JP2005220417A - High strength hot dip galvanized steel sheet having excellent stretch flange formability, and its production method - Google Patents

High strength hot dip galvanized steel sheet having excellent stretch flange formability, and its production method Download PDF

Info

Publication number
JP2005220417A
JP2005220417A JP2004030542A JP2004030542A JP2005220417A JP 2005220417 A JP2005220417 A JP 2005220417A JP 2004030542 A JP2004030542 A JP 2004030542A JP 2004030542 A JP2004030542 A JP 2004030542A JP 2005220417 A JP2005220417 A JP 2005220417A
Authority
JP
Japan
Prior art keywords
steel sheet
dip galvanized
hot
galvanized steel
strength hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004030542A
Other languages
Japanese (ja)
Other versions
JP4428075B2 (en
Inventor
Takashi Iwama
隆史 岩間
Yasunobu Nagataki
康伸 長滝
Yasushi Tanaka
靖 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004030542A priority Critical patent/JP4428075B2/en
Publication of JP2005220417A publication Critical patent/JP2005220417A/en
Application granted granted Critical
Publication of JP4428075B2 publication Critical patent/JP4428075B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high strength hot dip galvanized steel sheet having an extremely excellent stretch flange formability satisfying λ≥80%, and to provide its production method. <P>SOLUTION: The high strength hot dip galvanized steel sheet having excellent stretch flange formability has chemical components containng, by mass, 0.03 to 0.20% C, 1.5 to 3.0% Mn, ≤0.05% P, ≤0.01% S, ≤0.15% Al, ≤0.01% N and 0.05 to 0.25% Ti, and in which the atomic ratio between Ti* defined by Ti*=Ti-(48/14)N-(48/32)S and C, (Ti*/48)/(C/12) satisfies 0.15 to 0.80, and further, A defined by A=(Ti*/2C)+1.7-Mn satisfies A≥0, and the balance substantially iron, and has a steel sheet structure consisting of low temperature transformation phases of ferrite and austenite. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、主にメンバー、ロッカー等の自動車の構造部品に使用される、伸びフランジ成形性に優れる高強度溶融亜鉛めっき鋼板及びその製造方法に関する。   The present invention relates to a high-strength hot-dip galvanized steel sheet having excellent stretch flange formability, which is mainly used for automobile structural parts such as members and lockers, and a method for producing the same.

近年、自動車の衝突安全性能を高める(自動車が走行中に物体と衝突した際、衝撃に対する部材のエネルギー吸収能を高め、乗員への衝撃負荷を低減させることで乗員の生命の安全性を高める)ためや、排気ガス規制に伴う燃費向上を目的とした車体軽量化を図る目的で、メンバー、ロッカー等の各種自動車部品に高強度鋼板の適用化が進められている。
一方で、自動車マーケットのグローバル化に伴い、より腐食環境の厳しい地域での防錆性能も要求されることから、表面処理鋼板、主に溶融亜鉛めっき鋼板の適用が必要とされる。高強度の溶融亜鉛めっき鋼板としては開発が進められており、590MPa級の引張強度を有する鋼板については製品化され、自動車部品への適用も増加してきている。
In recent years, the collision safety performance of automobiles has been improved (when a car collides with an object while traveling, the energy absorption capacity of the member against impact is increased, and the impact load on the occupant is reduced, thereby improving the safety of the occupant's life) For this reason, in order to reduce the weight of the vehicle body for the purpose of improving the fuel efficiency associated with exhaust gas regulations, the application of high-strength steel sheets to various automobile parts such as members and lockers is being promoted.
On the other hand, with the globalization of the automobile market, rust prevention performance is also required in areas where the corrosive environment is more severe, so application of surface-treated steel sheets, mainly hot-dip galvanized steel sheets, is required. Development of high-strength hot-dip galvanized steel sheets has been underway, and steel sheets having a tensile strength of 590 MPa class have been commercialized and are increasingly being applied to automobile parts.

しかし、590MPa級以上の鋼板については、延性の低下さらには穴拡げ性の低下による伸びフランジ成形性の劣化が課題であり、特に780MPa級以上では重要である。ところが、フェライト単相鋼は伸びフランジ成形性に優れるものの、590MPa級以上の高強度化は難しい。それは、固溶強化元素を増加させても、めっき性が劣化してしまうこと、また、析出強化量を増加させても、降伏強度の上昇によりプレス成形性が低下してしまうからである。   However, for steel plates of 590 MPa class or higher, degradation of stretch flangeability due to lowering of ductility and further hole expandability is an issue, and is particularly important at 780 MPa class or higher. However, although ferrite single phase steel is excellent in stretch flange formability, it is difficult to increase the strength of 590 MPa class or higher. This is because even if the solid solution strengthening element is increased, the plating property is deteriorated, and even if the precipitation strengthening amount is increased, the press formability is decreased due to the increase in yield strength.

一方、複合組織鋼においては、軟質相と硬質相の混合組織であるため、降伏強度は低いものの、伸びフランジ成形時に両相間がクラックの起点となりやすく、伸びフランジ成形性に劣る。そのため、複合組織鋼において、伸びフランジ成形性に優れる高強度溶融亜鉛めっき鋼板の開発は非常に困難なものとなっている。   On the other hand, since the composite structure steel has a mixed structure of a soft phase and a hard phase, the yield strength is low, but between the two phases tends to be a starting point of cracks at the time of stretch flange molding, and the stretch flange formability is poor. Therefore, it is very difficult to develop a high-strength hot-dip galvanized steel sheet that is excellent in stretch flange formability in composite structure steel.

複合組織鋼において、伸びフランジ成形性を向上させる知見として、特許文献1にはフェライト分率を高め、かつ、組織を微細化する方法が開示され、特許文献2には組織を均一微細化する方法が開示され、特許文献3,4にはSi添加によりベイナイト中のセメンタイトを微細化する手法が開示され、さらに特許文献5にはDual Phase鋼においてマルテンサイトを微細化する手法が開示されている。   As a knowledge for improving stretch flangeability in a composite structure steel, Patent Document 1 discloses a method of increasing the ferrite fraction and refining the structure, and Patent Document 2 discloses a method of uniformly refining the structure. Patent Documents 3 and 4 disclose a technique for refining cementite in bainite by adding Si, and Patent Document 5 discloses a technique for refining martensite in Dual Phase steel.

しかし、これらの技術ではいずれも、伸びフランジ成形性を示す指標である穴拡げ率λは80%程度であり、顕著な効果とは言い難い。
特開平4―350号公報 特開平4−173946号公報 特開平4−293758号公報 特開平5−78753号公報 特開2003−213369号公報
However, in any of these techniques, the hole expansion ratio λ, which is an index indicating stretch flangeability, is about 80%, which is not a remarkable effect.
JP-A-4-350 JP-A-4-173946 JP-A-4-293758 Japanese Patent Laid-Open No. 5-78753 JP 2003-213369 A

そこで、本発明では、TiおよびMnを有効活用し、Ti,C,Mnのバランスおよび焼鈍温度を最適化することにより、複合組織鋼で良好なプレス成形性を有しながら、伸びフランジ成形性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法を見出した。   Therefore, in the present invention, by making effective use of Ti and Mn and optimizing the balance of Ti, C, and Mn and the annealing temperature, the stretch flange formability can be achieved while having good press formability with the composite structure steel. An excellent high-strength hot-dip galvanized steel sheet and a method for producing the same have been found.

本発明は、上記課題を解決するためになされたもので、λ≧80%の非常に優れた伸びフランジ成形性を有する高強度溶融亜鉛めっき鋼板およびその製造方法を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a high-strength hot-dip galvanized steel sheet having a very excellent stretch flange formability of λ ≧ 80% and a method for producing the same.

上記課題は次の発明により解決される。
(1)化学成分が質量%でC:0.03〜0.20%、Mn:1.5〜3.0%、P:≦0.05%、S:≦0.01%、Al:≦0.15%、N:≦0.01%、Ti:0.05〜0.25%を含有し、さらにTi=Ti−(48/14)N−(48/32)Sで定義するTiとCの原子比(Ti/48)/(C/12)が0.15〜0.80を満たし、
さらにA=(Ti/2C)+1.7−Mnで定義するAがA≧0を満たし、
残部が実質的に鉄からなり、鋼板組織がフェライトおよびオーステナイトの低温変態相からなることを特徴とする伸びブランジ成形性に優れる高強度溶融亜鉛めっき鋼板。
The above problems are solved by the following invention.
(1) C: 0.03 to 0.20%, Mn: 1.5 to 3.0%, P: ≤ 0.05%, S: ≤ 0.01%, Al: ≤ Ti containing 0.15%, N: ≦ 0.01%, Ti: 0.05-0.25%, and further defined by Ti * = Ti− (48/14) N− (48/32) S * And C atomic ratio (Ti * / 48) / (C / 12) satisfy 0.15 to 0.80,
Furthermore, A defined by A = (Ti * / 2C ) + 1.7-Mn satisfies A ≧ 0,
A high-strength hot-dip galvanized steel sheet excellent in stretch-brown formability, characterized in that the balance is substantially made of iron and the steel sheet structure is made of a low-temperature transformation phase of ferrite and austenite.

(2)化学成分としてさらに、質量%で、Nb:≦0.25%を含有し、さらにT=Ti−(48/14)N−(48/32)Sで定義するTi及びNbとCの原子比(Nb/93+Ti/48)/(C/12)が0.15〜0.80を満たし、さらにA=(48Nb+93Ti)/186C+1.7−Mnで定義するAがA≧0を満たすことを特徴とする上記(1)に記載の伸びフランジ成形性に優れる高強度溶融亜鉛めっき鋼板。 (2) Ti * and Nb defined as T * = Ti- (48/14) N- (48/32) S, further containing Nb: ≦ 0.25% by mass% as a chemical component The atomic ratio of C (Nb / 93 + Ti * / 48) / (C / 12) satisfies 0.15 to 0.80, and A defined by A = (48Nb + 93Ti * ) / 186C + 1.7-Mn is A ≧ 0 The high-strength hot-dip galvanized steel sheet having excellent stretch flange formability as described in (1) above.

(3)化学成分としてさらに、質量%で、Si:≦0.5%を含有することを特徴とする上記(1)又は(2)に記載の伸びフランジ成形性に優れる高強度溶融亜鉛めっき鋼板。   (3) The high-strength hot-dip galvanized steel sheet having excellent stretch-flange formability as described in (1) or (2) above, wherein the chemical component further contains Si: ≦ 0.5% by mass. .

(4)化学成分としてさらに、質量%で、B:≦0.0015%を含有することを特徴とする上記(1)乃至(3)のいずれかに記載の伸びフランジ成形性に優れる高強度溶融亜鉛めっき鋼板。   (4) The high strength melt excellent in stretch flange formability according to any one of the above (1) to (3), wherein the chemical component further contains B: ≦ 0.0015% by mass%. Galvanized steel sheet.

(5)化学成分としてさらに、質量%で、Cr:0.05〜0.5%、V:0.05〜0.5%、Mo:0.05〜0.5%のうち1種または2種以上を含有し、Mn’=Mn+2.5Mo+1.07Cr+2.5VにおいてA=(48Nb+93Ti)/186C+1.7−Mn’で定義されるAがA≧0を満たすことを特徴とする、上記(1)乃至(4)のいずれかに記載の伸びフランジ成形性に優れる高強度溶融亜鉛めっき鋼板。 (5) Further, as a chemical component, by mass%, Cr: 0.05 to 0.5%, V: 0.05 to 0.5%, Mo: 0.05 to 0.5%, or 1 or 2 The above (1), wherein A is defined as A = (48Nb + 93Ti * ) / 186C + 1.7-Mn ′ in Mn ′ = Mn + 2.5Mo + 1.07Cr + 2.5V, satisfying A ≧ 0. The high-strength hot-dip galvanized steel sheet having excellent stretch flange formability according to any one of (1) to (4).

(6)上記(1)乃至(5)いずれかに記載の成分をもつスラブを熱間圧延した後、650℃以下で巻き取って熱延鋼板を得る工程と、酸洗、冷間圧延した後、温度が(0.7Ac3+0.3Ac1)℃〜(1.4Ac3−0.4Ac1)℃で、時間が5〜240秒の再結晶焼鈍を施した後、10℃/s以下の速度で冷却する工程と、溶融亜鉛めっきを施した後、合金化処理を施す工程とを具備することを特徴とする伸びフランジ成形性に優れる高強度溶融亜鉛めっき鋼板の製造方法。   (6) After hot-rolling a slab having any of the components described in (1) to (5) above, winding it at 650 ° C. or lower to obtain a hot-rolled steel sheet, and pickling and cold-rolling The temperature is (0.7Ac3 + 0.3Ac1) ° C to (1.4Ac3−0.4Ac1) ° C, and is subjected to recrystallization annealing for 5 to 240 seconds, and then cooled at a rate of 10 ° C / s or less. And a method of producing a high-strength hot-dip galvanized steel sheet having excellent stretch flange formability, comprising a step of subjecting to an alloying treatment after hot-dip galvanizing.

この発明は、伸びフランジ成形性に優れる高強度溶融亜鉛めっき鋼板を得るために、鋭意検討を重ねた結果見出された知見に基づいてなされた。即ち、本発明者らは、TiおよびMnを有効活用し、Ti,C,Mnのバランスおよび焼鈍温度の最適化により、複合組織鋼において、フェライトを微細炭化物で析出強化すると同時に、第2相をベイナイト主体とし、いわゆるDual Phase鋼の第2相(マルテンサイト)よりも軟質化することで、フェライト−第2相間硬度差の効果的な減少が可能であることを見出した。その結果、複合組織鋼でありながら、伸びフランジ成形性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法について知見を見出し、ここに開示するものである。   This invention was made based on the knowledge found as a result of extensive studies to obtain a high-strength hot-dip galvanized steel sheet having excellent stretch flange formability. That is, the present inventors effectively utilize Ti and Mn, optimize the balance of Ti, C, Mn, and the annealing temperature, thereby strengthening the precipitation of ferrite with fine carbides in the composite structure steel, and at the same time the second phase. It has been found that the hardness difference between the ferrite and the second phase can be effectively reduced by using bainite as a main component and making it softer than the second phase (martensite) of so-called Dual Phase steel. As a result, the present inventors have found knowledge about a high-strength hot-dip galvanized steel sheet that is excellent in stretch flange formability and a method for manufacturing the same, and discloses the result here.

本発明に係る高強度溶融亜鉛めっき鋼板では、以下の構成要件を必須とする。
以下に、本発明の鋼成分の添加理由、成分限定範囲、組織形態、引張特性および製造条件の限定理由について説明する。なお、以下の%は質量%を示す。
In the high-strength hot-dip galvanized steel sheet according to the present invention, the following constituent elements are essential.
Below, the reason for the addition of the steel component of the present invention, the component limitation range, the structure morphology, the tensile properties, and the limitation of the production conditions will be described. In addition, the following% shows the mass%.

(1)鋼成分の範囲
C:0.03〜0.20%
Cは鋼の強化に有効な元素である。固溶強化に寄与し、Ti、Nb等と結合し炭化物を形成することで、析出強化にも寄与する。本発明では、析出強化をより活用することで鋼強化しているのが特徴で、十分な強化能を得るためには0.03%以上のCの添加を必要とする。しかし、C量が0.20%を超えると、スポット溶接における十字引張強度の低下が顕著となることから、C量は0.03〜0.20%の範囲とする。但し、本発明の伸びフランジ成形性向上の効果を得るためには、同時に、以下に記述するTiおよびNbとの原子比:0.15〜0.80を満たすことが必要である。
(1) Range of steel components
C: 0.03-0.20%
C is an element effective for strengthening steel. It contributes to solid solution strengthening and also contributes to precipitation strengthening by combining with Ti, Nb and the like to form carbides. In the present invention, steel is strengthened by further utilizing precipitation strengthening, and 0.03% or more of C is required to obtain sufficient strengthening ability. However, if the amount of C exceeds 0.20%, the decrease in cross tensile strength in spot welding becomes significant, so the amount of C is set to a range of 0.03 to 0.20%. However, in order to obtain the effect of improving the stretch flangeability of the present invention, it is necessary to satisfy the atomic ratio of Ti and Nb described below: 0.15 to 0.80 at the same time.

Mn:1.5〜3.0%
Mnは鋼の焼入れ強化に有効な元素である。ここで、Mn量が1.5%未満の場合、焼入れ性が低下し、比較的冷却速度の遅い溶融亜鉛めっきラインでは、延性を劣化させるパーライトが冷却段階で形成され易くなる。また、Mn量が3.0%を超えると、溶製された鋼をスラブに鋳造する際、スラブ表面やコーナー部に割れが発生し易くなる。さらに、スラブを熱間圧延し、更に、冷間圧延および焼鈍を施して得られた鋼板では、表面欠陥が顕在化する。このため、Mn量は1.5〜3.0%の範囲とする。但し、本発明の伸びフランジ成形性向上の効果を得るためには、同時に、以下に記述するA≧0を満たすことが必要である。
Mn: 1.5-3.0%
Mn is an element effective for strengthening the quenching of steel. Here, when the amount of Mn is less than 1.5%, hardenability is lowered, and in a hot dip galvanizing line having a relatively slow cooling rate, pearlite that deteriorates ductility is easily formed in the cooling stage. Moreover, when the amount of Mn exceeds 3.0%, when the molten steel is cast into a slab, cracks are likely to occur on the slab surface and corner portions. Furthermore, surface defects become apparent in the steel sheet obtained by hot rolling the slab and further cold rolling and annealing. For this reason, the amount of Mn shall be 1.5 to 3.0% of range. However, in order to obtain the effect of improving the stretch flangeability of the present invention, it is necessary to satisfy A ≧ 0 described below at the same time.

P≦0.05%
Pは鋼の強化に有効な元素であり、適宜添加することができる。但し、P量が0.05%を超えると、溶融亜鉛めっき後の合金化反応性が低下し、焼けムラと呼ばれる表面外観不良を引き起こしたり、スポット溶接性が低下する。従って、P量は0.05%以下の範囲とする。
P ≦ 0.05%
P is an element effective for strengthening steel and can be appropriately added. However, if the amount of P exceeds 0.05%, the alloying reactivity after hot dip galvanization is lowered, causing a poor surface appearance called burn unevenness or spot weldability. Therefore, the amount of P is made 0.05% or less.

Al≦0.15%
Alは焼鈍時に、めっき性を阻害する表層へのMn、Si系の酸化物の形成を抑制し、めっき表面外観を向上させる効果がある。材質的にはAc3変態点を上昇させ、フェライト+オーステナイト2相域を拡大することで、適正焼鈍温度範囲を拡大する効果もある。しかし、Al量が0.15%を超えると、Ac3点が上昇し過ぎ、連続溶融亜鉛めっきラインでは製造不能となる。従って、Al量は0.15%以下の範囲とする。
Al ≦ 0.15%
Al has the effect of suppressing the formation of Mn and Si-based oxides on the surface layer that hinders plating properties during annealing and improving the appearance of the plating surface. In terms of material, the Ac3 transformation point is raised, and the ferrite + austenite two-phase region is expanded, so that the proper annealing temperature range can be expanded. However, if the amount of Al exceeds 0.15%, the Ac3 point increases too much, making it impossible to produce in a continuous hot dip galvanizing line. Therefore, the Al content is set to a range of 0.15% or less.

S≦0.01%
Sは鋼中に過剰に存在すると、スラブ加熱時にオーステナイトの結晶粒界に偏析し、熱間圧延の際、鋼板表層部から赤熱脆性が起こり易くなる。特に、S量が0.01%を超えると、この悪影響が懸念される。このため、S量は0.01%以下とするが、スポット溶接における十字引張強度確保の観点から、0.005%以下がより好ましい。
S ≦ 0.01%
When S is excessively present in the steel, it segregates at the grain boundaries of austenite during slab heating, and red hot brittleness tends to occur from the steel sheet surface layer during hot rolling. In particular, when the amount of S exceeds 0.01%, this adverse effect is a concern. For this reason, the S amount is 0.01% or less, but is preferably 0.005% or less from the viewpoint of securing the cross tensile strength in spot welding.

N≦0.01%
Nは鋼中に過剰に存在すると、鋳造時にスラブ表面に割れが発生するばかりか、溶融亜鉛めっきを施す場合に亜鉛めっき後の鋼板の延性も劣化する。しかし、0.01%以下であれば、そのような悪影響は及ぼさない。このため、N量は0.01%以下とする。
N ≦ 0.01%
When N is excessively present in the steel, cracks are generated on the surface of the slab during casting, and the ductility of the steel sheet after galvanization deteriorates when hot dip galvanizing is performed. However, if it is 0.01% or less, such an adverse effect is not exerted. For this reason, N amount shall be 0.01% or less.

Ti:0.05〜0.25%、(Ti/48)/(C/12):0.15〜0.8
Tiは本発明において重要な元素である。Tiは鋼中で微細炭化物を形成することにより、フェライトを析出強化し、鋼を強化する。その効果を得るには0.05%以上必要である。一方、Tiが0.25%を超えると鋼板表面品質が低下するため、Ti量は0.05〜0.25%とする。
ところで、Ti炭化物は熱延時に生成するが、冷延後の高温焼鈍により溶解し、固溶Cがオーステナイトへ濃化する。その後の冷却、溶融めっき、合金化の工程により、第2相がベイナイト主体の組織となることが必要である。しかし、そのためには、(Ti/48)/(C/12)は0.15以上必要であり、逆に0.8を超えると固溶Cが減少し、そのような組織の形成が困難になる。そのため、(Ti/48)/(C/12)は0.15〜0.8の範囲とする。なお、鋼中Tiは、スラブ加熱〜熱延の比較的高温域において、炭化物より先にTiN、TiSを形成するため、炭化物形成に消費されうるTiは、Ti
Ti−(48/14)N−(48/32)Sで定義される。
Ti: 0.05-0.25%, (Ti * / 48) / (C / 12): 0.15-0.8
Ti is an important element in the present invention. Ti forms fine carbides in the steel, thereby strengthening the steel by precipitation strengthening of ferrite. In order to obtain the effect, 0.05% or more is necessary. On the other hand, if the Ti content exceeds 0.25%, the surface quality of the steel sheet deteriorates, so the Ti content is 0.05 to 0.25%.
By the way, although Ti carbide is generated at the time of hot rolling, it is dissolved by high temperature annealing after cold rolling, and solid solution C is concentrated to austenite. It is necessary that the second phase becomes a bainite-based structure by the subsequent cooling, hot dipping, and alloying steps. However, for that purpose, (Ti * / 48) / (C / 12) needs to be 0.15 or more, and conversely, if it exceeds 0.8, solid solution C decreases and it is difficult to form such a structure. become. Therefore, (Ti * / 48) / (C / 12) is in the range of 0.15 to 0.8. Since Ti in steel forms TiN and TiS prior to carbide in a relatively high temperature range of slab heating to hot rolling, Ti * that can be consumed for carbide formation is Ti * =
It is defined by Ti- (48/14) N- (48/32) S.

A≧O
Aは、Ti添加の場合はA=(Ti/2C)+1.7−Mn’、Ti+Nb添加の場合はA:(48Nb+93Ti)/186C+1.7−Mn’で表される、本発明において重要な項目である。なお、Mn’は鋼の焼入れ易さを表す指標であり、Cr,V,Mo添加の場合はMn’=Mn+2.5Mo+1.07Cr+2.5V、Cr,V,Mo未添加の場合はMn’=Mnである。
A ≧ O
A is represented by A = (Ti * / 2C) + 1.7-Mn ′ when Ti is added, and A: (48Nb + 93Ti * ) / 186C + 1.7-Mn ′ when Ti + Nb is added. It is an important item. Mn ′ is an index indicating the ease of quenching of steel. Mn ′ = Mn + 2.5Mo + 1.07Cr + 2.5V when Cr, V, and Mo are added, and Mn ′ = Mn when Cr, V, and Mo are not added. It is.

Aが0未満になると、フェライトの析出強化効果が低下し、逆にマルテンサイト生成による組織強化が顕著になることで、フェライトと第2相の間の強度差が増し、伸びフランジ成形性が劣化する。そのため、A≧0の範囲とする。
また、本発明では、必要に応じて、Nb,Si,B,Cr,V,Moを以下の範囲で添加することができる。
When A is less than 0, the effect of ferrite precipitation strengthening decreases, and conversely, the structure strengthening due to the formation of martensite becomes significant, increasing the strength difference between the ferrite and the second phase and degrading stretch flangeability. To do. Therefore, the range is A ≧ 0.
Moreover, in this invention, Nb, Si, B, Cr, V, and Mo can be added in the following ranges as needed.

Nb≦0.25%、(Nb/93+Ti/48)/(C/12):0.15〜0.8
NbもTi同様、炭化物形成元素であり、固溶強化、析出強化に加え、焼入れ性を高めることで、組織強化にも寄与する元素であり、添加しても本発明のTiの効果を妨げることは一切無い。但し、Nb量が0.25%を超えると、焼鈍時にフェライトの再結晶温度が上昇するため、焼鈍後の鋼板組織に加工組織が残留し易くなり、得られた鋼板の延性が著しく劣化する。従って、Nbを添加する場合、この添加量は0.25%以下の範囲とする。
Nb ≦ 0.25%, (Nb / 93 + Ti * / 48) / (C / 12) : 0.15 to 0.8
Nb, like Ti, is a carbide-forming element. In addition to solid solution strengthening and precipitation strengthening, Nb is also an element that contributes to structural strengthening by enhancing hardenability, and even if added, the effect of Ti of the present invention is hindered. There is no. However, if the Nb content exceeds 0.25%, the recrystallization temperature of ferrite rises during annealing, so that the processed structure tends to remain in the steel sheet structure after annealing, and the ductility of the obtained steel sheet deteriorates significantly. Therefore, when Nb is added, the amount added is in the range of 0.25% or less.

また、本発明において有効なベイナイト主体の第2相の形成には、(Nb/93+Ti/48)/(C/12)は0.15以上必要であり、逆に0.8を超えると固溶Cが減少し、本発明において有効なベイナイト主体の第2相の形成が困難になる。そのため、(Nb/93+Ti/48)/(C/12)は0.15〜0.8の範囲とする。 In addition, (Nb / 93 + Ti * / 48) / (C / 12) is required to be 0.15 or more for the formation of the second phase mainly composed of bainite effective in the present invention. Molten C decreases, and it becomes difficult to form the second phase mainly composed of bainite effective in the present invention. Therefore, (Nb / 93 + Ti * / 48) / (C / 12) is in the range of 0.15 to 0.8.

Si≦0.5%
Siは鋼の強化および強度延性バランスを向上させるのに有効な元素であり、適宜添加することができる。しかし、Si量が0.5%を超えると、溶融亜鉛めっきにおける不めっきの発生や合金化処理時の反応性低下を助長するため、表面性状や防錆性能が劣化する。そのため、Si量は0.5%以下とする。
Si ≦ 0.5%
Si is an element effective for improving the strength and ductility balance of steel, and can be added as appropriate. However, if the amount of Si exceeds 0.5%, the occurrence of non-plating in hot dip galvanizing and the decrease in reactivity during alloying treatment are promoted, so the surface properties and rust prevention performance deteriorate. Therefore, the Si amount is 0.5% or less.

B:≦0.0015%
Bは粒界偏析元素で、焼鈍時にオーステナイト粒界に偏析し、オーステナイトの粒成長を抑制すると同時に、冷却時のフェライト析出も抑制するため、最終的に微細な組織を得ることが出来る。結果的に、鋼の高強度化や第2相の微細分散による伸びフランジ成形性の向上にも寄与する。しかし、B量が0.0015%を超えると、細粒化効果が飽和するばかりか、フェライト析出温度がより低温化することで、TiCがフェライトヘの変態前に析出し、十分な析出強化が得られなくなってしまう。さらに、溶融亜鉛めっき後の合金化反応性が低下し、焼けムラと呼ばれる表面性状不良を引き起こす。このため、Bを添加する場合、この添加量は0.0015%以下の範囲とする。
B: ≦ 0.0015%
B is a grain boundary segregation element and segregates at the austenite grain boundary during annealing, and suppresses austenite grain growth and simultaneously suppresses ferrite precipitation during cooling, so that a fine structure can be finally obtained. As a result, it contributes to the improvement of stretch flangeability by increasing the strength of steel and finely dispersing the second phase. However, if the amount of B exceeds 0.0015%, not only the fine graining effect is saturated, but also the ferrite precipitation temperature is lowered, so that TiC is precipitated before transformation into ferrite, and sufficient precipitation strengthening is achieved. It can no longer be obtained. Furthermore, the alloying reactivity after hot dip galvanization is lowered, causing a surface quality defect called uneven burning. For this reason, when adding B, this addition amount shall be 0.0015% or less of range.

Cr:0.05〜0.5%
Crは、特に連続溶融亜鉛めっきラインのように焼鈍後の冷却速度が遅くマルテンサイトが生成しにくいプロセスにおいては、鋼の焼入れ強化に非常に有効な元素である。この効果を得るには、0.05%以上の添加を必要とする。しかし、Cr量が0.5%を超えるとこの効果は飽和し、一方で表面品質を著しく低下させる。このため、Cr量は0.05〜0.5%の範囲とする。
Cr: 0.05-0.5%
Cr is an extremely effective element for strengthening the quenching of steel, particularly in processes where the cooling rate after annealing is slow and martensite is difficult to form, such as in a continuous hot dip galvanizing line. In order to obtain this effect, addition of 0.05% or more is required. However, if the Cr content exceeds 0.5%, this effect is saturated, while the surface quality is significantly reduced. For this reason, the Cr content is in the range of 0.05 to 0.5%.

V:0.05〜0.5%
Vは鋼の強化に有効な元素であり、また、Vと形成される窒化物は焼鈍板組織の細粒化に寄与する。これらの効果を得るには、Vは0.05%以上の添加を必要とする。しかし、Vの添加量が0.5%を超えると、これらの効果は飽和する。このため、Vを添加する場合、この添加量は0.05〜0.5の範囲とする。
V: 0.05-0.5%
V is an element effective for strengthening steel, and the nitride formed with V contributes to the refinement of the annealed plate structure. In order to obtain these effects, V needs to be added in an amount of 0.05% or more. However, when the added amount of V exceeds 0.5%, these effects are saturated. For this reason, when adding V, this addition amount shall be the range of 0.05-0.5.

Mo:0.05〜0.5%
Moは鋼の焼入れ強化に有効な元素であり、この効果を得るには、0.05%以上の添加を必要とする。しかし、Mo量が0.5%を超えると、この効果は飽和する。このため、Moを添加する場合、添加量は0.05〜0.5%の範囲とする。
また、上記鋼成分以外の化学成分については、特に過剰に添加しなければ本発明の効果を損なうことはない。なお、この発明で残部が実質的に鉄というのは、その他の合金元素あるいは不可避的不純物についても本発明の目的とする特性に悪影響を及ぼさない限り、含有しても良いことを意味する。
Mo: 0.05-0.5%
Mo is an element effective for strengthening the quenching of steel, and 0.05% or more of addition is required to obtain this effect. However, this effect is saturated when the Mo content exceeds 0.5%. For this reason, when adding Mo, the amount of addition shall be 0.05 to 0.5% of range.
In addition, the chemical components other than the steel components are not particularly impaired unless they are added excessively. In the present invention, the balance being substantially iron means that other alloy elements or unavoidable impurities may be contained as long as the target characteristics of the present invention are not adversely affected.

(2)鋼板組織形態
本発明鋼の鋼板組織は、フェライトおよび第2相がベイナイトを主体とするオーステナイトの低温変態相で構成される。第2相の面積分率は、強度、延性バランスを確保するため、5〜98%、好ましくは10〜90%である。また、ベイナイト主体とは、伸びフランジ性を確保するため、第2相中で50%以上、好ましくは70%以上の体積分率で構成されることを表し、ベイナイトの他、マルテンサイト、パーライト、ベイニティックフェライト、残留オーステナイトを含んでも良い。
(2) Steel plate structure The steel plate structure of the steel of the present invention is composed of a low-temperature transformation phase of austenite whose main phase is ferrite and the second phase is bainite. The area fraction of the second phase is 5 to 98%, preferably 10 to 90%, in order to ensure the strength and ductility balance. In addition, the bainite main body means that it is composed of a volume fraction of 50% or more, preferably 70% or more in the second phase in order to ensure stretch flangeability. In addition to bainite, martensite, pearlite, It may contain bainitic ferrite and retained austenite.

(3)鋼板の製造方法
前述の化学成分の鋼を溶製して鋳造した後、鋳造する工程と粗圧延および仕上圧延を施す熱間圧延工程において、巻き取り温度が650℃を超えると、析出した炭化物が粗大化し、冷延焼鈍時に溶解または縮小しきらずに、粗大なまま残存してしまう。従って、十分な析出強化が得られず、伸びフランジ成形性の低下のみならず強度の低下を引き起こしてしまう。そのため、巻き取り温度は650℃以下とする。
冷延後の焼鈍過程においては、昇温〜均熱過程において起こるフェライトからオーステナイトへの変態の際に、熱延巻き取り時に生成した炭化物が溶解あるいは縮小する。そして、冷却時にオーステナイトからフェライトへの変態の際に再析出あるいはわずかなオストワルド成長により、結果的に微細炭化物として存在すると考えている。
焼鈍温度が(0.7Ac3+0.3Ac1)℃未満では、オーステナイトヘの変態が十分進まず、微細炭化物が十分析出しないこと、(1.4Ac3−0.4Ac1)℃を超えると、オーステナイトヘのC濃化が十分ではなくなり、延性を劣化させるパーライト等の生成を助長するため、焼鈍温度は(0.7Ac3+0.3Ac1)℃〜(1.4Ac3−0.4Ac1)℃の範囲とする。
また、その温度域に滞留する時間は、5秒未満では再結晶しないため十分な延性が得られないこと、一方、240秒を超えても、生産性の低下に繋がるため、滞留時間は5〜240秒とした。好ましくは15〜120秒である。さらに、焼鈍後の冷却速度については、10℃/sを超えると炭化物の生成に要する時間が短くなり、析出物量が減少し、十分な析出強化が得られないことから、10℃/s以下とした。
その後、通常の溶融亜鉛めっき工程により製造するものである。なお、焼鈍工程前に酸洗および脱脂処理等の表面清浄工程を通しても構わず、溶融亜鉛めっき後、合金化処理を行なっても良い。その場合、合金化めっき層中のFe含有率が9〜12%となるように実施するのが好ましい。
また、亜鉛めっき後の鋼帯には、形状矯正、表面粗度等の調整のために、10%以下の調質圧延を加えてもよく、さらに得られた鋼板に化成処理などの表面処理を施しても所望の特性に何ら悪影響を及ぼすことはない。以上の製造工程を経て、本発明の意図する伸びフランジ成形性に優れる溶融亜鉛めっき鋼板を製造することができる。
(3) Steel plate manufacturing method
In the hot rolling process in which the steel having the above-mentioned chemical composition is melted and cast, and in the hot rolling process in which casting and rough rolling and finish rolling are performed, if the coiling temperature exceeds 650 ° C., the precipitated carbide becomes coarse and is cooled. It remains in a coarse state without being completely dissolved or reduced during annealing. Therefore, sufficient precipitation strengthening cannot be obtained, causing not only a decrease in stretch flangeability but also a decrease in strength. Therefore, the winding temperature is set to 650 ° C. or less.
In the annealing process after cold rolling, during the transformation from ferrite to austenite that occurs in the temperature rising and soaking process, carbides generated during hot rolling are dissolved or reduced. And it is thought that it exists as a fine carbide as a result by reprecipitation or slight Ostwald growth in the transformation from austenite to ferrite during cooling.
If the annealing temperature is less than (0.7Ac3 + 0.3Ac1) ° C, the transformation to austenite does not proceed sufficiently and fine carbides do not precipitate sufficiently. The annealing temperature is in the range of (0.7Ac3 + 0.3Ac1) ° C. to (1.4Ac3−0.4Ac1) ° C. in order to promote the formation of pearlite or the like that deteriorates the ductility due to insufficient concentration.
In addition, the residence time in the temperature range is less than 5 seconds, and recrystallization does not occur, so that sufficient ductility cannot be obtained. On the other hand, even if it exceeds 240 seconds, the productivity is reduced. It was 240 seconds. Preferably it is 15 to 120 seconds. Furthermore, with respect to the cooling rate after annealing, if it exceeds 10 ° C./s, the time required for carbide formation is shortened, the amount of precipitates is reduced, and sufficient precipitation strengthening cannot be obtained. did.
Then, it manufactures by a normal hot dip galvanizing process. In addition, you may pass through surface cleaning processes, such as pickling and a degreasing process, before an annealing process, and you may perform an alloying process after hot dip galvanization. In that case, it is preferable to carry out such that the Fe content in the alloyed plating layer is 9 to 12%.
In addition, the steel strip after galvanization may be subjected to temper rolling of 10% or less in order to adjust the shape correction, surface roughness, etc., and surface treatment such as chemical conversion treatment may be applied to the obtained steel plate. Even if applied, the desired properties are not adversely affected. Through the above manufacturing process, a hot-dip galvanized steel sheet excellent in stretch flange formability intended by the present invention can be manufactured.

本発明によれば、鋼の化学成分を規定するとともに、原子比(Ti/48)/(C/12)および(Nb/93+Ti/48)/(C/12)が0.15〜0.80、A=(Ti/2C)+1.7−Mn’および(48Nb+93Ti)/186C+1.7−Mn’を0以上とし、さらに、熱延時の巻き取り温度を650℃以下、冷延後の焼鈍を温度が(0.7Ac3+0.3Ac1)℃〜(1.4Ac3−0.4Ac1)℃の範囲で、時間が5〜240秒の範囲で行なった後、10℃/s以下の速度で冷却し、溶融亜鉛めっきおよびその後に合金化処理を施すことにより、鋼板組織がフェライトおよびオーステナイトの低温変態相の複合組織から成る、伸びフランジ成形性に優れる高強度溶融亜鉛めっき鋼板の安定製造が可能となることから、自動車業界における利用価値は大きい。 According to the present invention, the chemical composition of the steel is defined, and the atomic ratios (Ti * / 48) / (C / 12) and (Nb / 93 + Ti * / 48) / (C / 12) are 0.15 to 0. .80, A = (Ti * / 2C) + 1.7-Mn ′ and (48Nb + 93Ti * ) / 186C + 1.7-Mn ′ are 0 or more, and the coiling temperature during hot rolling is 650 ° C. or less and after cold rolling Is annealed at a temperature of (0.7Ac3 + 0.3Ac1) ° C. to (1.4Ac3−0.4Ac1) ° C. for a time of 5 to 240 seconds, and then cooled at a rate of 10 ° C./s or less. By hot-dip galvanizing and subsequent alloying treatment, it is possible to stably produce a high-strength hot-dip galvanized steel sheet with excellent stretch-flange formability, in which the steel sheet structure consists of a composite structure of low-temperature transformation phases of ferrite and austenite. Therefore, in the automobile industry The utility value is high.

以下、本発明の基礎となった研究結果について述べる。実験に用いた鋼板は、化学成分が質量%でC:0.04〜0.12%、Mn:1.69〜3.39%、P:0.006%、S:0.001%、Al:0.04〜0.10%、N:0.0028〜0.0062%、Nb:0〜0.05%、Ti:0〜0.15%、B:0〜0.0006%、のスラブ(板厚:30mm)に粗圧延および仕上圧延を施して得られた熱延板(板厚3.2mm)を板厚1.6mmまで冷間圧延した後、供試材をソルトバスにて実機連続溶融亜鉛めっきラインを模したヒートサイクルによって、焼鈍、溶融亜鉛めっきおよび合金化処理相当の熱処理を施した。その内容は、最高温度850℃で180秒焼鈍した後、5℃/sの速度にて冷却し、次いで溶融亜鉛めっきおよび合金化処理相当温度の550℃で90秒保持した後、空冷にて冷却するものである。   In the following, the results of research that is the basis of the present invention will be described. The steel plate used in the experiment has a chemical composition of mass%, C: 0.04 to 0.12%, Mn: 1.69 to 3.39%, P: 0.006%, S: 0.001%, Al : Slab of 0.04 to 0.10%, N: 0.0028 to 0.0062%, Nb: 0 to 0.05%, Ti: 0 to 0.15%, B: 0 to 0.0006% After cold rolling a hot-rolled sheet (thickness of 3.2 mm) obtained by subjecting (thickness: 30 mm) to rough rolling and finish rolling to a thickness of 1.6 mm, the test material is actually used in a salt bath. Heat treatment equivalent to annealing, hot dip galvanizing, and alloying was performed by a heat cycle simulating a continuous hot dip galvanizing line. The contents are annealed at a maximum temperature of 850 ° C. for 180 seconds, then cooled at a rate of 5 ° C./s, then held at 550 ° C., which is a temperature equivalent to hot dip galvanizing and alloying treatment, for 90 seconds, and then cooled by air cooling. To do.

また、鋼成分については、Ti=Ti−(48/14)N−(48/32)Sで計算されるTiについて、原子比(Nb/93+Ti/48)/(C/12)を計算した。焼入れ性を示す指標として、Mn’=Mn+2.5Mo+1.07Cr+2.5Vを計算したが、上記供試鋼ではCr,V,Mo無添加なので、Mn’=Mnとした。 For steel components, the atomic ratio (Nb / 93 + Ti * / 48) / (C / 12) is calculated for Ti * calculated by Ti * = Ti− (48/14) N− (48/32) S. Calculated. As an index indicating the hardenability, Mn ′ = Mn + 2.5Mo + 1.07Cr + 2.5V was calculated. However, in the above test steel, Cr, V, and Mo were not added, so Mn ′ = Mn.

さらに、引張試験により鋼板の降伏強度と引張強度を測定し、その比(降伏強度/引張強度×100)を降伏比YRとして求めた。YRが高くなると,プレス成形時の寸法精度の低下、シワ等による表面精度の低下によるプレス成形性の劣化が起き、特に90%以上で顕著に認められる。   Furthermore, the yield strength and tensile strength of the steel sheet were measured by a tensile test, and the ratio (yield strength / tensile strength × 100) was determined as the yield ratio YR. When YR becomes high, the dimensional accuracy at the time of press forming decreases, and the press formability deteriorates due to the decrease in surface accuracy due to wrinkles and the like, which is particularly noticeable at 90% or more.

また、伸びフランジ成形性を表す指標として、穴拡げ試験により穴拡げ率λを求めた。試験は、以下の鉄鋼連盟規格で定められた方法で実施した。即ち、試験片にクリアランス12.5%で10mmφの穴を打ち抜き、バリ側を表面にセットした後、試験片を保持しながら打ち抜き穴を先端部角度60°の円錐ポンチで裏面から押し拡げ、穴縁に貫通割れが発生した時点で停止する。その時の穴径Dhについて、元の穴径からの穴拡げ率λ1を、λ1={(Dh−10)/10)×100で定義する。試験を3回実施し、λ1、λ2、
λ3を求め、その平均値をλとした。
In addition, as an index representing stretch flange formability, a hole expansion rate λ was obtained by a hole expansion test. The test was conducted by the method defined in the following Steel Federation standards. That is, after punching a 10mmφ hole with a clearance of 12.5% on the test piece and setting the burr side on the surface, the punched hole is pushed and expanded from the back with a conical punch with a tip angle of 60 ° while holding the test piece. Stops when a through crack occurs at the edge. For the hole diameter Dh at that time, the hole expansion ratio λ1 from the original hole diameter is defined as λ1 = {(Dh−10) / 10) × 100. The test was performed three times, λ1, λ2,
λ3 was determined and the average value was taken as λ.

以下に、これらの結果について示す。図1に原子比(Nb/93+Ti/48)/(C/12)とYRの関係を示した。原子比の上昇と共にYRが上昇し、原子比0.8を超えると顕著に上昇することが分かる。これは組織がフェライト単相化することと、TiCおよびNbCのピン止め効果増大による粒成長抑制効果すなわち組織微細化が要因と考えられる。そのため、(Nb/93+Ti/48)/(C/12)≦0.8が必要であることが明らかとなった。 These results are shown below. FIG. 1 shows the relationship between the atomic ratio (Nb / 93 + Ti * / 48) / (C / 12) and YR. It can be seen that YR increases as the atomic ratio increases, and increases significantly when the atomic ratio exceeds 0.8. This is thought to be due to the fact that the structure becomes a single phase of ferrite and the effect of suppressing grain growth by increasing the pinning effect of TiC and NbC, ie, the refinement of the structure. Therefore, it has become clear that (Nb / 93 + Ti * / 48) / (C / 12 ) ≦ 0.8 is necessary.

図2に原子比(Nb/93+Ti/48)/(C/12)とMn’の関係において、λ≧100%を◎、100%>λ≧80%を○、λ<80%を×としてプロットした結果を示す。その結果、Mn’=(48Nb+93Ti)/186C+1.7で示される直線を境界線として、下の領域がλ≧80%、上の領域がλ<80%であること、即ち、A=(48Nb+93Ti)/186C+1.7−Mn’≧0の条件で、λ≧80%となることが明確となった。さらに、原子比<0.15では全てλ<80%となることも明らかとなった。総合すると、原子比(Nb/93+Ti/48)/(C/12)は0.15〜0.80の範囲が必要であることが明確となった。
本発明は、以上の知見に基づいてなされたものである。
In FIG. 2, in the relationship between the atomic ratio (Nb / 93 + Ti * / 48) / (C / 12) and Mn ′, λ ≧ 100% is ◎, 100%> λ ≧ 80% is ◯, and λ <80% is ×. The plotted result is shown. As a result, with the straight line represented by Mn ′ = (48Nb + 93Ti * ) / 186C + 1.7 as the boundary line, the lower region is λ ≧ 80% and the upper region is λ <80%, that is, A = (48Nb + 93Ti * ) It became clear that λ ≧ 80% under the condition of 186C + 1.7-Mn ′ ≧ 0. Furthermore, it was also found that at the atomic ratio <0.15, all λ <80%. Collectively, it became clear that the atomic ratio (Nb / 93 + Ti * / 48) / (C / 12) needs to be in the range of 0.15 to 0.80.
The present invention has been made based on the above findings.

以下に本発明の実施例を示す。
まず、下記表1に示す成分の鋼(鋼番1〜46)を実験室にて溶製した後、鋳造して、板厚50mmのスラブを作製した。次に、このスラブを板厚30mmまで分塊圧延した後、大気炉にて1270℃で1hr加熱して、熱間圧延に供した。つづいて、粗圧延および仕上圧延を経て板厚4.0mmの熱延板を作製した。なお仕上温度は860℃とした。圧延後、平均20℃/sの冷却速度で鋼板を冷却し、575〜680℃×1hrの巻取相当の熱処理を施した。次に、この熱延板を酸洗し、板厚1.6mmまで冷間圧延した。その後、供試材をソルトバスにて実機連続溶融亜鉛めっきラインに即したヒートサイクルによって、焼鈍、溶融亜鉛めっきおよび合金化処理相当の熱処理を施した。その内容は、最高温度780〜920℃で2〜250秒焼鈍した後、5〜15℃/sの速度にて冷却し、次いで溶融亜鉛めっきおよび合金化処理相当温度の550℃で90s保持した後、空冷にて冷却するものである。

Figure 2005220417
Examples of the present invention are shown below.
First, steels (steel numbers 1 to 46) having the components shown in Table 1 below were melted in a laboratory and then cast to prepare a slab having a thickness of 50 mm. Next, this slab was subjected to mass rolling to a plate thickness of 30 mm, and then heated at 1270 ° C. for 1 hr in an atmospheric furnace and subjected to hot rolling. Subsequently, a hot-rolled sheet having a thickness of 4.0 mm was produced through rough rolling and finish rolling. The finishing temperature was 860 ° C. After rolling, the steel sheet was cooled at an average cooling rate of 20 ° C./s and subjected to a heat treatment equivalent to winding at 575 to 680 ° C. × 1 hr. Next, this hot-rolled sheet was pickled and cold-rolled to a thickness of 1.6 mm. Thereafter, the sample material was subjected to heat treatment corresponding to annealing, hot dip galvanizing, and alloying treatment by a heat cycle in accordance with an actual continuous hot dip galvanizing line in a salt bath. The content is that after annealing at a maximum temperature of 780 to 920 ° C. for 2 to 250 seconds, cooling at a rate of 5 to 15 ° C./s, and then holding for 90 seconds at 550 ° C., which is a temperature equivalent to hot dip galvanizing and alloying treatment. Cooling by air cooling.
Figure 2005220417

Figure 2005220417
Figure 2005220417

得られた鋼板は、伸長率0.5%にて調質圧延して、引張試験および穴拡げ試験により、降伏強度(YP)、引張強度(TS)、降伏比(YR)、全伸び(EI)、穴拡げ率(λ)を測定した。引張試験は圧延方向について日本工業規格JISZ2201に記載の5号試験片を用いて行った。穴拡げ試験は前述の方法にて実施し、穴拡げ率λを求めた。また、供試材の圧延方向に平行な断面のミクロ組織をSEMにて観察し、その合金相の内訳をフェライト(F)、ベイナイト(B)、マルテンサイト(M)、パーライト(P)で示した。下記表2に製造条件と試験結果を示す。

Figure 2005220417
The obtained steel sheet was temper-rolled at an elongation of 0.5%, and by tensile test and hole expansion test, yield strength (YP), tensile strength (TS), yield ratio (YR), total elongation (EI) ) And the hole expansion rate (λ) was measured. The tensile test was performed using No. 5 test piece described in Japanese Industrial Standard JISZ2201 in the rolling direction. The hole expansion test was performed by the method described above, and the hole expansion ratio λ was obtained. In addition, the microstructure of the cross section parallel to the rolling direction of the specimen was observed by SEM, and the breakdown of the alloy phase was indicated by ferrite (F), bainite (B), martensite (M), and pearlite (P). It was. Table 2 below shows production conditions and test results.
Figure 2005220417

Figure 2005220417
Figure 2005220417

本発明に従って得られた溶融亜鉛めっき鋼板は、λ≧80%の優れた伸びフランジ成形性を有することが分かる。また、YR≦90%でありプレス成形性に優れることが分かる。   It can be seen that the hot-dip galvanized steel sheet obtained according to the present invention has excellent stretch flange formability of λ ≧ 80%. It can also be seen that YR ≦ 90% and the press formability is excellent.

原子比とYRの関係を示す図。The figure which shows the relationship between atomic ratio and YR. 原子比とMn’の関係におけるλを示す図。The figure which shows (lambda) in the relationship between atomic ratio and Mn '.

Claims (6)

化学成分が質量%でC:0.03〜0.20%、Mn:1.5〜3.0%、P:≦0.05%、S:≦0.01%、Al:≦0.15%、N:≦0.01%、Ti:0.05〜0.25%を含有し、さらにTi=Ti−(48/14)N−(48/32)Sで定義するTiとCの原子比
(Ti/48)/(C/12)が0.15〜0.80を満たし、
さらにA=(Ti/2C)+1.7−Mnで定義するAがA≧0を満たし、
残部が実質的に鉄からなり、鋼板組織がフェライトおよびオーステナイトの低温変態相からなることを特徴とする伸びブランジ成形性に優れる高強度溶融亜鉛めっき鋼板。
C: 0.03 to 0.20%, Mn: 1.5 to 3.0%, P: ≦ 0.05%, S: ≦ 0.01%, Al: ≦ 0.15 in terms of mass% %, N: ≦ 0.01%, Ti: contains 0.05 to 0.25 percent, still Ti * = Ti- (48/14) N- (48/32) defined by S Ti * and C Atomic ratio
(Ti * / 48) / (C / 12) satisfies 0.15 to 0.80,
Furthermore, A defined by A = (Ti * / 2C ) + 1.7-Mn satisfies A ≧ 0,
A high-strength hot-dip galvanized steel sheet excellent in stretch-brown formability, characterized in that the balance is substantially made of iron and the steel sheet structure is made of a low-temperature transformation phase of ferrite and austenite.
化学成分としてさらに、質量%でNb:≦0.25%を含有し、さらにT=Ti−(48/14)N−(48/32)Sで定義するTi及びNbとCの原子比(Nb/93+Ti/48)/(C/12)が0.15〜0.80を満たし、さらにA=(48Nb+93Ti)/186C+1.7−Mnで定義するAがA≧0を満たすことを特徴とする請求項1に記載の伸びフランジ成形性に優れる高強度溶融亜鉛めっき鋼板。 Further, as a chemical component, Nb: ≦ 0.25% by mass%, and Ti * and atomic ratio of Nb and C defined by T * = Ti- (48/14) N- (48/32) S (Nb / 93 + Ti * / 48) / (C / 12) satisfies 0.15 to 0.80, and A defined by A = (48Nb + 93Ti * ) / 186C + 1.7-Mn satisfies A ≧ 0. The high-strength hot-dip galvanized steel sheet having excellent stretch flange formability according to claim 1. 化学成分としてさらに、質量%で、Si:≦0.5%を含有することを特徴とする請求項1又は2に記載の伸びフランジ成形性に優れる高強度溶融亜鉛めっき鋼板。 The high-strength hot-dip galvanized steel sheet having excellent stretch flange formability according to claim 1 or 2, further comprising Si: ≤ 0.5% by mass as a chemical component. 化学成分としてさらに、質量%で、B:≦0.0015%を含有することを特徴とする請求項1乃至3のいずれかに記載の伸びフランジ成形性に優れる高強度溶融亜鉛めっき鋼板。 The high-strength hot-dip galvanized steel sheet having excellent stretch flange formability according to any one of claims 1 to 3, further comprising, as a chemical component, B: ≤ 0.0015% by mass%. 化学成分としてさらに、質量%でCr:0.05〜0.5%、V:0.05〜0.5%、Mo:0.05〜0.5%のうち1種または2種以上を含有し、Mn’=Mn+2.5Mo+1.07Cr+2.5VにおいてA=(48Nb+93Ti)/186C+1.7−Mn’で定義されるAがA≧0を満たすことを特徴とする請求項1乃至4のいずれかに記載の伸びフランジ成形性に優れる高強度溶融亜鉛めっき鋼板。 Further, as a chemical component, one or more of Cr: 0.05 to 0.5%, V: 0.05 to 0.5%, Mo: 0.05 to 0.5% are contained by mass%. 5, and A defined by A = (48Nb + 93Ti * ) / 186C + 1.7−Mn ′ at Mn ′ = Mn + 2.5Mo + 1.07Cr + 2.5V satisfies A ≧ 0. A high-strength hot-dip galvanized steel sheet excellent in stretch flangeability as described in 1. 請求項1乃至5いずれかに記載の成分をもつスラブを熱間圧延した後、650℃以下で巻き取って熱延鋼板を得る工程と、酸洗、冷間圧延した後、温度が(0.7Ac3+0.3Ac1)℃〜(1.4Ac3-0.4Ac1)℃で、時間が5〜240秒の再結晶焼鈍を施した後、10℃/s以下の速度で冷却する工程と、溶融亜鉛めっきを施した後、合金化処理を施す工程とを具備することを特徴とする伸びフランジ成形性に優れる高強度溶融亜鉛めっき鋼板の製造方法。 After hot-rolling the slab having the component according to any one of claims 1 to 5 and winding it at 650 ° C or lower to obtain a hot-rolled steel sheet, pickling and cold-rolling, the temperature is (0. 7Ac3 + 0.3Ac1) ° C to (1.4Ac3-0.4Ac1) ° C, after recrystallization annealing for 5 to 240 seconds, cooling at a rate of 10 ° C / s or less, and hot dip galvanization A method for producing a high-strength hot-dip galvanized steel sheet having excellent stretch flange formability, characterized by comprising a step of applying an alloying treatment after the application.
JP2004030542A 2004-02-06 2004-02-06 High-strength hot-dip galvanized steel sheet excellent in stretch flangeability and method for producing the same Expired - Fee Related JP4428075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004030542A JP4428075B2 (en) 2004-02-06 2004-02-06 High-strength hot-dip galvanized steel sheet excellent in stretch flangeability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004030542A JP4428075B2 (en) 2004-02-06 2004-02-06 High-strength hot-dip galvanized steel sheet excellent in stretch flangeability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005220417A true JP2005220417A (en) 2005-08-18
JP4428075B2 JP4428075B2 (en) 2010-03-10

Family

ID=34996287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004030542A Expired - Fee Related JP4428075B2 (en) 2004-02-06 2004-02-06 High-strength hot-dip galvanized steel sheet excellent in stretch flangeability and method for producing the same

Country Status (1)

Country Link
JP (1) JP4428075B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265620A (en) * 2005-03-23 2006-10-05 Nisshin Steel Co Ltd Method for producing low yield ratio high tensile strength hot dip galvanized steel sheet
JP2009235441A (en) * 2008-03-26 2009-10-15 Jfe Steel Corp High-yield ratio and high-strength cold rolled steel sheet having excellent stretch flange formability
JP2009235440A (en) * 2008-03-26 2009-10-15 Jfe Steel Corp High-yield ratio and high-strength cold rolled steel sheet
JP2011236482A (en) * 2010-05-12 2011-11-24 Sumitomo Metal Ind Ltd Hot-dip galvannealed steel sheet and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265620A (en) * 2005-03-23 2006-10-05 Nisshin Steel Co Ltd Method for producing low yield ratio high tensile strength hot dip galvanized steel sheet
JP4679195B2 (en) * 2005-03-23 2011-04-27 日新製鋼株式会社 Low yield ratio high tension hot dip galvanized steel sheet manufacturing method
JP2009235441A (en) * 2008-03-26 2009-10-15 Jfe Steel Corp High-yield ratio and high-strength cold rolled steel sheet having excellent stretch flange formability
JP2009235440A (en) * 2008-03-26 2009-10-15 Jfe Steel Corp High-yield ratio and high-strength cold rolled steel sheet
JP2011236482A (en) * 2010-05-12 2011-11-24 Sumitomo Metal Ind Ltd Hot-dip galvannealed steel sheet and method for manufacturing the same

Also Published As

Publication number Publication date
JP4428075B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
US20210292862A1 (en) High-strength cold rolled steel sheet with low material non-uniformity and excellent formability, hot dipped galvanized steel sheet, and manufacturing method therefor
JP4730056B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability
US8999085B2 (en) High manganese steel strips with excellent coatability and superior surface property, coated steel strips using steel strips and method for manufacturing the steel strips
JP6536294B2 (en) Hot dip galvanized steel sheet, alloyed hot dip galvanized steel sheet, and method for producing them
JP5042232B2 (en) High-strength cold-rolled steel sheet excellent in formability and plating characteristics, galvanized steel sheet using the same, and method for producing the same
KR101585311B1 (en) Method for manufacturing high strength galvanized steel sheet having excellent stability of mechanical properties, formability, and coating appearance
US20090314395A1 (en) High strength thin-gauge steel sheet excellent in elongation and hole expandability and method of production of same
US20110048589A1 (en) High-strength steel sheet and method for manufacturing the same
JP5564432B2 (en) High-strength cold-rolled steel sheet excellent in workability, galvanized steel sheet, and manufacturing method thereof
KR101893512B1 (en) Method for producing high-strength galvanized steel sheet and high-strength galvannealed steel sheet
JP3858146B2 (en) Manufacturing method of high-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet
KR101445465B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and spot weldability and process for producing same
JP6700398B2 (en) High yield ratio type high strength cold rolled steel sheet and method for producing the same
WO2013114850A1 (en) Hot-dip galvanized steel sheet and production method therefor
WO2011152017A1 (en) High-strength molten-zinc-plated steel sheet having excellent bendability and weldability, and process for production thereof
WO2016031165A1 (en) High-strength hot-dip galvanized steel sheet having superb stretch-flangeability, in-plane stability of stretch-flangeability, and bendability, and method for producing same
WO2013160928A1 (en) High-strength steel sheet and method for manufacturing same
JP4380348B2 (en) High-strength hot-dip galvanized steel sheet with excellent surface quality
JP2013044022A (en) Hot-dip galvanized steel sheet and manufacturing method therefor
JP2007138261A (en) High strength steel sheet and its manufacturing method
JP4211520B2 (en) High strength and high ductility galvanized steel sheet with excellent aging resistance and method for producing the same
EP2752500A1 (en) Hot-rolled steel sheet for cold-rolled steel sheet, hot-rolled steel sheet for hot-dipped galvanized steel sheet, method for producing hot-rolled steel sheet for cold-rolled steel sheet, and method for producing hot-rolled steel sheet for hot-dipped galvanized steel sheet
JP5251207B2 (en) High strength steel plate with excellent deep drawability and method for producing the same
WO2018030502A1 (en) High-strength steel sheet, and production method therefor
KR101406444B1 (en) Ultra high strength cold rolled steel sheet having excellent elongation and bendability and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4428075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees