JPH0734192A - Steel sheet suitable for application to thinned deep-drawn can and its production - Google Patents
Steel sheet suitable for application to thinned deep-drawn can and its productionInfo
- Publication number
- JPH0734192A JPH0734192A JP19782593A JP19782593A JPH0734192A JP H0734192 A JPH0734192 A JP H0734192A JP 19782593 A JP19782593 A JP 19782593A JP 19782593 A JP19782593 A JP 19782593A JP H0734192 A JPH0734192 A JP H0734192A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- rolling
- hot
- balance
- thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は食品缶、飲料缶等の容器
材料に関し、特に深絞り加工性に優れ、肌荒れ性が良
く、耐食性の優れた薄肉化深絞り缶用途に適した鋼板お
よびその製造法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a container material for food cans, beverage cans, etc., and particularly to a steel sheet suitable for use in thin-walled deep-drawing cans, which has excellent deep-drawing workability, good skin roughness, and excellent corrosion resistance. It relates to the manufacturing method.
【0002】[0002]
【従来の技術】従来、側面無継目(サイドシームレス)
缶の成形法として、表面処理鋼板を成形した後の缶の内
外に有機塗料を施す方法と、成形前の金属板にあらかじ
め樹脂フィルムを被覆し、樹脂フィルムを一種の成形潤
滑剤とし、缶側壁となる部分の金属板を薄肉化する、い
わゆる薄肉化絞り缶成形法とがある。後者の例として、
本発明者らは先に、金属板の平均結晶粒径及び平均表面
粗さを特定することにより、製缶後の耐肌荒れ性および
耐食性に優れた薄肉化絞り缶用の金属板を提案した(特
開平4−314535号参照)。2. Description of the Related Art Conventionally, side seamless (side seamless)
As a method of forming a can, a method of applying an organic coating to the inside and outside of the can after forming a surface-treated steel sheet and coating a resin film on the metal plate before forming in advance, and using the resin film as a kind of forming lubricant, the side wall of the can There is a so-called thinned squeeze can forming method in which the metal plate of the portion to be thinned is thinned. As an example of the latter,
The present inventors previously proposed a metal plate for a thinned squeezed can having excellent surface roughness resistance and corrosion resistance after can making by specifying the average crystal grain size and the average surface roughness of the metal plate ( See JP-A-4-314535).
【0003】[0003]
【発明が解決しようとする課題】しかしながら、従来の
あらかじめ樹脂フィルムを被覆した金属板を用いて薄肉
化絞り缶を成形すると、完成後の缶側壁が極めて肌荒れ
しやすいという問題がある。すなわち、ダイスとポンチ
のクリアランスが缶側壁の厚みより大きく、加工時にお
いて缶側壁がポンチとダイスに拘束されず、いわゆる自
由表面となっているので、DI(Draw and I
roning)成形法と比べ缶側壁が肌荒れしやすいと
いう問題がある。この肌荒れ状態が生ずると、原板とフ
ィルムの密着力が減少し、フィルム剥離の一因ともな
る。また肌荒れは、輸送中の缶同士の接触などの外部か
らの衝撃が引き金になり、フィルム面に微細なクラック
を生じさせ、ひいては耐食性の劣化を招くという問題も
ある。通常、薄肉化深絞り缶は被覆金属板を円板状に打
ち抜き、これを二段階の絞り加工によって成形される。
この二段目の絞り加工(再絞り加工)時においては、フ
ランジ部に高いしわ押え力を加え、缶側壁の絞り−張り
出し加工を行なうことにより、缶側壁の厚みを減少させ
ている。上記の加工法において、再絞り加工は極めて過
酷な成形法であるため、連続成形時に破胴が起こりやす
いという問題があった。このような破胴が起こると高速
製缶加工の生産性を損なうため、破胴が起こりにくく、
しかも加工性に優れた薄肉化深絞り缶用途に適した鋼板
を開発することは急務であった。本発明は上記問題点を
解決することを目的とし、肌荒れ性、耐食性が優れ、連
続高速製缶加工時において、破胴が起きず、しかも加工
性に優れた薄肉化深絞り缶用途に適した鋼板およびその
製造法を提供することを目的とする。However, when a conventional thin metal can is formed using a metal plate coated with a resin film in advance, there is a problem that the side wall of the can after completion is extremely rough. That is, the clearance between the die and the punch is larger than the thickness of the side wall of the can, and the side wall of the can is not restricted by the punch and the die at the time of processing and is a so-called free surface.
There is a problem that the side wall of the can is liable to be rough compared to the molding method. When this rough skin condition occurs, the adhesive force between the original plate and the film is reduced, which also contributes to film peeling. In addition, rough skin is also triggered by an external impact such as contact between cans during transportation, which causes minute cracks on the film surface, and eventually leads to deterioration of corrosion resistance. In general, a thin-walled deep-drawing can is formed by punching a coated metal plate into a disc shape and then drawing this in two steps.
At the time of this second-stage drawing (redrawing), a high wrinkle holding force is applied to the flange portion to draw and project the side wall of the can to reduce the thickness of the side wall of the can. In the above-mentioned processing method, redrawing is an extremely severe forming method, so that there has been a problem that breakage easily occurs during continuous forming. When such crushing occurs, the productivity of high-speed can manufacturing is impaired, so crushing is less likely to occur,
Moreover, there was an urgent need to develop a steel sheet that has excellent workability and is suitable for thin-walled deep-drawing can applications. The present invention is intended to solve the above problems, and is suitable for use in thin-walled deep-drawing cans that have excellent skin roughness and corrosion resistance, do not break during continuous high-speed can manufacturing, and have excellent processability. An object is to provide a steel sheet and a manufacturing method thereof.
【0004】[0004]
【課題解決のための手段】本発明の薄肉化深絞り缶用途
に適した鋼板は、C:0.01〜0.15%、Si≦
0.05%、Mn≦0.9%、P≦0.04%、S≦
0.04%、Al:0.015〜0.10%、N:0.
0020〜0.015%、残部Feおよび不可避的不純
物からなる熱延鋼板を、冷間圧延、過時効処理を含むヒ
ートサイクルでの焼鈍、伸び率0.5〜2.0%での調
質圧延、を順次行い、調質圧延後の鋼板の平均結晶粒径
が6.0μm以下であることが望ましい。また、C:
0.01〜0.15%、Si≦0.05%、Mn≦0.
9%、P≦0.04%、S≦0.04%、Al:0.0
15〜0.10%、N:0.0020〜0.015%、
残部Feおよび不可避的不純物からなる熱延鋼板を、冷
間圧延、過時効処理を含むヒートサイクルでの焼鈍、圧
下率20〜50%でのDR圧延、を順次行い、DR圧延
後の鋼板の平均結晶粒径が6.0μm以下であるものも
望ましい。さらに、C:0.01〜0.15%、Si≦
0.05%、Mn≦0.9%、P≦0.04%、S≦
0.04%、Al:0.015〜0.10%、N:0.
0020〜0.015%、Nb:0.001〜0.02
0%、残部Feおよび不可避的不純物からなる熱延鋼板
を、冷間圧延、過時効処理を含むヒートサイクルでの焼
鈍、伸び率0.5〜2.0%での調質圧延、を順次行
い、調質圧延後の鋼板の平均結晶粒径が6.0μm以下
であってもよい。また、C:0.01〜0.15%、S
i≦0.05%、Mn≦0.9%、P≦0.04%、S
≦0.04%、Al:0.015〜0.10%、N:
0.0020〜0.015%、Nb:0.001〜0.
020%、残部Feおよび不可避的不純物からなる熱延
鋼板を、冷間圧延、過時効処理を含むヒートサイクルで
の焼鈍、圧下率20〜50%でのDR圧延、を順次行
い、DR圧延後の鋼板の平均結晶粒径が6.0μm以下
であることも望ましい。つぎに、本発明の薄肉化深絞り
缶用途に適した鋼板の製造法は、C:0.01〜0.1
5%、Si≦0.05%、Mn≦0.9%、P≦0.0
4%、S≦0.04%、Al:0.015〜0.10
%、N:0.0020〜0.015%、残部Feおよび
不可避的不純物からなる熱延鋼板を、冷間圧延、過時効
処理を含むヒートサイクルでの焼鈍、伸び率0.5〜
2.0%での調質圧延、を順次行うことが望ましい。ま
た、C:0.01〜0.15%、Si≦0.05%、M
n≦0.9%、P≦0.04%、S≦0.04%、A
l:0.015〜0.10%、N:0.0020〜0.
015%、残部Feおよび不可避的不純物からなる熱延
鋼板を、冷間圧延、過時効処理を含むヒートサイクルで
の焼鈍、圧下率20〜50%でのDR圧延、を順次行う
ことも望ましい。さらに、C:0.01〜0.15%、
Si≦0.05%、Mn≦0.9%、P≦0.04%、
S≦0.04%、Al:0.015〜0.10%、N:
0.0020〜0.015%、Nb:0.001〜0.
020%、残部Feおよび不可避的不純物からなる熱延
鋼板を、冷間圧延、過時効処理を含むヒートサイクルで
の焼鈍、伸び率0.5〜2.0%での調質圧延、を順次
行ってもよい。また、C:0.01〜0.15%、Si
≦0.05%、Mn≦0.9%、P≦0.04%、S≦
0.04%、Al:0.015〜0.10%、N:0.
0020〜0.015%、Nb:0.001〜0.02
0%、残部Feおよび不可避的不純物からなる熱延鋼板
を、冷間圧延、過時効処理を含むヒートサイクルでの焼
鈍、圧下率20〜50%のDR圧延、を順次行うことも
望ましい。A steel sheet suitable for use in a thin-walled deep-drawn can of the present invention is C: 0.01 to 0.15%, Si ≦.
0.05%, Mn ≦ 0.9%, P ≦ 0.04%, S ≦
0.04%, Al: 0.015 to 0.10%, N: 0.
Hot rolled steel sheet consisting of 0020 to 0.015%, balance Fe and unavoidable impurities is annealed in a heat cycle including cold rolling and overaging treatment, and temper rolling at an elongation of 0.5 to 2.0%. It is desirable that the average grain size of the steel sheet after temper rolling be 6.0 μm or less. Also, C:
0.01 to 0.15%, Si ≦ 0.05%, Mn ≦ 0.
9%, P ≦ 0.04%, S ≦ 0.04%, Al: 0.0
15 to 0.10%, N: 0.0020 to 0.015%,
A hot-rolled steel sheet consisting of the balance Fe and unavoidable impurities is sequentially subjected to cold rolling, annealing in a heat cycle including overaging treatment, and DR rolling at a reduction rate of 20 to 50%, and the average of the steel sheets after DR rolling. It is also preferable that the crystal grain size is 6.0 μm or less. Furthermore, C: 0.01 to 0.15%, Si ≦
0.05%, Mn ≦ 0.9%, P ≦ 0.04%, S ≦
0.04%, Al: 0.015 to 0.10%, N: 0.
0020 to 0.015%, Nb: 0.001 to 0.02
Hot-rolled steel sheet consisting of 0%, balance Fe and unavoidable impurities is sequentially subjected to cold rolling, annealing in a heat cycle including overaging treatment, and temper rolling at an elongation rate of 0.5 to 2.0%. The average grain size of the steel sheet after temper rolling may be 6.0 μm or less. Further, C: 0.01 to 0.15%, S
i ≦ 0.05%, Mn ≦ 0.9%, P ≦ 0.04%, S
≦ 0.04%, Al: 0.015 to 0.10%, N:
0.0020 to 0.015%, Nb: 0.001 to 0.
A hot-rolled steel sheet consisting of 020%, the balance Fe and unavoidable impurities is sequentially subjected to cold rolling, annealing in a heat cycle including overaging treatment, and DR rolling at a reduction rate of 20 to 50%, and after DR rolling. It is also desirable that the average crystal grain size of the steel sheet is 6.0 μm or less. Next, the manufacturing method of the steel sheet suitable for use in the thin-walled deep drawing can of the present invention is C: 0.01 to 0.1.
5%, Si ≦ 0.05%, Mn ≦ 0.9%, P ≦ 0.0
4%, S ≦ 0.04%, Al: 0.015 to 0.10.
%, N: 0.0020 to 0.015%, the balance of Fe and unavoidable impurities in a hot rolled steel sheet, cold rolling, annealing in a heat cycle including overaging treatment, elongation 0.5 to.
It is desirable to perform temper rolling at 2.0% sequentially. Further, C: 0.01 to 0.15%, Si ≦ 0.05%, M
n ≦ 0.9%, P ≦ 0.04%, S ≦ 0.04%, A
1: 0.015-0.10%, N: 0.0020-0.
It is also preferable to sequentially perform cold rolling, annealing in a heat cycle including overaging treatment, and DR rolling at a reduction rate of 20 to 50% on a hot-rolled steel sheet containing 015%, balance Fe and unavoidable impurities. Furthermore, C: 0.01 to 0.15%,
Si ≦ 0.05%, Mn ≦ 0.9%, P ≦ 0.04%,
S ≦ 0.04%, Al: 0.015 to 0.10%, N:
0.0020 to 0.015%, Nb: 0.001 to 0.
A hot-rolled steel sheet consisting of 020% and the balance Fe and unavoidable impurities is sequentially subjected to cold rolling, annealing in a heat cycle including overaging treatment, and temper rolling at an elongation of 0.5 to 2.0%. May be. Further, C: 0.01 to 0.15%, Si
≦ 0.05%, Mn ≦ 0.9%, P ≦ 0.04%, S ≦
0.04%, Al: 0.015 to 0.10%, N: 0.
0020 to 0.015%, Nb: 0.001 to 0.02
It is also preferable to sequentially perform cold rolling, annealing in a heat cycle including overaging treatment, and DR rolling with a reduction rate of 20 to 50% on a hot-rolled steel sheet containing 0%, the balance Fe and unavoidable impurities.
【0005】[0005]
【作用】本発明の鋼板に、ポリエステル等の樹脂フィル
ムを被覆し、円板状に打ち抜き、これを二段階絞りの連
続高速製缶加工を行っても、破胴が起きず、しかも加工
性に優れた薄肉化深絞り缶を成形できる。The steel sheet of the present invention is coated with a resin film such as polyester and punched into a disk shape, and even if it is subjected to continuous high-speed can-making processing by two-step drawing, no crushing occurs and the workability is improved. Can form excellent thin-walled deep-drawn cans.
【0006】[0006]
熱延鋼板の成分 鋼成分はC:0.01〜0.15%、Si≦0.05
%、Mn≦0.9%、P≦0.04%、S=0.04
%、Al:0.015〜0.10%、N:0.0020
〜0.015%、残部Feおよび不可避的不純物より成
る。また、上記成分にNbを0.001〜0.02%加
えたものも好適に用いられる。以下に鋼成分の規制理由
を述べる。Cは0.01%より少なくなると結晶粒の粗
大化を招き、下限を0.01%とした。一方、0.15
%を越えると絞り加工性が劣化することから、範囲を
0.08〜0.15%とした。Siは缶用材料として耐
食性に有害な元素であるが、Alキルド鋼としては不可
避的に含有される元素であり、上限を0.05%とし
た。Mnは不純物であるSによる熱延中の赤熱脆性を防
止するために必要な成分であるが、一方0.9%を越え
ると絞り加工性を劣化することから上限を0.9%とし
た。Pは結晶粒微細化に有効な成分であり、また原板の
強度を高めることから一定の割合で添加されるが、一方
で耐食性を阻割する。本発明用途の缶用鋼板としてはP
が0.04%を越えると耐食性、特に耐孔明性が著しく
低下するため上限を0.04%とした。Sは熱延中の赤
熱脆性を生じる不純物成分であり、極力少ないことが望
ましいが、不可避的に含有される元素であり、上限を
0.04%とした。Alは製鋼に際し、脱酸剤として鋼
浴中に添加され、スラグとして除かれるが、添加量が少
ないと安定した脱酸効果が得られないため、0.015
%以上必要とする。またAlは固浴Nと反応してAlN
として析出し、結晶粒の細粒化に寄与する。一方で0.
10%を越える添加は技術上の効果が少なく、経済上好
ましくないので上限を0.10%とした。NはAlおよ
びNbと窒化物を形成し、細粒粒の細粒化に有効な成分
であるが、0.002%より少ないと窒化物との析出が
少なく、細粒化の効果がなくなり、一方0.015%を
越えるとスラブ表面に割れが生じ易く、構造欠陥になる
ため範囲を0.002〜0.015%とした。Nbは結
晶粒の細粒化に効果があり、固溶C、Nの低減に寄与す
る。0.001%より少ないと細粒化の効果がなく、一
方、0.020%を越えると固溶Nb量が増して逆に絞
り加工性の劣化を招くため上限を0.020%とした。Components of hot-rolled steel sheet C: 0.01 to 0.15%, Si ≤ 0.05
%, Mn ≦ 0.9%, P ≦ 0.04%, S = 0.04
%, Al: 0.015 to 0.10%, N: 0.0020
˜0.015%, balance Fe and unavoidable impurities. Moreover, what added 0.001 to 0.02% of Nb to the said component is also used suitably. The reasons for controlling the steel composition are described below. When C is less than 0.01%, the crystal grains are coarsened, and the lower limit is made 0.01%. On the other hand, 0.15
%, The drawability deteriorates, so the range was made 0.08 to 0.15%. Si is an element harmful to corrosion resistance as a can material, but is an element inevitably contained in Al-killed steel, and the upper limit was set to 0.05%. Mn is a component necessary to prevent red hot embrittlement due to impurities S during hot rolling. On the other hand, if it exceeds 0.9%, drawability deteriorates, so the upper limit was made 0.9%. P is an effective component for refining crystal grains, and it is added in a fixed ratio because it increases the strength of the original plate, but it impairs corrosion resistance. The steel sheet for cans used in the present invention is P
If it exceeds 0.04%, the corrosion resistance, especially the hole-proofing property, remarkably decreases, so the upper limit was made 0.04%. S is an impurity component that causes red hot embrittlement during hot rolling, and it is desirable that the content is as small as possible, but it is an element that is inevitably contained and the upper limit was made 0.04%. Al is added as a deoxidizing agent in the steel bath during steelmaking and is removed as slag. However, if the addition amount is too small, a stable deoxidizing effect cannot be obtained.
Need more than%. Also, Al reacts with the solid bath N to form AlN
And contributes to the refinement of crystal grains. On the other hand, 0.
The addition of more than 10% has little technical effect and is economically unfavorable, so the upper limit was made 0.10%. N forms a nitride with Al and Nb and is an effective component for refining fine grains, but if it is less than 0.002%, precipitation with nitride is small, and the effect of refining is lost. On the other hand, if it exceeds 0.015%, cracks are likely to occur on the slab surface and structural defects occur, so the range was made 0.002 to 0.015%. Nb has an effect of making crystal grains fine and contributes to the reduction of solid solution C and N. If it is less than 0.001%, there is no effect of grain refining, while if it exceeds 0.020%, the amount of solute Nb increases and conversely the drawability deteriorates, so the upper limit was made 0.020%.
【0007】スラブ加熱温度、熱間圧延条件は、本発明
では特定するものではないが、スラブ加熱温度は、Nの
積極的分解固溶および熱間圧延温度の安定的確保の見地
から、1100℃以上とするのが望ましい。熱間圧延仕
上げ温度をAr3 点以下にすると、熱延板の結晶組織が
混粒化するとともに粗大化するので、熱間圧延仕上げ温
度はAr3 点以上とした。また巻取温度は熱延時のコイ
ル幅方向および長手方向の品質安定性を考慮して下限を
450℃とし、650℃を越えると結晶粒が粗大化し、
肌荒れが生じるため、巻取温度は450〜650℃の範
囲が望ましい。The slab heating temperature and hot rolling conditions are not specified in the present invention, but the slab heating temperature is 1100 ° C. from the viewpoint of positive decomposition of N and solid solution and stable hot rolling temperature. It is desirable to set it as above. When the hot rolling finish temperature is set to Ar3 point or lower, the crystal structure of the hot rolled sheet is mixed and coarsened. Therefore, the hot rolling finish temperature was set to Ar3 point or higher. The coiling temperature has a lower limit of 450 ° C in consideration of the quality stability in the coil width direction and the longitudinal direction during hot rolling, and if it exceeds 650 ° C, the crystal grains become coarse,
Since the skin becomes rough, the winding temperature is preferably in the range of 450 to 650 ° C.
【0008】冷間圧延工程 圧下率が75%未満では、焼鈍工程で鋼板の結晶粒粗大
化もしくは混粒化をもたらし、結晶粒を十分細粒化する
ことができないので、冷間圧延の圧下率は75%を下限
とすることが望ましい。Cold rolling process If the rolling reduction is less than 75%, the grain size of the steel sheet is coarsened or mixed in the annealing process, and the grain size cannot be sufficiently reduced. It is desirable that the lower limit be 75%.
【0009】焼鈍工程 本発明では、過時効処理を含むヒートサイクルでの焼鈍
を採用することにより、破胴に効果があることが判明し
た。これは固溶C、Nが低減したことによると考えられ
る。焼鈍は、連続焼鈍後、そのまま連続焼鈍処理で過時
効処理を行う場合と、一旦降温し、改めて箱焼鈍処理を
行う場合の、いずれの処理方法でもよい。前段階の連続
焼鈍の処理温度は、再結晶温度以上あれば良いが、75
0℃を越えると結晶粒の粗大化が起きるので好ましくな
い。なお、ここで言う過時効処理とは、一般の焼鈍処理
に比較して、低温、長時間での熱処理を言う。過時効処
理は連続焼鈍に続けて行う場合は、400〜550℃で
1〜3分間均熱処理を行う。400℃未満では、固溶
C、Nが低減できず、550℃を越えると結晶粒が粗大
化する。また、1分未満では、固溶C、Nの低減が十分
図れず、3分を越えると炉長が長大化するため、1〜3
分の範囲とする。また、過時効処理は、箱焼鈍でもよ
い。箱焼鈍による場合は、一旦下げた温度を400〜5
50℃に上げ、2〜10時間均熱処理を行う。400℃
未満では、過時効処理としての品質が安定せず、特性が
ばらつく。550℃を越えると、連続焼鈍と同様結晶粒
が粗大化する。2時間未満では、過時効処理としての品
質が安定せず、特性がばらつく。一方、10時間を越す
処理は経済上得策ではない。Annealing Step In the present invention, it has been found that by adopting annealing in a heat cycle including overaging treatment, it is effective in breaking a cylinder. It is considered that this is because the solid solution C and N were reduced. The annealing may be performed either by continuous annealing and then by over-aging treatment by continuous annealing as it is, or by temporarily cooling and performing box annealing treatment again. The treatment temperature of the continuous annealing in the previous stage may be the recrystallization temperature or higher,
If the temperature exceeds 0 ° C., coarsening of crystal grains occurs, which is not preferable. The term "over-aging treatment" as used herein means a heat treatment at a low temperature for a long time as compared with a general annealing treatment. When the over-aging treatment is performed after continuous annealing, soaking is performed at 400 to 550 ° C. for 1 to 3 minutes. If it is less than 400 ° C, the solid solution C and N cannot be reduced, and if it exceeds 550 ° C, the crystal grains become coarse. If it is less than 1 minute, the solid solution C and N cannot be sufficiently reduced, and if it exceeds 3 minutes, the furnace length becomes long, so
It should be in the range of minutes. The overaging treatment may be box annealing. When using box annealing, lower the temperature once to 400-5
The temperature is raised to 50 ° C. and soaking is performed for 2 to 10 hours. 400 ° C
When the amount is less than the above, the quality as overaging treatment is not stable and the characteristics vary. If it exceeds 550 ° C, the crystal grains become coarser as in continuous annealing. If it is less than 2 hours, the quality as overaging treatment is not stable and the characteristics vary. On the other hand, the treatment of more than 10 hours is not economically advantageous.
【0010】過時効処理の効果 一般に、固溶C、Nの増加により全伸びが低下し、一様
伸びも劣化する。これは、伸び時に発生するくびれや、
ボイドの連結機構に固溶C、Nが作用しているためと考
えられる。過時効処理は鋼中の固溶C、Nを低減させ、
鋼の軟質化に効果がある。過時効処理を行うことによ
り、鋼中固溶C、Nを低減させ、くびれの発生やボイド
の連結が抑制され、結果的に破断・破胴感受性を低減さ
せると考えられる。Effect of overaging treatment Generally, an increase in solid solution C and N causes a decrease in total elongation and a deterioration in uniform elongation. This is the constriction that occurs when stretching,
It is considered that solid solution C and N act on the void connection mechanism. Overaging treatment reduces solid solution C and N in steel,
Effective in softening steel. It is considered that the overaging treatment reduces the solid solution C and N in the steel, suppresses the occurrence of necking and the connection of voids, and consequently reduces the susceptibility to fracture and shattering.
【0011】調質圧延 調質圧延(SR,Single Reduce Rol
lingの略)は、伸び率が0.5〜2.0%の範囲で
あれば、ストレッチャストレインの発生が防止されるた
め、この範囲が適当である。Conditioned rolling Conditioned rolling (SR, Single Reduce Roll)
(abbreviation of "ring") is suitable in the range where the elongation is in the range of 0.5 to 2.0% because the occurrence of stretcher strain is prevented.
【0012】DR圧延 DR圧延は成形後の缶強度をもたせるために必要である
が、圧下率は20〜50%とする。20%未満では、十
分な缶強度が得られず、50%を越えると鋼板が高強度
となり、缶成形加工に困難を来す。ここでDR圧延と
は、Double Reduce Rolling の
略であり、調質圧延よりも、より積極的に板厚を減少さ
せ、板強度を増加させる圧延法である。本発明では、上
記調質圧延とDR圧延とを含めて、二次冷延とする。DR rolling DR rolling is necessary to give can strength after forming, but the rolling reduction is 20 to 50%. If it is less than 20%, sufficient can strength cannot be obtained, and if it exceeds 50%, the steel sheet becomes high in strength, which causes difficulty in can forming. Here, the DR rolling is an abbreviation for Double Reduce Rolling, and is a rolling method that more positively reduces the sheet thickness and increases the sheet strength than the temper rolling. In the present invention, the secondary cold rolling includes the temper rolling and the DR rolling.
【0013】つぎに、本発明に用いられる鋼板として
は、シ−ト状およびコイル状の鋼板、鋼箔およびそれら
の鋼板等に表面処理を施したものがあげられる。特に、
下層が金属クロム、上層がクロム水和酸化物の2層構造
をもつ電解クロム酸処理鋼板あるいは極薄錫めっき鋼
板、ニッケルめっき鋼板、亜鉛めっき鋼板およびこれら
のめっき鋼板にクロム水和酸化物あるいは上層がクロム
水和酸化物、下層が金属クロム層からなる2層構造をも
つ表面処理をほどこしたものがポリエステル樹脂との接
触性に優れている。Next, examples of the steel sheet used in the present invention include sheet-shaped and coil-shaped steel sheets, steel foils, and those obtained by subjecting these steel sheets to surface treatment. In particular,
Electrolytic chromic acid-treated steel sheet or ultra-thin tin-plated steel sheet, nickel-plated steel sheet, zinc-plated steel sheet having a two-layer structure in which the lower layer is metallic chromium and the upper layer is chromium hydrated oxide, and chromium hydrated oxide or upper layer on these plated steel sheets Is a hydrated chrome oxide, and the one having a two-layer structure consisting of a metal chrome layer as the lower layer is excellent in contact with the polyester resin.
【0014】平均結晶粒径 結晶粒径の特定について図1および図2に基づいて説明
する。図1は平均結晶粒径と製缶加工後の缶側壁の肌荒
れ性との関係を示したものである。図1から平均結晶粒
径が大きくなると製缶加工後の表面の肌荒れ性が劣化す
ることがわかる。平均結晶粒径が6μmを越えると、表
面の肌荒れ性が劣化し、缶としての見栄えや特性が損な
われる。このため平均結晶粒径は6μmを越えないこと
とする。また図2は平均結晶粒径と耐食性との関係を示
したものである。図2からも平均結晶粒径が6μmを越
えない範囲で耐食性がよいことがわかる。なお、耐食性
の評価は次のようにした。製缶加工後の缶を130℃で
20分の熱処理を行い、水を充填し、37℃、2週間経
時後の缶内面の腐食(黒化)程度を目視で評価した。Average Crystal Grain Size Identification of the crystal grain size will be described with reference to FIGS. 1 and 2. FIG. 1 shows the relationship between the average crystal grain size and the surface roughness of the can side wall after the can manufacturing process. It can be seen from FIG. 1 that when the average crystal grain size becomes large, the surface roughness of the surface after the can manufacturing process deteriorates. When the average crystal grain size exceeds 6 μm, the surface roughness is deteriorated, and the appearance and properties of the can are impaired. Therefore, the average crystal grain size should not exceed 6 μm. Further, FIG. 2 shows the relationship between the average crystal grain size and the corrosion resistance. It can be seen from FIG. 2 that the corrosion resistance is good in the range where the average crystal grain size does not exceed 6 μm. The corrosion resistance was evaluated as follows. After the can-making process, the can was heat-treated at 130 ° C. for 20 minutes, filled with water, and visually evaluated for the degree of corrosion (blackening) of the inner surface of the can after 37 ° C. and 2 weeks.
【0015】[0015]
【表1】 [Table 1]
【0016】[0016]
【表2】 [Table 2]
【0017】評価 本発明の実施例No.1〜6は本発明の成分範囲内で、
過時効処理を実施しており加工性に優れている。比較例
No.7はC量が少なく耐食性が劣っている。比較例N
o.8〜10は過時効処理を実施しておらず加工性が劣
っている。なおここで、評価法はそれぞれ以下のように
した、。肌荒れ性の評価は、薄肉化深絞り缶成形後の缶
内面の缶側壁の表面粗さを測定し、Raが1μm以下を
◎(最良)とし、1〜1.5μmを○(良)とし、1.
5〜2μmを△(やや不良)とし、2μm以上を×(不
良)として評価した。また耐食性の評価は薄肉化絞り缶
成形後、130℃×20分の熱処理を行い、水を充填
し、37℃で2週間経時後の缶内面の腐食(黒化)程度
を目視で評価した。表面が全く黒化していないものを◎
(最良)とし、黒化の程度が微小なものを○(良)と
し、黒化の範囲が小のもの(直径5mm以下)を△(や
や不良)とし、大(直径5mm以上)を×(不良)とし
て評価した。加工性の評価は、薄肉化深絞り缶成形時に
しわ押さえ圧を上げていって、破胴するするまでのしわ
押さえ圧の大小で評価した。しわ押さえ圧が5トン以下
で破胴したものを△(やや不良)とし、5〜7トンで破
胴したものを○(良)とし、7トン以上で破胴したもの
を◎(最良)とした。Evaluation Example No. 1 of the present invention. 1 to 6 are within the range of the components of the present invention,
It is overaged and has excellent workability. Comparative Example No. No. 7 has a small amount of C and is inferior in corrosion resistance. Comparative Example N
o. Nos. 8 to 10 were not overaged and were inferior in workability. The evaluation methods are as follows ,. The surface roughness is evaluated by measuring the surface roughness of the can side wall on the inner surface of the can after forming the thin-walled deep-drawing can. Ra of 1 μm or less is ◎ (best), 1 to 1.5 μm is ○ (good), 1.
5 to 2 μm was evaluated as Δ (slightly defective), and 2 μm or more was evaluated as × (defective). The corrosion resistance was evaluated by visualizing the degree of corrosion (blackening) of the inner surface of the can after heat treatment at 130 ° C. for 20 minutes, filling with water after forming for 2 weeks at 37 ° C. after forming the thinned drawn can. ◎ If the surface is not blackened at all
(Best), the degree of blackening is minute (good), the degree of blackening is small (diameter 5 mm or less) is Δ (somewhat bad), and large (diameter 5 mm or more) is x ( It was evaluated as (defective). The workability was evaluated by increasing the wrinkle holding pressure during the forming of the thin-walled deep-drawing can and evaluating the size of the wrinkle holding pressure before breaking. A crushed product with a wrinkle holding pressure of 5 tons or less was rated as Δ (somewhat poor), a crushed product with 5 to 7 tons was rated as ◯ (good), and a product crushed with 7 tons or more was rated as ◎ (best). did.
【0018】[0018]
【発明の効果】本発明により、肌荒れ性、耐食性に優
れ、連続高速製缶加工時においても破胴が起きず、しか
も加工性に優れた薄肉化深絞り缶用途に適した鋼板を提
供することができる。なお、本発明により提供される鋼
板は、缶用途として、鋼板単独でも使用可能であるが、
この鋼板に表面処理をして、ぶりき、TFS、ニッケル
めっき鋼板等としても利用できる。さらに、上記の表面
処理鋼板にポリエステル等の樹脂フィルムを被覆しても
よい。また、この鋼板にエポキシ等の塗料をコーティン
グしたものも薄肉化深絞り缶用途に適用できる。According to the present invention, there is provided a steel sheet which is excellent in surface roughening and corrosion resistance, does not break even during continuous high-speed can manufacturing, and is excellent in workability and suitable for use in thin-walled deep-drawing cans. You can The steel sheet provided by the present invention can be used alone as a steel sheet as a can application.
The steel sheet can be surface-treated and used as tinplate, TFS, nickel-plated steel sheet, or the like. Further, the surface-treated steel sheet may be coated with a resin film such as polyester. Also, a steel sheet coated with a paint such as epoxy can be applied to a thin-walled deep drawing can application.
【図1】肌荒れ性に及ぼす平均結晶粒径の影響を示すグ
ラフである。FIG. 1 is a graph showing the effect of average crystal grain size on skin roughness.
【図2】耐食性に及ぼす平均結晶粒径の影響を示すグラ
フである。FIG. 2 is a graph showing the effect of average crystal grain size on corrosion resistance.
Claims (8)
05%、Mn≦0.9%、P≦0.04%、S≦0.0
4%、Al:0.015〜0.10%、N:0.002
0〜0.015%、残部Feおよび不可避的不純物から
なる熱延鋼板を、冷間圧延、過時効処理を含むヒートサ
イクルでの焼鈍、伸び率0.5〜2.0%での調質圧
延、を順次行い、調質圧延後の鋼板の平均結晶粒径が
6.0μm以下である薄肉化深絞り缶用途に適した鋼
板。1. C: 0.01 to 0.15%, Si ≦ 0.
05%, Mn ≦ 0.9%, P ≦ 0.04%, S ≦ 0.0
4%, Al: 0.015 to 0.10%, N: 0.002
Hot-rolled steel sheet consisting of 0 to 0.015%, balance Fe and unavoidable impurities is annealed by heat rolling including cold rolling and overaging treatment, and temper rolling at an elongation of 0.5 to 2.0%. The steel sheet suitable for use in thin-walled deep-drawing cans, in which the average grain size of the steel sheet after temper rolling is 6.0 μm or less.
05%、Mn≦0.9%、P≦0.04%、S≦0.0
4%、Al:0.015〜0.10%、N:0.002
0〜0.015%、残部Feおよび不可避的不純物から
なる熱延鋼板を、冷間圧延、過時効処理を含むヒートサ
イクルでの焼鈍、圧下率20〜50%でのDR圧延、を
順次行い、DR圧延後の鋼板の平均結晶粒径が6.0μ
m以下である薄肉化深絞り缶用途に適した鋼板。2. C: 0.01 to 0.15%, Si ≦ 0.
05%, Mn ≦ 0.9%, P ≦ 0.04%, S ≦ 0.0
4%, Al: 0.015 to 0.10%, N: 0.002
0 to 0.015%, the hot rolled steel sheet consisting of the balance Fe and unavoidable impurities are sequentially subjected to cold rolling, annealing in a heat cycle including overaging treatment, and DR rolling at a reduction rate of 20 to 50%, The average grain size of the steel sheet after DR rolling is 6.0μ
A steel plate with a thickness of m or less, which is suitable for thin-walled deep drawing can applications.
05%、Mn≦0.9%、P≦0.04%、S≦0.0
4%、Al:0.015〜0.10%、N:0.002
0〜0.015%、Nb:0.001〜0.020%、
残部Feおよび不可避的不純物からなる熱延鋼板を、冷
間圧延、過時効処理を含むヒートサイクルでの焼鈍、伸
び率0.5〜2.0%での調質圧延、を順次行い、調質
圧延後の鋼板の平均結晶粒径が6.0μm以下である薄
肉化深絞り缶用途に適した鋼板。3. C: 0.01 to 0.15%, Si ≦ 0.
05%, Mn ≦ 0.9%, P ≦ 0.04%, S ≦ 0.0
4%, Al: 0.015 to 0.10%, N: 0.002
0 to 0.015%, Nb: 0.001 to 0.020%,
A hot-rolled steel sheet consisting of the balance Fe and unavoidable impurities is subjected to cold rolling, annealing in a heat cycle including overaging treatment, and temper rolling at an elongation rate of 0.5 to 2.0%, in order. A steel sheet suitable for thin-walled deep-drawing can applications, in which the average grain size of the rolled steel sheet is 6.0 μm or less.
05%、Mn≦0.9%、P≦0.04%、S≦0.0
4%、Al:0.015〜0.10%、N:0.002
0〜0.015%、Nb:0.001〜0.020%、
残部Feおよび不可避的不純物からなる熱延鋼板を、冷
間圧延、過時効処理を含むヒートサイクルでの焼鈍、圧
下率20〜50%でのDR圧延、を順次行い、DR圧延
後の鋼板の平均結晶粒径が6.0μm以下である薄肉化
深絞り缶用途に適した鋼板。4. C: 0.01 to 0.15%, Si ≦ 0.
05%, Mn ≦ 0.9%, P ≦ 0.04%, S ≦ 0.0
4%, Al: 0.015 to 0.10%, N: 0.002
0 to 0.015%, Nb: 0.001 to 0.020%,
A hot-rolled steel sheet consisting of the balance Fe and unavoidable impurities is sequentially subjected to cold rolling, annealing in a heat cycle including overaging treatment, and DR rolling at a reduction rate of 20 to 50%, and the average of the steel sheets after DR rolling. A steel sheet with a crystal grain size of 6.0 μm or less, which is suitable for thin-walled deep-drawing can applications.
05%、Mn≦0.9%、P≦0.04%、S≦0.0
4%、Al:0.015〜0.10%、N:0.002
0〜0.015%、残部Feおよび不可避的不純物から
なる熱延鋼板を、冷間圧延、過時効処理を含むヒートサ
イクルでの連続焼鈍、伸び率0.5〜2.0%での調質
圧延、を順次行う薄肉化深絞り缶用途に適した鋼板の製
造法。5. C: 0.01 to 0.15%, Si ≦ 0.
05%, Mn ≦ 0.9%, P ≦ 0.04%, S ≦ 0.0
4%, Al: 0.015 to 0.10%, N: 0.002
Hot-rolled steel sheet consisting of 0 to 0.015%, balance Fe and unavoidable impurities is continuously annealed in a heat cycle including cold rolling and overaging treatment, and tempered at an elongation rate of 0.5 to 2.0%. A method for manufacturing steel sheets suitable for thin-walled deep-drawing can applications, in which rolling is performed sequentially.
05%、Mn≦0.9%、P≦0.04%、S≦0.0
4%、Al:0.015〜0.10%、N:0.002
0〜0.015%、残部Feおよび不可避的不純物から
なる熱延鋼板を、冷間圧延、過時効処理を含むヒートサ
イクルでの焼鈍、圧下率20〜50%でのDR圧延、を
順次行う薄肉化深絞り缶用途に適した鋼板の製造法。6. C: 0.01 to 0.15%, Si ≦ 0.
05%, Mn ≦ 0.9%, P ≦ 0.04%, S ≦ 0.0
4%, Al: 0.015 to 0.10%, N: 0.002
A thin-walled steel sheet in which 0 to 0.015% and the balance Fe and unavoidable impurities are sequentially subjected to cold rolling, annealing in a heat cycle including overaging treatment, and DR rolling at a reduction rate of 20 to 50%. Steel plate manufacturing method suitable for deep drawing deep can applications.
05%、Mn≦0.9%、P≦0.04%、S≦0.0
4%、Al:0.015〜0.10%、N:0.002
0〜0.015%、Nb:0.001〜0.020%、
残部Feおよび不可避的不純物からなる熱延鋼板を、冷
間圧延、過時効処理を含むヒートサイクルでの焼鈍、伸
び率0.5〜2.0%での調質圧延、を順次行う薄肉化
深絞り缶用途に適した鋼板の製造法。7. C: 0.01 to 0.15%, Si ≦ 0.
05%, Mn ≦ 0.9%, P ≦ 0.04%, S ≦ 0.0
4%, Al: 0.015 to 0.10%, N: 0.002
0 to 0.015%, Nb: 0.001 to 0.020%,
A hot-rolled steel sheet consisting of the balance Fe and unavoidable impurities is sequentially subjected to cold rolling, annealing in a heat cycle including overaging treatment, and temper rolling at an elongation rate of 0.5 to 2.0%. Steel plate manufacturing method suitable for squeezing cans.
05%、Mn≦0.9%、P≦0.04%、S≦0.0
4%、Al:0.015〜0.10%、N:0.002
0〜0.015%、Nb:0.001〜0.020%、
残部Feおよび不可避的不純物からなる熱延鋼板を、冷
間圧延、過時効処理を含むヒートサイクルでの焼鈍、圧
下率20〜50%のDR圧延、を順次行う薄肉化深絞り
缶用途に適した鋼板の製造法。8. C: 0.01 to 0.15%, Si ≦ 0.
05%, Mn ≦ 0.9%, P ≦ 0.04%, S ≦ 0.0
4%, Al: 0.015 to 0.10%, N: 0.002
0 to 0.015%, Nb: 0.001 to 0.020%,
Suitable for thin-walled deep-drawing can applications in which a hot-rolled steel sheet consisting of the balance Fe and unavoidable impurities is sequentially cold-rolled, annealed in a heat cycle including overaging treatment, and DR-rolled at a reduction rate of 20 to 50%. Steel plate manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5197825A JP2676581B2 (en) | 1993-07-14 | 1993-07-14 | Steel sheet suitable for thinned deep-drawing can and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5197825A JP2676581B2 (en) | 1993-07-14 | 1993-07-14 | Steel sheet suitable for thinned deep-drawing can and its manufacturing method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10077097A Division JPH1030152A (en) | 1997-04-04 | 1997-04-04 | Steel sheet suitable for use in thin deep-drawn can, and its production |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0734192A true JPH0734192A (en) | 1995-02-03 |
JP2676581B2 JP2676581B2 (en) | 1997-11-17 |
Family
ID=16380971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5197825A Expired - Fee Related JP2676581B2 (en) | 1993-07-14 | 1993-07-14 | Steel sheet suitable for thinned deep-drawing can and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2676581B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6974511B1 (en) * | 1999-07-01 | 2005-12-13 | Sollac | Steel sheet with low aluminum content for containers |
JP2006045590A (en) * | 2004-07-30 | 2006-02-16 | Toyo Kohan Co Ltd | Steel sheet coated with organic resin film for di can, and manufacturing method therefor |
US7169244B1 (en) * | 1999-07-01 | 2007-01-30 | Sollac | Process for manufacturing steel strip with low aluminum content for containers |
WO2009125876A1 (en) * | 2008-04-11 | 2009-10-15 | Jfeスチール株式会社 | High-strength steel sheet for container and process for production thereof |
CN104745785A (en) * | 2015-04-14 | 2015-07-01 | 武汉钢铁(集团)公司 | Production method of ultra-high-strength heat-resistant and corrosion-resistant bundling belt |
JP2016130361A (en) * | 2015-01-09 | 2016-07-21 | Jfeスチール株式会社 | Steel sheet for can and method for manufacturing steel sheet for can |
CN114635095A (en) * | 2022-03-23 | 2022-06-17 | 邯郸市金泰包装材料有限公司 | Tinning plate containing sunflower pattern for aerosol can bottom cover and production method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5938338A (en) * | 1982-08-30 | 1984-03-02 | Kawasaki Steel Corp | Production of ultra thin steel sheet having high yield strength and drawability |
JPH0480345A (en) * | 1990-07-19 | 1992-03-13 | Nippon Steel Corp | Cold rolled steel sheet excellent in workability, roughening property and earing property and its manufacture |
JPH05171286A (en) * | 1991-12-18 | 1993-07-09 | Kobe Steel Ltd | Production of cold rolled steel sheet excellent in baking hardenability at low temperature |
-
1993
- 1993-07-14 JP JP5197825A patent/JP2676581B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5938338A (en) * | 1982-08-30 | 1984-03-02 | Kawasaki Steel Corp | Production of ultra thin steel sheet having high yield strength and drawability |
JPH0480345A (en) * | 1990-07-19 | 1992-03-13 | Nippon Steel Corp | Cold rolled steel sheet excellent in workability, roughening property and earing property and its manufacture |
JPH05171286A (en) * | 1991-12-18 | 1993-07-09 | Kobe Steel Ltd | Production of cold rolled steel sheet excellent in baking hardenability at low temperature |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6974511B1 (en) * | 1999-07-01 | 2005-12-13 | Sollac | Steel sheet with low aluminum content for containers |
US7169244B1 (en) * | 1999-07-01 | 2007-01-30 | Sollac | Process for manufacturing steel strip with low aluminum content for containers |
US7524384B2 (en) | 1999-07-01 | 2009-04-28 | Sollac | Metal container comprising a steel sheet with low aluminum content |
JP2006045590A (en) * | 2004-07-30 | 2006-02-16 | Toyo Kohan Co Ltd | Steel sheet coated with organic resin film for di can, and manufacturing method therefor |
WO2009125876A1 (en) * | 2008-04-11 | 2009-10-15 | Jfeスチール株式会社 | High-strength steel sheet for container and process for production thereof |
JP2010043349A (en) * | 2008-04-11 | 2010-02-25 | Jfe Steel Corp | Steel sheet for high-strength container, and method for manufacturing therefor |
JP2016130361A (en) * | 2015-01-09 | 2016-07-21 | Jfeスチール株式会社 | Steel sheet for can and method for manufacturing steel sheet for can |
CN104745785A (en) * | 2015-04-14 | 2015-07-01 | 武汉钢铁(集团)公司 | Production method of ultra-high-strength heat-resistant and corrosion-resistant bundling belt |
CN104745785B (en) * | 2015-04-14 | 2017-06-13 | 武汉钢铁(集团)公司 | A kind of production method of superhigh intensity heat-proof corrosion-resistant tie |
CN114635095A (en) * | 2022-03-23 | 2022-06-17 | 邯郸市金泰包装材料有限公司 | Tinning plate containing sunflower pattern for aerosol can bottom cover and production method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2676581B2 (en) | 1997-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001107186A (en) | High strength steel sheet for can and its producing method | |
JP2761594B2 (en) | Manufacturing method of high strength ultra-thin steel sheet for cans with excellent in-plane anisotropy | |
JP2676581B2 (en) | Steel sheet suitable for thinned deep-drawing can and its manufacturing method | |
EP2098312A1 (en) | Process for manufacturing drawn can for aerosol and drawn can for aerosol | |
JP2623432B2 (en) | Steel sheet suitable for thinned deep-drawing can and its manufacturing method | |
JP2001335888A (en) | Steel sheet for lightweight two-piece can, and its production method | |
JP2668503B2 (en) | Steel sheet suitable for thinned deep-drawing can and its manufacturing method | |
JPH09310150A (en) | Steel sheet for can excellent in workability, nonearing property and resistance to surface roughening and its production | |
JP2534589B2 (en) | Polyester resin coated steel plate and original plate for thinned deep drawn can | |
JPH108142A (en) | Manufacture of steel sheet for can manufacture, excellent in workability and free from surface roughing | |
JPH1030152A (en) | Steel sheet suitable for use in thin deep-drawn can, and its production | |
JPH11209845A (en) | Steel sheet for can, excellent in workability and surface roughing resistance, and its manufacture | |
JP3728911B2 (en) | Raw material for surface-treated steel sheet having excellent aging resistance and low ear occurrence rate, and method for producing the same | |
JP3560267B2 (en) | Manufacturing method of polyester resin coated steel sheet for thinning deep drawn ironing can | |
JP3707260B2 (en) | Method for producing ultra-thin steel sheet for 2-piece can with excellent in-plane anisotropy and in-plane anisotropy uniformity in coil | |
JPH05247669A (en) | Manufacture of high strength steel sheet for thinned and deep-drawn can | |
JP3132338B2 (en) | Method for producing DTR can-adaptive steel sheet having excellent resistance to side wall breakage | |
JP3164853B2 (en) | Manufacturing method of thin steel plate for food cans | |
JP3244956B2 (en) | Method for producing ultra-thin container steel sheet with excellent can formability | |
JP2002317248A (en) | Thinned steel sheet for deep drawn and ironed can having excellent workability | |
JPH08127816A (en) | Production of starting steel sheet for vessel, excellent in wrinkling resistance | |
JP2018168395A (en) | Method for manufacturing steel sheet for easy-open can lid | |
JP3496333B2 (en) | DTR can-adaptive steel plate with excellent side wall break resistance | |
JPH08155565A (en) | Production of light weight can excellent in bottom pressure withstanding strength | |
JP3223758B2 (en) | DTR can-adaptive steel sheet with excellent side wall break resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970624 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |