a laboratory pilot line by varying the size of MnS and AlN precipitates. The relationship between the processing rate until breakage occurs during molding is shown. The numbers in the figure represent the stretch flanging rate of a sample having a precipitate structure with the average size of MnS and AlN at that point, and the curves represent the contour lines of the stretch flanging rate. As can be seen from Figure 3, the average precipitate size of MnS is less than 0.02 μm or more than 0.40 μm, or AlN
The average precipitate size is less than 0.005μm or 0.20μm
If it exceeds the limit, the stretch flange processing rate will deteriorate. Therefore, the average precipitate size of MnS is 0.02 μm or more and 0.40 μm.
m or less, the average precipitate size of AlN is 0.005 μm or more,
Specify 0.20μm or less. Next, the steel components will be explained. Since C hardens steel, its upper limit is set at 0.0600%. Reducing the C content is effective for softening, but if the C content is reduced to less than 0.0040%, the solid solution C will decrease significantly and BH properties cannot be obtained, so the lower limit should be set to 0.0040%.
%. The preferred range is 0.0040-0.0400%. Mn is 0.05% to prevent hot embrittlement caused by S.
It is necessary to contain more than 0.5%, but if it exceeds 0.50%, it will harden the steel like C and lose the characteristics of the present invention.
The preferred range is 0.10-0.30%. At least acid-soluble Al It is necessary to contain 0.020%. However, if it exceeds 0.100%, it will harden the steel and increase surface flaws. The preferred range is 0.030-0.080%. Both P and N are elements that significantly harden steel, and by lowering both P and N, a more pronounced softening effect than previously thought can be obtained. In order to obtain the specific steel plate for DI cans of the present invention,
The upper limit of P is 0.020% and the upper limit of N is 0.0070%.
The preferred range of N is 0.0030% or less. Moreover, Mn and P have a special interaction regarding stretch flange formability, and even if the content of each is within the above range, the amount of Mn and P may be unbalanced compared to the other amount. It was found that stretch flange formability deteriorated. As a result of finding a regression equation through experiments, we found that in order to stably ensure good stretch flange formability, the content of Mn and P should be 10 [P weight %] - 0.03 ≦ [Mn weight %] ≦ 20 [ P weight %] +0.14 The following relationship needs to hold true. Especially tensile strength 37Kgf/mm 2 or less, yield point 30Kgf/mm 2
When manufacturing the following softer steel sheets with excellent DI workability, C: 0.0040~0.0400%, Mn: 0.10~
0.25%, acid soluble Al: 0.030-0.080%, P: 0.015%
Hereinafter, it is preferable that S: 0.015% or less and N: 0.0025% or less. S becomes inclusions in steel and causes surface defects in steel sheets, cracks during processing, stretch flange cracks, and the formation of MnS with an excessively large average precipitate size, so the upper limit is set at 0.015%. The steel components in the present invention are as described above,
If necessary, it is also possible to further add one or two of carbonitride-forming elements B of 0.0050% or less and Cr of 0.10% or less to the steel components of the present invention. By adding these elements
Steel plates with excellent DI workability can be stably produced. The manufacturing method of the present invention will be described. The steel having the above-mentioned specific components is melted by a conventional method, made into a steel billet by a continuous casting method or an ingot-forming and blooming rolling method, and then subjected to hot rolling. The heat treatment conditions for the steel billet prior to hot rolling may be any conventional method. In other words, hot pieces may be sent directly and rolled.
It may be reheated in a heating furnace. In order to produce steel sheets for DI cans that are particularly soft and have excellent DI workability and stretch-flange formability, continuous casting is used to form steel billets, and Ar 3
After cooling to below the transformation point, T*=6875/(3.865−log[Al%+0.015])−
It is preferable to reheat the product to a temperature range below T*°C that satisfies 250° C. and then subject it to hot rolling. The hot rolling may be carried out by any conventional method, but it is preferable to roll it up at a temperature of 600 to 710°C. Then, it is descaled and cold rolled in the usual manner,
Subjected to continuous annealing. Continuous annealing can be carried out by any method as long as the tensile strength of the product plate is 42Kgf/ mm2 or less and the grain size number is 8.5 to 11.5, but recrystallization annealing is recommended at a temperature above the recrystallization temperature and below 850℃ for 5 seconds to 180 seconds. After that, it is cooled at a cooling rate of 5 to 250℃/second, and
It is preferable to perform an overaging treatment at a temperature of 500° C. for 30 to 180 seconds, and the annealing conditions may be determined within the above range so as to satisfy the characteristics of the product sheet. Then, it is temper rolled in a conventional manner and subjected to a conventional surface treatment. (Example) Table 1 shows examples of the present invention. Smelting steel having the components listed in Table 1 in a converter,
Continuously cast steel slabs were hot rolled to 3.0 mm, pickled, then cold rolled to 0.32 mm, annealed under the annealing conditions listed in Table 1, and then temper rolled to 1.0%. I went sparrow hunting. Similarly, Table 1 shows the crystal grain size and tensile strength of the electric tinned product sheets manufactured under each condition. Table 1 shows the total forming energy when the electric tinned steel sheet manufactured in this way was formed into a DI can using a DI processing machine in a laboratory. The smaller the total forming energy is, the less galling occurs.
Indicates excellent DI processability. Furthermore, the results of laboratory measurements of the compressive strength and stretch flange processing rate of the DI can are also shown in Table 1. It has been found that a stretch flange processing rate of 9.0% or more is evaluated as acceptable by the customer using the measurement method conducted by the present inventors in the laboratory. As can be seen from Table 1, the steel of the present invention has a small total forming energy, no galling, sufficiently high compressive strength, extremely high stretch flanging rate, and excellent stretch flanging formability.
On the other hand, regarding the comparative steels, the box-annealed materials (Nos. 13 to 14) have a small total forming energy and do not cause galling, but are inferior in stretch flange processing rate and compressive strength.
Since the box annealed material (No. 15) has a grain size number outside the scope of the present invention, the total forming energy is high and galling occurs. Continuously annealed comparative steel No. 16 has a small total forming energy and does not cause galling, but has poor stretch flange formability because the grain size number is coarse, which is outside the scope of the present invention. Continuously annealed comparative steels Nos. 17 and 18 have high pressure resistance and excellent stretch flange formability, but their tensile strength is outside the scope of the present invention, so the total forming energy is high and galling occurs. Continuously annealed comparative steel No.
Samples Nos. 19 to 20 have a balance of Mn and P contents outside the scope of the present invention, and therefore have slightly poor stretch flange formability. Comparative steel continuously annealed materials No. 21 to 24 are MnS and AlN.
Since the average size of the precipitates is outside the scope of the present invention, the stretch flange formability is extremely poor. In addition, the steel of the present invention increases not only the pressure strength but also the buckling strength in the vertical direction of the can due to BH hardening, so it has superior buckling strength compared to box annealed steel if the material strength is the same. I would like to add this. Furthermore, since the steel of the present invention has particularly excellent stretch-flange formability, it not only has a low defect rate in stretch-flange forming, but also has the ability to withstand even more severe stretch-flange forming.

【表】【table】

【表】【table】

【表】 (発明の効果) 本発明は、連続焼鈍で製造できるので製造コス
トが安く、製品材質の均一性に優れ、かつかじり
の発生がなく、DI加工が容易であり、DI加工後
の伸びフランジ成形性に優れ、DI加工後の塗装
焼付時に硬化することによつて耐圧強度が著しく
向上するDI缶用鋼板を提供するものであり、そ
の工業的効果は甚大である。
[Table] (Effects of the invention) The present invention can be manufactured by continuous annealing, resulting in low manufacturing costs, excellent uniformity of product material, no galling, easy DI processing, and elongation after DI processing. The present invention provides a steel plate for DI cans that has excellent flange formability and significantly improves pressure resistance by hardening during paint baking after DI processing, and its industrial effects are enormous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実験室パイロツト・ラインにて製造
したDI缶用鋼板について、製品板の抗張力、DI
試験成形機における全成形エネルギー、成形後塗
装焼付処理を行つたDI缶の耐圧強度、および焼
鈍方法の関係を示した図、第2図は、実験室パイ
ロツト・ラインにて製造したDI缶用鋼板につい
て、JIS結晶粒度番号、DI缶の耐圧強度、DI加工
後の伸びフランジ成形における破断発生までの加
工率、および焼鈍方法の関係を示した図、第3図
は、製品板のMnS析出物平均寸法、AlN析出物
平均寸法、DI加工後の伸びフランジ成形におけ
る破断発生までの加工率の関係を示した図であ
る。
Figure 1 shows the tensile strength and DI of steel sheets for DI cans manufactured on a laboratory pilot line.
Figure 2 shows the relationship among the total forming energy in the test forming machine, the compressive strength of DI cans that were subjected to post-forming paint baking treatment, and the annealing method. Figure 2 shows the steel plate for DI cans manufactured on the laboratory pilot line. Figure 3 shows the relationship between the JIS grain size number, the compressive strength of the DI can, the processing rate until breakage occurs during stretch flange forming after DI processing, and the annealing method. FIG. 2 is a diagram showing the relationship between dimensions, average size of AlN precipitates, and processing rate until breakage occurs in stretch flange forming after DI processing.

Claims (1)

【特許請求の範囲】 1 重量%で C:0.0040〜0.0600% Mn:0.05〜0.50% P:0.02%以下 S:0.015%以下 酸可溶Al:0.020〜0.100% N:0.0070%以下、 ただし、〔Mn重量%〕と〔P重量%〕との間
に 10〔P重量%〕−0.03≦〔Mn重量%〕≦20〔P重量
%〕 +0.14 なる関係を有し、残部がFeおよび不可避的不純
物からなる成分を有し、42Kgf/mm2以下の抗張
力、JIS結晶粒度番号8.5以上11.5以下の結晶粒組
織、0.02μm以上0.40μm以下の平均寸法のMnSお
よび0.005μm以上0.20μm以下の平均寸法のAlN
の析出物組織を有する連続焼鈍で製造された伸び
フランジ成形性の優れたDI缶用鋼板。
[Claims] 1% by weight: C: 0.0040-0.0600% Mn: 0.05-0.50% P: 0.02% or less S: 0.015% or less Acid-soluble Al: 0.020-0.100% N: 0.0070% or less, however, [ There is a relationship between Mn weight %] and MnS has a component consisting of impurities, has a tensile strength of 42Kgf/mm2 or less, a grain structure with a JIS grain size number of 8.5 or more and 11.5 or less, an average size of 0.02μm or more and 0.40μm or less, and an average size of 0.005μm or more and 0.20μm or less. AlN
A steel plate for DI cans with excellent stretch flange formability manufactured by continuous annealing and having a precipitate structure.
JP693388A 1988-01-18 1988-01-18 Steel sheet for di can excellent in stretch-flange formability Granted JPH01184252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP693388A JPH01184252A (en) 1988-01-18 1988-01-18 Steel sheet for di can excellent in stretch-flange formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP693388A JPH01184252A (en) 1988-01-18 1988-01-18 Steel sheet for di can excellent in stretch-flange formability

Publications (2)

Publication Number Publication Date
JPH01184252A JPH01184252A (en) 1989-07-21
JPH0478714B2 true JPH0478714B2 (en) 1992-12-11

Family

ID=11652053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP693388A Granted JPH01184252A (en) 1988-01-18 1988-01-18 Steel sheet for di can excellent in stretch-flange formability

Country Status (1)

Country Link
JP (1) JPH01184252A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2570943B2 (en) * 1992-02-27 1997-01-16 東洋製罐株式会社 Shallow drawn and deep drawn compacts
JP4559918B2 (en) * 2004-06-18 2010-10-13 新日本製鐵株式会社 Steel plate for tin and tin free steel excellent in workability and method for producing the same
CN103045937A (en) * 2012-12-14 2013-04-17 宝山钢铁股份有限公司 Secondary cold rolled steel and production method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134645A (en) * 1986-11-26 1988-06-07 Nippon Steel Corp Steel sheet for di can excellent in stretch-flange formability
JPH0478714A (en) * 1990-07-19 1992-03-12 Nissan Motor Co Ltd Air conditioner for vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134645A (en) * 1986-11-26 1988-06-07 Nippon Steel Corp Steel sheet for di can excellent in stretch-flange formability
JPH0478714A (en) * 1990-07-19 1992-03-12 Nissan Motor Co Ltd Air conditioner for vehicle

Also Published As

Publication number Publication date
JPH01184252A (en) 1989-07-21

Similar Documents

Publication Publication Date Title
TWI545203B (en) High strength steel sheet and manufacturing method thereof
EP2468909B1 (en) Highly processable steel sheet for three-piece welded can and method for producing same
US9879332B2 (en) Method of manufacturing high-strength steel sheet for a can
US8557065B2 (en) Steel sheet for cans and method for manufacturing the same
KR101645840B1 (en) Three-piece can and method for producing same
EP2671962B1 (en) Steel sheet for bottom of aerosol cans with high resistance to pressure and high formability and method for manufacturing the same
JP6631816B2 (en) Steel plate for aerosol cans
JP4486414B2 (en) Thin steel plate for cans with strong can body strength and good press workability and method for producing the same
JPH0676618B2 (en) Manufacturing method of steel plate for DI can with excellent stretch flange formability
JP6123735B2 (en) Crown steel sheet, method for producing the same, and crown
JP5803660B2 (en) High-strength, high-formability steel plate for cans and method for producing the same
JPH04337049A (en) Cold rolled steel sheet for can manufacturing having high strength and superior workability and its production
JPS63134645A (en) Steel sheet for di can excellent in stretch-flange formability
JPH0478714B2 (en)
JP6822617B1 (en) Steel sheet for cans and its manufacturing method
US20180112295A1 (en) Steel sheet for can lid and method for producing the same (as amended)
JP3224265B2 (en) Non-aging steel plate for container with excellent necked-in workability
JP5803510B2 (en) High-strength, high-formability steel plate for cans and method for producing the same
JP2816358B2 (en) Manufacturing method of steel sheet for DI can
JP3331504B2 (en) Non-aging steel plate for container with excellent necked-in workability
JPH08283863A (en) Production of hard steel sheet for can excellent in uniformity of material
JPS6330969B2 (en)
JPS63140039A (en) Production of steel sheet for di can
JPH05345925A (en) Production of extra thin steel sheet for dwi can excellent in flange workability
JP3150188B2 (en) Method for manufacturing high-strength cold-rolled steel sheet with excellent deep drawability

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 16