JP3728911B2 - Raw material for surface-treated steel sheet having excellent aging resistance and low ear occurrence rate, and method for producing the same - Google Patents

Raw material for surface-treated steel sheet having excellent aging resistance and low ear occurrence rate, and method for producing the same Download PDF

Info

Publication number
JP3728911B2
JP3728911B2 JP03433298A JP3433298A JP3728911B2 JP 3728911 B2 JP3728911 B2 JP 3728911B2 JP 03433298 A JP03433298 A JP 03433298A JP 3433298 A JP3433298 A JP 3433298A JP 3728911 B2 JP3728911 B2 JP 3728911B2
Authority
JP
Japan
Prior art keywords
less
value
steel sheet
rolling
treated steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03433298A
Other languages
Japanese (ja)
Other versions
JPH11222647A (en
Inventor
昌利 荒谷
章男 登坂
修 古君
誠 荒谷
英雄 久々湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP03433298A priority Critical patent/JP3728911B2/en
Publication of JPH11222647A publication Critical patent/JPH11222647A/en
Application granted granted Critical
Publication of JP3728911B2 publication Critical patent/JP3728911B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、食缶、飲料缶等の2ピース缶に用いて好適な深絞り缶用鋼板に係り、とくにポリエステル樹脂を被覆して製缶加工される缶用原板として好適な極薄鋼板に関する。
【0002】
【従来の技術】
2ピース缶では、DRD(Draw & Redraw )缶やDWI(Draw & Wall Ironing )缶におけるように、成形後有機塗料を塗布して缶内容物の保護を行っている。しかし、最近では、予め樹脂フィルムを表面に被覆したフィルムラミネート鋼板を用いて成形する製缶方法が注目されている。フィルムラミネート鋼板の例として、例えば特開平2-269647号公報には、ティンフリー鋼板を原板として、原板に2軸延伸ポリエチレンテレフタレートを被覆した鋼板が開示されている。
【0003】
予め、原板にフィルムを被覆して製缶するこの製缶方法は、
▲1▼従来、深絞り加工、あるいは深絞り・しごき加工時に必要とされていた潤滑油が必要でなくなり、そのため、その後の潤滑油を洗浄する工程が省略でき、さらに、洗浄工程の省略により洗浄排水の排出がなくなること。
▲2▼従来、缶内容物の保護のため行われていた、缶内面塗装および焼付け処理が必要でなくなり、そのため焼付け処理時に発生していた炭酸ガスの排出がなくなること。
など、地球環境保護の面で好ましい貢献が期待できる。
【0004】
しかしながら、フィルムラミネート鋼板を用いる缶の製造コストは、従来のDRD缶、DWI缶のそれにくらべ、全体としてコスト高となることから、コストダウンのため素材の薄肉化が要望されている。
薄肉化した2ピース缶用素材に要求される特性として
(i) r値が高く、深絞り性に優れること。
【0005】
(ii) Δrが0に近く、成形後の耳発生率が低いこと。
(iii) 結晶粒が細かく、成形後、肌荒れの発生がないこと。
(iv) 耐時効性に優れ、成形後にストレッチャーストレインの発生がないこと。
が挙げられる。
【0006】
耳発生率は、原板のr値の面内異方性を示すΔr(=(r L + r C - 2 r D )/ 2)と相関があることは良く知られており、Δrが0に近いほど耳発生が少なく素材歩留りは向上する。また、結晶粒が粗大なほど成形後に肌荒れが発生しやすくなるため、特開平4-314535号公報には、原板の結晶粒径を5μm 以下、表面粗さRa を0.5 μm 以下に調整する方法が、成形後の肌荒れを防止する方法として開示されている。しかしながら、特開平4-314535号公報に記載された技術では、結晶粒の微細化を達成するためにC含有量を0.1 〜0.2 %と高くし、さらにMn、Pを添加しているため鋼板が硬質化し、r値が 1.1程度と深絞り性が劣化し、成形性が劣るという問題がある。
【0007】
【発明が解決しょうとする課題】
C量を極端に低減し軟質化すれば、r値等の成形性は向上するが、C量を極端に低減した極低炭素鋼板では、結晶粒を微細化することが困難である。軟質化と結晶粒の微細化を両立させるために、C量を若干高めた低炭素鋼を素材とすることが考えられるが、低炭素鋼においても結晶粒の粗大化を抑制するために、焼鈍方法として箱焼鈍に代わり焼鈍時間を短くできる連続焼鈍の採用が要求される。
【0008】
しかしながら、連続焼鈍を施した低炭素鋼板のr値は低く、優れた深絞り性が確保できないという問題があった。さらに、短時間の焼鈍ではセメンタイトの析出が不十分となり、耐時効性が劣化する。
原板に樹脂フィルムを被覆するフィルムラミネート鋼板の原板として、このような連続焼鈍処理を施され耐時効性が劣る低炭素鋼板を使用した場合には、フィルム被覆に際し260 ℃で10数秒〜数秒間の加熱処理をうけ、歪時効が生じ成形時にストレチャーストレインが発生しやすくなるという問題がある。
【0009】
本発明は、上記した問題を有利に解決し、深絞り性、耐時効性に優れ、製缶加工後に肌荒れ、ストレッチャーストレインなどの外観不良が発生せず、かつ製缶加工後に耳発生率が低く、深絞り缶用ポリエステル樹脂被覆鋼板等の表面処理鋼板用原板として好適な極薄鋼板を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは、上記した課題を達成するために鋭意検討した結果、耐時効性の向上、r値の向上、およびr値の面内異方性の改善には、Bの添加が有効であることを見いだした。Bは、熱延工程において固溶NをBNとして固定し鋼板の時効性を低減する効果を有し、さらに、主として固溶N量の低減により冷間圧延後の焼鈍工程で深絞り性(r値)およびr値の面内異方性に対し有利な(111)集合組織の形成を促進する。
【0011】
さらに本発明者らは、BおよびMnを添加し、さらにC量を調整して連続焼鈍による短時間焼鈍を施すことにより、耐時効性が向上するとともに、結晶粒が微細化し製缶加工後の肌荒れが防止できることを見いだした。
本発明者らは、上記した技術思想に基づいてさらに検討した結果、表面処理鋼板用原板の具体的な鋼板特性として、平均結晶粒径を6μm 以下、時効性指数AI値を40MPa 以下、r値を1.0 超え、r値の面内異方性Δrを±0.1 以内とすることにより、深絞り缶に成形しても、成形後の肌荒れ、ストレッチャーストレインの発生を防止でき、また成形後の耳発生率を低減できることを見いだした。
【0012】
上記した鋼板特性は、つぎのような実験から得られたものである。
C、Mn、B、Al、N量を種々変えた鋼素材を、加熱したのち、仕上圧延温度等熱間圧延条件を種々変更した熱間圧延を施し、コイルに巻取り、酸洗、1次冷間圧延を経て、焼鈍条件を種々変更した連続焼鈍を施し、ついで2次冷間圧延を施し、0.18mm厚の鋼板とした。ついで、これら鋼板に金属クロム層とクロム酸化物層からなる表面処理層を付着させる表面処理を施し、表面処理鋼板とした。
【0013】
これら表面処理鋼板の平均結晶粒径、AI値、平均r値およびΔrを調査した。なお、平均r値およびΔrは下記式を用いて求めた。
平均r値=(rL +rC +2rD )/4
Δr=(rL +rC −2rD )/2
ただし、rL 、rC 、rD は、それぞれ圧延方向に対し0度、90度、45度の方向のr値である。平均結晶粒径は、JIS G0552 の規定に準拠して板幅中央部で板厚断面(表面 0.005mmを除く)の平均値を測定した。AI値は、引張試験で7.5 %引張予歪を付与したのち100 ℃×30min の熱処理を施し熱処理前後の降伏応力の増加量を測定した。
【0014】
これら表面処理鋼板の両面に、厚さ20μm のポリエステル樹脂フィルム(融点230 ℃)を熱接着により、樹脂フィルムを被覆したフィルムラミネート鋼板(ポリエステル樹脂被覆鋼板)とした。
ついで、予めパーム油を塗布したポリエステル樹脂被覆鋼板から直径179mm の円盤を打ち抜き、常法により絞り比1.56の浅絞りカップに成形した。ついで、このカップは、絞り比1.37の第1次再絞り工程、絞り比1.27の第2次再絞り工程を経て、カップ径63mm、カップ高さ127mm の深絞りカップに成形された。さらに、上記した深絞りカップに、常法によりボトム成形を施し缶底にドーム部を形成した。
【0015】
成形後、耳高さを測定し、耳高さの平均値を耳発生量とした。また、ストレッチャーストレインの発生の有無は、缶底のドーム部外観を目視観察で評価した。なお、肉眼でストレッチャーストレイン模様が判別できた場合をストレッチャーストレイン発生ありとした。その後、深絞りカップのトリミングを行い、ついでネックイン加工を行った。ネックイン加工後の缶表面を目視で観察し、肌荒れの発生の有無を評価した。なお、目視で評価が困難な場合には、樹脂被覆を剥離して表面粗さを測定しRa≧ 1.0μm の場合に肌荒れ発生とした。
【0016】
肌荒れの発生、ストレッチャーストレインの発生、および耳発生の度合いを鋼板各特性と関連づけて図1〜図3に示す。
図1から、鋼板の平均結晶粒径を6μm 以下とすることにより、成形後の肌荒れの発生を防止できることがわかる。図2から、鋼板のAI値を40MPa 以下とすることにより、成形後のストレッチャーストレインの発生を防止できることがわかる。図3から、Δrを-0.1〜+0.1の範囲とすることにより、耳発生の度合いが小さくなることがわかる。
【0017】
本発明は、上記した知見に基づいて構成されたものである。
すなわち、本発明は、重量%で、C:0.02%以上0.10%未満、Si:0.10%以下、Mn:0.4 %以上1.0 %以下、P:0.04%以下、S:0.02%以下、Al:0.01%以上0.1 %以下、N:0.0050%以下、B:0.0010%以上0.0050%以下を含有し、残部Feおよび不可避的不純物からなり、平均結晶粒径が6μm 以下、時効性指数AI値が40MPa 以下、r値が1.0 超えで、かつr値の面内異方性をしめすΔrが±0.1 以内であることを特徴とする耐時効性に優れかつ耳発生率の小さい表面処理鋼板用原板である。
【0018】
また、本発明は、重量%で、C:0.02%以上0.10%未満、Si:0.10%以下、Mn:0.4 %以上1.0 %以下、P:0.04%以下、S:0.02%以下、Al:0.01%以上0.1 %以下、N:0.0050%以下、B:0.0010%以上0.0050%以下を含有し、残部Feおよび不可避的不純物からなり、平均結晶粒径が6μm 以下、時効性指数AI値が40MPa 以下、r値が1.0 超えで、かつr値の面内異方性をしめすΔrが±0.1 以内で少なくとも樹脂被覆を有することを特徴とする耐時効性に優れかつ耳発生率の小さい表面処理鋼板である。
【0019】
さらに、本発明は、重量%で、C:0.02%以上0.10%未満、Mn:0.4 %以上1.0 %以下、Al:0.01%以上0.1 %以下、B:0.0010%以上0.0050%以下、N:0.0050%以下を含有し、さらにSi:0.10%以下、P:0.04%以下、S:0.02%以下を含有し残部Feおよび不可避的不純物からなる鋼素材を、加熱後、Ar3 変態点以上で仕上げ圧延を終了する熱間圧延を施し、巻取り温度: 650〜 700℃でコイルに巻取ったのち、圧下率:80〜88%の1次冷間圧延を行い、ついで再結晶温度以上 720℃以下の温度で60s以下の連続焼鈍を行い、焼鈍後 350〜 500℃の温度域まで50℃/s以上の冷却速度で冷却し、30s以上の過時効処理を施したのち、圧下率:1.0 〜8%の2次冷間圧延を施すことを特徴とする平均結晶粒径が6μm 以下、時効性指数AI値が40MPa 以下、r値が1.0 超えで、かつr値の面内異方性をしめすΔrが±0.1 以内である表面処理鋼板用原板の製造方法である。
【0020】
なお、本発明でいう表面処理とは、種々のめっきや樹脂被覆等を含むものとする。本発明では、表面処理鋼板用原板に金属クロムおよびクロム酸化物層からなる表面処理層を付着させた後、樹脂被覆を施してもよい。
【0021】
【発明の実施の形態】
本発明の鋼板は、とくに板厚0.20mm以下の極薄鋼板として好適である。
まず、本発明鋼板の化学組成の限定理由について説明する。
C:0.02%以上0.10%未満
Cは、鋼板の細粒化と時効性の観点から、本発明において重要な元素の1つである。時効性を低減するためには、セメンタイトを十分に析出させ、鋼中の固溶C量を少なくする必要があるが、このためには、セメンタイト間の距離を短くし固溶Cの拡散距離を短くするのが有効である。また、セメンタイト間の距離を短くすることにより、焼鈍時の結晶粒成長を抑制し、結晶粒の細粒化が図れる。セメンタイト間の距離を短くしセメンタイトの析出を容易にするためには、C量を適度に多くしセメンタイトの析出核を増加させるのがよく、本発明ではC量を0.02%以上とする。C量が0.02%未満では、短時間焼鈍である連続焼鈍を行っても平均結晶粒径を6μm 以下とすることができない。また、C量が0.10%以上では、過度に硬質化し成形性が劣化する。このようなことから、C量は0.02%以上0.10%未満に限定した。
【0022】
Si:0.10%以下
Siは、多量に添加すると表面処理性、耐食性を劣化させるため、その上限を0.10%に限定した。とくに、優れた耐食性が要求される場合には、Siは0.02%以下とするのが好ましい。
Mn:0.4 〜1.0 %
Mnは、Sによる熱間脆性を抑制するために有効な元素である。また、Mnは、セメンタイト中に濃化し、セメンタイト/フェライト界面の移動速度を低下させ、セメンタイトの凝集、粗大化を抑制し結晶粒を細粒化する効果を有する。さらにMnは、熱延工程中に析出したセメンタイトが焼鈍時に再固溶するのを防止し、耐時効性の低下を抑制する効果も有する。これらの効果は、0.4 %以上の含有で認められるが、一方、1.0 %を超えて多量に含有すると、耐食性が劣化する傾向にあることに加え、鋼板を硬質化させ製缶加工性を劣化させる。なお、好ましくはMnは、時効性低減の観点から 0.5〜 1.0%である。
【0023】
P:0.04%以下
Pは、鋼を硬質化させ、加工性を劣化させるとともに、耐食性を劣化させる元素であり、0.04%を超えるとその影響が顕著となるため、0.04%を上限とした。なお、とくに耐食性、加工性が重視される場合には、0.01%以下とするのが好ましい。
【0024】
S:0.02%以下
Sは、鋼中で介在物として存在し、鋼板の延性を低下させ、さらに耐食性を劣化させる元素であり、0.02%を上限とした。とくに、加工性が要求される用途の場合には、0.010 %以下とするのが望ましい。
Al:0.01〜0.1 %
Alは、AlN として鋼中の固溶Nを固定化するため、低時効性を得るのに有効な元素であるが、このためには、0.01%以上の含有を必要とする。なお、時効性に対し厳しい用途の場合には、0.04%以上の含有が好ましい。一方、含有量が多すぎると、アルミナクラスターなどに起因する表面欠陥の発生頻度が急増するため、0.1 %を上限とした。
【0025】
N:0.0050%以下
Nは、時効性を高める元素であり、ストレッチャーストレインの発生頻度を増加させるため、できるだけ低減するのが望ましい。本発明では、Bの添加により固溶NはBNとして固定されるが、0.0050%以下に制限すれば、上記した悪影響を抑制でき実用上の不具合発生を防止できる。下限はとくに限定しないが、0.0010%程度であれば、経済的、工業的に達成できる範囲といえる。なお、材質の安定確保という観点からは、0.0030%以下とするのが望ましい。
【0026】
B:0.0010〜0.0050%
Bは、本発明において重要な元素である。Bは集合組織制御によりr値を向上させ、さらにΔrを0に近づける効果、AlN として固定しきれないNをBNとして固定し時効性を低減させる効果および結晶粒を微細化させる効果を有している。このようなBの望ましい効果は、0.0010%以上の含有で認められるが、0.0050%を超えて含有すると、表面欠陥の発生などの不具合を生じる。このため、Bは0.0010〜0.0050%の範囲に限定した。なお、材質の安定性を考慮すれば、Bは0.0010〜0.0030%の範囲である。
【0027】
残部はFeおよび不可避的不純物からなる。
不純物として、Sn、Cu、Crなどのトランプエレメントが混入しても、おのおのが0.10%以下程度であれば許容でき、缶としての使用特性に及ぼす影響は無視できる。
平均結晶粒径:6μm 以下
鋼板の平均結晶粒径は6μm 以下とする。平均結晶粒径が6μm を超えると、図1に示すように成形後に肌荒れが発生する。平均結晶粒径6μm 以下の細粒化は、Bを適量添加するほか、C、Mnを適量含有させ、巻取温度を調整することでセメンタイト分布を密に制御し、さらにこのセメンタイトが再固溶しない低温短時間の焼鈍条件を採用することで達成できる。なお、仕上圧延温度の限定も重要である。
【0028】
時効性指数AI値:40MPa 以下
鋼板の時効性指数AI値を40MPa 以下とする。時効性指数AI値が40MPa を超えると、図2に示すように成形後にストレッチャーストレインが発生する。AI値 40MPa以下の耐時効性は、固溶Nおよび固溶Cの低減により達成できる。固溶Nの低減はB、Alを適量添加し、巻取温度を制御して十分窒化物を析出させることで、また固溶Cの低減は、Mnを適正量含有させてセメンタイトを安定化させる一方、巻取温度を制御してセメンタイトを粗大化しない範囲で十分析出させ、焼鈍条件もセメンタイトの再固溶を避ける低温短時間の連続焼鈍とし、さらにその後急冷および過時効処理を十分行うことで達成できる。
なお、AI値は、引張試験で 7.5 %引張予歪を付与したのち 100 ℃× 30min の熱処理を施し熱処理前後の降伏応力の増加量をいうものとする。
【0029】
r値:1.0 超え
深絞り缶の用途に用いるためには、r値は1.0 超えとする必要がある。r 値が1.0 以下では、深絞り加工が困難となり、所望の缶形状に加工できなくなる。
Δr:±0.1 以内
r値の異方性を示すΔrが±0.1 の範囲を超えると、製缶後に耳発生の度合いが大きくなる。r値を 1.0超えとし、かつΔrを±0.1 以内とすることは、固溶NをB、Alの適量添加および巻取温度制御によって低減する、仕上圧延温度をAr3 変態点以上で行う、さらに冷間圧延の圧下率を80〜88%の範囲に限定することにより達成できる。
【0030】
つぎに、本発明鋼板の製造条件について説明する。
上記した組成の溶鋼を通常公知の溶製方法で溶製し、連続鋳造法あるいは造塊法により凝固させ鋼素材とする。鋼素材は熱間圧延を施され熱延板とされる。なお、鋼素材は、いったん室温まで冷却したのち再加熱するか、あるいは冷却することなく加熱炉に装入されて加熱されてもよい。
【0031】
本発明では、鋼素材の加熱温度はとくに限定されないが、好ましくは1100〜1300℃で10〜 240min 加熱保持されるのが望ましい。加熱温度が1100℃未満では、目標の圧延温度が達成されないうえ、その後の圧延時に疵を発生する危険がある。一方、加熱温度が1300℃を超えると、異常粒成長を生じ組織が不均一となるうえエネルギーコストが増加する。このため、鋼素材の加熱温度は1100〜1300℃の範囲にするのが好ましい。
【0032】
加熱温度における保持時間が、10min 未満では、鋼素材内の温度が不均一でありシートバーの反り、曲がりなどの圧延トラブルが多発する。また、 240min を超えて保持すると、スケールロスが顕著となる。このため、加熱温度における保持時間は10〜 240min とするのが望ましい。
鋼素材は、加熱後熱間圧延を施される。本発明では、熱間圧延の仕上圧延温度(圧延終了温度)をAr3 変態点以上とするのが望ましい。
【0033】
仕上圧延温度がAr3 変態点未満では、最終製品の結晶粒を微細化することが困難であり製缶後の表面美麗性が損なわれる。なお、Ar3 変態点+50℃を超えて仕上圧延されると、スケールロスが増加するため、好ましくはAr3 変態点+50℃以下とする。なお、仕上圧延後、強制冷却を行うのが望ましい。強制冷却により、材質の面内異方性が抑制され、さらに脱スケール性も改善される。
【0034】
仕上圧延後、コイルに巻取られる。巻取り温度は、 650〜 700℃とする。巻取り温度が 650℃未満では、鋼板形状、幅方向の材質均一性が低下するため缶用極薄鋼板としては好ましくない。また、セメンタイト、AlN を十分に析出させることができず、時効性の低下および目標のr値が得られない。また、 700℃を超えると、セメンタイトの凝集、粗大化が生じ、結晶粒の細粒化が不十分となるとともにスケール厚が増加する。
【0035】
熱延後、通常は酸洗を行う。
酸洗の条件はとくに限定する必要はなく、通常の塩酸、硫酸による酸洗を実施すればよい。
酸洗に続いて、冷間圧延を行う。
酸洗後の冷間圧延は、焼鈍後の冷間圧延と区別するため、1次冷間圧延と呼ぶ。1次冷間圧延の圧下率は80〜88%とする。
【0036】
冷間圧下率は、r値およびΔrと関係があり、圧下率が80%未満あるいは88%超では、r値が低下する。また、圧下率が80%未満ではΔrが正の側に 0.1を超え、圧下率が88%を超えると負の側に 0.1を超える。なお、熱処理の負荷の観点からは85%以上とするのが好ましい。
1次冷間圧延後、焼鈍を行う。
【0037】
焼鈍は、再結晶温度以上 720℃以下の温度で60s以下の連続焼鈍を行う。本発明では、結晶粒を6μm 以下と微細化するために、短時間焼鈍である連続焼鈍法で焼鈍する。優れた成形性、とくに高いr値を得るため、鋼板の焼鈍は鋼板の再結晶温度以上で行い、再結晶組織とする。しかし、720 ℃を超える高温で焼鈍すると、再結晶粒の成長およびセメンタイトの再固溶による粒成長抑制力の低下により結晶粒が粗大化し、肌荒れが発生する。また、セメンタイトの再固溶により時効性が劣化する。このため、焼鈍温度は再結晶温度以上 720℃以下の温度に限定した。好ましくは、再結晶温度以上 700℃以下である。
【0038】
また、焼鈍時間(実質的な均熱時間)は60s以下とする。焼鈍時間が60sを超えると、再結晶粒の成長およびセメンタイトの再固溶による粒成長抑制力の低下により、結晶粒が粗大化し肌荒れが発生する。なお、焼鈍時間は30s以下とするのが好ましい。
焼鈍後 350〜 500℃の温度域まで50℃/s以上の冷却速度で冷却し、 500〜 350℃の温度域で30s以上の過時効処理を施す。これらの条件のいずれかを外すと十分な耐時効性が得られない。
【0039】
過時効処理後、2次冷間圧延(調質圧延)を行う。
2次冷間圧延の圧下率は1.0 〜8%とする。2次冷間圧延は、缶体強度を確保するために必要な圧下率で行う必要がある。焼鈍板の材質の均一化、可動転位の導入による時効性の低減のために、少なくとも1.0 %以上の圧下率とする必要がある。一方、圧下率が8%を超えると、r値の低下による成形性の劣化やΔrの増加による耳発生率の増大が生じる。このため、2次冷間圧延の圧下率は1.0 〜8%とした。
【0040】
上記した条件を適用して製造すれば、結晶粒径が6μm 以下、時効性指数AI値が40MPa 以下、r値が1.0 超えで、かつr値の面内異方性をしめすΔrが±0.1 以内である表面処理鋼板用原板が得られる。
これら表面処理鋼板用原板に、さらに表面処理を施してもよい。表面処理として、樹脂被覆や錫めっき、クロムめっき、あるいはこれらの複合めっき等が好適である。とくに本発明では、表面処理鋼板用原板に少なくとも樹脂被覆を施すのが好ましい。さらに、原板に金属クロムおよびクロム酸化物層からなる表面処理層を付着させたのち、樹脂被覆を施すのがさらに好適である。また、めっきを施さず塗油鋼板としてもよい。
【0041】
【実施例】
(実施例1)
表1に示す組成の鋼を転炉で溶製し、連続鋳造法でスラブとした。ついでこれらスラブを表2に示す条件の熱間圧延、1次冷間圧延、連続焼鈍、2次冷間圧延を行い、最終仕上げ板厚を0.18mmの極薄鋼板とした。ついで、金属クロム層とクロム酸化物層を付着させる表面処理を施し表面処理鋼板(ティンフリー鋼板)とした。
【0042】
これら表面処理鋼板の平均結晶粒径、AI値、平均r値およびΔr値を測定した。
なお、平均結晶粒径は、JIS G0552 の規定に準拠して板幅中央部で板厚断面の平均値を求めた。また、平均r値およびΔrは、JIS 13 号試験片を用いて、圧延各方向のr値を求め、下記式を用いて、平均r値およびΔrを計算した。
【0043】
平均r値=(rL +rC +2rD )/4
Δr=(rL +rC −2rD )/2
ただし、rL 、rC 、rD は、それぞれ圧延方向に対し0度、90度、45度の方向のr値である。
AI値は、引張試験で7.5 %引張予歪を付与したのち100 ℃×30min の熱処理を施し熱処理前後の降伏応力の増加量を測定した。
【0044】
これら表面処理鋼板の両面に、厚さ20μm のポリエステル樹脂フィルム(融点230 ℃)を熱接着し、フィルムラミネート鋼板(ポリエステル樹脂被覆鋼板)とした。
ついで、ポリエステル樹脂被覆鋼板から直径179mm の円盤を打ち抜き、常法により絞り比1.56の浅絞りカップに成形した。ついで、このカップは、絞り比1.37の第1次再絞り工程、絞り比1.27の第2次再絞り工程を経て、カップ径63mm、カップ高さ127mm の深絞りカップに成形された。さらに、上記した深絞りカップに、常法によりボトム成形を施し缶底にドーム部を形成した。
【0045】
成形後、耳高さを測定し、耳高さの平均値を耳発生量とした。また、深絞り成形性は割れ、しわの発生を目視で観察し評価した。また、ストレッチャーストレインの発生の有無は、缶底のドーム部外観を目視観察で評価した。 その後、深絞りカップのトリミングを行い、ついでネックイン加工を行った。ネックイン加工後の缶表面を目視で観察し、肌荒れの発生の有無を評価した。なお、評価の基準は、図1、図2における場合と同様とした。
【0046】
これらの結果を表3に示す。
【0047】
【表1】

Figure 0003728911
【0048】
【表2】
Figure 0003728911
【0049】
【表3】
Figure 0003728911
【0050】
表3から、本発明例は、比較例にくらべ平均結晶粒が微細であり、平均r値も1.0 を超える値を示し、AI値も40MPa 以下であり、耐時効性に優れ、深絞り性、耐肌荒れ性に優れ、さらに、ストレッチャーストレインの発生もなく、耳発生高さも低く、厳しい加工が施される薄肉化深絞り缶用素材として好適である。これに対し、本発明の範囲を外れる比較例は、耐時効性、深絞り性、耐肌荒れ性の少なくともいずれか劣り、さらに、ストレッチャーストレインの発生、耳発生高さが高いなど、薄肉化深絞り缶用素材として不適である。
【0051】
(実施例2)
表1に示す鋼No.1およびNo.2の組成を有する鋼を転炉で溶製し、連続鋳造法でスラブとした。ついで、これらスラブを表4に示す条件で最終仕上板厚0.13〜0.18mmの極薄鋼板とした。ついで、金属クロム層とクロム酸化物層を付着させる表面処理を施し表面処理鋼板(ティンフリー鋼板)とした。これらの表面処理鋼板について、実施例1と同様の調査を行い、その結果を表5に示す。
【0052】
【表4】
Figure 0003728911
【0053】
【表5】
Figure 0003728911
【0054】
表5から実施例1と同様に本発明例は、比較例にくらべ平均結晶粒が微細であり、平均r値も 1.0を超える値を示し、AI値も40MPa 以下であり、耐時効性に優れ、深絞り性、耐肌荒れ性に優れ、さらにストレッチャーストレインの発生もなく、耳発生高さも低く、厳しい加工が施される薄肉化深絞り缶用素材として好適である。これに対し、本発明の範囲を外れる比較例は、耐時効性、深絞り性、耐肌荒れ性の少なくともいずれかで劣り、さらにストレッチャーストレインの発生、耳発生高さが高いなど、薄肉化深絞り缶用素材として不適である。
【0055】
【発明の効果】
本発明によれば、深絞り性、耐時効性に優れ、製缶加工後に肌荒れ、ストレッチャーストレインなどの外観不良が発生することなく、深絞り缶用表面処理鋼板の原板、、なかでもポリエステル樹脂被覆鋼板の原板として好適な極薄鋼板を製造できる。さらに、本発明の鋼板は、板厚0.20mm以下の極薄鋼板として素材費を低減できるうえ、さらに製缶加工後に耳発生率が低く、素材歩留りを向上させることができ、産業上格段の効果を奏する。また、本発明の鋼板は、ポリエステル樹脂被覆鋼板以外にも、その優れた加工性、耐時効性を生かしてDI缶用鋼板、あるいは3ピース缶用鋼板として使用することもできる。
【図面の簡単な説明】
【図1】成形後肌荒れにおよぼす平均結晶粒径の影響を示すグラフである。
【図2】成形後ストレッチャーストレインの発生におよぼす製品鋼板のAI値の影響を示すグラフである。
【図3】耳発生高さにおよぼすΔrの影響を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel plate for deep drawing cans suitable for use in two-piece cans such as food cans and beverage cans, and more particularly to an ultrathin steel plate suitable as an original plate for cans made by coating with a polyester resin.
[0002]
[Prior art]
In the two-piece can, as in a DRD (Draw & Redraw) can and a DWI (Draw & Wall Ironing) can, an organic paint is applied after molding to protect the can contents. However, recently, a can-making method in which molding is performed using a film-laminated steel sheet whose surface has been previously coated with a resin film has attracted attention. As an example of a film-laminated steel plate, for example, JP-A-2-269647 discloses a steel plate in which a tin-free steel plate is used as a base plate and the base plate is covered with biaxially stretched polyethylene terephthalate.
[0003]
This can-making method, in which the original plate is covered with a film to make a can,
(1) Lubricating oil, which was conventionally required for deep drawing or deep drawing and ironing, is no longer necessary, so that the subsequent step of cleaning the lubricating oil can be omitted, and further cleaning can be performed by omitting the cleaning step. Elimination of drainage.
{Circle around (2)} Conventionally, the can inner surface coating and baking treatment, which has been conventionally performed for protecting the contents of the can, is no longer necessary, and therefore the carbon dioxide gas generated during the baking treatment is not discharged.
Such a positive contribution can be expected in terms of global environmental protection.
[0004]
However, since the manufacturing cost of cans using film-laminated steel sheets is higher as a whole than that of conventional DRD cans and DWI cans, there is a demand for thinner materials for cost reduction.
As a characteristic required for thinned 2-piece can materials
(i) High r value and excellent deep drawability.
[0005]
  (ii) Δr is close to 0 and the rate of occurrence of ears after molding is low.
  (iii) The crystal grains are fine and no rough skin occurs after molding.
(iv) Excellent aging resistance and no stretcher strain after molding.
Is mentioned.
[0006]
The ear occurrence rate is expressed by Δr (= (rL+ rC-2 rDIt is well known that there is a correlation with) / 2). As Δr is closer to 0, ears are less generated and the material yield is improved. In addition, since the coarser the crystal grains, the more likely the surface becomes rough after molding. JP-A-4-314535 discloses a method for adjusting the crystal grain size of the original plate to 5 μm or less and the surface roughness Ra to 0.5 μm or less. It is disclosed as a method for preventing rough skin after molding. However, in the technique described in Japanese Patent Laid-Open No. 4-314535, in order to achieve finer crystal grains, the C content is increased to 0.1 to 0.2%, and further Mn and P are added, so that the steel sheet is formed. There is a problem that it becomes hard and the r value is about 1.1, the deep drawability deteriorates and the moldability is inferior.
[0007]
[Problems to be solved by the invention]
If the amount of C is extremely reduced and softened, the formability such as the r value is improved, but it is difficult to make the crystal grains fine in an extremely low carbon steel sheet having an extremely reduced amount of C. In order to achieve both softening and crystal grain refinement, it is conceivable to use low carbon steel with a slightly increased C content as a raw material, but even in low carbon steel, annealing is performed to suppress grain coarsening. Instead of box annealing, the use of continuous annealing that can shorten the annealing time is required.
[0008]
However, the low-carbon steel sheet subjected to continuous annealing has a low r value, and there is a problem that excellent deep drawability cannot be secured. Furthermore, when annealing is performed for a short time, precipitation of cementite becomes insufficient and aging resistance deteriorates.
When using a low-carbon steel sheet that has been subjected to such continuous annealing treatment and is inferior in aging resistance as the original sheet of a film-laminated steel sheet that covers the resin film on the original sheet, the film is coated at 260 ° C. for 10 seconds to several seconds. Due to the heat treatment, strain aging occurs, and there is a problem that strain strain is likely to occur during molding.
[0009]
The present invention advantageously solves the above-mentioned problems, is excellent in deep drawability and aging resistance, does not cause rough appearance after canning processing, does not cause poor appearance such as stretcher strain, and has an ear occurrence rate after canning processing An object of the present invention is to provide an ultrathin steel sheet that is low and suitable as an original sheet for a surface-treated steel sheet such as a polyester resin-coated steel sheet for deep drawing cans.
[0010]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above-mentioned problems, the inventors have found that addition of B is effective for improving aging resistance, improving r value, and improving in-plane anisotropy of r value. I found something. B has the effect of fixing the solid solution N as BN in the hot rolling process and reducing the aging property of the steel sheet, and further, deep drawing (r) in the annealing process after cold rolling mainly by reducing the amount of solid solution N. Value) and r-value in-plane anisotropy facilitates formation of (111) textures that are advantageous.
[0011]
Furthermore, the present inventors add B and Mn, further adjust the amount of C, and perform annealing for a short time by continuous annealing, thereby improving aging resistance and making the crystal grains finer after can processing. I found that rough skin can be prevented.
As a result of further investigation based on the above technical idea, the present inventors have determined that the specific steel plate characteristics of the surface-treated steel plate are an average crystal grain size of 6 μm or less, an aging index AI value of 40 MPa or less, and an r value. By setting the r value in-plane anisotropy Δr to within ± 0.1, it is possible to prevent the formation of rough skin and stretcher strain even after molding into a deep drawn can. We found that the incidence could be reduced.
[0012]
The above-mentioned steel plate characteristics are obtained from the following experiment.
After heating steel materials with various amounts of C, Mn, B, Al, and N, they are heated and then hot rolled with various hot rolling conditions such as finish rolling temperature, and wound into coils, pickled, primary After cold rolling, continuous annealing was performed with various annealing conditions changed, followed by secondary cold rolling to obtain a steel sheet having a thickness of 0.18 mm. Next, surface treatment was performed by attaching a surface treatment layer composed of a metal chromium layer and a chromium oxide layer to these steel plates to obtain surface treated steel plates.
[0013]
The average crystal grain size, AI value, average r value and Δr of these surface-treated steel sheets were investigated. The average r value and Δr were obtained using the following formula.
Average r value = (rL+ RC+ 2rD) / 4
Δr = (rL+ RC-2rD) / 2
Where rL, RC, RDAre r values in directions of 0 degree, 90 degrees and 45 degrees with respect to the rolling direction, respectively. The average crystal grain size was determined by measuring the average value of the plate thickness cross section (excluding the surface of 0.005 mm) at the center of the plate width in accordance with the provisions of JIS G0552. The AI value was measured by measuring the amount of increase in yield stress before and after heat treatment by applying a heat treatment of 100 ° C. × 30 min after applying 7.5% tensile prestrain in a tensile test.
[0014]
A film laminated steel plate (polyester resin-coated steel plate) in which a polyester resin film (melting point: 230 ° C.) having a thickness of 20 μm was coated on both surfaces of these surface-treated steel plates by thermal bonding was used.
Subsequently, a disk having a diameter of 179 mm was punched out from a polyester resin-coated steel plate previously coated with palm oil, and formed into a shallow drawn cup having a drawing ratio of 1.56 by a conventional method. Then, this cup was formed into a deep drawn cup having a cup diameter of 63 mm and a cup height of 127 mm through a first redrawing process with a drawing ratio of 1.37 and a second redrawing process with a drawing ratio of 1.27. Further, the above-described deep-drawn cup was subjected to bottom molding by a conventional method to form a dome portion on the bottom of the can.
[0015]
After molding, the ear height was measured, and the average value of the ear height was defined as the ear generation amount. In addition, the presence or absence of stretcher strain was evaluated by visual observation of the appearance of the dome at the bottom of the can. It should be noted that the stretcher strain was generated when the stretcher strain pattern could be identified with the naked eye. Thereafter, the deep drawing cup was trimmed, and then neck-in processing was performed. The surface of the can after neck-in processing was visually observed to evaluate the occurrence of rough skin. When visual evaluation was difficult, the resin coating was peeled off and the surface roughness was measured. When Ra ≧ 1.0 μm, rough skin was determined to occur.
[0016]
The degree of occurrence of rough skin, the occurrence of stretcher strain, and the occurrence of ears are shown in FIGS.
From FIG. 1, it can be seen that the occurrence of rough skin after forming can be prevented by setting the average crystal grain size of the steel sheet to 6 μm or less. From FIG. 2, it can be seen that the stretcher strain after forming can be prevented by setting the AI value of the steel sheet to 40 MPa or less. From FIG. 3, it can be seen that by setting Δr in the range of −0.1 to +0.1, the degree of ear generation is reduced.
[0017]
The present invention is configured based on the above-described knowledge.
That is, in the present invention, C: 0.02% or more and less than 0.10%, Si: 0.10% or less, Mn: 0.4% or more and 1.0% or less, P: 0.04% or less, S: 0.02% or less, Al: 0.01% And 0.1% or less, N: 0.0050% or less, B: 0.0010% or more and 0.0050% or less, consisting of the balance Fe and inevitable impurities, an average crystal grain size of 6 μm or less, an aging index AI value of 40 MPa or less, r A surface-treated steel plate having excellent aging resistance and a low ear generation rate, characterized in that the value r exceeds 1.0 and Δr indicating in-plane anisotropy of the r value is within ± 0.1.
[0018]
In the present invention, C: 0.02% or more and less than 0.10%, Si: 0.10% or less, Mn: 0.4% or more and 1.0% or less, P: 0.04% or less, S: 0.02% or less, Al: 0.01% And 0.1% or less, N: 0.0050% or less, B: 0.0010% or more and 0.0050% or less, consisting of the balance Fe and inevitable impurities, an average crystal grain size of 6 μm or less, an aging index AI value of 40 MPa or less, r A surface-treated steel sheet having excellent aging resistance and a low ear generation rate, characterized in that the value is over 1.0, Δr indicating in-plane anisotropy of the r value is within ± 0.1 and at least a resin coating is provided.
[0019]
  Further, the present invention is by weight%, C: 0.02% to less than 0.10%, Mn: 0.4% to 1.0%, Al: 0.01% to 0.1%, B: 0.0010% to 0.0050%, N: 0.0050% ContainsTheIn addition, a steel material containing Si: 0.10% or less, P: 0.04% or less, S: 0.02% or less, and the balance Fe and inevitable impurities,ThreeHot rolling is performed to finish the finish rolling above the transformation point. After coiling at a coiling temperature of 650 to 700 ° C, primary cold rolling with a reduction ratio of 80 to 88% is performed, followed by recrystallization. Continuous annealing for 60s or less at a temperature of 720 ° C or higher, and after annealing, cooling to a temperature range of 350 to 500 ° C at a cooling rate of 50 ° C / s or more, and after over-aging for 30s or more Rate: 1.0 to 8% secondary cold rolling, characterized by an average grain size of 6 μm or less, an aging index AI value of 40 MPa or less, an r value exceeding 1.0, and an in-plane difference in r value This is a method for producing an original sheet for a surface-treated steel sheet having a directivity Δr of within ± 0.1.
[0020]
The surface treatment referred to in the present invention includes various plating and resin coating. In the present invention, a resin coating may be applied after a surface treatment layer made of metal chromium and a chromium oxide layer is attached to a surface treated steel plate.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
The steel plate of the present invention is particularly suitable as an ultrathin steel plate having a thickness of 0.20 mm or less.
First, the reasons for limiting the chemical composition of the steel sheet of the present invention will be described.
C: 0.02% or more and less than 0.10%
C is one of the important elements in the present invention from the viewpoints of grain refinement and aging of the steel sheet. In order to reduce aging, it is necessary to sufficiently precipitate cementite and reduce the amount of solute C in the steel. For this purpose, the distance between cementite is shortened and the diffusion distance of solute C is reduced. It is effective to shorten it. In addition, by shortening the distance between cementite, crystal grain growth during annealing can be suppressed and the crystal grains can be made finer. In order to shorten the distance between cementite and facilitate the precipitation of cementite, it is preferable to increase the amount of C appropriately to increase the precipitation nuclei of cementite. In the present invention, the amount of C is set to 0.02% or more. If the amount of C is less than 0.02%, the average crystal grain size cannot be made 6 μm or less even if continuous annealing is performed for a short time. On the other hand, if the C content is 0.10% or more, it becomes excessively hard and the formability deteriorates. For these reasons, the C content is limited to 0.02% or more and less than 0.10%.
[0022]
  Si: 0.10% or less
  When Si is added in a large amount, the surface treatment property and corrosion resistance deteriorate, so the upper limit was limited to 0.10%. In particular, when excellent corrosion resistance is required, Si is preferably 0.02% or less.
  Mn: 0.4 to 1.0%
  Mn is an effective element for suppressing hot brittleness due to S. In addition, Mn has an effect of concentrating in cementite, lowering the moving speed of the cementite / ferrite interface, suppressing agglomeration and coarsening of cementite, and refining crystal grains. Further, Mn has an effect of preventing cementite precipitated during the hot rolling process from re-dissolving during annealing and suppressing deterioration of aging resistance. These effects are recognized at a content of 0.4% or more. On the other hand, when the content exceeds 1.0%, the corrosion resistance tends to deteriorate, and the steel plate is hardened and the can manufacturing process is deteriorated. . In addition, Preferably Mn is 0.5 to 1.0% from a viewpoint of aging reduction.
[0023]
P: 0.04% or less
P is an element that hardens the steel, deteriorates workability, and deteriorates corrosion resistance. If the content exceeds 0.04%, the effect becomes significant, so 0.04% was made the upper limit. In particular, when corrosion resistance and workability are important, the content is preferably 0.01% or less.
[0024]
S: 0.02% or less
S is an element that exists as an inclusion in steel, lowers the ductility of the steel sheet, and further degrades the corrosion resistance. The upper limit is 0.02%. In particular, in applications where processability is required, it is desirable to make it 0.010% or less.
  Al: 0.01 to 0.1%
  Al is an element effective for obtaining low aging because it fixes solid solution N in steel as AlN. For this purpose, it needs to contain 0.01% or more. In addition, in the case of applications that are severe with respect to aging, the content is preferably 0.04% or more. On the other hand, if the content is too high, the frequency of surface defects due to alumina clusters and the like increases rapidly, so 0.1% was made the upper limit.
[0025]
N: 0.0050% or less
N is an element that enhances aging, and it is desirable to reduce it as much as possible in order to increase the occurrence frequency of stretcher strain. In the present invention, the solid solution N is fixed as BN by the addition of B. However, if it is limited to 0.0050% or less, the above-described adverse effects can be suppressed and the occurrence of practical problems can be prevented. The lower limit is not particularly limited, but if it is about 0.0010%, it can be said that it can be achieved economically and industrially. In addition, from the viewpoint of ensuring the stability of the material, it is desirable to make it 0.0030% or less.
[0026]
B: 0.0010-0.0050%
B is an important element in the present invention. B has the effect of improving the r value by texture control and further bringing Δr close to 0, fixing N which cannot be fixed as AlN as BN, reducing aging, and making the crystal grains finer. Yes. Such a desirable effect of B is recognized when the content is 0.0010% or more. However, when the content exceeds 0.0050%, problems such as generation of surface defects occur. For this reason, B was limited to the range of 0.0010 to 0.0050%. In consideration of the stability of the material, B is in the range of 0.0010 to 0.0030%.
[0027]
The balance consists of Fe and inevitable impurities.
Even if Tr, such as Sn, Cu, and Cr, are mixed as impurities, each is acceptable if it is about 0.10% or less, and the influence on the use characteristics as a can is negligible.
Average grain size: 6μm or less
The average crystal grain size of the steel sheet is 6 μm or less. When the average crystal grain size exceeds 6 μm, roughening occurs after molding as shown in FIG. Fine graining with an average crystal grain size of 6 μm or less, in addition to adding an appropriate amount of B, adding an appropriate amount of C and Mn, and adjusting the coiling temperature to control the distribution of cementite closely. This can be achieved by employing low temperature and short time annealing conditions. It is important to limit the finish rolling temperature.
[0028]
  Aging index AI value: 40 MPa or less
  The aging index AI value of the steel sheet is 40 MPa or less. When the aging index AI value exceeds 40 MPa, stretcher strain occurs after molding as shown in FIG. Aging resistance with an AI value of 40 MPa or less can be achieved by reducing solid solution N and solid solution C. Reduction of solid solution N is by adding appropriate amounts of B and Al and controlling the coiling temperature to sufficiently precipitate nitride. Reduction of solid solution C is to stabilize cementite by containing an appropriate amount of Mn. On the other hand, the coiling temperature should be controlled so that the cementite is sufficiently coarsened, and the annealing conditions should be continuous annealing at a low temperature and a short time to avoid re-dissolution of cementite, followed by rapid cooling and overaging. Can be achieved.
  In addition, AI value is a tensile test. 7.5 After applying% tensile pre-strain 100 ℃ × 30min The amount of increase in yield stress before and after the heat treatment.
[0029]
r value: over 1.0
In order to use for deep drawn cans, the r value needs to exceed 1.0. If the r value is 1.0 or less, deep drawing is difficult, and the desired can shape cannot be processed.
Δr: Within ± 0.1
When Δr indicating the anisotropy of the r value exceeds the range of ± 0.1, the degree of ear generation after canning increases. Setting the r value to exceed 1.0 and Δr to be within ± 0.1 reduces the solid solution N by adding appropriate amounts of B and Al and controlling the coiling temperature.ThreeThis can be achieved by limiting the rolling reduction of the cold rolling performed at the transformation point or higher to a range of 80 to 88%.
[0030]
Next, manufacturing conditions for the steel sheet of the present invention will be described.
The molten steel having the above composition is melted by a generally known melting method, and solidified by a continuous casting method or an ingot forming method to obtain a steel material. The steel material is hot rolled into a hot rolled sheet. The steel material may be cooled to room temperature and then reheated, or may be charged and heated in a heating furnace without cooling.
[0031]
In the present invention, the heating temperature of the steel material is not particularly limited, but it is preferable that the heating temperature is preferably maintained at 1100 to 1300 ° C. for 10 to 240 minutes. If the heating temperature is less than 1100 ° C., the target rolling temperature is not achieved, and there is a risk of wrinkling during subsequent rolling. On the other hand, when the heating temperature exceeds 1300 ° C., abnormal grain growth occurs, the structure becomes non-uniform, and the energy cost increases. For this reason, it is preferable that the heating temperature of the steel material be in the range of 1100 to 1300 ° C.
[0032]
If the holding time at the heating temperature is less than 10 min, the temperature in the steel material is not uniform, and rolling troubles such as sheet bar warping and bending frequently occur. In addition, the scale loss becomes prominent if it is kept over 240min. For this reason, the holding time at the heating temperature is preferably 10 to 240 minutes.
The steel material is hot-rolled after heating. In the present invention, the hot rolling finish rolling temperature (rolling end temperature) is set to Ar.ThreeIt is desirable to set it above the transformation point.
[0033]
Finishing rolling temperature is ArThreeBelow the transformation point, it is difficult to refine the crystal grains of the final product, and the surface beauty after canning is impaired. ArThreeWhen finish rolling is performed above the transformation point + 50 ° C, scale loss increases.ThreeThe transformation point + 50 ° C or less. In addition, it is desirable to perform forced cooling after finish rolling. The forced cooling suppresses the in-plane anisotropy of the material and further improves the descaling property.
[0034]
After finish rolling, it is wound on a coil. The winding temperature is 650-700 ° C. When the coiling temperature is less than 650 ° C., the steel plate shape and the material uniformity in the width direction are lowered, which is not preferable as an ultrathin steel plate for cans. Further, cementite and AlN cannot be sufficiently precipitated, and the aging is not lowered and the target r value cannot be obtained. When the temperature exceeds 700 ° C., cementite aggregates and coarsens, resulting in insufficient grain refinement and increased scale thickness.
[0035]
After hot rolling, pickling is usually performed.
The conditions for pickling are not particularly limited, and normal pickling with hydrochloric acid or sulfuric acid may be performed.
Following pickling, cold rolling is performed.
Cold rolling after pickling is called primary cold rolling in order to distinguish it from cold rolling after annealing. The reduction ratio of primary cold rolling is 80 to 88%.
[0036]
The cold rolling reduction is related to the r value and Δr. When the rolling reduction is less than 80% or more than 88%, the r value decreases. Also, when the rolling reduction is less than 80%, Δr exceeds 0.1 on the positive side, and when the rolling reduction exceeds 88%, it exceeds 0.1 on the negative side. From the viewpoint of heat treatment load, it is preferably 85% or more.
After the primary cold rolling, annealing is performed.
[0037]
For annealing, continuous annealing is performed at a temperature of not less than the recrystallization temperature and not more than 720 ° C. for 60 seconds or less. In the present invention, in order to refine the crystal grains to 6 μm or less, annealing is performed by a continuous annealing method which is a short time annealing. In order to obtain excellent formability, particularly a high r value, the steel sheet is annealed at a temperature higher than the recrystallization temperature of the steel sheet to obtain a recrystallized structure. However, if annealing is performed at a high temperature exceeding 720 ° C., the crystal grains become coarse due to the growth of recrystallized grains and the decrease in the ability to inhibit grain growth due to re-solution of cementite, resulting in rough skin. Moreover, aging deteriorates by re-dissolution of cementite. For this reason, the annealing temperature was limited to the recrystallization temperature or higher and 720 ° C or lower. Preferably, the recrystallization temperature is not lower than 700 ° C.
[0038]
The annealing time (substantially soaking time) is 60 s or less. When the annealing time exceeds 60 s, the crystal grains become coarse due to the growth of recrystallized grains and the decrease in grain growth inhibiting power due to re-solution of cementite, resulting in rough skin. The annealing time is preferably 30 s or less.
After annealing, it is cooled to a temperature range of 350 to 500 ° C. at a cooling rate of 50 ° C./s or more, and an overaging treatment is applied for 30 seconds or more in a temperature range of 500 to 350 ° C. If any of these conditions is removed, sufficient aging resistance cannot be obtained.
[0039]
After the overaging treatment, secondary cold rolling (temper rolling) is performed.
The rolling reduction of the secondary cold rolling is 1.0 to 8%. The secondary cold rolling needs to be performed at a reduction rate necessary to ensure the strength of the can body. In order to make the material of the annealed plate uniform and reduce aging by introducing movable dislocations, it is necessary to set the rolling reduction to at least 1.0%. On the other hand, when the rolling reduction exceeds 8%, the formability deteriorates due to the decrease in the r value, and the ear generation rate increases due to an increase in Δr. For this reason, the rolling reduction of the secondary cold rolling is set to 1.0 to 8%.
[0040]
When manufactured by applying the above conditions, the crystal grain size is 6 μm or less, the aging index AI value is 40 MPa or less, the r value exceeds 1.0, and Δr indicating in-plane anisotropy of the r value is within ± 0.1. Thus, an original sheet for a surface-treated steel sheet is obtained.
These surface-treated steel sheet original plates may be further subjected to surface treatment. As the surface treatment, resin coating, tin plating, chromium plating, composite plating of these, or the like is preferable. In particular, in the present invention, at least a resin coating is preferably applied to the surface-treated steel sheet. Further, it is more preferable to apply a resin coating after adhering a surface treatment layer made of metal chromium and a chromium oxide layer to the original plate. Moreover, it is good also as an oil-coated steel plate without plating.
[0041]
【Example】
Example 1
Steel having the composition shown in Table 1 was melted in a converter and made into a slab by a continuous casting method. Subsequently, these slabs were subjected to hot rolling, primary cold rolling, continuous annealing, and secondary cold rolling under the conditions shown in Table 2 to obtain ultrathin steel sheets having a final finished sheet thickness of 0.18 mm. Then, a surface treatment steel plate (tin-free steel plate) was prepared by applying a surface treatment for attaching a metal chromium layer and a chromium oxide layer.
[0042]
The average crystal grain size, AI value, average r value, and Δr value of these surface-treated steel sheets were measured.
The average crystal grain size was determined as the average value of the plate thickness cross section at the center of the plate width in accordance with the provisions of JIS G0552. Moreover, average r value and (DELTA) r calculated | required r value of each rolling direction using the JIS13 test piece, and calculated average r value and (DELTA) r using the following formula.
[0043]
Average r value = (rL+ RC+ 2rD) / 4
Δr = (rL+ RC-2rD) / 2
Where rL, RC, RDAre r values in directions of 0 degree, 90 degrees and 45 degrees with respect to the rolling direction, respectively.
The AI value was measured by measuring the amount of increase in yield stress before and after heat treatment by applying a heat treatment of 100 ° C. × 30 min after applying 7.5% tensile prestrain in a tensile test.
[0044]
A polyester resin film (melting point: 230 ° C.) having a thickness of 20 μm was thermally bonded to both surfaces of these surface-treated steel sheets to obtain film-laminated steel sheets (polyester resin-coated steel sheets).
Next, a disk having a diameter of 179 mm was punched out from the polyester resin-coated steel sheet and formed into a shallow drawn cup having a drawing ratio of 1.56 by a conventional method. Then, this cup was formed into a deep drawn cup having a cup diameter of 63 mm and a cup height of 127 mm through a first redrawing process with a drawing ratio of 1.37 and a second redrawing process with a drawing ratio of 1.27. Further, the above-described deep-drawn cup was subjected to bottom molding by a conventional method to form a dome portion on the bottom of the can.
[0045]
After molding, the ear height was measured, and the average value of the ear height was defined as the ear generation amount. The deep drawability was evaluated by visually observing the occurrence of cracks and wrinkles. In addition, the presence or absence of stretcher strain was evaluated by visual observation of the appearance of the dome at the bottom of the can. Thereafter, the deep drawing cup was trimmed, and then neck-in processing was performed. The surface of the can after neck-in processing was visually observed to evaluate the occurrence of rough skin. The evaluation criteria were the same as those in FIGS. 1 and 2.
[0046]
These results are shown in Table 3.
[0047]
[Table 1]
Figure 0003728911
[0048]
[Table 2]
Figure 0003728911
[0049]
[Table 3]
Figure 0003728911
[0050]
From Table 3, the examples of the present invention have finer average crystal grains than the comparative examples, the average r value exceeds 1.0, the AI value is 40 MPa or less, excellent aging resistance, deep drawability, It has excellent resistance to rough skin, is free of stretcher strain, has low ear generation height, and is suitable as a material for thin-walled deep-drawn cans that are subjected to severe processing. On the other hand, comparative examples that are outside the scope of the present invention are inferior in at least one of aging resistance, deep drawability, and rough skin resistance. Not suitable as a material for squeezing cans.
[0051]
(Example 2)
Steels having the compositions of steel No. 1 and No. 2 shown in Table 1 were melted in a converter and made into slabs by a continuous casting method. Subsequently, these slabs were formed into ultrathin steel sheets having a final finished sheet thickness of 0.13 to 0.18 mm under the conditions shown in Table 4. Then, a surface treatment steel plate (tin-free steel plate) was prepared by applying a surface treatment for attaching a metal chromium layer and a chromium oxide layer. These surface-treated steel sheets were investigated in the same manner as in Example 1, and the results are shown in Table 5.
[0052]
[Table 4]
Figure 0003728911
[0053]
[Table 5]
Figure 0003728911
[0054]
Similar to Example 1 from Table 5, the present invention example has finer average crystal grains than the comparative example, the average r value exceeds 1.0, the AI value is 40 MPa or less, and is excellent in aging resistance. It has excellent deep drawability and rough skin resistance, is free of stretcher strain, has a low earing height, and is suitable as a material for thin-walled deep-draw cans subjected to severe processing. On the other hand, the comparative example out of the scope of the present invention is inferior in at least one of aging resistance, deep drawability, and rough skin resistance, and further, the stretcher strain is generated, the ear generation height is high, etc. Not suitable as a material for squeezing cans.
[0055]
【The invention's effect】
According to the present invention, it is excellent in deep drawability and aging resistance, and does not cause appearance defects such as rough skin and stretcher strain after canning processing. An ultra-thin steel plate suitable as an original plate of the coated steel plate can be produced. Furthermore, the steel sheet of the present invention can reduce the material cost as an ultra-thin steel sheet with a thickness of 0.20 mm or less, and also has a low ear generation rate after can manufacturing, can improve the material yield, and has a remarkable industrial effect. Play. In addition to the polyester resin-coated steel sheet, the steel sheet of the present invention can be used as a steel sheet for DI cans or a steel sheet for three-piece cans by taking advantage of its excellent workability and aging resistance.
[Brief description of the drawings]
FIG. 1 is a graph showing the influence of average crystal grain size on rough skin after molding.
FIG. 2 is a graph showing the influence of the AI value of a product steel plate on the generation of stretcher strain after forming.
FIG. 3 is a graph showing the effect of Δr on ear generation height.

Claims (3)

重量%で、
C:0.02%以上0.10%未満、 Si:0.10%以下、
Mn:0.4 %以上1.0 %以下、 P:0.04%以下、
S:0.02%以下、 Al:0.01%以上0.1 %以下、
N:0.0050%以下、 B:0.0010%以上0.0050%以下
を含有し、残部Feおよび不可避的不純物からなり、平均結晶粒径が6μm 以下、時効性指数AI値が40MPa 以下、r値が1.0 超えで、かつr値の面内異方性をしめすΔrが±0.1 以内であることを特徴とする耐時効性に優れかつ耳発生率の小さい表面処理鋼板用原板。
% By weight
C: 0.02% or more and less than 0.10%, Si: 0.10% or less,
Mn: 0.4% or more and 1.0% or less, P: 0.04% or less,
S: 0.02% or less, Al: 0.01% or more and 0.1% or less,
N: 0.0050% or less, B: 0.0010% or more and 0.0050% or less, consisting of remaining Fe and inevitable impurities, average grain size of 6μm or less, aging index AI value of 40MPa or less, r value of over 1.0 Further, an original plate for a surface-treated steel sheet having excellent aging resistance and a small ear occurrence rate, wherein Δr indicating in-plane anisotropy of r value is within ± 0.1.
重量%で、
C:0.02%以上0.10%未満、 Si:0.10%以下、
Mn:0.4 %以上1.0 %以下、 P:0.04%以下、
S:0.02%以下、 Al:0.01%以上0.1 %以下、
N:0.0050%以下、 B:0.0010%以上0.0050%以下
を含有し、残部Feおよび不可避的不純物からなり、平均結晶粒径が6μm 以下、時効性指数AI値が40MPa 以下、r値が1.0 超えで、かつr値の面内異方性をしめすΔrが±0.1 以内で、少なくとも樹脂被覆を有することを特徴とする耐時効性に優れかつ耳発生率の小さい表面処理鋼板。
% By weight
C: 0.02% or more and less than 0.10%, Si: 0.10% or less,
Mn: 0.4% or more and 1.0% or less, P: 0.04% or less,
S: 0.02% or less, Al: 0.01% or more and 0.1% or less,
N: 0.0050% or less, B: 0.0010% or more and 0.0050% or less, consisting of remaining Fe and inevitable impurities, average grain size of 6μm or less, aging index AI value of 40MPa or less, r value of over 1.0 Further, a surface-treated steel sheet having excellent aging resistance and a low ear generation rate, wherein Δr indicating in-plane anisotropy of r value is within ± 0.1 and at least a resin coating is provided.
重量%で、C:0.02%以上0.10%未満、Si 0.10 %以下、Mn:0.4 %以上1.0 %以下、P: 0.04 %以下、S: 0.02 %以下、Al:0.01%以上0.1 %以下、B:0.0010%以上0.0050%以下、N:0.0050%以下を含有し、残部 Fe および不可避的不純物からなる鋼素材を、加熱後、Ar3 変態点以上で仕上げ圧延を終了する熱間圧延を施し、巻取り温度: 650〜 700℃でコイルに巻取ったのち、圧下率:80〜88%の1次冷間圧延を行い、ついで再結晶温度以上 720℃以下の温度で60s以下連続焼鈍を行い、焼鈍後 350〜 500℃の温度域まで50℃/s以上の冷却速度で冷却し、30s以上の過時効処理を施したのち、圧下率:1.0 〜8%の2次冷間圧延を施すことを特徴とする平均結晶粒径が6μm 以下、時効性指数AI値が40MPa 以下、r値が1.0 超えで、かつr値の面内異方性をしめすΔrが±0.1 以内である表面処理鋼板用原板の製造方法。C: 0.02% or more and less than 0.10%, Si : 0.10 % or less, Mn: 0.4% or more and 1.0% or less, P: 0.04 % or less, S: 0.02 % or less, Al: 0.01% or more and 0.1% or less, B : 0.0010% or more 0.0050% or less, N: containing 0.0050% or less, the steel material balance of Fe and unavoidable impurities ing, after heating, hot rolling ending finish rolling at Ar 3 transformation point or higher subjected, Winding temperature: After coiling at 650-700 ° C, perform primary cold rolling at a reduction ratio of 80-88%, and then perform continuous annealing for 60s or less at a temperature above the recrystallization temperature and below 720 ° C, After annealing, cool to a temperature range of 350-500 ° C at a cooling rate of 50 ° C / s or more, and after performing an overaging treatment of 30s or more, perform secondary cold rolling with a rolling reduction of 1.0-8%. The characteristic average crystal grain size is 6 μm or less, the aging index AI value is 40 MPa or less, the r value exceeds 1.0, and the in-plane anisotropy of the r value is Δ A method for producing an original sheet for surface-treated steel sheet, wherein r is within ± 0.1.
JP03433298A 1998-01-31 1998-01-31 Raw material for surface-treated steel sheet having excellent aging resistance and low ear occurrence rate, and method for producing the same Expired - Fee Related JP3728911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03433298A JP3728911B2 (en) 1998-01-31 1998-01-31 Raw material for surface-treated steel sheet having excellent aging resistance and low ear occurrence rate, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03433298A JP3728911B2 (en) 1998-01-31 1998-01-31 Raw material for surface-treated steel sheet having excellent aging resistance and low ear occurrence rate, and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11222647A JPH11222647A (en) 1999-08-17
JP3728911B2 true JP3728911B2 (en) 2005-12-21

Family

ID=12411202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03433298A Expired - Fee Related JP3728911B2 (en) 1998-01-31 1998-01-31 Raw material for surface-treated steel sheet having excellent aging resistance and low ear occurrence rate, and method for producing the same

Country Status (1)

Country Link
JP (1) JP3728911B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4788030B2 (en) * 2000-03-23 2011-10-05 Jfeスチール株式会社 Steel plate for lightweight two-piece can and manufacturing method thereof
JP4561136B2 (en) * 2004-03-17 2010-10-13 Jfeスチール株式会社 Steel sheet for nitriding treatment
JP2007211337A (en) * 2006-01-12 2007-08-23 Jfe Steel Kk Cold-rolled steel sheet having excellent strain-aging resistance and low in-plane anisotropy and method for manufacture thereof
JP4630221B2 (en) * 2006-04-19 2011-02-09 新日本製鐵株式会社 Method for producing soft and slow-aged surface-treated steel sheet or thin steel sheet for containers, and surface-treated steel sheet for containers
JP5162924B2 (en) 2007-02-28 2013-03-13 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
JP5407552B2 (en) * 2009-05-25 2014-02-05 Jfeスチール株式会社 Hot-rolled steel sheet with excellent formability and manufacturing method thereof

Also Published As

Publication number Publication date
JPH11222647A (en) 1999-08-17

Similar Documents

Publication Publication Date Title
US8795443B2 (en) Lacquered baked steel sheet for can
KR100615380B1 (en) Steel sheet for can and manufacturing method thereof
JP6455640B1 (en) Steel plate for 2-piece can and manufacturing method thereof
JPS59140333A (en) Manufacture of cold rolled steel sheet for deep drawing with superior secondary workability and surface treatability
WO2016031234A1 (en) Steel sheet for cans and method for producing same
JP4858126B2 (en) Steel sheet for high strength and high ductility can and method for producing the same
JP3728911B2 (en) Raw material for surface-treated steel sheet having excellent aging resistance and low ear occurrence rate, and method for producing the same
JP4193228B2 (en) Steel plate for can and manufacturing method thereof
JP3852210B2 (en) Steel plate for modified 3-piece can and manufacturing method thereof
CN110494581B (en) Two-piece steel sheet for can and method for producing same
JPH08176735A (en) Steel sheet for can and production thereof
JPH11209845A (en) Steel sheet for can, excellent in workability and surface roughing resistance, and its manufacture
JP3682683B2 (en) Method for producing steel plate for two-piece can with excellent in-plane anisotropic uniformity in coil
JP3560267B2 (en) Manufacturing method of polyester resin coated steel sheet for thinning deep drawn ironing can
JP3707260B2 (en) Method for producing ultra-thin steel sheet for 2-piece can with excellent in-plane anisotropy and in-plane anisotropy uniformity in coil
JP3735142B2 (en) Manufacturing method of hot-rolled steel sheet with excellent formability
JP3257390B2 (en) Method for producing two-piece steel sheet with small in-plane anisotropy
JP3164853B2 (en) Manufacturing method of thin steel plate for food cans
JP3496333B2 (en) DTR can-adaptive steel plate with excellent side wall break resistance
JP3593728B2 (en) Manufacturing method of ultra low carbon cold rolled steel sheet with excellent formability
JP2980488B2 (en) Method for producing steel sheet for low earring container
JP3273383B2 (en) Cold rolled steel sheet excellent in deep drawability and method for producing the same
JP3675190B2 (en) Method for producing ultra-thin steel sheet for 2-piece can with excellent in-plane anisotropy and in-plane anisotropy uniformity in coil
JP2812769B2 (en) Manufacturing method of alloyed hot-dip galvanized cold rolled steel sheet for ultra deep drawing with excellent powdering resistance
JP3598550B2 (en) Method of manufacturing thin steel sheet for high-strength can with small anisotropy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050926

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees