JPH01184229A - Production of steel sheet for di can having excellent stretch flanging property - Google Patents
Production of steel sheet for di can having excellent stretch flanging propertyInfo
- Publication number
- JPH01184229A JPH01184229A JP693488A JP693488A JPH01184229A JP H01184229 A JPH01184229 A JP H01184229A JP 693488 A JP693488 A JP 693488A JP 693488 A JP693488 A JP 693488A JP H01184229 A JPH01184229 A JP H01184229A
- Authority
- JP
- Japan
- Prior art keywords
- less
- temperature
- weight
- steel
- cans
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 59
- 239000010959 steel Substances 0.000 title claims abstract description 59
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000000137 annealing Methods 0.000 claims abstract description 36
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 16
- 238000001953 recrystallisation Methods 0.000 claims abstract description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 11
- 238000001816 cooling Methods 0.000 claims abstract description 9
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 7
- 229910000655 Killed steel Inorganic materials 0.000 claims abstract description 6
- 238000005097 cold rolling Methods 0.000 claims abstract description 5
- 230000009466 transformation Effects 0.000 claims abstract 2
- 239000002244 precipitate Substances 0.000 claims description 16
- 238000004804 winding Methods 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 2
- 239000012535 impurity Substances 0.000 claims 2
- 239000000463 material Substances 0.000 abstract description 28
- 238000005098 hot rolling Methods 0.000 abstract description 19
- 238000010438 heat treatment Methods 0.000 abstract description 11
- 239000002253 acid Substances 0.000 abstract description 3
- 230000032683 aging Effects 0.000 abstract description 2
- 239000013078 crystal Substances 0.000 abstract description 2
- 238000012545 processing Methods 0.000 description 54
- 238000000034 method Methods 0.000 description 12
- 239000000047 product Substances 0.000 description 12
- 239000003973 paint Substances 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 5
- 239000005028 tinplate Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000013256 coordination polymer Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010409 ironing Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 239000012611 container material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000005029 tin-free steel Substances 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はDI缶(Draw & Ironed Can
)用鋼板に関し、DI加工後の伸びフランジ成形性に優
れ、DI加工が容易であり、DI加工後の塗装焼付時に
硬化することによって耐圧強度が向上するDI缶用鋼板
に関するものである。[Detailed Description of the Invention] (Industrial Application Field) The present invention is applied to DI cans (Draw & Ironed Cans).
) This relates to a steel plate for DI cans that has excellent stretch flange formability after DI processing, is easy to perform DI processing, and has improved pressure resistance by hardening during paint baking after DI processing.
(従来の技術)
鋼板に錫めっきを施したブリキ鋼板あるいはクロム酸処
理を施したティン・フリー・スチールのごとき表面処理
鋼板が食缶やエアゾール缶、イージーオープン缶に多用
されている。(Prior Art) Surface-treated steel sheets, such as tin-plated steel sheets or tin-free steel sheets treated with chromic acid, are often used for food cans, aerosol cans, and easy-open cans.
これら表面処理鋼板は近年多段絞り加工あるいはDI加
工(Draw & Ironing加工すなわち深絞り
加工後にしごき加工が施される)など、きびしい加工が
行なわれるようになり、単に耐食性のみならず、優れた
加工性をも要求されるようになっている。In recent years, these surface-treated steel sheets have been subjected to severe processing such as multi-stage drawing processing or DI processing (Draw & Ironing processing, that is, ironing processing is performed after deep drawing processing), and they have not only good corrosion resistance but also excellent workability. is now also required.
DI缶の製缶加工は、鋼板をポンチとダイスを用いて浅
絞りしてカップを成形後、このカップの側壁の厚さより
クリアランスが小さいポンチとダイスを用いて側壁をし
ごき引伸し、側壁の厚さを減少させることにより所定深
さの容器(カップ)を成形し、さらにカップ端に蓋を巻
締めるためのフランジ出し加工が行なわれる。The manufacturing process for DI cans involves shallow drawing a steel plate using a punch and die to form a cup, and then using a punch and die with a clearance smaller than the thickness of the side wall of the cup to draw and stretch the side wall to achieve the thickness of the side wall. A container (cup) of a predetermined depth is formed by reducing the amount, and a flange process is performed to wrap a lid around the end of the cup.
DI缶用鋼板に要求される特性としては、まずDI加工
時の加工性がよく、かじりの発生がなく加工エネルギー
が小さいこと、および缶体として耐圧強度が高いことが
要求される。The characteristics required of a steel sheet for DI cans include good workability during DI processing, no galling and low processing energy, and high pressure resistance as a can body.
かかるDI缶用材料としては、従来は、例えばB添加A
lキルド鋼の箱焼鈍したもの(特開昭53−48913
)、Cu添加低炭素鋼を箱焼鈍したもの(特公昭527
16965)のようにほとんど箱焼鈍材が適用されてい
た。それは箱焼鈍材の方が伸び、深絞り性に優れており
、一般にDI加工用途にも適していると考えられていた
からである。Conventionally, such materials for DI cans include, for example, B-added A
l Killed steel box annealed (Japanese Patent Application Laid-Open No. 53-48913
), box-annealed Cu-added low carbon steel (Special Publication No. 527
16965), box annealed materials were mostly used. This is because box annealed materials have better elongation and deep drawability, and are generally considered suitable for DI processing applications.
特に、DI缶の成形加工では伸びフランジ成形性の良い
ことはきわめて重要視され、その不良率は数10ppm
以下に抑える必要がある。そのため鋼板として伸び、r
値の優れた箱焼鈍材が従来から適用されていた。In particular, good stretch flange formability is extremely important in the molding process of DI cans, and the defective rate is several tens of ppm.
It is necessary to keep it below. Therefore, it stretches as a steel plate, r
Box annealed materials with excellent values have traditionally been used.
(発明が解決しようとする問題点)
一方近年DI缶は板厚がますます薄手化されつつあり、
耐圧強度を高めることの要求も非常に強くなりつつある
。(Problems to be solved by the invention) On the other hand, in recent years, the thickness of DI cans has become thinner and thinner.
The demand for increasing compressive strength is also becoming very strong.
缶体の耐圧強度は(板厚)2×(強度)で決り、薄手化
するには素材強度を高める必要があるが、箱焼鈍材は一
般に軟質であり、薄手化への対応が難しい。強度の向上
を図ろうとすれば強化元素を添加し比較的高合金の成分
にする必要があり、この場合にはDI加工性が劣化する
問題がある。また鋼板を高強度化するとDI加工時にか
じりが発生しやすくなり、また加工エネルギーも増加す
る欠点が生ずる。The compressive strength of the can body is determined by (plate thickness) x (strength), and to make it thinner, it is necessary to increase the strength of the material, but box annealed materials are generally soft and it is difficult to make them thinner. In order to improve the strength, it is necessary to add reinforcing elements to make it a relatively high-alloy component, and in this case, there is a problem that DI workability deteriorates. In addition, increasing the strength of the steel plate causes galling to occur more easily during DI processing, and processing energy also increases.
最近では、DI缶用鋼板を連続焼鈍にて製造することが
検討されているが、DI加工時のフランジ成形の小さい
クラックの発生防止を満足し得るまでに至らず、またか
じり発生も散見される。Recently, it has been considered to manufacture steel sheets for DI cans by continuous annealing, but it has not been possible to prevent the occurrence of small cracks in flange forming during DI processing, and galling is also occasionally observed. .
本発明の目的は、伸びフランジ成形性に優れ、かじりが
発生せずDI加工が容易でありかつDI加工後の耐圧強
度の高いDI缶用容器材料を提供することにある。An object of the present invention is to provide a container material for DI cans that has excellent stretch flange formability, does not cause galling, is easy to perform DI processing, and has high pressure resistance after DI processing.
(問題点を解決するための手段)
本発明者らは、DI缶に要求される諸特性について種々
研究した結果、DI缶用鋼板については、DI成形性お
よびDI缶の実用特性を総合すると、箱焼鈍材よりも、
むしろ鋼板の強度、結晶粒度、析出物寸法を特定した連
続焼鈍材の方が優れていることを新規に知見し、本発明
を完成したものである。(Means for Solving the Problems) As a result of various studies conducted by the present inventors regarding the various characteristics required for DI cans, the inventors found that, when considering DI formability and practical characteristics of DI cans, the following results are obtained for steel sheets for DI cans: than box-annealed material.
Rather, the present invention was completed based on the new finding that continuously annealed steel sheets with specified strength, grain size, and precipitate size are superior.
本発明者らはまずDII工後の伸びフランジ成形性につ
いて深く研究した結果、DII工後すなわち著しい加工
後の伸びフランジ成形性は鋼板そのものの伸びフランジ
成形性と異なり、むしろ従来の知見とは逆に、鋼板の抗
張力が42 kgf/mm2以下、結晶粒度番号が8.
5−11.5.0.02 μm以上0.40μm以下の
平均寸法のMnSおよび0.005μm以上0.20μ
m以下の平均寸法のAlNの析出物組織を有し、C:0
.0040−0.0600%、Mn : 0.05−0
.50%、P : 0.02%以下、S : 0.01
5%以下、酸可溶Al : 0.020〜0.100%
、N : 0.0070%以下、ただし、〔Mn重量%
〕とCP重量%〕との間に
10[P重量%]−0,03≦[Mn重量%〕≦20
CP重量%〕+0.14
なる関係を有する鋼成分の連続焼鈍材の方が、固溶Cを
有するにもかかわらずDII工後の伸びフランジ成形性
の優れていることを新規に知見した。The present inventors first deeply studied the stretch flange formability after DII processing, and found that the stretch flange formability after DII processing, that is, after significant processing, is different from the stretch flange formability of the steel sheet itself, and is rather contrary to conventional knowledge. In addition, the tensile strength of the steel plate is 42 kgf/mm2 or less, and the grain size number is 8.
5-11.5. MnS with an average size of 0.02 μm or more and 0.40 μm or less and 0.005 μm or more and 0.20 μm
It has an AlN precipitate structure with an average size of m or less, and C:0
.. 0040-0.0600%, Mn: 0.05-0
.. 50%, P: 0.02% or less, S: 0.01
5% or less, acid-soluble Al: 0.020-0.100%
, N: 0.0070% or less, but [Mn weight%
] and CP weight%] is 10 [P weight%]-0,03≦[Mn weight%]≦20
It was newly discovered that a continuously annealed steel material having a relationship of CP weight %]+0.14 has better stretch flange formability after DII processing, despite having solid solution C.
さらに本発明者らは、上記のような特性の製品板を、該
成分を有する低炭素Alキルド鋼片を熱間圧延し、60
0〜710℃の温度で巻き取り、冷間圧延し、次いで連
続焼鈍法により、再結晶温度以上850℃以下の温度で
5秒〜3分間の再結晶焼鈍を行ったのち、5〜b
300〜500℃の温度で30〜500℃の過時効処理
を施すことによって工業的に製造することが可能である
ことをも新規に知見した。Furthermore, the present inventors hot-rolled a low-carbon Al-killed steel piece having the above-mentioned components to produce a product sheet with the above-mentioned characteristics.
After winding and cold rolling at a temperature of 0 to 710°C, then recrystallization annealing for 5 seconds to 3 minutes at a temperature of not less than the recrystallization temperature and not more than 850°C by continuous annealing method, and then 5-b 300- It has also been newly discovered that it is possible to produce it industrially by performing an overaging treatment at a temperature of 30 to 500°C at a temperature of 500°C.
該連続焼鈍材では、DI加加工後右れる塗装焼付によっ
て缶体の強度が著しく上昇し、その結果、耐圧強度も上
昇する(以下この特性をB11性と称する)ことを本発
明者らは見出した。すなわち箱焼鈍材より軟質の該連続
焼鈍材を使用することによりDI加工時はやわらかく従
ってDII工性にすぐれ、塗装焼付後耐圧強度が箱焼鈍
材以上にできるという優れた特徴が得られることが判明
した。このことは、素材強度が同一であれば缶体の耐圧
強度は連続焼鈍材の方が高くできることを意味するもの
で、この工業的価値は非常に大きい。The present inventors have found that in the continuously annealed material, the strength of the can body is significantly increased by the paint baking that occurs after DI processing, and as a result, the pressure resistance strength is also increased (hereinafter this property is referred to as B11 property). Ta. In other words, it has been found that by using the continuously annealed material, which is softer than the box annealed material, it is soft during DI processing, and therefore has excellent DII workability, and has excellent characteristics such that the compressive strength after painting is baked is higher than that of the box annealed material. did. This means that if the strength of the material is the same, the pressure resistance of the can body can be higher with the continuously annealed material, and this has great industrial value.
以下本発明の詳細な説明する。The present invention will be explained in detail below.
まず製品板(鋼板)の抗張力について第1図を参照し説
明する。抗張力が大きいとDI加工時の成形荷重および
成形エネルギーが大きくなって加工しにくく、またかじ
りが発生しやすくなるので、その」二限を42 kgf
/mm2とする。好ましい範囲は抗張力40kgf/m
m2以下である。First, the tensile strength of the product plate (steel plate) will be explained with reference to FIG. If the tensile strength is large, the forming load and forming energy during DI processing will become large, making it difficult to process and more likely to cause galling.
/mm2. The preferred range is tensile strength of 40 kgf/m
m2 or less.
第1図はC: 0.0040−0.080%、Mn :
0.15〜0.60%、P : 0.006〜0.0
30%、S : 0.005〜0.015%、酸可溶A
l : 0.005〜0.070%、N : 0.00
70%以下の鋼を真空溶解炉で溶製し、実験室パイロッ
トラインにて製造したDI加工用鋼板について、製品板
の抗張力とDII験成形機における全成形エネルギー、
成形後塗装焼付処理を行ったDI缶の耐圧強度の関係を
焼鈍方法との関連で示す。Figure 1 shows C: 0.0040-0.080%, Mn:
0.15-0.60%, P: 0.006-0.0
30%, S: 0.005-0.015%, acid soluble A
l: 0.005-0.070%, N: 0.00
For steel plates for DI processing made by melting less than 70% steel in a vacuum melting furnace and manufactured on a laboratory pilot line, the tensile strength of the product plate and the total forming energy in the DII experimental forming machine,
The relationship between the pressure resistance strength and the annealing method of DI cans that have been subjected to paint baking treatment after molding is shown below.
第1図かられかるように、抗張力が42 kgf/mm
2を越えると全成形エネルギーが著しく上昇し、かじり
が多発する結果、DI加工が困難となる。全成形エネル
ギーを安定して低く抑えるためには、抗張力を40kg
f/mm2以下、降伏点を36kgf/mm2以下、よ
り好ましくは抗張力37 kgf/mm2以下、降伏点
30kgf/mm2以下にすることが好ましい。As shown in Figure 1, the tensile strength is 42 kgf/mm.
When it exceeds 2, the total forming energy increases significantly and galling occurs frequently, making DI processing difficult. In order to keep the total forming energy stably low, the tensile strength should be 40 kg.
f/mm2 or less, the yield point is preferably 36 kgf/mm2 or less, more preferably the tensile strength is 37 kgf/mm2 or less, and the yield point is 30 kgf/mm2 or less.
また耐圧強度は抗張力が大きいほど増大するが、連続焼
鈍材を箱焼鈍材に比べて抗張力が同じでも耐圧強度は約
1〜2 kgf/mm2高い。このようなりl(性を確
保するために製品板の固溶C量は5.0ppm以上含む
ことが好ましい。Further, the compressive strength increases as the tensile strength increases, but the compressive strength of continuously annealed material is about 1 to 2 kgf/mm2 higher than that of box annealed material even if the tensile strength is the same. In order to ensure such properties, it is preferable that the amount of solid solute C in the product board is 5.0 ppm or more.
次に、結晶粒度について説明する。Next, crystal grain size will be explained.
第2図はC: 0.0044〜0.076%、Mn :
0.16〜0.57%、P : 0.008〜0.0
30%、S : 0.005〜0.015%、酸可溶A
l : 0.007〜o、o8o%、N : 0.00
20〜0.0070%以下の鋼を真空溶解炉で溶製し、
実験室パイロットラインにて製造したDI加工用鋼板に
ついて、JISI晶粒度番号とDII工後の伸びフラン
ジ成形における破断発生までの加工率および耐圧強度の
関係を焼鈍方法との関係で示す。Figure 2 shows C: 0.0044-0.076%, Mn:
0.16-0.57%, P: 0.008-0.0
30%, S: 0.005-0.015%, acid soluble A
l: 0.007~o, o8o%, N: 0.00
20~0.0070% or less steel is melted in a vacuum melting furnace,
The relationship between the JISI grain size number, the processing rate until fracture occurs during stretch flange forming after DII processing, and the pressure resistance strength is shown in relation to the annealing method for a steel plate for DI processing manufactured on a laboratory pilot line.
伸びフランジ加工率は、本発明者らの実験室における測
定法の場合9.0%以上が需要家においても合格と評価
されることがわかっている。It has been found that a stretch flange processing rate of 9.0% or more is evaluated as acceptable by the customer using the measurement method conducted in the laboratory of the present inventors.
第2図かられかるように、伸びフランジ加工率は細粒で
あるほど(結晶粒度番号が大きいほど)向上し、伸びフ
ランジ加工率9.0%以上を確保するには連続焼鈍材の
場合、結晶粒度番号8.5以上が必要である。また予想
に反し連続焼鈍材の方が箱焼鈍材よりむしろ伸びフラン
ジ成形性が良好である。一方細粒になるほど伸びフラン
ジ成形性および耐圧強度は向上するが鋼が硬質化し、結
晶粒度番号が11.5番を越えるとDI加工時の全成形
エネルギーが著しく増大し、かじりが発生するためDI
加工が困難となる。したがって結晶粒度番号を8.5〜
11.5に特定する。好ましくは範囲9.0〜11.0
番である。As can be seen from Fig. 2, the stretch flanging rate improves as the grain becomes finer (the larger the grain size number), and in order to secure a stretch flanging rate of 9.0% or more, in the case of continuously annealed material, A grain size number of 8.5 or more is required. Also, contrary to expectations, the stretch-flange formability of the continuously annealed material is better than that of the box-annealed material. On the other hand, the finer the grain, the better the stretch flange formability and pressure resistance strength, but the steel becomes harder, and if the grain size number exceeds 11.5, the total forming energy during DI processing increases significantly, and galling occurs, so DI
Processing becomes difficult. Therefore, the grain size number is 8.5~
11.5. Preferably range 9.0-11.0
It's my turn.
次に鋼板の析出物寸法について説明する。Next, the dimensions of the precipitates on the steel plate will be explained.
第3図はC: 0.021−0.045%、Mn :
0.16−0.30%、S : 0.005〜0.04
%、P : 0.008〜0.017%、酸可溶Al
: 0.005〜0.100%、N : 0.0010
〜0.0070%の鋼を真空溶解炉で溶製し、熱間圧延
前および熱間圧延巻き取り後に種々の条件で熱処理を行
ってMnSおよびAlNの析出物寸法を変化させ、実験
室パイロットラインにて製造したDI加工用鋼板につい
て、膨大な枚数の電子顕微鏡写真から求めたMnSおよ
びAlNの析出物平均寸法とDI加工後の伸びフランジ
成形における破断発生までの加工率の関係を示す。図中
の数字はその点のMnSおよびAlNの平均寸法の析出
物組織を持つ試料の伸びフランジ加工率を表し、曲線は
伸びフランジ加工率の等高線を表す。Figure 3 shows C: 0.021-0.045%, Mn:
0.16-0.30%, S: 0.005-0.04
%, P: 0.008-0.017%, acid-soluble Al
: 0.005-0.100%, N: 0.0010
~0.0070% steel was melted in a vacuum melting furnace and heat treated under various conditions before hot rolling and after hot rolling to change the size of MnS and AlN precipitates. The relationship between the average size of MnS and AlN precipitates determined from a huge number of electron micrographs and the processing rate until breakage occurs during stretch flange forming after DI processing is shown for steel sheets for DI processing manufactured in . The numbers in the figure represent the stretch flanging rate of a sample having a precipitate structure with the average size of MnS and AlN at that point, and the curves represent contour lines of the stretch flanging rate.
第3図かられかるように、MnSの平均析出物寸法が0
602μm未満または0.40μm超、またはAlNの
平均析出物寸法が0.005μm未満または0.20μ
m超になると伸びフランジ加工率が劣化する。したがっ
てMnSの平均析出寸法を0.02μm以上0.40μ
m以下、AlN(7)平均析出物寸法を0.005 p
m以上、0.20μm以下に特定する。As can be seen from Figure 3, the average precipitate size of MnS is 0.
less than 602 μm or more than 0.40 μm, or the average precipitate size of AlN is less than 0.005 μm or 0.20 μm
If it exceeds m, the stretch flange processing rate will deteriorate. Therefore, the average precipitate size of MnS is 0.02 μm or more and 0.40 μm.
m or less, the average precipitate size of AlN(7) is 0.005 p
It is specified as not less than m and not more than 0.20 μm.
次に鋼成分について説明する。Next, the steel components will be explained.
Cは鋼を硬化するので、その上限を0.0600%とす
る。Cをより少なくすることは軟質化に有効であるが、
Cを0.0040%未満に減じると固溶Cが著しく減少
しBH性が得られないので下限を0.0040%とする
。好ましくは範囲は0.0040〜0.0400%であ
る。Since C hardens steel, its upper limit is set at 0.0600%. Reducing the amount of C is effective for softening, but
If C is reduced to less than 0.0040%, solid solution C will decrease significantly and BH properties cannot be obtained, so the lower limit is set to 0.0040%. Preferably the range is 0.0040-0.0400%.
MnはSによる熱間祿性を防止するため0.05%以上
含有させる必要があるが、0.50%を越えるとCと同
様に鋼を硬質化し、本発明の特徴を失う。好ましい範囲
は0.10〜0.30%である。Mn needs to be contained in an amount of 0.05% or more in order to prevent hot etching caused by S, but if it exceeds 0.50%, it will harden the steel like C and lose the characteristics of the present invention. The preferred range is 0.10-0.30%.
Alは加工性に有害である酸化物系介在物を低減するた
め、脱酸剤として、また鋼中のN固定を通じて、表面処
理時の歪時効による硬質化を抑制するため、少なくとも
酸可溶Alとして0.020%含有させる必要がある。Al is used as a deoxidizing agent to reduce oxide inclusions that are harmful to workability, and to suppress hardening due to strain aging during surface treatment by fixing N in the steel. It is necessary to contain 0.020%.
しかし0.100% を越えると鋼を硬質化し、また表
面疵も増加する。好ましい範囲は0.030〜o、og
o%である。However, if it exceeds 0.100%, it will harden the steel and increase surface flaws. The preferred range is 0.030~o,og
o%.
PとNはともに鋼を著しく硬化させる元素であり、Pと
Nをともに低く子ることによって従来考えられていた以
上の顕著な軟質化の効果が得られる。本発明特定のDI
缶用鋼板を得るためには、Pの上限を0.020%、N
の上限を0.0070%とする。Both P and N are elements that significantly harden steel, and by lowering both P and N, a more remarkable softening effect than previously thought can be obtained. DI specific to the present invention
In order to obtain a steel plate for cans, the upper limit of P is 0.020%, N
The upper limit of is set to 0.0070%.
Nの好ましい範囲は0.0030%以下である。The preferred range of N is 0.0030% or less.
しかもMnとPには伸びフランジ成形性に関して特殊な
相互作用があり、それぞれの含有量が上記の範囲にあっ
ても、Mn量およびP量がそれぞれ他方の量に比してア
ンバランスに多い場合は伸びフ=12−
ランジ成形性が劣化することがわかった。実験により回
帰式を求めた結果、良好な伸びフランジ成形性を安定し
て確保するには、MnとPの含有量の間に
10〔P重量%)−0,03≦[Mn重量%〕≦20
[P重量%]+0.14
なる関係が成立する必要がある。Moreover, Mn and P have a special interaction regarding stretch flange formability, and even if the content of each is within the above range, the amount of Mn and P may be unbalanced compared to the other amount. It was found that when elongation f = 12- the lunge formability deteriorated. As a result of finding a regression equation through experiments, we found that in order to stably ensure good stretch flange formability, the content of Mn and P should be 10 [P weight %) - 0,03 ≦ [Mn weight %] ≦ 20
The following relationship needs to hold: [P weight %]+0.14.
特に抗張力37kgf/mm”以下、降伏点30kgf
/mm2以下のより軟質でDI加工性に優れた鋼板を製
造する場合は、C: 0.0040−0.0400%、
Mn : 0.10〜0.25%、酸可溶Al : 0
.030〜0.080%、P : 0.015%以下、
N : 0.025%以下とすることが好ましい。Especially tensile strength 37kgf/mm” or less, yield point 30kgf
/ mm2 or less, when manufacturing a softer steel plate with excellent DI workability, C: 0.0040-0.0400%,
Mn: 0.10-0.25%, acid-soluble Al: 0
.. 030-0.080%, P: 0.015% or less,
N: Preferably 0.025% or less.
Sは鋼中の介在物となり、鋼板の表面欠陥、加工時のわ
れ、伸びフランジわれ発生、過大の平均析出物寸法のM
nS生成の原因となるので、上限を0.015%とする
。S becomes an inclusion in the steel, and causes surface defects on the steel plate, cracks during processing, stretch flange cracks, and excessive average precipitate size M.
Since it causes nS generation, the upper limit is set to 0.015%.
本発明における鋼成分は上述の通りであるが、必要によ
り、本発明の鋼成分にさらに炭窒化物形成元素である0
、0050%以下のBおよび0.10%以下のCrのう
ち一種または二種を添加することも可能である。これら
の元素を添加することによりDI加工性の優れた鋼板が
安定して製造可能である。The steel components in the present invention are as described above, but if necessary, a carbonitride-forming element 0 is added to the steel components of the present invention.
, 0.050% or less of B, and 0.10% or less of Cr. By adding these elements, a steel plate with excellent DI workability can be stably produced.
欣に熱間圧延条件について説明する。熱間圧延は捲取温
度およびスラブ加熱温度を特定することにより、軟質で
DI加工性に優れ、しかも適度のBH性を有する連続焼
鈍によるDI缶用鋼板の製造が可能である。捲取温度が
低温になると伸びフランジ成形性が劣化し、また抗張力
も大となるので、600℃以上とする。一方、その温度
が高いと酸洗性が劣化するので710℃以下とする。The hot rolling conditions will be briefly explained. In hot rolling, by specifying the winding temperature and slab heating temperature, it is possible to manufacture a steel plate for DI cans by continuous annealing that is soft and has excellent DI workability, and has appropriate BH properties. If the winding temperature is low, the stretch flange formability will deteriorate and the tensile strength will also increase, so it is set at 600°C or higher. On the other hand, if the temperature is too high, the pickling properties will deteriorate, so the temperature is set at 710°C or lower.
第4図は、C: 0.015−0.040%、Mn二〇
、15〜0.25%、P : 0.006〜0.010
%、S ; 0.004〜0.015%、Al : 0
.03〜0.08%、N : 0.004%以下の鋼に
ついてr熱間圧延加熱温度−T*J (℃)とぶりき板
の抗張力、DI加工性の関係を示す。Figure 4 shows C: 0.015-0.040%, Mn 20, 15-0.25%, P: 0.006-0.010.
%, S: 0.004-0.015%, Al: 0
.. 03 to 0.08%, N: 0.004% or less, the relationship between r hot rolling heating temperature - T*J (°C), tensile strength of tin plate, and DI workability is shown.
第4図の製造条件は次のとおりである。The manufacturing conditions shown in FIG. 4 are as follows.
熱間圧延仕上温度:870〜910℃
熱間圧延捲取温度=550〜710℃
冷間圧延率:87〜91%
焼鈍条件: 7ooc X 30秒+400℃×60秒
(−次冷却速度10〜40℃/秒)
調質圧延:1.0%
めっき;電気すずめつき
第4図において、抗張力は電気すずめつき後の抗張力を
測定し、DI加工性は実験室DI成形機にて電気すずめ
つき製品板をDI加工したのち、拡管した際の伸びフラ
ンジ加工率((D −Do)/Do) X 100%を
測定した。Hot rolling finishing temperature: 870 to 910°C Hot rolling winding temperature = 550 to 710°C Cold rolling rate: 87 to 91% Annealing conditions: 7ooc x 30 seconds + 400°C x 60 seconds (-second cooling rate 10 to 40 Temperature rolling: 1.0% plating; electric tin plating In Figure 4, the tensile strength is measured by the tensile strength after electric tin plating, and DI processability is the electric tin plated product board using a laboratory DI forming machine. After performing DI processing, the stretch flange processing rate ((D - Do)/Do) x 100% at the time of pipe expansion was measured.
第4図かられかるように、捲取温度を600〜710℃
にすることによって、熱間圧延前の熱履歴および熱間圧
延加熱温度に関係なく、抗張力42kgf/mm2以下
でかつ伸びフランジ成形性のよい鋼板が得られる。さら
に、熱間圧延加熱温度T (℃)がT≦6875/(3
,865−log〔Al%+0.015) ) −25
0を満足し、かつ捲取温度が600〜710℃の範囲に
あれば抗張力が40 kgf/mm”以下となり、DI
加工性のきわめて優れた表面処理用鋼板を製造すること
が可能である。As shown in Figure 4, the winding temperature is 600 to 710℃.
By doing so, a steel plate having a tensile strength of 42 kgf/mm 2 or less and good stretch flange formability can be obtained regardless of the thermal history before hot rolling and the hot rolling heating temperature. Furthermore, the hot rolling heating temperature T (°C) is T≦6875/(3
,865-log [Al%+0.015) ) -25
0 and the winding temperature is within the range of 600 to 710°C, the tensile strength will be 40 kgf/mm” or less, and the DI
It is possible to produce surface-treated steel sheets with extremely excellent workability.
第5図は、C: 0.01−0.06%、Mn : 0
.10〜0.40%、P : 0.006〜0.020
%、Al : 0.01〜0.07%、Nニー15=
0.001.5〜0.0070%の鋼について、熱延加
熱温度T−(6875/(3,865−log〔Al%
+0.0153) −250) とぶりき板の抗張力
、DI加工品の耐圧強度および伸びフランジ加工率の関
係を示す。Figure 5 shows C: 0.01-0.06%, Mn: 0
.. 10-0.40%, P: 0.006-0.020
%, Al: 0.01-0.07%, N knee 15 = 0.001.5-0.0070%, hot rolling heating temperature T-(6875/(3,865-log [Al%
+0.0153) -250) The relationship between the tensile strength of the tin plate, the compressive strength of the DI processed product, and the stretch flange processing rate is shown.
第5図の製造条件は次の通りである。The manufacturing conditions shown in FIG. 5 are as follows.
熱間圧延仕上温度二870〜910℃
熱間圧延捲取温度:600〜710℃
冷間圧延率=87〜91%
焼鈍条件: (600〜8008C) X (30秒〜
500℃)+400℃×(30〜500℃)
(−次冷却速度10〜40℃/秒)
調質圧延=1.0%
めっき:電気すずめつき
第5図において、抗張力は電気すずめつき後の抗張力を
測定し、耐圧強度および伸びフランジ加工率は実験室に
てDI缶を製作後測定した。第5図でT −(6875
/(3,865−1og[Al%+0.015) )−
250)が約50,100および150の位置のO印は
焼鈍条件を広範囲に変化させ、そのうち抗張力が40
kgf/mm2以下の値を示したデータのみを図中にプ
ロットした。また第5図には、比較のために従来の箱焼
鈍法で製造された材料から抗張力が40 kgf/am
2以下の値を示した実例のデータをX印にてプロットし
た。Hot rolling finishing temperature 2870-910°C Hot rolling winding temperature: 600-710°C Cold rolling rate = 87-91% Annealing conditions: (600-8008C)
500℃) +400℃×(30~500℃) (-cooling rate 10~40℃/sec) Temper rolling = 1.0% Plating: Electric tinting In Figure 5, the tensile strength is the tensile strength after electric tinting. The compressive strength and stretch flanging rate were measured in a laboratory after the DI cans were manufactured. In Figure 5, T - (6875
/(3,865-1og[Al%+0.015))-
250) is approximately 50, 100 and 150, the annealing conditions are varied over a wide range, of which the tensile strength is approximately 40
Only data showing values of kgf/mm2 or less are plotted in the figure. Figure 5 also shows, for comparison, a material manufactured by the conventional box annealing method with a tensile strength of 40 kgf/am.
Data of actual examples showing values of 2 or less are plotted with an X mark.
第5図かられかるように、本発明による表面処理鋼板は
従来の箱焼鈍材に比べて、めっき製品の段階では約手テ
ンパー軟質であるため、DI加工が容易である。またD
I加工後の塗装焼付工程におけるBH効果が大きいため
、DI加工後の耐圧強度は箱焼鈍材と同等か、もしくは
それ以上である。また伸びフランジ成形性が箱焼鈍材よ
り優れている。As can be seen from FIG. 5, the surface-treated steel sheet according to the present invention is softer than the conventional box-annealed material at the stage of being plated, and therefore can be easily subjected to DI processing. Also D
Since the BH effect in the paint baking process after I processing is large, the compressive strength after DI processing is equal to or higher than that of box annealed material. Also, stretch flange formability is superior to box annealed materials.
そして熱延加熱温度がT*=6875/ (3,865
−log〔Al%+0.015〕) −250以下の範
囲において最も軟質かつ伸びフランジ成形性に優れた最
高級のDI缶用鋼板が得られる。ここで
熱延加熱温度T≦T*
ただしT* =6875/(3,865−log〔Al
%+0.0151 >−250の関係は鋼成分、熱間圧
延条件とぶりきの抗張力、DI加工性、耐圧強度および
MnSおよびAlN析出物平均寸法との関係において有
意な関係にあリ、Al量および加熱温度について実験的
に求めた式である。その際熱間圧延前の熱履歴としては
、直送圧延を含むいかなる熱履歴をもとり得るが、特に
抗張力40 kgf/mm”以下の製品を製造する場合
には、鋼片鋳造後Ar3変態点以下の温度まで冷却した
のち、上記温度以下に加熱することが好ましい。And the hot rolling heating temperature is T*=6875/(3,865
-log [Al%+0.015]) -250 or less, the highest grade steel plate for DI cans which is the softest and has excellent stretch flange formability can be obtained. Here, hot rolling heating temperature T≦T* However, T* = 6875/(3,865-log [Al
% + 0.0151 > -250 is a significant relationship between steel composition, hot rolling conditions, tinplate tensile strength, DI workability, compressive strength, and average size of MnS and AlN precipitates. This is an experimentally determined equation for the heating temperature. In this case, any heat history before hot rolling can be used, including direct rolling, but especially when manufacturing products with a tensile strength of 40 kgf/mm or less, it is necessary to It is preferable to cool down to this temperature and then heat it to below the above temperature.
次いで通常の方法で脱スケール後冷間圧延し、連続焼鈍
に供する。Then, it is cold rolled after being descaled by a conventional method and subjected to continuous annealing.
次に連続焼鈍条件について説明する。焼鈍は従来の箱焼
鈍法でなく、連続焼鈍法で行う。焼鈍サイクルは、まず
再結晶温度〜850°Cの温度域で5秒〜3分間の短時
間再結晶焼鈍を行う。焼鈍温度が再結晶温度に満たない
と、製品板が冷間加工組織のままとなってDI加工がで
きないので、焼鈍温度の下限を再結晶温度とする。また
焼鈍温度が850℃を越えると、焼鈍中の銅帯の強度が
低下し通板操業が困難となるので、焼鈍温度の上限を8
50℃とする。焼鈍時間が5秒に満たないと、充分な粒
成長が起らず硬質化するので、焼鈍時間の下限を5秒と
する。また焼鈍時間が3分を越えると、通板速度の減速
または長大な連続焼鈍設備が必要となり工業的価値を減
するので、焼鈍時間の上限を3分とする。焼鈍温度の好
ましい範囲は680〜750℃である。次いで冷却を行
うが、冷却速度が大きいと過時効処理前の過飽和固溶C
量が過大となって過時効進行の駆動力が大きくなり過時
効処理後に適量の固溶Cを残存させることができず、B
H性を得られないので、その上限を250℃/秒とする
。冷却速度が小さいと、逆の理由によってBH性は大き
くなるものの、製品板抗張力までも硬質化するため、そ
の下限を5℃/秒とする。次いで300〜500°Cの
温度で30〜500℃間の過時効処理を行う。過時効処
理温度を低くするとCの拡散速度が遅くなり、過時効処
理に長時間を要するので、過時効処理温度の下限を30
0℃とする。また過時効処理温度を高くすればCの固溶
限が増加し鋼板を硬化するので、過時効処理温度の上限
を500℃とする。過時効処理時間が短かければ過時効
処理が不足となり、鋼板を硬質化するので、過時効処理
時間の下限を30秒とする。また過時効処理時間が長け
れば過時効処理後の固溶Cが著しく減少しBH性が得ら
れないので、過時効処理時間の上限を500℃とする。Next, continuous annealing conditions will be explained. Annealing is performed not by the conventional box annealing method but by a continuous annealing method. In the annealing cycle, first, short-time recrystallization annealing is performed for 5 seconds to 3 minutes in a temperature range of recrystallization temperature to 850°C. If the annealing temperature is lower than the recrystallization temperature, the product plate will remain in a cold worked structure and DI processing cannot be performed, so the lower limit of the annealing temperature is set as the recrystallization temperature. In addition, if the annealing temperature exceeds 850°C, the strength of the copper strip during annealing will decrease, making threading operations difficult.
The temperature shall be 50°C. If the annealing time is less than 5 seconds, sufficient grain growth will not occur and the material will become hard, so the lower limit of the annealing time is set to 5 seconds. Furthermore, if the annealing time exceeds 3 minutes, a reduction in the sheet passing speed or a long continuous annealing facility will be required, reducing the industrial value, so the upper limit of the annealing time is set to 3 minutes. The preferred range of annealing temperature is 680 to 750°C. Next, cooling is performed, but if the cooling rate is high, the supersaturated solid solution C before overaging treatment
The amount becomes too large and the driving force for overaging progress becomes large, making it impossible to leave an appropriate amount of solid solution C after overaging treatment, and B
Since H properties cannot be obtained, the upper limit is set to 250°C/sec. If the cooling rate is low, the BH properties will increase for the opposite reason, but the tensile strength of the product sheet will also become hard, so the lower limit is set at 5° C./sec. Next, an overaging treatment is performed at a temperature of 300 to 500°C. If the overaging treatment temperature is lowered, the diffusion rate of C will slow down and the overaging treatment will take a long time, so the lower limit of the overaging treatment temperature should be set at 30°C.
The temperature shall be 0°C. Furthermore, if the overaging temperature is increased, the solid solubility limit of C increases and the steel sheet is hardened, so the upper limit of the overaging temperature is set at 500°C. If the overaging treatment time is short, the overaging treatment will be insufficient and the steel plate will become hard, so the lower limit of the overaging treatment time is set to 30 seconds. Further, if the overaging treatment time is long, the solid solution C after the overaging treatment decreases significantly and BH properties cannot be obtained, so the upper limit of the overaging treatment time is set at 500°C.
好ましい過時効処理条件は(350〜450℃) X
(60X 120秒)である。Preferred overaging treatment conditions are (350-450°C)
(60×120 seconds).
次いで通常の方法で調質圧延し、通常行なわれる表面処
理を施す。Then, it is temper rolled in a conventional manner and subjected to a conventional surface treatment.
(実施例) 第1表に本発明の実施例を示す。(Example) Table 1 shows examples of the present invention.
第1表記載の成分を有する鋼を転炉で溶製し、連続鋳造
した鋼片を3.0mmまで熱間圧延し、酸洗し、次いで
0.32’mmまで冷間圧延し、次いで第1表記載の焼
鈍条件で焼鈍し、次いで、1.0%の調質圧延を行ない
、電気すずめつきを行った。Steel having the components listed in Table 1 was melted in a converter, and the continuously cast steel slab was hot rolled to a thickness of 3.0 mm, pickled, and then cold rolled to a thickness of 0.32 mm. The specimens were annealed under the annealing conditions listed in Table 1, followed by 1.0% temper rolling and electric tinting.
このようにして製造された電気すずめつき鋼板を実験室
のDI加工機にてDI缶に成形した場合の全成形エネル
ギーを第2表に示す。該全成形エネルギーが小さいほど
、またかじり発生のないほどDI加工性に優れることを
表す。Table 2 shows the total forming energy when the electric tinned steel sheet manufactured in this manner was formed into a DI can using a DI processing machine in a laboratory. The smaller the total molding energy and the less occurrence of galling, the better the DI processability.
さらに該DI缶の耐圧強度および伸びフランジ加工率を
実験室にて測定した結果を同じく第2表に示す。伸びフ
ランジ加工率は本発明者らの実験室における測定法の場
合9.0%以上が需要家においても合格と評価されるこ
とがわかっている。Furthermore, the pressure resistance and stretch flange processing rate of the DI cans were measured in a laboratory and the results are also shown in Table 2. It has been found that a stretch flange processing rate of 9.0% or more is evaluated as acceptable by the customer using the measurement method conducted in the laboratory of the present inventors.
第1表および第2表かられかるように、本発明鋼は全成
形エネルギーが小さく、かじりが発生せず、耐圧強度が
充分高く、伸びフランジ加工率がきわめて高く伸びフラ
ンジ成形性に特に優れていることがわかる。As can be seen from Tables 1 and 2, the steel of the present invention has a small total forming energy, no galling, sufficiently high pressure resistance, extremely high stretch flanging rate, and particularly excellent stretch flanging formability. I know that there is.
なお、本発明鋼はBH硬化により耐圧強度のみならず、
缶の垂直方向での座屈強度も上昇するので、箱焼鈍材に
比して素材強度が同一であれば座屈強度も優れているこ
とを付言しておく。さらに本発明鋼は伸びフランジ成形
性に特に優れるため、単に伸びフランジ成形での不良率
が低いばかりでなく、さらに厳しい伸びフランジ成形に
も耐える性能を有するものである。In addition, the steel of the present invention has not only high pressure strength due to BH hardening, but also
It should be added that since the buckling strength in the vertical direction of the can also increases, the buckling strength is also superior to that of box annealed material if the material strength is the same. Furthermore, since the steel of the present invention has particularly excellent stretch-flange formability, it not only has a low defect rate in stretch-flange forming, but also has the ability to withstand even more severe stretch-flange forming.
−2・
(発明の効果)
本発明は、連続焼鈍で製造できるので製造コストが安く
、製品材質の均一性に優れ、かつかじりの発生がなく、
DI加工が容易であり、DI加工後の伸びフランジ成形
性に優れ、DI加工後の塗装焼付時に硬化することによ
って耐圧強度が著しく向上するDI缶用鋼板を提供する
ものであり、その工業的効果は甚大である。-2. (Effects of the invention) The present invention can be manufactured by continuous annealing, so the manufacturing cost is low, the product material has excellent uniformity, and there is no galling.
The present invention provides a steel plate for DI cans that is easy to perform DI processing, has excellent stretch flange formability after DI processing, and has significantly improved pressure resistance by hardening during paint baking after DI processing, and its industrial effects. is enormous.
第1図は、実験室パイロット・ラインにて製造したDI
缶用鋼板について、製品板の抗張力、DI試験成形機に
おける全成形エネルギー、成形後塗装焼付処理を行った
DI缶の耐圧強度、および焼鈍方法の関係を示した図、
第2図は、実験室パイロット・ラインにて製造したDI
缶用鋼板について、JIS結晶粒度番号、DI缶の耐圧
強度、DI加工後の伸びフランジ成形における破断発生
までの加工率、および焼鈍方法の関係を示した図、
第3図は、製品板のMnS析出物平均寸法、AlN析出
物平均寸法、DI加工後の伸びフランジ成形における破
断発生までの加工率の関係を示した図、第4図は、実験
室パイロット・ラインにて製造したDI缶用鋼板につい
て、熱延加熱温度T −(6875/(3,865−l
og〔Al%+0.015) ) −250) とぶ
りき板の抗張力、DI加工性の関係を示した図、第5図
は、実験室パイロット・ラインにて製造したDI缶用鋼
板について、熱延加熱温度T−(6875/(3,86
5−log〔Al%+0.015〕) −250) と
ぶりき板の抗張力、DI加工品の耐圧強度および伸びフ
ランジ加工率の関係を示した図である。
第1図
抗張力(kgf/mm )
第2図
JIS結晶粒度番号Figure 1 shows the DI produced on the laboratory pilot line.
Figure 2 shows the relationship between the tensile strength of the product plate, the total forming energy in the DI test forming machine, the compressive strength of DI cans that have been painted and baked after forming, and the annealing method for steel sheets for cans. DI manufactured on the pilot line
Figure 3 shows the relationship between the JIS grain size number, the compressive strength of the DI can, the processing rate until breakage occurs during stretch flange forming after DI processing, and the annealing method for steel sheets for cans. Figure 4 shows the relationship between the average size of precipitates, the average size of AlN precipitates, and the processing rate until breakage occurs in stretch flange forming after DI processing. For hot rolling heating temperature T - (6875/(3,865-l
og [Al% + 0.015) ) -250) Figure 5 shows the relationship between the tensile strength of tin plate and DI workability. Spreading heating temperature T-(6875/(3,86
5-log [Al% + 0.015]) -250) is a diagram showing the relationship between the tensile strength of a tin plate, the pressure resistance strength of a DI processed product, and the stretch flanging rate. Figure 1 Tensile strength (kgf/mm) Figure 2 JIS grain size number
Claims (2)
P重量%〕−0.03≦〔Mn重量%〕≦20〔P重量
%〕+0.14 なる関係を有し、残部がFeおよび不可避的不純物から
なる成分を有する低炭素Alキルド鋼片を熱間圧延し、
600〜710℃の温度で巻き取り、冷間圧延し、次い
で連続焼鈍により、再結晶温度以上850℃以下の温度
で5秒〜3用間の再結晶焼鈍を行ったのち、5〜250
℃/秒の冷却速度で冷却し、300〜500℃の温度で
30〜180秒の過時効処理を施し、42kgf/mm
^2以下の抗張力、8.5〜11.5の結晶粒度番号、
0.02μm以上0.40μm以下の平均寸法のMnS
および0.005μm以上0.20μm以下の平均寸法
のAlNの析出物組織を有する伸びフランジ成形性の優
れたDI缶用鋼板の製造法。(1) C: 0.0040-0.0600% Mn: 0.05-0.50% P: 0.02% or less S: 0.015% or less Acid-soluble Al: 0.020-0 .100% N: 0.0070% or less, provided that 10% is between [Mn weight%] and [P weight%].
A low carbon Al-killed steel piece having the following relationship: P weight %] -0.03 ≦ [Mn weight %] ≦ 20 [P weight %] + 0.14, with the balance consisting of Fe and unavoidable impurities. Rolled between
After winding and cold rolling at a temperature of 600 to 710°C, and then continuous annealing, recrystallization annealing is performed for 5 seconds to 3 hours at a temperature above the recrystallization temperature and below 850°C.
Cooled at a cooling rate of ℃/second, over-aged for 30 to 180 seconds at a temperature of 300 to 500℃, and cooled to 42kgf/mm.
Tensile strength of ^2 or less, grain size number of 8.5 to 11.5,
MnS with an average size of 0.02 μm or more and 0.40 μm or less
and a method for producing a steel sheet for DI cans having an AlN precipitate structure with an average size of 0.005 μm or more and 0.20 μm or less and having excellent stretch flange formability.
P重量%〕−0.03≦〔Mn重量%〕≦20〔P重量
%〕+0.14 なる関係を有し、残部がFeおよび不可避的不純物から
なる成分を有する低炭素Alキルド鋼片をAr_3変態
点以下の温度まで冷却し、次いで T*=6875/(3.865−log〔Al%+0.
015〕)−250を満足する温度T*(℃)以下に加
熱し、熱間圧延し、600〜710℃の温度で巻き取り
、冷間圧延し、次いで連続焼鈍法により、再結晶温度以
上850℃以下の温度で5秒〜3分間の再結晶焼鈍を行
ったのち、5〜250℃/秒の冷却速度で冷却し、30
0〜500℃の温度で30〜180秒の過時効処理を施
し、40kgf/mm^2以下の抗張力、8.5〜11
.5の結晶粒度番号、0.02μm以上0.40μm以
下の平均寸法のMnSおよび0.005μm以上0.2
0μm以下の平均寸法のAlNの析出物組織を有する伸
びフランジ成形性の優れたDI缶用鋼板の製造法。(2) Weight % C: 0.0040-0.0600% Mn: 0.05-0.50% P: 0.02% or less S: 0.015% or less Acid-soluble Al: 0.020-0. 100% N: 0.0070% or less, however, 10% between [Mn weight%] and [P weight%]
A low carbon Al-killed steel piece having the following relationship: P weight %] - 0.03 ≦ [Mn weight %] ≦ 20 [P weight %] + 0.14, with the balance consisting of Fe and unavoidable impurities. Cool to a temperature below the transformation point, then T*=6875/(3.865-log [Al%+0.
015]) Heated to a temperature T* (°C) or lower that satisfies -250, hot rolled, coiled at a temperature of 600 to 710°C, cold rolled, and then continuously annealed to a temperature higher than the recrystallization temperature of 850°C. After performing recrystallization annealing for 5 seconds to 3 minutes at a temperature below ℃, cooling at a cooling rate of 5 to 250℃/second,
Over-aged for 30 to 180 seconds at a temperature of 0 to 500°C, with a tensile strength of 40 kgf/mm^2 or less, 8.5 to 11
.. Grain size number 5, MnS with an average size of 0.02 μm or more and 0.40 μm or less and 0.005 μm or more and 0.2
A method for producing a steel sheet for DI cans having an AlN precipitate structure with an average size of 0 μm or less and having excellent stretch flange formability.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63006934A JPH0676618B2 (en) | 1988-01-18 | 1988-01-18 | Manufacturing method of steel plate for DI can with excellent stretch flange formability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63006934A JPH0676618B2 (en) | 1988-01-18 | 1988-01-18 | Manufacturing method of steel plate for DI can with excellent stretch flange formability |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01184229A true JPH01184229A (en) | 1989-07-21 |
JPH0676618B2 JPH0676618B2 (en) | 1994-09-28 |
Family
ID=11652083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63006934A Expired - Lifetime JPH0676618B2 (en) | 1988-01-18 | 1988-01-18 | Manufacturing method of steel plate for DI can with excellent stretch flange formability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0676618B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03202421A (en) * | 1989-12-29 | 1991-09-04 | Kobe Steel Ltd | Production of cold-rolled steel sheet having high ductility and high strength and reduced in anisotropy |
JPH03285044A (en) * | 1990-03-30 | 1991-12-16 | Kawasaki Steel Corp | Manufacture of steel sheet for three-piece can and three-piece can |
JPH04176817A (en) * | 1990-03-09 | 1992-06-24 | Toyo Kohan Co Ltd | Manufacture of steel sheet for di can |
EP1065283A1 (en) * | 1999-07-01 | 2001-01-03 | Sollac S.A. | Aluminum killed medium carbon steel sheet for cans |
CN103045937A (en) * | 2012-12-14 | 2013-04-17 | 宝山钢铁股份有限公司 | Secondary cold rolled steel and production method thereof |
CN103602884A (en) * | 2013-12-06 | 2014-02-26 | 马钢(集团)控股有限公司 | Ultralow-carbon aluminum-killed steel plate and production method thereof |
WO2018180403A1 (en) * | 2017-03-27 | 2018-10-04 | Jfeスチール株式会社 | Steel sheet for two-piece can and production method therefor |
CN114635093A (en) * | 2022-03-25 | 2022-06-17 | 包头钢铁(集团)有限责任公司 | Method for manufacturing cold-rolled low-carbon steel for household appliances |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5938338A (en) * | 1982-08-30 | 1984-03-02 | Kawasaki Steel Corp | Production of ultra thin steel sheet having high yield strength and drawability |
-
1988
- 1988-01-18 JP JP63006934A patent/JPH0676618B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5938338A (en) * | 1982-08-30 | 1984-03-02 | Kawasaki Steel Corp | Production of ultra thin steel sheet having high yield strength and drawability |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03202421A (en) * | 1989-12-29 | 1991-09-04 | Kobe Steel Ltd | Production of cold-rolled steel sheet having high ductility and high strength and reduced in anisotropy |
JPH04176817A (en) * | 1990-03-09 | 1992-06-24 | Toyo Kohan Co Ltd | Manufacture of steel sheet for di can |
JPH03285044A (en) * | 1990-03-30 | 1991-12-16 | Kawasaki Steel Corp | Manufacture of steel sheet for three-piece can and three-piece can |
US6776856B2 (en) | 1999-07-01 | 2004-08-17 | Sollac | Aluminum-killed medium-carbon steel sheet for containers |
FR2795742A1 (en) * | 1999-07-01 | 2001-01-05 | Lorraine Laminage | ALUMINUM QUIET CARBON STEEL PIPE FOR PACKAGING |
US6673170B1 (en) * | 1999-07-01 | 2004-01-06 | Sollac | Aluminum-killed medium-carbon steel sheet for containers and process for its preparation |
EP1065283A1 (en) * | 1999-07-01 | 2001-01-03 | Sollac S.A. | Aluminum killed medium carbon steel sheet for cans |
US7169243B2 (en) | 1999-07-01 | 2007-01-30 | Sollac | Aluminum-killed medium-carbon steel sheet for containers and process for its preparation |
CN103045937A (en) * | 2012-12-14 | 2013-04-17 | 宝山钢铁股份有限公司 | Secondary cold rolled steel and production method thereof |
CN103602884A (en) * | 2013-12-06 | 2014-02-26 | 马钢(集团)控股有限公司 | Ultralow-carbon aluminum-killed steel plate and production method thereof |
WO2018180403A1 (en) * | 2017-03-27 | 2018-10-04 | Jfeスチール株式会社 | Steel sheet for two-piece can and production method therefor |
JP6455639B1 (en) * | 2017-03-27 | 2019-01-23 | Jfeスチール株式会社 | Steel plate for 2-piece can and manufacturing method thereof |
US11486018B2 (en) | 2017-03-27 | 2022-11-01 | Jfe Steel Corporation | Steel sheet for two-piece can and manufacturing method therefor |
CN114635093A (en) * | 2022-03-25 | 2022-06-17 | 包头钢铁(集团)有限责任公司 | Method for manufacturing cold-rolled low-carbon steel for household appliances |
Also Published As
Publication number | Publication date |
---|---|
JPH0676618B2 (en) | 1994-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5365312B2 (en) | Steel plate for high-strength can and manufacturing method thereof | |
JP5453884B2 (en) | Steel plate for high-strength container and manufacturing method thereof | |
JP4943244B2 (en) | Steel sheet for ultra-thin containers | |
JP4244486B2 (en) | Steel plate for high-strength can and manufacturing method thereof | |
JP4853325B2 (en) | Thin wall cold-rolled steel sheet for drums and method for producing the same | |
JP4284815B2 (en) | Steel plate for high-strength can and manufacturing method thereof | |
JPH01184229A (en) | Production of steel sheet for di can having excellent stretch flanging property | |
JP2023507810A (en) | Tin-plated base plate for processing and method for producing the same | |
JP4486414B2 (en) | Thin steel plate for cans with strong can body strength and good press workability and method for producing the same | |
JPH04337049A (en) | Cold rolled steel sheet for can manufacturing having high strength and superior workability and its production | |
JP2009174055A (en) | Mother sheet for high strength extra-thin cold rolled steel sheet, and method for producing the same | |
JPS63134645A (en) | Steel sheet for di can excellent in stretch-flange formability | |
JPH0567684B2 (en) | ||
JPH01184252A (en) | Steel sheet for di can excellent in stretch-flange formability | |
JP2013147744A (en) | Steel sheet for aerosol can bottom and method for producing the same | |
US20180112295A1 (en) | Steel sheet for can lid and method for producing the same (as amended) | |
JPS63140039A (en) | Production of steel sheet for di can | |
JP2004131771A (en) | Method for manufacturing cold rolled steel sheet having excellent shape fixability | |
JPS63286522A (en) | Production of steel sheet for di can | |
JPH03232927A (en) | Production of alloying hot dip galvanized cold-rolled steel sheet for deep drawing excellent in baking hardenability and powdering resistance | |
JPH04120243A (en) | High tensile strength cold rolled steel sheet and its production | |
JPH06264138A (en) | Production of steel sheet for welded can excellent in blank layout property | |
JP2005220417A (en) | High strength hot dip galvanized steel sheet having excellent stretch flange formability, and its production method | |
JPS6333522A (en) | Production of raw plate for t-1 to t-3 class soft quality surface treatment for di works | |
JPH05263143A (en) | Production of steel sheet for soft vessel having non-aging characteristic and degree of refining of t-3 or below |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070928 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080928 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080928 Year of fee payment: 14 |