JPS5938338A - Production of ultra thin steel sheet having high yield strength and drawability - Google Patents

Production of ultra thin steel sheet having high yield strength and drawability

Info

Publication number
JPS5938338A
JPS5938338A JP14905182A JP14905182A JPS5938338A JP S5938338 A JPS5938338 A JP S5938338A JP 14905182 A JP14905182 A JP 14905182A JP 14905182 A JP14905182 A JP 14905182A JP S5938338 A JPS5938338 A JP S5938338A
Authority
JP
Japan
Prior art keywords
temperature
value
hot
rolled
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14905182A
Other languages
Japanese (ja)
Inventor
Hideo Kukuminato
久々湊 英雄
Tomohiko Akiyama
知彦 秋山
Sadao Izumiyama
泉山 禎男
Takashi Ono
小野 高司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14905182A priority Critical patent/JPS5938338A/en
Publication of JPS5938338A publication Critical patent/JPS5938338A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To obtain a titled ultra thin steel sheet by hot rolling a continuous casting billet contg. specific amts. of C, Si, Mn, P, S, Al, N, coiling the same in a specific temp. range to form a hot rolled steel strip, cold rolling the steel strip at a specific draft after pickling then treating the steel strip in a continuous annealing furnace under specific conditions for a cold rolled steel sheet. CONSTITUTION:A continuous casting billet is composed, by weight %, of <0.07 C, <0.06 Si, <0.25 Mn, <0.03 P, <0.02 S, <0.15 Al, <0.008 N, and the balance Fe. The billet is hot rolled at 1,000-1,150 deg.C heating temp., is hot rolled at the Ar3 transformation point or above and >=700 deg.C finish hot rolling temp. and is coiled at 640-700 deg.C coiling temp. to a hot rolled steel strip. The steel strip is cold rolled at 80-90% draft after pickling. The resulted cold rolled steel strip is held for >=20sec at >=680 deg.C in a continuous annealing furnace, is cooled down to <=500 deg.C at 10-500 deg.C/sec cooling rate, is held for >=20sec at 500-350 deg.C and is cooled down to a room temp.

Description

【発明の詳細な説明】 本発明は、絞り加工により成形される缶の素材としての
極薄鋼板の製造方法に関するものであり、特に製缶に際
して、素材のr値が大きく、かつΔr値が小さいことの
点で絞り加工性に優nるとともに、成形した缶の品質に
優れ、特に素材鋼板における面内異方性により生じる耳
が従来のものに比べて小さい缶が得られるようにする缶
用極薄鋼板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an ultra-thin steel plate as a raw material for cans formed by drawing, and in particular, when making cans, the r value of the raw material is large and the Δr value is small. For cans, it has excellent drawing workability in this respect, as well as the quality of the formed can, and in particular cans with smaller selvage caused by in-plane anisotropy in the material steel plate compared to conventional cans. This invention relates to a method for manufacturing ultra-thin steel sheets.

食用缶では、古くから胴部、大部(ふた)、地部(底)
から成る、いわゆる3ピ一ス缶が主体であって、一部に
はプレス成形により胴部と地部を一体に成形したものに
大部を接合した、いわゆるコビース缶がある。
For edible cans, the body, main part (lid), and base part (bottom) have long been used.
The main type of can is the so-called 3-piece can, which consists of 3-piece cans, and some are the so-called cobies cans, in which the body and base are integrally molded by press molding, and most of the parts are joined.

2ピ一ス缶は、缶の機能が優れていること及び製缶能率
が高いというメリットがあるため近年その製缶法が見間
されてきた。
Two-piece cans have been gaining attention in recent years as a can manufacturing method because they have the advantages of excellent can functionality and high can manufacturing efficiency.

また、従来このような素材には調質度(JIS a33
03においてロックウェルで硬さくHK30T)の値を
もってこれを表すことが規定されている)がT/〜Tj
、板厚0.2〜0.’l B程度のものが使われていた
。しかし、最近コスト削減の目的から、素材の使用量を
少なくするために板厚がより薄いものが使われだした。
In addition, conventionally, such materials have a heat treatment degree (JIS a33
In 03, it is specified that Rockwell hardness (HK30T) is expressed as T/~Tj
, plate thickness 0.2~0. 'l B grade was used. However, recently, in order to reduce costs, thinner plates have been used to reduce the amount of material used.

−ピース缶は絞シ加工前の平板で塗装、印刷が施される
が、その方式はロール・コータで行われるため、従来方
法による鋼板はその降伏強度が低いことにより、塗装後
に進行方向に反り、その直後の焼付工程では反った塗装
板どうしが接触して、すりキズが発生するという問題が
あった。この傾向は板厚が薄くなると、更に助長される
。したがって、絞り加工用鋼板といえども缶用のものは
、降伏強度のより高いものが適していることになる。
- Piece cans are painted and printed on a flat plate before drawing, but this process is done using a roll coater, so steel plates made using the conventional method warp in the direction of travel after painting due to their low yield strength. In the baking process that immediately follows, there is a problem in that the warped painted plates come into contact with each other, causing scratches. This tendency is further exacerbated as the plate thickness becomes thinner. Therefore, steel sheets with higher yield strength are suitable for drawing steel sheets for cans.

一般に絞り加工によって製缶される缶素材として使用さ
れる極薄鋼板の絞り加工性は、自動車の車体等に用いら
れる絞り加工用冷延鋼板と同様に、一般的にはr値が大
きいことが望ましいとされている。また、製缶後のフラ
ンジ部のトリミング化を小さくして材料歩留シを向上さ
せるために容器7ランジ部に耳発生の少ない、いわゆる
r値の面内異方性(Δr)の小さい極薄鋼板が要求され
ている。
The drawability of ultra-thin steel sheets, which are generally used as can materials for making cans by drawing, generally has a large r value, similar to that of cold-rolled steel sheets for drawing used for automobile bodies, etc. considered desirable. In addition, in order to reduce trimming of the flange part after can manufacturing and improve material yield, the flange part of the container 7 is made of ultra-thin material with a small in-plane anisotropy (Δr) of the so-called r value, which has less ear formation. Steel plate is required.

ここにr値とは、冷延鋼板の深絞り加工性を示す一つの
指標であって、引張試験における幅方向の歪と厚さ方向
の歪の比で示される。このr値は、引張シ試験片の採取
方向によって異なり、低炭素A/キルド鋼冷延端板では
、圧延方向に対しqOoの方向に採取したものが最も高
く、次いでθ0方向が高く、q s O方向が最も低い
という異方性のものが多い。この異方性の程度は鋼板の
製造方法により異なる。
Here, the r value is an index indicating the deep drawability of a cold rolled steel sheet, and is expressed as the ratio of strain in the width direction to strain in the thickness direction in a tensile test. This r value varies depending on the direction in which the tensile test piece is taken. For low carbon A/killed steel cold-rolled end plates, the r value is highest when taken in the qOo direction with respect to the rolling direction, followed by the θ0 direction, and qs Many of them are anisotropic, with the lowest point in the O direction. The degree of this anisotropy varies depending on the manufacturing method of the steel sheet.

そこでr値については、前記各方向におけるr値から、
その平均値7を次式によシ求めてこれをもって鋼板の絞
り加工性を評価している。
Therefore, regarding the r value, from the r value in each direction,
The average value 7 is calculated using the following formula and used to evaluate the drawability of the steel plate.

ゲ ここにrL:圧延方向と平行な方向におけるr値rc:
圧延方向と直角の方向におけるr値rD:圧延方向とi
’の方向におけるr値一方、絞シ加工後の缶フランジ部
は円周方向の板厚分布と高さに異方性が現われ、かかる
現象はr値の面内異方性のために生じる。すなわち、深
絞り中の円周方向の圧縮に対して、r値の小さい方向は
板厚が増加しやすく、半径方向に材料が伸びにくい。一
方r値の大きい方向では逆に板厚が増加しに<<、半径
方向に材料が伸びやすい。したがってr値の大きい方向
に缶が高く(耳の山部)Sr値の小さい方向に缶が低く
(耳の谷部)なる。
Here rL: r value rc in the direction parallel to the rolling direction:
r value rD in the direction perpendicular to the rolling direction: rolling direction and i
On the other hand, the can flange portion after drawing has anisotropy in the thickness distribution and height in the circumferential direction, and this phenomenon occurs due to the in-plane anisotropy of the r value. That is, with respect to compression in the circumferential direction during deep drawing, the plate thickness tends to increase in the direction where the r value is small, and the material is difficult to stretch in the radial direction. On the other hand, in the direction where the r value is large, the plate thickness increases and the material tends to stretch in the radial direction. Therefore, the can becomes higher in the direction of the larger r value (the peak of the ear) and lower (the trough of the ear) in the direction of the smaller Sr value.

耳の高さは加工条件によってもかなり異なるが、このr
値の異方性を示チΔrの大きい極薄鋼板径大きな耳とな
り、歩留シが低下する。
The height of the ears varies considerably depending on the processing conditions, but this r
Ultra-thin steel sheets exhibiting anisotropy in value and have a large Δr have a large radius, resulting in a decrease in yield.

なお、Δrは次の式で定義される。Note that Δr is defined by the following equation.

r   +r   −コr Δr=−−−−−−−−−−−−− コ r値は鋼板の結晶集合組織と密接な関係があシ、したが
ってΔr値も同様に結晶集合組織と密接な関係がある。
r + r − Δr = −−−−−−−−−−−−− The Cor value has a close relationship with the crystal texture of the steel sheet, and therefore the Δr value also has a close relationship with the crystal texture. There is.

このΔr値は(1)冷間圧延の圧下率、(コ)冷延前の
熱間圧延温度、(、?)AINなどの析出物の再結晶過
程における析出挙動や分散状態等により大きく変化する
ことが知られている。
This Δr value varies greatly depending on (1) the rolling reduction ratio of cold rolling, (g) the hot rolling temperature before cold rolling, (,?) the precipitation behavior and dispersion state of precipitates such as AIN in the recrystallization process, etc. It is known.

このことから、金型の工夫に合せてΔrの小さい極薄鋼
板を用いることにより容器フランジ部の耳発生を最小限
に改善することが出来る。しかし。
From this, by using an ultra-thin steel plate with a small Δr in conjunction with the design of the mold, it is possible to minimize the occurrence of flange at the container flange. but.

一般にΔrの小さい極薄鋼板はr値が悪くなり、深絞り
加工そのものを阻害するという欠点があり、更に、降伏
強度を高くするためには、結晶粒径を小さくする一b要
があり、この結果r値も小さくなる。
In general, ultra-thin steel sheets with a small Δr have a bad r value, which inhibits deep drawing.Furthermore, in order to increase the yield strength, it is necessary to reduce the grain size. As a result, the r value also becomes smaller.

従来、7値の高い絞り用鋼板の製造は、低炭素Atキル
ド鋼を用い、熱間圧延温度(FT )はAr3変態点以
上、巻取温度(OT )は5lIo℃程度の低温で、ま
た焼鈍は箱焼鈍法で行われてきた。しかし、この製造法
では7値は高くなるが降伏強度が低塾いという欠点があ
った。降伏強度は低くても、王位が高いものは、自動車
の車体などに使う場合には好ましい品質特性であるが、
缶用鋼板に対しては前述のように塗装工程で生ずる鋼板
の反りのため好ましくない。
Conventionally, the production of steel sheets for drawing with a high value of 7 has been carried out using low-carbon At-killed steel, with a hot rolling temperature (FT) of at least the Ar3 transformation point, a coiling temperature (OT) of about 5lIo℃, and annealing. has been performed using the box annealing method. However, this manufacturing method had the drawback that although the 7 value was high, the yield strength was low. Even if the yield strength is low, a material with a high strength is a desirable quality characteristic when used for automobile bodies, etc.
This is not preferable for steel plates for cans because of the warping of the steel plate that occurs during the coating process as described above.

降伏強度を高くするための焼鈍法としては、連続焼鈍(
CAL )がある。CALは、従来方法では再結晶後、
室温まで単純に冷却する熱□サイクルで行われるが、こ
の方法で焼鈍したものでは、その降伏強度は高くなるが
Y値が低く、絞り加工用として使うことは難しかった。
Continuous annealing (
CAL). In the conventional method, after recrystallization, CAL is
This is done using a thermal □ cycle in which the steel is simply cooled to room temperature, but although the yield strength of the annealed steel is high, the Y value is low, making it difficult to use it for drawing.

しかしCAL法でも、その熱サイクルに再結晶後の急冷
と過時効処理(0゜A、処理)を付加すると、降伏強度
が高くなるとともに、f値も大きくなるどとが分かった
。し力・しf値のばらつきが大きく、またその水準も低
かった。
However, even in the CAL method, it has been found that when quenching after recrystallization and overaging treatment (0°A treatment) are added to the thermal cycle, the yield strength increases and the f value increases. The variation in force and f-value was large, and the level thereof was also low.

一方、極薄鋼板の板厚は冷間圧延によって決まるが、極
薄6鋼板を得ようとすると必然的に冷間圧延の圧下率は
高くなる。このため冷間圧延性は悪くなる。
On the other hand, the thickness of an ultra-thin steel plate is determined by cold rolling, but when trying to obtain an ultra-thin 6 steel plate, the reduction rate of cold rolling inevitably becomes high. For this reason, cold rolling properties deteriorate.

本発明は、従来方法による上述の欠点を改善して、降伏
強度が高い一方、?値が大きくかっΔrの小さい、すな
わち面内異方性の小さい点で絞シ加工性に優れた缶用極
薄鋼板を、冷間圧延を容易にして、製造することができ
る該鋼板の製造方法を提供することを目的とするもので
ある。
The present invention improves the above-mentioned drawbacks of the conventional method, and provides high yield strength. A method for manufacturing an ultra-thin steel sheet for cans that has a large value and a small Δr, that is, a small in-plane anisotropy, and has excellent drawing workability by facilitating cold rolling. The purpose is to provide the following.

すなわち、本発明の要旨とするものは、次のとおpであ
る。
That is, the gist of the present invention is as follows.

c:o、o’t@以下、 Si : 0.04%以下、
 Mn :o、、1sqb以’F、 P : 0.03
 ’lr以下、s:o、oコチ以下、 Al: 0./
!r %以)’、 N : 0,00t %以下を含有
し、残部は実質的にFeである連続鋳造鋼片を、鋼片加
熱温度を1000℃〜//!0℃に、熱間圧延仕上温度
をAr3変態点以下700℃以上にして熱間圧延し、巻
取温度をUθ℃〜りθ0 ℃にして巻取って熱延鋼帯と
なし、次いで酸洗いした後、圧下率をgo〜95%にし
て冷間圧延し、得られた冷延鋼板を、連続焼鈍炉内にお
いてt、go℃以上の温度に3秒以上保持した後、so
o℃以下の温度までlo℃/mec −!r00℃/ 
seaの冷却速度で冷却し、更に5003〜330℃の
温度に3秒以上保持した後、室温まで冷却することを特
徴とする、高い降伏強度で絞り加工性に優れた、特に面
内異方性の小さい缶用極薄鋼板の製造方法。
c: o, o't @ or less, Si: 0.04% or less,
Mn: o, 1sqb or more'F, P: 0.03
'lr or less, s:o, okochi or less, Al: 0. /
! r% or more)', N: Continuously cast steel billet containing 0.00t% or less, the remainder being substantially Fe, and the billet heating temperature at 1000°C ~//! It was hot-rolled to 0°C, with a finishing hot rolling temperature of below Ar3 transformation point or above 700°C, then coiled at a coiling temperature of Uθ°C to θ0°C to form a hot-rolled steel strip, and then pickled. After that, the cold rolled steel sheet was cold rolled with a reduction ratio of go to 95%, and the obtained cold rolled steel sheet was held at a temperature of t, go °C or higher for 3 seconds or more in a continuous annealing furnace, and then so
loC/mec-! to temperatures below oC! r00℃/
It is characterized by high yield strength, excellent drawing workability, especially in-plane anisotropy, and is characterized by cooling at a cooling rate of seawater, holding the temperature at 5003-330℃ for 3 seconds or more, and then cooling to room temperature. A method for manufacturing ultra-thin steel sheets for small cans.

以F1本発明について詳細に説明する。The F1 invention will now be described in detail.

本発明者らは、降伏強度が高く、一方F値が大きく、か
つΔrの小さい絞り加工用極薄鋼板をつくるとともに1
冷間圧延性に優れた特性を具備する該鋼板素材をつくる
ために、冷延素材並びに製品鋼板の材質に影響を及ぼす
と考えられる り鋼板成分、2ツ鋼片加熱温度、β) 
熱間圧延条件(熱延仕上温度FT 、巻取温度0T)1
4)焼鈍条件(箱焼鈍、過時効処理を施さない通常の連
続焼鈍法、急速冷却と過時効処理を付加する連続焼鈍法
)について、鋭意研究を重ねた結果、以下に示すことを
突きとめ、本発明に想到した。
The present inventors have created an ultra-thin steel sheet for drawing that has a high yield strength, a large F value, and a small Δr.
In order to produce a steel sheet material with excellent cold rolling properties, there are several factors that are considered to affect the material properties of the cold rolled material and the product steel sheet: steel sheet composition, billet heating temperature, β)
Hot rolling conditions (hot rolling finishing temperature FT, coiling temperature 0T) 1
4) As a result of intensive research on annealing conditions (box annealing, normal continuous annealing without over-aging, continuous annealing with rapid cooling and over-aging), we found the following: The present invention was conceived.

前述したように、極薄鋼板の製造に対しては、冷間圧延
の圧下率を高くする必要があ夛、そのため素材の冷間圧
延性は悪くなる。冷間圧延性が悪い理由は圧延素材が硬
質のためである。圧延素材を軟質にして、冷間圧延性に
優れるものにする製造条件を検討した結果、熱間圧延仕
上温度FTをAr3変態点以Fの低温で圧延全行い、結
晶粒径を大きくすることであることが分かった。
As mentioned above, in order to manufacture ultra-thin steel sheets, it is necessary to increase the reduction ratio in cold rolling, which deteriorates the cold rolling properties of the material. The reason for poor cold rolling properties is that the rolled material is hard. As a result of studying the manufacturing conditions to make the rolled material soft and have excellent cold rolling properties, we found that by performing all rolling at a hot rolling finish temperature FT at a low temperature below the Ar3 transformation point and increasing the grain size. I found out something.

第7図は、 FT (熱間圧延仕上温度)とHHT(H
orse power Hour per Ton )
 (圧延消費動力)との関係を示すものであって、HH
Tは、 FTをAr3変態点以Fにして圧延を行う方が
、FTをAr3変態点を超える温度にして圧延するより
も、約7割低下することを明らかにしている。
Figure 7 shows FT (hot rolling finishing temperature) and HHT (H
orse power Hour per Ton)
(Rolling power consumption)
It has been clarified that T decreases by about 70% when rolling is carried out at a temperature of F higher than the Ar3 transformation point than when rolling is carried out at a temperature of FT exceeding the Ar3 transformation point.

しかしながら、 FTをAr3変態点以下で熱間圧延を
行ない、かつ連続焼鈍を施へした場合にはf値が小さく
なるという問題があった。第2図は、通常の低炭素At
キルド鋼連鋳材を用い、熱間圧延はFTを770℃に、
OTをzoo°C〜りoo℃で行なって得た熱延鋼帯を
冷間圧延後に異なる焼鈍を行なった際の、各焼鈍条件に
ついてのf値と降伏強度との関係を示している。図中、
ハツチのある区域は絞り加工性を良好にし、かつ塗装時
の鋼板の反りを防止するのに必要な領域を示す。上述の
ようにFTが低い場合には、冷延素材の圧延性が改善さ
れるが、第2図に示すとおりO,A、処理を行う連続焼
鈍(OAL )法では、ある条件のときf値が低いとい
う致命的な問題があることが分かった。
However, when FT is hot rolled at a temperature below the Ar3 transformation point and subjected to continuous annealing, there is a problem that the f value becomes small. Figure 2 shows ordinary low carbon At
Using continuous cast killed steel material, hot rolling is done at FT of 770°C.
It shows the relationship between the f value and the yield strength for each annealing condition when a hot-rolled steel strip obtained by performing OT at 0°C to 00°C is subjected to different annealing after cold rolling. In the figure,
The hatched areas indicate areas necessary to improve drawability and prevent warping of the steel plate during painting. As mentioned above, when the FT is low, the rollability of the cold-rolled material is improved, but as shown in Figure 2, in the continuous annealing (OAL) method that performs O, A, treatment, the f value decreases under certain conditions. It turns out that there is a fatal problem of low levels.

そこで、FTを低くして熱間圧延し、次いで冷間圧延し
て得た素材を用いて0.A、処理を行うCAL法でF値
を高くする方法の検討を行った。まず、FT : 77
00C,OT : 4g0℃としテo、A@処理実施の
CAL法の条件下で、鋼板のMn量とf値との関係を調
べた。その結果は第3図に示される。この結果、捷ず素
材のMn Jiを少なくするとFT低温材でもf値が改
善できるへことが分かったつ次に)4n:o、 x(1
7%の低Mn材について、FT : 7?θ’C,C!
T:AKO′C,OA処理実施のCAL法の条件下で、
スラブ加熱温度(SRT )とf値との関係を調べた。
Therefore, we used a material obtained by hot rolling with a low FT and then cold rolling. A. We investigated a method to increase the F value using the CAL method. First, FT: 77
00C, OT: The relationship between the Mn content and the f value of the steel sheet was investigated under the CAL method conditions of 0° C. and Teo, A@ treatment. The results are shown in FIG. As a result, it was found that reducing the Mn Ji of the unsliced material can improve the f value even for FT low temperature materials.)4n:o, x(1
For 7% low Mn material, FT: 7? θ'C,C!
T: AKO'C, under the CAL method conditions of OA treatment,
The relationship between slab heating temperature (SRT) and f value was investigated.

第9図はこの関係を示すものであって、SRTが173
0℃以下の低温になるとY値は大きく改善できることが
分かった。これらの因子がf値を改善した理由は、十分
には解明されないが、加熱炉で加熱中いに役立ったもの
と考えられる。第3図、第V図中、ハツチのある区域は
絞り加工性を良好にするのに必要な領域を示す。
Figure 9 shows this relationship, where SRT is 173
It was found that the Y value can be greatly improved when the temperature is lower than 0°C. The reason why these factors improved the f value is not fully understood, but it is thought that they were useful during heating in the heating furnace. In FIGS. 3 and V, hatched areas indicate areas necessary to improve drawing workability.

更に、Δr9丁に及ぼすciと巻取温度(C!T )の
影響をMn : 0./S % 、 SRT : /1
000C,FT ニア70℃としてO,A、処理実施の
CAL法で製造したものについて調べた。その結果を第
S図に示す。図中、ハツチのある区域は絞り加工性を良
好にし、かつ耳を小さくするのに必要な領域を示す。同
図によれば、f値・が大きくなるに従ってΔrが小さく
なるが、特にY値が大きく、かつΔrが小さくなる条件
があり、それはFT : 770℃で行ったものについ
ても適合し% ait−:約o、obq6以下、OT:
bgo℃である。この条件でT値が大きくかつΔr値が
小さくなるのは、OTが高くなると自己焼鈍によって結
晶粒径が大きくなること、及び炭化物が凝集粗大化する
ことによって、再結晶集合組織に大きく影響を及ぼした
結果と考えられる。
Furthermore, the influence of ci and winding temperature (C!T) on Δr9 is calculated by comparing Mn: 0. /S%, SRT: /1
000C, FT A sample manufactured by the CAL method with O, A, and treatment at near 70°C was investigated. The results are shown in Figure S. In the figure, the hatched area indicates the area necessary to improve drawing workability and reduce the size of the selvedge. According to the same figure, as the f value increases, Δr decreases, but there is a condition in which the Y value is especially large and Δr decreases, and this also applies to the test conducted at FT: 770°C. : Approximately o, obq6 or less, OT:
bgo°C. The reason why the T value is large and the Δr value is small under these conditions is that as the OT increases, the crystal grain size increases due to self-annealing, and carbides aggregate and coarsen, which greatly affects the recrystallized texture. This is thought to be the result of

以上の各結果に基づき、鋼板の降伏強度が高くて、ロー
ル・コータ一方式による塗装においても鋼板の反シが発
生することもなく、また絞り加工法による製缶法におい
て安定した絞り性が得られ、かつ缶の耳を小さくできる
ようにする極薄鋼板が製造され、かつその素材の冷間圧
延性も改善できる該鋼板の製造条件について、低炭素A
/キルド鋼鋼部鋳材使用し更に研究を重ねた結果、特に
熱延条件が重要であり、熱延に先立って鋼片を100θ
’C〜//!;0℃に加熱し、FTをAr3点以下で7
006C以上として熱延し、CTをル1IO0C〜70
θ0Cとして巻取ること、甘だ焼鈍条件としては、連続
焼鈍炉内で再結晶−急速冷却一過時効処理を施すことに
より、目的の缶用極薄鋼板を製造することができること
を新規に知見したのである。
Based on the above results, the yield strength of the steel plate is high, no curling of the steel plate occurs even when coating with a single roll coater, and stable drawability is achieved in the can manufacturing method using the drawing process. Low carbon A
/As a result of further research using cast materials for killed steel parts, we found that the hot rolling conditions are especially important, and the steel billet was rolled at 100θ prior to hot rolling.
'C~//! ;Heat to 0℃ and set FT to 7 at Ar3 point or below.
Hot rolled to 006C or higher, CT to 1IO0C~70
It was newly discovered that the desired ultra-thin steel sheet for cans can be manufactured by winding at θ0C and performing recrystallization-rapid cooling temporary aging treatment in a continuous annealing furnace as the sweet annealing conditions. It is.

本発明は、前掲の要旨のとおり、壕ず鎧板素材の連続鋳
造鋼片の成分範囲を限定する。この成分範囲は、得られ
る極薄鋼板に目的の注目を与えるのに必要なものである
As summarized above, the present invention limits the range of components of continuously cast steel slabs for trench armor plate material. This composition range is necessary to give the resulting ultra-thin steel sheet the desired attention.

各成分について成分範囲一を限定した理由を以下に説明
する。
The reason for limiting the component range 1 for each component will be explained below.

Cは、再結晶粒の成長を抑制する重要な成分であり、C
量を多くすると結晶粒径は小さくなり、調質度の高いも
のが得られるが、−万、過剰の0葉は所要調質度を超え
でより硬度を高くシ、またテ値も悪くするのでその量は
0.07チ以Fにする必要がある。
C is an important component that suppresses the growth of recrystallized grains, and C
If the amount is increased, the crystal grain size becomes smaller and a product with a high degree of heat treatment can be obtained. The amount needs to be 0.07 inches or more.

Slは、ぶりきの耐食性を劣化させ、更に材質を極端に
硬質化させて冷間圧延性を悪くシ、また目的の調質度も
外れるので、その量は0.06%以下にする必要がある
。したがって、製鋼時にあえてSlを添加する必要はな
く、耐火物中の8102が溶鋼中のA/で還元されて残
留する程度にとどめればよい。
Sl degrades the corrosion resistance of tinplate, makes the material extremely hard, impairs cold rolling properties, and deviates from the desired degree of tempering, so its amount must be kept at 0.06% or less. be. Therefore, it is not necessary to intentionally add Sl during steel manufacturing, and it is sufficient to limit the amount of 8102 in the refractory to the extent that it is reduced by A/ in the molten steel and remains.

Mnは、脱Sを促し熱延コイルの耳割れ発生を防ぐため
にも、ある程度の量は必要である。しかし、第3図に示
したようにMn量が多くなるとf値を悪くするので、そ
の量はo、2s%以下にする必要がある。
A certain amount of Mn is necessary to promote removal of S and prevent edge cracking in the hot rolled coil. However, as shown in FIG. 3, if the amount of Mn increases, the f-value deteriorates, so the amount needs to be less than 2 s%.

Pは、材質を硬化させ、更にぶりき等の耐食性を劣下さ
せるため、Pはo、o3%以下に抑える必要がある。
Since P hardens the material and further deteriorates the corrosion resistance of tinplate etc., it is necessary to suppress P to 3% or less.

Sは、 Mnとの関係において過剰に含有すると熱延素
材にMnS系介在物が析出したり、また熱延コイルに耳
割れが生じ、これらが製缶時に割れ欠陥の原因となり好
ましくないので、日は0.02チ以下に抑える必要があ
る。
In relation to Mn, if S is contained excessively, MnS-based inclusions will precipitate in the hot-rolled material and edge cracks will occur in the hot-rolled coil, which are undesirable causes of cracking defects during can manufacturing. must be kept below 0.02 inch.

Alは、鋼の製造過程において脱酸剤の役目を果す成分
であり、鋼中の含量が多くなるに従い鋼の清浄度は高く
なるが、過剰に添加することは好ましくなく、更に再結
晶粒成長を抑制するので、Al量は0. I!; %以
下にする必要がある。なお、 Alは少ない程好ましく
溶鋼中の溶解酸素に見合った量を添加し脱酸を完了でき
ればよく、実質的に金属AIとして残す必要はない。し
かし、残留した金属htCD1tが少なすぎる場合にお
いては、そのままの鋼は清浄度が悪くなるので、溶鋼中
の介在物の浮上分離を促進させる必要がある。その方法
の一つとしては、真空脱ガス処理等で溶鋼を強制攪拌す
る方法があるが、この工程は近年はぼ標準化された作業
であり、これにより清浄度の高い低kl鋼を製造するこ
とは容易である。
Al is a component that plays the role of a deoxidizing agent in the steel manufacturing process, and as the content in the steel increases, the cleanliness of the steel increases, but it is not preferable to add it in excess, and it may also cause recrystallized grain growth. Since the amount of Al is suppressed, the amount of Al is 0. I! ; Must be less than %. Note that it is preferable that Al is added in an amount commensurate with the dissolved oxygen in the molten steel so that deoxidation can be completed, and there is no need to leave it as metal Al. However, if the remaining metal htCD1t is too small, the cleanliness of the steel as it is will be poor, so it is necessary to promote flotation and separation of inclusions in the molten steel. One method is to forcibly stir the molten steel through vacuum degassing treatment, etc., but this process has become standardized in recent years, and it is possible to manufacture low-kl steel with high purity. is easy.

Nは、N混入防止対策を何らとらなければ、空気中から
o、 oog%混入する。これより過剰のNは材質を硬
質化させるのでNは0.00g%以下にする必要がある
If no measures are taken to prevent N contamination, o, oog% of N will be mixed in from the air. Excessive N will harden the material, so it is necessary to limit the N content to 0.00 g% or less.

上記成分範囲の鋼片は、各種転炉→真空脱ガス処理→連
続鋳造の工程により容易に製造することができる。
Steel slabs having the above-mentioned composition range can be easily produced through the steps of various converter furnaces, vacuum degassing treatment, and continuous casting.

次罠製造条件を限定する理由を説明する。Next, the reason for limiting the trap manufacturing conditions will be explained.

鋼片加熱温度:lθoo℃〜t/sO’G熱間圧延に先
立つ鋼片加熱温度が1130℃を超えると、第1図によ
り説明したように製品鋼板のf値が小さくなり、一方1
000℃より低い温度では、熱延での圧延性が極端に悪
くなるので鋼片加熱温度は1000℃〜//!fO℃の
範囲にする必要がある。
Billet heating temperature: lθoo°C ~ t/sO'G When the billet heating temperature prior to hot rolling exceeds 1130°C, the f value of the product steel plate decreases as explained in Fig. 1;
If the temperature is lower than 000°C, the rollability in hot rolling will be extremely poor, so the billet heating temperature should be 1000°C~//! It is necessary to keep it within the range of fO°C.

熱延仕上温度=700℃〜Ar3変態点熱延仕上票変態
点熱延仕上変度点より高い温度とすると、Y値は改善さ
れるものの、第1図によって説明したように、冷間圧延
性が悪くなるのでA r 3変態点以下とする。これに
加えAr3変態点以下の場合は、鋼片加熱中及び熱間圧
延中に生成するスケール量が減少するので歩留は向上す
る。また加熱炉温度の低下によって省エネルギーに大い
に役立つことになる。一方、  70θ°Cより低いと
、硬くなり、熱間圧延ができない。したがって熱延仕上
温度は700 ’C−Ar3変態点とする一巻取温度(
C!T ) : A41O℃〜70o℃CTを高くして
巻取ったコイルにより自己焼鈍で結晶粒径が大きくなる
■限温度はt、qoocであり、それ以上高温にすると
粒径はより大きくなる。しかし、 CTが高くなるに従
って、鍔板表面のスケールが厚くなって、次工程の酸洗
性が悪くなり好捷しくない。そこでこの酸洗性を極端に
悪くしない高温の限度としての7009CをCTの上限
にするのが好ましい。以上によりCT Id 4110
 ’C−’)000Gとする。
Hot rolling finishing temperature = 700°C ~ Ar3 transformation point Hot rolling finish chart transformation point If the temperature is higher than the hot rolling finishing inflection point, the Y value will be improved, but as explained in FIG. Since the temperature deteriorates, A r is set to be below the 3 transformation point. In addition, when the Ar3 transformation point is lower than that, the amount of scale generated during heating and hot rolling of the steel billet decreases, so the yield improves. Also, lowering the heating furnace temperature will greatly help save energy. On the other hand, if it is lower than 70θ°C, it becomes hard and cannot be hot rolled. Therefore, the hot-rolling finishing temperature is 700'C-Ar3 transformation temperature and the winding temperature (
C! T): A410° C. to 70° C. The crystal grain size increases due to self-annealing with a coil wound at a high CT. ■The limit temperature is t, qooc, and if the temperature is raised higher than that, the grain size becomes larger. However, as the CT increases, the scale on the surface of the flange plate becomes thicker, which deteriorates the pickling properties in the next process, which is not preferable. Therefore, it is preferable to set the upper limit of CT to 7009C, which is the upper limit of high temperature that does not significantly deteriorate the pickling property. Due to the above, CT Id 4110
'C-')000G.

冷延圧下率=gO〜9Sチ 通常の極薄鋼板用6スタンドタンデムミルにおいては、
その圧下能力はgo〜9K %であるので、本発明にお
いてもそれにより圧F率をgo〜qs %としたのであ
る。
Cold rolling reduction ratio = gO ~ 9S In a normal 6-stand tandem mill for ultra-thin steel sheets,
Since its rolling capacity is go~9K%, in the present invention, the pressure ratio is also set to go~qs%.

連続焼鈍条件 再結晶焼鈍:AgO°C以上でm秒以上保持tgo℃以
上の温度に2C秒以上保持することにょつて、再結晶を
行うとともに結晶粒の成長を行って粒径を大きくする。
Continuous annealing conditions Recrystallization annealing: Hold at AgO°C or above for m seconds or more By holding at a temperature above tgo°C for 2C seconds or more, recrystallization is performed and crystal grains are grown to increase the grain size.

これにより絞り加工性が向上する。焼鈍温度がAgO’
0.より低いが、また保持時間か〃秒より短かい七、粒
径を大きくすることができず、したがって硬質化させ絞
り加工性を劣化させる。よって再結晶焼鈍温度をbgo
℃以上にし、保持時間を〃秒以上とする。
This improves drawing workability. Annealing temperature is AgO'
0. Although the holding time is lower, the holding time is also shorter than 〃seconds, and the particle size cannot be increased, thus causing hardness and deterioration of drawing workability. Therefore, the recrystallization annealing temperature is bgo
The temperature should be ℃ or above and the holding time should be 〃seconds or more.

冷却速度: 100C/ sec −!;000c/ 
s ec急冷停止温度:5θ0 ’C以下 再結晶焼鈍に引続く、急冷の条件については、10”C
/ 1ce(!以上5oo℃/IIec以下の冷却速度
で、jθθ℃以Fの温度まで冷却する必要がある。その
理由は次のとおりである。
Cooling rate: 100C/sec -! ;000c/
sec quenching stop temperature: 5θ0'C or less Regarding the conditions of quenching following recrystallization annealing, 10"C
/ 1ce(!) It is necessary to cool to a temperature of jθθ°C or less at a cooling rate of not less than 5oo°C/IIec. The reason is as follows.

すなわち、10℃/nθCより遅い冷却速度では、冷却
中にセメンタイトが中途半端に析出し、Cの過飽和度が
小さくなるため、その後の過時効が十分に進行しない。
That is, at a cooling rate slower than 10° C./nθC, cementite precipitates halfway during cooling and the degree of supersaturation of C becomes small, so that subsequent overaging does not proceed sufficiently.

一方!00 ℃/ s、ecを超す急速冷却を行うとt
ぶシき板の表面形状が著しく悪下するので好ましくない
on the other hand! When rapid cooling exceeds 00 °C/s, ec, t
This is not preferable because the surface shape of the bushing board deteriorates significantly.

急速冷却を停止する温度として300℃を超す高い温度
では、その温度でのフェライト中のCの平衡溶解度近傍
までCの固溶度が減少し、この場合も過時効が十分進行
しない。
If the temperature at which rapid cooling is stopped exceeds 300° C., the solid solubility of C decreases to near the equilibrium solubility of C in ferrite at that temperature, and overaging does not proceed sufficiently in this case as well.

過時効処理=500℃〜80℃、2θ秒以上引続く過時
効処理の条件としては、次の理由にヨリsoo℃〜80
℃の温度にm秒以上保持することが必要である。
Overaging treatment = 500°C to 80°C, conditions for overaging treatment that continues for 2θ seconds or more are soo°C to 80°C for the following reasons.
It is necessary to hold the temperature at ℃ for more than m seconds.

すなわち、Jso ℃より低い温度ではCの拡散速度が
小さいため過時効が進行しない。他方soo℃を超す高
い温度では、Cの固溶限が大きいので固溶C′fiを低
く抑えることができず、そのため時効硬化を起こすこと
なる。また保持時間がm秒に達しないと、過時効が完遂
しないことになる。
That is, at a temperature lower than Jso °C, the diffusion rate of C is low, so overaging does not proceed. On the other hand, at a high temperature exceeding soo°C, the solid solubility limit of C is large, so the solid solubility C'fi cannot be kept low, and therefore age hardening occurs. Moreover, if the holding time does not reach m seconds, overaging will not be completed.

以上の急冷と過時効の処理を含む連続焼鈍プロセスによ
り、鋼板はC及びNの析出によって軟質化するとともに
、?値が大きくなり、他方Δrは小さくなる。更に軟質
化はするものの、従来の箱焼鈍鋼板に比べて、固溶Cの
残存itは大きく、また粒径が小さくなっているため、
降伏強度はより高くなっている。
Through the continuous annealing process that includes the above rapid cooling and overaging treatments, the steel sheet becomes softer due to the precipitation of C and N. The value becomes larger, while Δr becomes smaller. Although it becomes softer, the residual solid solution C is larger and the grain size is smaller than that of conventional box-annealed steel sheets.
Yield strength is higher.

実施例 下記第1表に示す成分組成を有する鋼片を転炉で溶製し
た。特にCがO0θ/チ のものは、溶製後真空脱ガス
処理を行って清浄度の優れた溶鋼となし、次いで連続鋳
造装置により鋼片とした。これら鋼片を第7表に示す熱
延条件で熱間圧延して23朋の熱延銅帯とした後、酸洗
して脱スケールを行った。次いで6スタンドタンデムミ
ルにて0.3朋に冷間圧延(圧F率約g7チ)した。続
いて第−表に示す各徨焼鈍条件でそれぞれ冷延鋼板に焼
鈍を施した。
Example Steel slabs having the composition shown in Table 1 below were melted in a converter. In particular, those with C of O0θ/chi are subjected to vacuum degassing treatment after melting to obtain molten steel with excellent cleanliness, and then made into steel slabs using a continuous casting machine. These steel pieces were hot-rolled under the hot-rolling conditions shown in Table 7 to form a 23 mm hot-rolled copper strip, which was then pickled to descale. Then, it was cold rolled to a thickness of 0.3 in a 6-stand tandem mill (rolling ratio: about g7). Subsequently, the cold-rolled steel sheets were annealed under the various annealing conditions shown in Table 1.

第  2  表 なお、第1表、第2表中、”CAL −A″は再結晶後
、急冷し続いて過時効処理を施す連続焼鈍であり、”C
AL −B”は再結晶後、室温まで冷却する単純サイク
ルの連続焼鈍であり、”箱焼鈍″はバッチ式焼鈍炉で外
視から再結晶、続く室温までの冷却の全工場を約700
時間かけて行う方法である。
Table 2 In Tables 1 and 2, "CAL-A" refers to continuous annealing in which after recrystallization, rapid cooling is performed, followed by over-aging treatment,
"AL-B" is a continuous annealing process with a simple cycle of cooling to room temperature after recrystallization, and "box annealing" involves recrystallization from the outside in a batch-type annealing furnace, followed by cooling to room temperature.
This is a method that takes time.

焼鈍終了後の各鋼板に圧下率/6I)の調質圧延を行っ
た後、ハロゲン型遍気スズめっきラインでスズめっきを
施した。これらブリキから試料を採取した。
After the annealing, each steel plate was subjected to temper rolling at a rolling reduction ratio of 6I), and then tin-plated on a halogen-type uniform tin plating line. Samples were taken from these tinplates.

各試料について引張試験を行って降伏強度を測定し、別
に引張試験を行ってY値、 Δr値を求め、更に硬就を
測定した。また実際にロール・コータ一方式で試料に薫
製を施してコーター反りの発生による塗装面上のすりキ
ズの発生状況を調べた。
A tensile test was conducted on each sample to measure the yield strength, a separate tensile test was conducted to determine the Y value and the Δr value, and the hardness was also measured. In addition, samples were actually smoked using a roll coater, and the occurrence of scratches on the painted surface due to coater warping was investigated.

続いて試料を絞り加工して一ピース缶用に製缶して缶と
しての評価を行った。缶に発生した欠陥としては、次の
3項目とした。
Subsequently, the sample was drawn and made into a one-piece can, and the can was evaluated. The defects that occurred in the cans were classified into the following three items.

破断:絞り途中において缶胴のいずれかの位置で破断し
て缶にならなかったもの しわ発生:缶に成形されたが、缶胴壁に“しわ”が発生
したもの 耳の発生ニブレス加工後の缶のフランジ部の耳の径間を
示す 以上の総合判定を第1表に示した。’4/表中、アンダ
ーラインのあるものは、本発明における条件に適合して
いないものである。
Fracture: The can body was broken at some point during the drawing process and the can did not become a can. Wrinkling: The can was formed into a can, but "wrinkles" appeared on the can body wall. Edges formed after nibless processing. Table 1 shows the overall evaluation of the distance between the ears of the flange of the can. '4/ In the table, the underlined items do not meet the conditions of the present invention.

、44を表に示した実施例と比較例とを対比すれば明ら
かなように、本発明の方法により製造された極R鋼板は
、高い降伏強度を有するとともに、F値が大きく Δr
値が小さいことの点で絞り加工性に優れており、これを
使用してスズめっきし塗装後、絞り加工を行って得た缶
は、その表面にロール・コータにより起こる”すりキズ
や1しわ”の発生がなくて表面品質に優れており、かつ
耳も小であった。まだ絞り加工による製缶において破断
が生じなかった。
, 44 are shown in the table, and the comparative example shows that the extra-R steel plate manufactured by the method of the present invention has a high yield strength and a large F value.
It has excellent drawing processability in terms of its small value, and the cans obtained by tin plating and painting and drawing process will have no scratches or wrinkles on the surface caused by the roll coater. The surface quality was excellent, with no occurrence of "stains," and the ears were small. No breakage occurred during can manufacturing by drawing.

更に本発明による極薄鋼板素材の冷間圧延性は良好であ
った。
Furthermore, the cold rollability of the ultra-thin steel sheet material according to the present invention was good.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、素材についての6スタンド鈴間圧延機におけ
る圧延消費動力(HHT )と熱間圧延仕上温度(FT
 )との関係を示す図表、第、2図は、異なる焼鈍法を
施して得られた各極薄鋼板についてのF値と降伏強度(
Y、 P、 )との関係を示す図表、第3図は、熱間圧
延仕上温度をA r 3変態点以下(770℃)とした
場合の極薄鋼板についてのMn1lとP値との関係を示
す図表、第9図は、同じく熱延仕上温度をA r 3変
態点以Fとした場合の極薄鋼板について、そのf値に及
はす累月鋼片の加熱温度の影響を示す図表、第S図は、
同様な極薄鋼板について、その=6hぼす素材の熱延巻
取温度(CT )とCtの影響を示す図表である。 特許出願人 川崎製鉄株式会社 代理人弁理士 村  1) 政  治 1.0        1.5        2.0
#曾:イ>p素Ai午1tド億町tan : 0.15
°/、)SRT  : 11006C
Figure 1 shows the rolling power consumption (HHT) and hot rolling finishing temperature (FT
Figure 2 shows the relationship between the F value and the yield strength (
Figure 3 shows the relationship between Mn1l and P value for an ultra-thin steel sheet when the hot rolling finishing temperature is below the A r 3 transformation point (770°C). The chart shown in FIG. 9 is a chart showing the effect of the heating temperature of the cumulative billet on the f-value of an ultra-thin steel sheet when the hot rolling finishing temperature is set to A r 3 transformation point or higher. Figure S is
It is a chart showing the hot rolling winding temperature (CT) of a similar ultra-thin steel sheet and the influence of Ct on the =6h material. Patent applicant Kawasaki Steel Co., Ltd. Representative patent attorney Mura 1) Politics 1.0 1.5 2.0
#曾:I>p element Ai 小 1t dollar million town tan: 0.15
°/,)SRT: 11006C

Claims (1)

【特許請求の範囲】[Claims] 1、  C:0.071%以下、 Si : o、ob
 %以F 、 Mn :o、 、2s係以下、P:0.
03%以1:、S:o、oコチ以ド、 Al: 0./
!;チ以下、N:0.0θgチ以Fを含有し、残部は実
質的にFeである4絖鋳造鋼片を、銅片加熱Il!度を
7000℃〜/15θ℃に、熱間圧延仕上温度をAr3
変態点以下70θ°C以上にして熱間圧延し、巻取温度
を6ダ0℃〜700°Cにして巻取つt熱延鋼帯となし
、次いで酸洗いした後、圧下率をgθ〜95チにして冷
間圧延し、得られた冷延鋼板を、連続焼鈍炉内において
、480℃以上の温度に9秒以上に保持した後、500
℃以下の温度までlO℃/@ec −soooC/ s
 ec (1)冷却速度で冷却し、更に5oo0C〜3
30℃の温度に9秒以上保持した後、室温まで冷却する
ことを特徴とする。高い降伏強度で絞り加工性に優れた
、特に面内異方性の小さい缶用極薄鋼板の製造方法。
1, C: 0.071% or less, Si: o, ob
% or less F, Mn: o, , 2s or less, P: 0.
03% or more 1:, S: o, o or less, Al: 0. /
! ; N: 0.0θg or less; A 4-strand cast steel piece containing F, with the remainder being substantially Fe, was heated by copper plate Il! temperature to 7000℃~/15θ℃, hot rolling finishing temperature to Ar3
Hot-rolled at 70θ°C or higher below the transformation point, coiled at a coiling temperature of 0°C to 700°C to form a hot-rolled steel strip, then pickled, and then reduced to gθ~ The obtained cold-rolled steel sheet was cold-rolled at 95° C. and held at a temperature of 480° C. or higher for 9 seconds or more in a continuous annealing furnace, then 500° C.
lO℃/@ec -soooC/s to temperatures below ℃
ec (1) Cool at the cooling rate and further cool down to 5oo0C~3
It is characterized in that it is maintained at a temperature of 30° C. for 9 seconds or more and then cooled to room temperature. A method for manufacturing ultra-thin steel sheets for cans that have high yield strength and excellent drawing workability, and particularly have small in-plane anisotropy.
JP14905182A 1982-08-30 1982-08-30 Production of ultra thin steel sheet having high yield strength and drawability Pending JPS5938338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14905182A JPS5938338A (en) 1982-08-30 1982-08-30 Production of ultra thin steel sheet having high yield strength and drawability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14905182A JPS5938338A (en) 1982-08-30 1982-08-30 Production of ultra thin steel sheet having high yield strength and drawability

Publications (1)

Publication Number Publication Date
JPS5938338A true JPS5938338A (en) 1984-03-02

Family

ID=15466575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14905182A Pending JPS5938338A (en) 1982-08-30 1982-08-30 Production of ultra thin steel sheet having high yield strength and drawability

Country Status (1)

Country Link
JP (1) JPS5938338A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134159A (en) * 1984-07-25 1986-02-18 Nippon Steel Corp Steel sheet for weld can superior in flanging property and its manufacture
JPS61272347A (en) * 1985-05-28 1986-12-02 Nippon Steel Corp Hot-rolled steel sheet excelling in press formability and baking hardening
JPS63134645A (en) * 1986-11-26 1988-06-07 Nippon Steel Corp Steel sheet for di can excellent in stretch-flange formability
JPH01184229A (en) * 1988-01-18 1989-07-21 Nippon Steel Corp Production of steel sheet for di can having excellent stretch flanging property
JPH02267242A (en) * 1989-04-07 1990-11-01 Nippon Steel Corp Low carbon aluminum killed cold rolled steel sheet having excellent workability, roughening resistance on the surface and earing properties and its manufacture
JPH0480345A (en) * 1990-07-19 1992-03-13 Nippon Steel Corp Cold rolled steel sheet excellent in workability, roughening property and earing property and its manufacture
JPH0734192A (en) * 1993-07-14 1995-02-03 Toyo Kohan Co Ltd Steel sheet suitable for application to thinned deep-drawn can and its production
JP2010138492A (en) * 1996-03-15 2010-06-24 Jfe Steel Corp Hot-rolled steel sheet for ultra-thin steel sheet and method for manufacturing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134159A (en) * 1984-07-25 1986-02-18 Nippon Steel Corp Steel sheet for weld can superior in flanging property and its manufacture
JPH058264B2 (en) * 1984-07-25 1993-02-01 Nippon Steel Corp
JPS61272347A (en) * 1985-05-28 1986-12-02 Nippon Steel Corp Hot-rolled steel sheet excelling in press formability and baking hardening
JPH0377257B2 (en) * 1985-05-28 1991-12-10 Nippon Steel Corp
JPS63134645A (en) * 1986-11-26 1988-06-07 Nippon Steel Corp Steel sheet for di can excellent in stretch-flange formability
JPH01184229A (en) * 1988-01-18 1989-07-21 Nippon Steel Corp Production of steel sheet for di can having excellent stretch flanging property
JPH0676618B2 (en) * 1988-01-18 1994-09-28 新日本製鐵株式会社 Manufacturing method of steel plate for DI can with excellent stretch flange formability
JPH02267242A (en) * 1989-04-07 1990-11-01 Nippon Steel Corp Low carbon aluminum killed cold rolled steel sheet having excellent workability, roughening resistance on the surface and earing properties and its manufacture
JPH0480345A (en) * 1990-07-19 1992-03-13 Nippon Steel Corp Cold rolled steel sheet excellent in workability, roughening property and earing property and its manufacture
JPH0734192A (en) * 1993-07-14 1995-02-03 Toyo Kohan Co Ltd Steel sheet suitable for application to thinned deep-drawn can and its production
JP2010138492A (en) * 1996-03-15 2010-06-24 Jfe Steel Corp Hot-rolled steel sheet for ultra-thin steel sheet and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JPS58144430A (en) Manufacture of cold-rolled steel sheet excellent in press-workability
JPH024657B2 (en)
JPS6116323B2 (en)
JPS5938336A (en) Production of ultra thin steel sheet for can having high yield strength and drawability
JPS593526B2 (en) Manufacturing method of cold rolled steel sheet for deep drawing
JPS5938338A (en) Production of ultra thin steel sheet having high yield strength and drawability
JPS6114213B2 (en)
US4397699A (en) Process for producing deep-drawing cold rolled steel strip by continuous annealing
JPS6114216B2 (en)
JPS5980726A (en) Production of high strength cold rolled steel sheet having excellent deep drawability and small plate anisotropy
JP3911075B2 (en) Manufacturing method of steel sheet for ultra deep drawing with excellent bake hardenability
JP2002088446A (en) Steel sheet for forming outer cylinder of battery having excellent anisotropy and its production method
JPH06306536A (en) Surface treated original sheet for di can excellent in pressure withstanding strength and necked-in property and its production
KR101528014B1 (en) Cold-rolled steel plate and method for producing same
JPH1046289A (en) Steel sheet excellent in external appearance of panel and dent resistance after panel working
KR101125916B1 (en) Non-aging cold rolled steel sheet having less anisotropy and process for producing the same
JPH01191748A (en) Manufacture of cold rolled steel sheet for press forming excellent in material homogeneity in coil
JP3292033B2 (en) Manufacturing method of steel sheet for battery outer cylinder with excellent material uniformity and corrosion resistance
JP3814865B2 (en) Manufacturing method of steel plate for battery outer cylinder with excellent material uniformity and corrosion resistance
JPH027374B2 (en)
JPS61264136A (en) Manufacture of al killed steel sheet for deep drawing with very low carbon content having reduced in-plane anisotropy
JPH08283863A (en) Production of hard steel sheet for can excellent in uniformity of material
JP3273383B2 (en) Cold rolled steel sheet excellent in deep drawability and method for producing the same
JPH08120348A (en) Production of steel sheet for hard can small in plane anisotropy
KR910003878B1 (en) Making process for black plate