JP4630221B2 - Method for producing soft and slow-aged surface-treated steel sheet or thin steel sheet for containers, and surface-treated steel sheet for containers - Google Patents

Method for producing soft and slow-aged surface-treated steel sheet or thin steel sheet for containers, and surface-treated steel sheet for containers Download PDF

Info

Publication number
JP4630221B2
JP4630221B2 JP2006115285A JP2006115285A JP4630221B2 JP 4630221 B2 JP4630221 B2 JP 4630221B2 JP 2006115285 A JP2006115285 A JP 2006115285A JP 2006115285 A JP2006115285 A JP 2006115285A JP 4630221 B2 JP4630221 B2 JP 4630221B2
Authority
JP
Japan
Prior art keywords
steel sheet
temperature
less
steel
containers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006115285A
Other languages
Japanese (ja)
Other versions
JP2007284763A (en
Inventor
聖市 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006115285A priority Critical patent/JP4630221B2/en
Publication of JP2007284763A publication Critical patent/JP2007284763A/en
Application granted granted Critical
Publication of JP4630221B2 publication Critical patent/JP4630221B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、連続焼鈍が施される容器用表面処理鋼板または薄鋼板の製造方法、および容器用表面処理鋼板に関する。   The present invention relates to a method for producing a surface-treated steel sheet or thin steel sheet for containers that is subjected to continuous annealing, and a surface-treated steel sheet for containers.

具体的には、主にぶりき、TFSなどの容器用鋼板のうち、210℃で30分ベーキング後の鋼板ロックウェルT硬さ:HR30Tが46〜60であり、かつ圧延方向の降伏点伸び:YP−El値が8%以下であることを特徴とする軟質遅時効な容器用表面処理鋼板または薄鋼板の製造方法、および容器用表面処理鋼板に関する。   Specifically, among steel plates for containers such as tinplate and TFS, steel plate Rockwell T hardness after baking at 210 ° C. for 30 minutes: HR30T is 46 to 60, and yield point elongation in the rolling direction: The present invention relates to a method for producing a soft, slow-aged surface-treated steel sheet or thin steel sheet for containers, and a surface-treated steel sheet for containers, wherein the YP-El value is 8% or less.

連続焼鈍は30分前後の短時間に容器用鋼板の焼鈍が行なえる生産性の高い、かつBAF焼鈍に比べて材質バラツキが小さく、良好な鋼板形状を容易に作れる製造技術である。一方、連続焼鈍は調質度がT4以上の硬質鋼板に適用されることが多く、調質度T3以下の軟質鋼板にはBAF焼鈍が多用されており、いわゆる調質度による焼鈍法の使い分けが行なわれている実態がある。これは連続焼鈍により調質度T3以下の容器用表面処理鋼板を製造するには、連続焼鈍のヒートパターンに基づく焼鈍再結晶粒の微細化、固溶C、固溶Nの過飽和な残留という冶金的物性の解消が必要なためである。家電製品や自動車車体などに使われる深絞り成型用鋼板は調質度T3以下の容器用鋼板に相当する加工性を有しており既に連続焼鈍法による製造技術が開示されている。例えば特開平6−172869号公報、特開平7−242995号公報などである。
これらは微量B添加した深絞り用冷延鋼板の製造技術であって、連続焼鈍を施すために前工程の熱間圧延温度:高温FTまたは高温CT処理により熱延鋼板物性を改善し深絞り成型性を鋼板に付与している。すなわち現状においては連続焼鈍法の改善によって調質度T3以下の容器用鋼板を製造できる技術は開示されていないと考えられてきた。
Continuous annealing is a manufacturing technique that can anneal a steel plate for containers in a short time of about 30 minutes, has high productivity, has less material variation than BAF annealing, and can easily make a good steel plate shape. On the other hand, continuous annealing is often applied to hard steel sheets with a tempering degree of T4 or higher, and BAF annealing is frequently used for soft steel sheets with a tempering degree of T3 or lower. There is a reality that is being done. In order to produce a surface-treated steel sheet for containers having a tempering degree T3 or less by continuous annealing, metallurgy of refining annealed recrystallized grains based on the heat pattern of continuous annealing, supersaturated residual of solid solution C, and solid solution N This is because it is necessary to eliminate the physical properties. Steel plates for deep drawing used for home appliances and automobile bodies have workability equivalent to steel plates for containers having a tempering degree T3 or less, and manufacturing technology by a continuous annealing method has already been disclosed. For example, JP-A-6-172869, JP-A-7-242959, and the like.
These are technologies for manufacturing deep-drawn cold-rolled steel sheets with a small amount of B, and the hot-rolling temperature of the previous process for continuous annealing: improving the properties of hot-rolled steel sheets by high-temperature FT or high-temperature CT treatment, and deep-drawing. To the steel sheet. That is, at present, it has been considered that a technique capable of producing a steel plate for containers having a tempering degree T3 or less by improving the continuous annealing method is not disclosed.

また、連続焼鈍法によって再結晶粒成長、固溶Nおよび固溶Cの低減に関する新たな製造技術が開示された例もある。例えば特公昭63−54048号公報や特公昭63−10213号公報などがそれに当るもので、その要旨はアルミキルド鋼を素材に熱延加熱温度を950〜1100℃、かつ熱間圧延後の捲取り温度を620〜710℃に限定して固溶N量を10ppm以下に抑え、その後の連続焼鈍温度を650〜710℃に高めにとって粒成長を図り、焼鈍後の過時効処理温度を300〜500℃に限定することで固溶C量低減を図り、さらに微量残留した固溶Nと固溶Cによる時効性劣化を調質圧延条件(ロール径または圧延力)の最適化によって解消できるとしたものである。   In addition, there is an example in which a new manufacturing technique relating to recrystallized grain growth, reduction of solute N and solute C is disclosed by a continuous annealing method. For example, Japanese Patent Publication No. 63-54048 and Japanese Patent Publication No. 63-10213, the summary of which is a hot rolled heating temperature of 950 to 1100 ° C. using aluminum killed steel as a raw material, and a cutting temperature after hot rolling. Is limited to 620 to 710 ° C., the amount of dissolved N is suppressed to 10 ppm or less, the subsequent continuous annealing temperature is increased to 650 to 710 ° C., grain growth is attempted, and the overaging temperature after annealing is set to 300 to 500 ° C. By limiting the amount, the amount of solute C is reduced, and further, aging deterioration due to a small amount of solute N and solute C can be eliminated by optimizing temper rolling conditions (roll diameter or rolling force). .

すなわち、軟質連続焼鈍鋼板に関する冶金的な課題はすでに開示された複数の製造技術によって解消されているはずであるが、いまだ連続焼鈍法がBAF焼鈍法に置き換わった事実はない。本発明者は完成されたはずの新たな連続焼鈍技術がなぜBAF焼鈍に置き換わらないかを再考し、ひとつの大きな課題が残されたままであることに気づいた。すなわち連続焼鈍ラインの処理速度が誕生以来営々として高速化されてきたことによって、その負の側面として製造可能なサイズに制約が生まれている点である。高速化は連続焼鈍ラインのBAF焼鈍に対する優位性を高めるものであり、生産性および生産効率の向上は新たな連続焼鈍ライン建設時につねに要求されたものである。   That is, although the metallurgical problem regarding the soft continuous annealing steel sheet should have been solved by a plurality of disclosed manufacturing techniques, there is still no fact that the continuous annealing method has been replaced with the BAF annealing method. The inventor has reconsidered why the new continuous annealing technique, which should have been completed, does not replace BAF annealing, and has realized that one major challenge remains. In other words, since the processing speed of the continuous annealing line has been steadily increased since its birth, there is a restriction on the size that can be manufactured as its negative aspect. Higher speed increases the superiority of the continuous annealing line over BAF annealing, and improvements in productivity and production efficiency are always required when a new continuous annealing line is constructed.

一方、このような高速高効率生産ラインは長大な炉を必要とするためライン規模が大になるほど炉内での鋼板張力制御が困難になることも自明であった。この張力制御の不都合は、張力低下による炉内蛇行や冷却時の冷却しぼり(クーリングバックル)、あるいは高温の加熱、均熱時の加熱絞り(ヒートバックル)などに現れる。この不具合の解消に当たって炉内ブライドルロールの設置やハースロールのプロフィル改善などが必要に応じて行なわれており蛇行は改善した。一方、高温を必要とする軟質連続焼鈍鋼板の製造では依然としてヒートバックルやクーリングバックル発生懸念があり高速長大な連続焼鈍ラインの弱点となっている。すなわち均熱温度を上げるほどヒートバックルが生じやすくなり、さらに高温焼鈍、高速通板ほど強い冷却となってクーリングバックル発生を助長し、加えて鋼板サイズの薄手、幅広化の進展もあって、安定した炉内環境を維持することは難しくなっているのである。これが軟質な連続焼鈍材の生産サイズを制約し、さらにはBAF焼鈍法をなくせない現状を作っていると本発明者は考えた。
特開平6−172869号公報 特開平7−242995号公報 特公昭63−54048号公報 特公昭63−10213号公報
On the other hand, since such a high-speed and high-efficiency production line requires a long furnace, it is obvious that the steel plate tension control in the furnace becomes difficult as the line scale increases. The inconvenience of this tension control appears in the furnace meandering due to a drop in tension, cooling squeezing at the time of cooling (cooling buckle), high-temperature heating, heating throttling at the time of soaking (heat buckle), and the like. In order to resolve this problem, installation of a bridle roll in the furnace and improvement of the hearth roll profile were carried out as necessary, and the meandering improved. On the other hand, in the manufacture of soft continuous annealed steel sheets that require high temperatures, there is still concern about the occurrence of heat buckles and cooling buckles, which is a weak point of high-speed and long continuous annealing lines. In other words, heat buckles are more likely to occur as the soaking temperature is increased, and the higher the temperature annealing and the higher the speed of sheeting, the stronger the cooling and the generation of cooling buckles are promoted. It is becoming difficult to maintain the furnace environment. The present inventor considered that this limited the production size of the soft continuous annealing material, and further created the present situation where the BAF annealing method could not be eliminated.
JP-A-6-172869 JP-A-7-242959 Japanese Patent Publication No. 63-54048 Japanese Examined Patent Publication No. 63-10213

本発明は上記のように軟質遅時効な容器用表面処理鋼板の製造に常套的に用いられる高温焼鈍を低温焼鈍に見直すことによって鋼板の高温強度アップを図り、薄手、広幅材の炉内絞りを回避し、かつ低温焼鈍であってもロックウェルT硬さ:HR30Tが46〜60の軟質な容器用表面処理鋼板または薄鋼板が製造できる新たな連続焼鈍操業技術を提供することにある。   The present invention aims to increase the high-temperature strength of the steel sheet by reviewing the high-temperature annealing that is conventionally used in the production of the surface-treated steel sheet for soft and slow-aged containers as described above, thereby reducing the in-furnace drawing of thin and wide materials. The object of the present invention is to provide a new continuous annealing operation technique capable of producing a soft surface-treated steel sheet or thin steel sheet for a container having a Rockwell T hardness: HR30T of 46 to 60 even if low temperature annealing is avoided.

本発明は上記の課題を解決するために創案されたものであって、図1、表1に示す連続焼鈍の処理条件において、加熱、均熱、一次急冷、過時効処理、二次急冷からなる工程のなかで均熱炉の板温度および均熱炉出側から一次急冷までの時間に着目し開発されたものである。   The present invention was devised to solve the above-described problems, and comprises heating, soaking, primary quenching, overaging treatment, and secondary quenching under the continuous annealing treatment conditions shown in FIG. 1 and Table 1. The process was developed focusing on the plate temperature of the soaking furnace and the time from the soaking furnace exit side to the primary quenching.

Figure 0004630221
一般に均熱炉の板温度が低温であるほど炉内絞りが出難いとの経験則が知られている。本発明者は低炭素アルミキルド鋼板の連続焼鈍炉内における軟化挙動を確認し、この経験則を定量化する目的で表2に示す成分の熱間圧延材を条取りし試験片とし、高温強度調査を行なった。
Figure 0004630221
In general, an empirical rule is known that the lower the plate temperature of a soaking furnace, the harder it is to draw out the furnace. The present inventor confirmed the softening behavior of the low carbon aluminum killed steel sheet in the continuous annealing furnace, and in order to quantify this empirical rule, the hot rolled material having the components shown in Table 2 was stripped and used as a test piece, and a high temperature strength investigation was conducted. Was done.

Figure 0004630221
試験機は島津製作所製のインストロン型引張試験機で、試験片を円筒型電気炉で囲み冶具とともに再結晶温度域の600℃から高温焼鈍に相当する750℃まで加熱した。加熱温度は試験片平行部の3箇所に取付けた熱電対により約±5℃に制御し、目標温度で20分保定後、引張速度(歪み速度)500mm/分で荷重を加えた。試験装置の主要部を図2に示し、測定した応力歪み曲線から連続焼鈍ライン通板時に鋼板が受ける歪みと同程度と考えられる0.5%歪み耐力を高温強度として求めた。その結果を図3に示す。この図より均熱温度660℃以下であれば鋼板強度は高めに維持されており、その強度は再結晶温度から660℃までほぼ同等であり、ヒートバックルへの抵抗性および冷却時の強度変化も少ないことからクーリングバックルに対する抵抗性もあることが推察される。すなわち低炭素アルミキルド鋼板において均熱温度660℃以下で焼鈍すれば連続焼鈍時の通板安定性は確保できるとの知見が得られた。
Figure 0004630221
The tester was an Instron type tensile tester manufactured by Shimadzu Corporation. The test piece was surrounded by a cylindrical electric furnace and heated together with a jig from 600 ° C. in the recrystallization temperature range to 750 ° C. corresponding to high temperature annealing. The heating temperature was controlled to about ± 5 ° C. by thermocouples attached at three locations on the parallel part of the test piece. After holding at the target temperature for 20 minutes, a load was applied at a tensile rate (strain rate) of 500 mm / min. The main part of the test apparatus is shown in FIG. 2, and a 0.5% strain proof stress, which is considered to be the same level as the strain that the steel sheet receives during continuous annealing line passing, was obtained as a high temperature strength from the measured stress strain curve. The result is shown in FIG. From this figure, if the soaking temperature is 660 ° C. or less, the steel sheet strength is kept high, the strength is almost the same from the recrystallization temperature to 660 ° C., the resistance to the heat buckle and the strength change during cooling are also It is presumed that there is resistance to a cooling buckle because it is small. That is, it has been found that if a low carbon aluminum killed steel sheet is annealed at a soaking temperature of 660 ° C. or less, the sheet feeding stability during continuous annealing can be ensured.

一方、このように均熱温度が低温になると平衡的に固溶されるC量が少なくなり、一次冷却後の過時効処理において粒内炭化物を析出させる駆動力を弱めて固溶C減少が進まなくなる恐れがあった。本発明者は過時効処理に先立つ一次冷却開始の最適条件:板温、冷却開始までの時間について表3に示す冷延鋼板を供試材に検討した。連続焼鈍条件は均熱板温:690〜700℃、均熱出から一次冷却開始までの時間を1秒未満と1秒以上とし、一次冷却開始板温:500〜700℃、一次冷却速度:100〜120℃/秒、一次冷却終了板温:390〜405℃、過時効処理板温:390〜410℃、過時効処理時間:60秒以上として二次冷却し常温の焼鈍鋼板を得た。一次冷却後の過時効処理において粒内炭化物を析出させる駆動力の強さは焼鈍後の鋼板に残る固溶C量で判断することにし、その測定を逆さ吊りねじり振り子型内部摩擦測定装置によって行った。内部摩擦係数ピーク値は固溶C量に比例するので固溶量の絶対値を比例係数から定量することができる。   On the other hand, when the soaking temperature is lowered, the amount of C dissolved in equilibrium decreases, and the driving force for precipitating intragranular carbides is weakened in the overaging treatment after the primary cooling, so that the decrease in solute C progresses. There was a fear of disappearing. This inventor examined the cold rolled steel plate shown in Table 3 about the optimum conditions of the start of primary cooling prior to an overaging treatment: sheet temperature and time to start cooling as a test material. The conditions for continuous annealing are soaking plate temperature: 690 to 700 ° C., the time from soaking to the start of primary cooling is less than 1 second and 1 second or more, primary cooling start plate temperature: 500 to 700 ° C., primary cooling rate: 100 Secondary cooling was performed at a temperature of ˜120 ° C./second, a primary cooling end plate temperature: 390 to 405 ° C., an overaging treatment plate temperature: 390 to 410 ° C., and an overaging treatment time: 60 seconds or more to obtain a normal temperature annealed steel sheet. The strength of the driving force for precipitating intragranular carbides in the overaging treatment after primary cooling is determined by the amount of dissolved C remaining in the steel sheet after annealing, and the measurement is performed by an inverted hanging torsion pendulum type internal friction measuring device. It was. Since the internal friction coefficient peak value is proportional to the solid solution C amount, the absolute value of the solid solution amount can be determined from the proportional coefficient.

Figure 0004630221
なお供試鋼板は微量Bが添加されており固溶Nは熱延時にほぼ析出していると考えられたため測定値は全て固溶C量として整理した。その結果を図4に示す。板温690〜700℃の高温焼鈍であっても均熱出から一次冷却開始までの時間が1秒以上経過すると一次冷却開始温度が下がり、焼鈍後鋼板の固溶C残留量は多くなる。これは均熱処理時に溶解しマトリックス中に過飽和となった固溶Cが一次冷却までの待ち時間に析出、減少した結果、過時効処理での炭化物析出に働く駆動力を減じた結果と考えられる。また一次冷却開始温度が620℃以上あれば過時効処理による炭化物析出が効率よく進められる知見も得られた。これは均熱板温が620℃の低温であっても固溶Cが低減できる可能性を示すものと考えられる。
Figure 0004630221
In addition, since the test steel plate was added with a very small amount of B, and it was considered that solute N was almost precipitated during hot rolling, all measured values were arranged as solute C amount. The result is shown in FIG. Even in the case of high-temperature annealing at a plate temperature of 690 to 700 ° C., if the time from soaking to the start of primary cooling elapses for 1 second or more, the primary cooling start temperature decreases, and the solid solution C residual amount of the steel plate after annealing increases. This is considered to be a result of reducing the driving force acting on carbide precipitation in the overaging treatment as a result of precipitation and reduction of the solid solution C dissolved during the soaking and supersaturated in the matrix during the waiting time until the primary cooling. Moreover, if the primary cooling start temperature was 620 ° C. or higher, it was found that carbide precipitation by the overaging treatment can proceed efficiently. This is considered to indicate the possibility that the solid solution C can be reduced even when the soaking plate temperature is as low as 620 ° C.

すなわち、均熱板温を620℃以上として一次急冷までの時間を1秒未満に短縮(以後、直後急冷と略す)し、一次冷却開始板温が620℃以上に維持できれば低温焼鈍であっても高温焼鈍なみに固溶C量低減が可能になるとの知見が本発明によって見出された。前述の実験に続き表6、表7、表8に示す620〜660℃低温焼鈍実験により得られた結果として、均熱炉出側から一次急冷開始までの時間が0.9秒以下であればほぼ均熱板温を維持したまま直後急冷となって一次冷却後に粒内炭化物の生成に起因すると考えられる過時効処理での固溶C析出が十分に行なわれることを確認した。   That is, if the soaking plate temperature is set to 620 ° C. or higher and the time to primary rapid cooling is shortened to less than 1 second (hereinafter, abbreviated as rapid cooling immediately thereafter), and the primary cooling start plate temperature can be maintained at 620 ° C. or higher, low temperature annealing is possible. The present inventors have found that the amount of dissolved C can be reduced by annealing at high temperature. If the time from the soaking furnace exit side to the start of primary quenching is 0.9 seconds or less as a result obtained by the 620-660 ° C. low temperature annealing experiment shown in Table 6, Table 7 and Table 8 following the above experiment, It was confirmed that solid solution C precipitation was sufficiently performed in the overaging treatment, which is considered to be caused by the formation of intragranular carbide after the primary cooling immediately after maintaining the soaking plate temperature.

加えて鋼板に微量のBを添加した低炭素アルミキルド鋼を素材とすることで熱延での処理温度が広く選択でき、かつ軽度の調質圧延率によってロックウェルT硬さ(HR30T):46〜60の広い範囲で容器用表面処理鋼板が遅時効特性を有して製造できることも見出された。B添加の主たる目的は熱間圧延(熱延)中にBN析出物を作ることにあり、これによって固溶Nを効果的に固定することが可能である。しかも熱延でのBN析出によって低温焼鈍であってもフェライト粒が成長しやすくなるため軟質化と遅時効化が進む利点もある。一方、B添加は固溶Cの固定には無力なため固溶Cによる調質圧延後の歪み時効抑制には過時効処理が必須である。前述の直後急冷の適用により低温焼鈍でも粒内炭化物が生成されるため過時効処理効率が落ちることなしに固溶C低減を進められる。   In addition, by using a low-carbon aluminum killed steel with a small amount of B added to the steel sheet, the processing temperature in hot rolling can be widely selected, and the Rockwell T hardness (HR30T): 46- It was also found that the surface-treated steel sheet for containers can be produced with slow aging characteristics in a wide range of 60. The main purpose of the addition of B is to form BN precipitates during hot rolling (hot rolling), and this makes it possible to fix solid solution N effectively. In addition, since ferrite grains easily grow even by low temperature annealing due to BN precipitation in hot rolling, there is an advantage that softening and slow aging proceed. On the other hand, since addition of B is ineffective in fixing solute C, over-aging treatment is essential for suppressing strain aging after temper rolling with solute C. Immediately after the above-described rapid cooling, intragranular carbides are generated even at low temperature annealing, so that solid solution C reduction can be promoted without lowering the overaging treatment efficiency.

本発明はこのような新たな実験知見を組合せることによって得られたものであって、その要旨は以下の通りである。
(1)mass%で、
C:0.015〜0.08%以下、
Si:0.05%以下、
Mn:0.05〜0.6%、
P:0.04%以下、
S:0.02%以下、
sol.Al:0.04%以下、
N:0.006以下、
B:0.003〜0.008%を含有し、残部はFeおよび不可避的不純物からなる鋼をスラブとなし、熱間圧延し、酸洗においてデスケーリングし、冷間圧延して冷延鋼板となし、連続焼鈍において均熱炉板温が再結晶温度以上660℃以下、かつ、均熱炉出側から一次冷却開始までの時間が0.9秒以下、かつ一次冷却開始時板温が再結晶温度以上660℃以下、かつ一次冷却速度が100℃/秒以上とした直後急冷を施し、次いで過時効処理炉にて板温:300〜450℃かつ30秒以上の過時効処理と二次冷却を施し、次いで圧下率:0.5〜3%の調質圧延を行うことを特徴とする軟質遅時効な容器用表面処理鋼板または薄鋼板の製造方法。
(2)(1)に記載の方法にて製造し、210℃で30分ベーキング後の鋼板ロックウェルT硬さ:HR30Tが46〜60であり、かつ圧延方向の降伏点伸び:YP−El値が8%以下であることを特徴とする軟質遅時効な容器用表面処理鋼板。
The present invention has been obtained by combining such new experimental findings, and the gist thereof is as follows.
(1) Mass%
C: 0.015-0.08% or less,
Si: 0.05% or less,
Mn: 0.05 to 0.6%,
P: 0.04% or less,
S: 0.02% or less,
sol. Al: 0.04% or less,
N: 0.006 or less,
B: 0.003 to 0.008% contained, the balance being Fe and steel of unavoidable impurities as a slab, hot rolled, descaled in pickling, cold rolled and cold rolled steel sheet None, soaking furnace plate temperature is above recrystallization temperature and below 660 ° C in continuous annealing, time from soaking furnace exit side to primary cooling start is 0.9 seconds or less, and plate temperature at primary cooling start is recrystallization Immediately after the temperature is set to 660 ° C. or less and the primary cooling rate is set to 100 ° C./second or more, the plate temperature is 300 to 450 ° C. and the secondary cooling is performed for 30 seconds or more in the overaging furnace. A method for producing a soft, slow-aged surface-treated steel sheet for steel or thin steel sheet, which is subjected to temper rolling at a rolling reduction of 0.5 to 3%.
(2) Steel plate Rockwell T hardness produced by the method described in (1) and baked at 210 ° C. for 30 minutes: HR30T is 46 to 60, and yield point elongation in the rolling direction: YP-El value A surface-treated steel sheet for soft and slow-aged containers, characterized in that is 8% or less.

本発明の製造方法を適用した低炭素アルミキルド鋼板は固溶C、固溶Nによる歪み時効が小さく、メルト時効のあるぶりき、あるいはフィルムを高温で密着するプレコート鋼板のような加熱処理後に缶体成型される用途においても現行の高温連続焼鈍材同等に遅時効性があり、軟質特性によって美麗な缶体製造が可能であり、かつ板厚0.20mm以下、板幅900mm以上の薄手幅広鋼板であっても連続焼鈍炉内でヒートバックル、クーリングバックルを発生することなく安定した生産性を提供できるなど、産業上有用な優れた効果を奏する技術である。   The low-carbon aluminum killed steel sheet to which the production method of the present invention is applied has a small distortion aging due to solute C and solute N, a tin with melt aging, or a can body after heat treatment such as a pre-coated steel sheet that adheres a film at a high temperature. Even in the applications to be molded, it is as slow-aging as the current high-temperature continuous annealed material, and it can produce beautiful can bodies due to its soft properties, and it is a thin wide steel plate with a plate thickness of 0.20 mm or less and a plate width of 900 mm or more. Even if it exists, it is a technique which has an industrially useful superior effect, such as being able to provide stable productivity without generating a heat buckle and a cooling buckle in a continuous annealing furnace.

下記に本発明に関する個々の製造因子について詳細説明する。   The individual production factors relating to the present invention are described in detail below.

本発明の鋼板は転炉、電気炉など通常の溶解炉で溶製された溶鋼から連続鋳造をへてスラブとなしたものを使用する。スラブの熱間圧延は鋳造後すぐに施すDR熱延、あるいは一旦冷却して熱延加熱炉で再加熱した後にCCR熱延のどちらを選択しても可であり様式は問わない。スラブの成分はmass%においてC:0.015〜0.08%以下、Si:0.05%以下、Mn:0.05〜0.6%、P:0.04%以下、S:0.02%以下、sol.Al:0.04%以下、N:0.006%以下、B:0.003〜0.008%を含有し、残部は不可避的不純物およびFeから構成されたものであって、特に微量B添加は本発明の重要な成分要素である。スラブ成分を限定した理由を以下に詳述する。Cは低いほど軟質化する傾向にあるが、特異的に0.015%未満の量で連続焼鈍後に固溶Cが残存しやすくなりマトリックスを硬質化するため下限を0.015%とする。一方、その量が多いほど連続焼鈍を施した場合にマトリックスの強度増加と結晶粒の微細化が進むため過剰な含有を避けなければならず上限を0.08%とした。Siもマトリックスの強度増加と結晶粒の微細化の原因となるほか、鋼板表面に濃化してメッキ性を害するので過剰な含有を避けなければならず上限を0.05%とした。Mnは不可避的に混入するSが誘発する熱間圧延時の割れを防止するために0.05%以上含有させなければならない。   As the steel sheet of the present invention, a steel slab formed by continuous casting from molten steel produced in a normal melting furnace such as a converter or an electric furnace is used. The hot rolling of the slab can be performed by any of DR hot rolling performed immediately after casting, or CCR hot rolling after cooling and reheating in a hot rolling furnace, and the type is not limited. The components of the slab are C: 0.015-0.08% or less, Si: 0.05% or less, Mn: 0.05-0.6%, P: 0.04% or less, and S: 0.00% in mass%. 02% or less, sol. Al: 0.04% or less, N: 0.006% or less, B: 0.003 to 0.008%, the balance is composed of unavoidable impurities and Fe, with a particularly small amount of B added Is an important component of the present invention. The reason for limiting the slab component will be described in detail below. The lower the C, the more tend to soften. However, the lower limit is set to 0.015% because the solid solution C tends to remain after continuous annealing in an amount of less than 0.015% specifically to harden the matrix. On the other hand, as the amount increases, when continuous annealing is performed, the strength of the matrix increases and the crystal grains become finer, so excessive content must be avoided and the upper limit is set to 0.08%. In addition to increasing the strength of the matrix and making the crystal grains finer, Si also concentrates on the surface of the steel sheet and impairs the plating properties, so excessive content must be avoided and the upper limit was made 0.05%. Mn must be contained in an amount of 0.05% or more in order to prevent cracking during hot rolling induced by S inevitably mixed.

一方、過剰な含有は硬質化の原因となるので上限を0.6%とした。Pは結晶粒を細粒化し鋼板強度を上げる元素であり、かつ粒界に偏析して耐食性を劣化させるので上限を0.04%とした。SはMnのところで述べたように熱間圧延時の割れ起因となるので上限を0.02%として、その量はMn量下限より少なくすることで全てのSがMnSになる量バランスに抑える。sol.Alは後述するB量との関係においてその量は少ないほど本発明の目的にかなうものである。即ち製鋼において脱酸剤として溶鋼に添加されスラグとして除かれる量に初期添加量を制限することが極めて望ましく、従ってsol.Alの下限は設けない。一方、sol.Alが0.04%超になると熱延コイルの窒化物析出に偏りや析出物量減が生じて強度、延性などのばらつきが大きくなるため上限を0.04%とした。NはAlと窒化物を形成して材質ばらつきを起こす原因となるほか、過剰に添加すると固溶Nの形でN時効を生じるので上限を0.006%とする。Bは本発明の重要なポイントのひとつであってAl同様に窒化物を作る元素である。一方、その作用はAl量およびN量に大きく影響されるためsol.Al:0.04%以下かつN:0.006%以下の条件で使用しなければ本発明の遅時効効果が期待できないものである。   On the other hand, an excessive content causes hardening, so the upper limit was made 0.6%. P is an element that refines crystal grains and increases the strength of the steel sheet, and segregates at the grain boundaries to deteriorate the corrosion resistance, so the upper limit was made 0.04%. Since S causes cracking during hot rolling as described in the section of Mn, the upper limit is set to 0.02%, and the amount thereof is made smaller than the lower limit of Mn amount, so that all S becomes MnS. sol. The smaller the amount of Al in relation to the B amount described later, the better the purpose of the present invention. That is, it is highly desirable to limit the initial addition amount to the amount added to the molten steel as a deoxidizer and removed as slag in steelmaking. There is no lower limit for Al. On the other hand, sol. When Al exceeds 0.04%, the precipitation of nitride in the hot-rolled coil is biased and the amount of precipitates is reduced, resulting in large variations in strength, ductility, etc., so the upper limit was made 0.04%. N forms a nitride with Al by forming a nitride with Al, and if excessively added, N aging occurs in the form of solute N, so the upper limit is made 0.006%. B is one of the important points of the present invention and is an element that forms a nitride like Al. On the other hand, since the action is greatly influenced by the amount of Al and the amount of N, sol. Unless it is used under the conditions of Al: 0.04% or less and N: 0.006% or less, the delayed aging effect of the present invention cannot be expected.

以下にBの有用性を引き出す条件につきその詳細を述べる。
(1)Bの活用による窒化物形成に、鋼中のsol.Alは有害である。図5はそれを示 したもので、供試材は表4にあるB/Nで0.8〜1.0のBを微量添加した低炭 素アルミキルド鋼をつかい、熱間圧延において加熱温度:1180〜1250℃、 仕上温度:870〜895℃、捲取温度:600〜680℃で圧延し、酸洗、冷延 後、連続焼鈍において均熱板温:650〜700℃で再結晶焼鈍した鋼板の知見で ある。Alが0.04%以上添加された鋼板の場合、窒化物中に占めるBNの比率 が減少しBNが析出し難くなって窒化物全体の析出量も減少している状況にある。
Details of the conditions for extracting the usefulness of B will be described below.
(1) For nitride formation by utilizing B, sol. Al is harmful. FIG. 5 shows this, and the test material used was a low carbon aluminum killed steel with a slight addition of 0.8 to 1.0 B / N as shown in Table 4, and the heating temperature in hot rolling: Steel sheet rolled at 1180 to 1250 ° C, finishing temperature: 870 to 895 ° C, cutting temperature: 600 to 680 ° C, pickled and cold-rolled, and recrystallized annealed at a soaking plate temperature of 650 to 700 ° C in continuous annealing. This is the knowledge. In the case of a steel sheet to which Al is added in an amount of 0.04% or more, the ratio of BN in the nitride is reduced, BN is difficult to precipitate, and the amount of precipitation of the entire nitride is also reduced.

これはAlが多くなると固溶Nが残り、N時効が生じやすくなることを示している 。すなわち効果的な固溶N析出にはAlとBの併用は有害であってB単独による窒 化物生成が極めて望ましいことを示したものである。       This indicates that as the Al content increases, solid solution N remains and N aging is likely to occur. In other words, the combination of Al and B is harmful for effective solute N precipitation, indicating that the formation of nitride by B alone is extremely desirable.

Figure 0004630221
(2)Bの活用による窒化物形成にはN低減(0.006%以下)が望ましい。表5に示 すN添加量の異なる2つの供試材を均熱板温:660℃で連続焼鈍を施し、低炭素 アルミキルド鋼の降伏強度に及ぼすB添加量効果を調査した結果を図6に示す。化 学量論的に全NをBNとする組成比であるB/N=0.8が最も強度を低下させて おり、B添加されていないか、B添加が少ない場合、つまりBNの化学量論的組成 比0.8未満の場合には不完全なN固定によると推察される強度増加が認められ、 一方、B/N:0.8超になると過剰なBによると推察される強度増加がある。こ の材質変化はN量との相互作用で生じていると考えられ、Nが多い場合には顕著だ が少ないと材質変化はゆるやかになる傾向が認められた。特にN:0.006%以 下になるとB/N=0.8のみにあった軟化点がB/N:0.5〜2.0に広がり 軟化範囲となって存在するようになる。この軟化範囲は固溶Nが少なく歪み時効を 弱める範囲でもある。この軟化範囲の発見はN量を低く抑え難い現状の冷延鋼板製 造技術にとって極めて有用な知見である。
Figure 0004630221
(2) N reduction (0.006% or less) is desirable for nitride formation by utilizing B. Figure 6 shows the results of investigating the effect of B addition on the yield strength of low-carbon aluminum killed steel by subjecting two specimens with different N additions shown in Table 5 to continuous annealing at a soaking plate temperature of 660 ° C. Show. The stoichiometric ratio of B / N = 0.8, which is the composition ratio of total N as BN, is the most significant decrease in strength. When B is not added or when B is added less, that is, the BN stoichiometry. When the theoretical composition ratio is less than 0.8, an increase in strength presumed to be due to incomplete N fixation is observed. On the other hand, when B / N exceeds 0.8, an increase in strength presumed to be due to excessive B is observed. There is. This material change is thought to be caused by the interaction with the N content. When N is large, the change is noticeable, but when it is small, the material change tends to be gradual. In particular, when N is 0.006% or less, the softening point which is only at B / N = 0.8 spreads to B / N: 0.5 to 2.0 and becomes in the softening range. This softening range is also a range in which solid solution N is small and strain aging is weakened. The discovery of this softening range is extremely useful knowledge for the current cold-rolled steel sheet manufacturing technology that makes it difficult to keep the N content low.

Figure 0004630221
B量上限はこの知見に基づき0.003%(=B/N:0.5)から0.012%(=B/N:2.0)まで選択できるがB添加は合金コストアップを伴うので工業生産的な運用にはB/N:0.5〜1.3の範囲、即ち0.003〜0.008%が好ましい。一方、B下限はB/N:0.5によって定められるがその量が0.003%未満になると効果が消失するので0.003%を下限とした。
<熱延鋼板の熱延条件>
AlNの析出を抑制しBN析出による全Nの固定を熱延の操業条件の狙いとする。熱延加熱温度はMnS析出物を微細多量に分散させ、かつ熱延仕上げ出口温度をAr3変態点以上に維持できることが望ましいので1100℃より高めとする。仕上げ出口温度がAr3点以上においてはBN析出がAlN析出に優先し、かつ高温での析出となって熱延板固溶Nはほとんどが窒化物として析出するためである。捲取り温度は500〜720℃の範囲を選択できる。500〜650℃の低温捲取りでは熱延コイルの温度バラツキが小さいことで均一材質を得やすいが、その温度が500℃未満になると捲取り後の自己焼鈍効果が不十分となって冷間圧延性を阻害するため下限を500℃とする。一方、高温の650超〜720℃捲取りではスキャベンジング効果によって焼鈍時の均一な粒成長が期待できる利点はあるが、加工性に有害なオーステナイト粒の生じさせないためには上限温度を720℃にする必要がある。さらに高温捲取りの弊害とされる材質バラツキはB添加により解消される。これは温度管理が厳密な熱間圧延時、即ちAr3変態点以上の温度域でほとんどの固溶NがBNとして析出してしまうため、その後の捲取り工程で仮に温度バラツキがあってもBN、AlNの析出がなく、材質バラツキが生じないことによる。500〜720℃の低温〜高温捲取りで鋼板材質の均質性を維持できることはB添加鋼の有用な冶金効果である。
<冷間圧延条件>
連続焼鈍で再結晶後に均質整粒組織が安定して得られる圧延率を適用する。圧延率は低いほど再結晶組織を構成する結晶粒を粗大かつ混粒にする。従って85%以上で、かつ冷間圧延機能力上限に相当する95%以下を適用することが望ましい。
<連続焼鈍条件>
安定した炉内通板性を確保するには低温焼鈍が望ましいがコイル全体を再結晶させる温度以上で焼鈍しなければならない。微量B添加の低炭素アルミキルド鋼を冷延率85%以上で冷間圧延した場合の再結晶温度は620℃であった。したがって焼鈍温度、特に均熱炉出側の鋼板温度は620℃以上でなければならない。一方、連続焼鈍温度が高くなるほど鋼板の高温強度が低下し薄手、幅広サイズほど炉内絞りが発生しやすくなる。したがって薄手、幅広な鋼板サイズを安定して通板する温度上限は620℃に近いほど望ましいが連続焼鈍操業上の加減速や鋼板サイズ構成などにより鋼板温度バラツキが最大40℃変化すると見込まれるため均熱炉出側の鋼板温度上限を660℃と定めた。
Figure 0004630221
Based on this finding, the upper limit of B amount can be selected from 0.003% (= B / N: 0.5) to 0.012% (= B / N: 2.0). For industrial production operation, B / N is preferably in the range of 0.5 to 1.3, that is, 0.003 to 0.008%. On the other hand, the lower limit of B is determined by B / N: 0.5, but when the amount is less than 0.003%, the effect disappears, so 0.003% was set as the lower limit.
<Hot-rolling conditions of hot-rolled steel sheet>
The aim of the hot rolling operation condition is to suppress the precipitation of AlN and fix all N by BN precipitation. The hot rolling heating temperature is preferably higher than 1100 ° C. because it is desirable to disperse MnS precipitates in a fine amount and to maintain the hot rolling finish outlet temperature at or above the Ar3 transformation point. This is because BN precipitation takes precedence over AlN precipitation when the finishing outlet temperature is at or above the Ar3 point, and the hot-rolled sheet solid solution N precipitates as nitrides at a high temperature. A range of 500 to 720 ° C. can be selected as the wrinkling temperature. In low-temperature cutting at 500 to 650 ° C., a uniform material can be easily obtained due to small temperature variation of the hot-rolled coil. However, when the temperature is less than 500 ° C., the self-annealing effect after cutting is insufficient and cold rolling is performed. In order to inhibit the property, the lower limit is set to 500 ° C. On the other hand, there is an advantage that uniform grain growth at the time of annealing can be expected by scavenging effect at a high temperature of over 650 ° C. to 720 ° C., but the upper limit temperature is 720 ° C. in order not to generate austenite grains harmful to workability. It is necessary to. Furthermore, the material variation which is an adverse effect of high temperature scraping can be eliminated by adding B. This is because, during hot rolling with strict temperature control, that is, most of the solid solution N precipitates as BN in the temperature range above the Ar3 transformation point, even if there is a temperature variation in the subsequent cutting step, BN, This is because there is no precipitation of AlN and no material variation occurs. It is a useful metallurgical effect of the B-added steel that the uniformity of the steel plate material can be maintained by the low-temperature to high-temperature cutting at 500 to 720 ° C.
<Cold rolling conditions>
The rolling rate at which a uniform sized structure is stably obtained after recrystallization by continuous annealing is applied. The lower the rolling rate, the larger and coarser the crystal grains constituting the recrystallized structure. Therefore, it is desirable to apply 85% or more and 95% or less corresponding to the upper limit of the cold rolling functional force.
<Continuous annealing conditions>
Low temperature annealing is desirable to ensure stable passage through the furnace, but it must be annealed at a temperature above the temperature at which the entire coil is recrystallized. The recrystallization temperature was 620 ° C. when the low carbon aluminum killed steel with a small amount of B was cold-rolled at a cold rolling rate of 85% or more. Therefore, the annealing temperature, particularly the steel plate temperature on the outlet side of the soaking furnace must be 620 ° C. or higher. On the other hand, the higher the continuous annealing temperature, the lower the high-temperature strength of the steel sheet, and the thinner and wider the size, the easier the furnace drawing occurs. Therefore, it is desirable that the upper temperature limit for thin and wide steel plate sizes to be stably passed is closer to 620 ° C, but the temperature variation in steel plate is expected to change by 40 ° C at maximum due to acceleration / deceleration during continuous annealing operation and steel plate size configuration. The upper limit of the temperature of the steel plate on the exit side of the furnace was set to 660 ° C.

なお本発明方法における均熱時間は特に規定する必要はないが10秒〜5分間程度である。軟質、遅時効な特性を鋼板に与えるには過時効処理によって固溶Cを低減することが重要である。これには均熱炉出側から一次冷却開始までの時間を極力短くすることが望ましく、660℃以下の低温焼鈍ではこの時間を0.9秒以下とすることで均熱炉出側の固溶C過飽和状態を損なうことなく一次冷却処理に入れる。100℃/秒以上の冷却速度で過時効処理温度まで直後急冷を施し300〜450℃の鋼板板温で30秒以上過時効処理した鋼板の時効性は高温焼鈍処理材に劣らない特性を有している。直後急冷するのは再結晶粒内に炭化物を多数析出させて固溶C低減を図るためだけでなく、付帯効果として再結晶粒内の炭化物が調質圧延時に転位発生源となって遅時効化を進めることも意図している。過時効処理温度が低温になると固溶Cの析出に長時間を要するようになるので下限を300℃とする。一方、その温度が高温になると平衡的に固溶されるC量が多いので上限を450℃とする。この過時効温度域の保定時間は30秒以上あることが望ましい。これらの本発明に関する低温焼鈍条件は、そのサイズが板厚0.20mm以下かつ板幅900mm以上であるときに最も効果が発揮される。
<調質圧延条件>
調質圧延は乾式調質圧延を0.5〜3%施すことで210℃で30分ベーキング後のロックウェルT硬さ(HR30T):46〜60を鋼板に付与することができる。本発明において歪み時効性はストレッチャーストレインを発生させるため有害である。したがって固溶N、固溶Cは調圧で導入された転位に固着させて無害化することが望ましい。この時効抑制効果は圧下率が0.5%未満では無力となるので下限を0.5%とする。一方、乾式調圧、いわゆるスキンパス圧延の圧下率は2スタンドタンデム方式では3%以上とれない制約があるためこれを上限とする。前述の過時効処理条件と調質圧延を併用することで製缶加工時に施される最も過酷な塗装焼付け条件である210℃で30分ベーキング後の鋼板YP−El値は8%以下にすることができる。
<鋼板の表面処理条件>
表面処理の代表的鋼板は錫めっき鋼板であるが安価なTFS鋼板などにも本発明の鋼板は適用可能である。さらにはTFS鋼板にプラスチックフィルムを180〜280℃で圧着したポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル樹脂を主成分とした単層もしくは複層のフィルムを用いた鋼板にも適用することができる。好ましくはプラスチックの厚みを5〜50μmとし、鋼板との接着にエポキシ樹脂などの接着剤を使用してもよい。
The soaking time in the method of the present invention is not particularly limited, but is about 10 seconds to 5 minutes. In order to give the steel sheet soft and slow aging characteristics, it is important to reduce the solid solution C by overaging treatment. For this purpose, it is desirable to shorten the time from the discharge side of the soaking furnace to the start of primary cooling as much as possible. In low-temperature annealing at 660 ° C or less, this time is set to 0.9 seconds or less, so that C The primary cooling process is performed without impairing the supersaturated state. The aging property of a steel sheet that is immediately cooled to an overaging temperature at a cooling rate of 100 ° C./second or more and over-aged at a steel plate temperature of 300 to 450 ° C. for 30 seconds or more has characteristics that are not inferior to that of a high-temperature annealed material. ing. Immediately after cooling, not only is a large amount of carbides precipitated in the recrystallized grains to reduce solute C, but as an incidental effect, the carbides in the recrystallized grains become a dislocation source during temper rolling, and a slow aging is performed. It is also intended to proceed. If the overaging temperature is low, it takes a long time for precipitation of the solid solution C, so the lower limit is set to 300 ° C. On the other hand, the upper limit is set to 450 ° C. because the amount of C dissolved in equilibrium is large when the temperature becomes high. It is desirable that the retention time in this overaging temperature range be 30 seconds or longer. These low-temperature annealing conditions related to the present invention are most effective when the size is a plate thickness of 0.20 mm or less and a plate width of 900 mm or more.
<Conditioning rolling conditions>
In temper rolling, 0.5 to 3% of dry temper rolling can be applied to the steel sheet at a Rockwell T hardness (HR30T) of 46 to 60 after baking at 210 ° C. for 30 minutes. In the present invention, strain aging is harmful because it causes stretcher strain. Therefore, it is desirable that the solid solution N and the solid solution C are made harmless by fixing to the dislocations introduced by pressure regulation. Since this aging suppression effect is ineffective when the rolling reduction is less than 0.5%, the lower limit is set to 0.5%. On the other hand, the reduction rate of dry pressure adjustment, so-called skin pass rolling, is limited to 3% or more in the 2-stand tandem method, and this is the upper limit. The steel plate YP-El value after baking for 30 minutes at 210 ° C, which is the most severe paint baking condition applied at the time of can manufacturing, should be 8% or less by using the above-mentioned overaging treatment conditions and temper rolling together. Can do.
<Surface treatment conditions for steel sheet>
A typical steel sheet for surface treatment is a tin-plated steel sheet, but the steel sheet of the present invention can also be applied to an inexpensive TFS steel sheet. Furthermore, the present invention can also be applied to a steel plate using a single-layer or multi-layer film mainly composed of a polyester resin such as polyethylene terephthalate or polybutylene terephthalate obtained by press-bonding a plastic film to a TFS steel plate at 180 to 280 ° C. Preferably, the thickness of the plastic is 5 to 50 μm, and an adhesive such as an epoxy resin may be used for adhesion to the steel plate.

表6に示す成分の鋼スラブを表7に示す熱間圧延および連続焼鈍条件により表面処理原板となし、特に連続焼鈍ラインにおいて炉内絞り状況を確認し、その後、表面処理鋼板を製造した。次いで容器用表面処理鋼板として最も厳しいと考えられる塗装焼き付け条件である210℃で30分のベーキング処理を鋼板に施し、その時効後硬さ(HR30T)および時効後YP−El値を調査して表8に記載した。この結果から明らかなように本発明によると低温焼鈍620〜660℃において従来高温焼鈍材相当の硬さおよびYP−El値が得られており、かつ炉内通板が容易となるなど、本発明の効果が確認された。   The steel slab having the components shown in Table 6 was made into a surface-treated original plate by the hot rolling and continuous annealing conditions shown in Table 7, and in particular, the state of drawing in the furnace was confirmed in the continuous annealing line, and then a surface-treated steel plate was manufactured. Next, the steel plate was baked at 210 ° C. for 30 minutes, which is considered to be the most severe surface-treated steel sheet for containers, and the post-aging hardness (HR30T) and the post-aging YP-El value were investigated. 8. As is apparent from the results, according to the present invention, the hardness and YP-El value equivalent to those of conventional high-temperature annealed materials are obtained at low temperature annealing of 620 to 660 ° C., and the passage through the furnace is facilitated. The effect of was confirmed.

Figure 0004630221
Figure 0004630221

Figure 0004630221
Figure 0004630221

Figure 0004630221
Figure 0004630221

本発明における連続焼鈍の処理条件を例示する図である。It is a figure which illustrates the processing conditions of continuous annealing in the present invention. 本発明の実施例に用いた試験装置の主要部を示す図である。It is a figure which shows the principal part of the test apparatus used for the Example of this invention. 本発明の鋼板の0.5%歪み耐力を高温強度として求めた結果を示す図である。It is a figure which shows the result of having calculated | required 0.5% distortion proof stress of the steel plate of this invention as high temperature strength. 本発明の鋼板の固溶C量の測定結果を示す図である。It is a figure which shows the measurement result of the solid solution C amount of the steel plate of this invention. 本発明におけるBの活用による窒化物形成と鋼中のsol.Alとの関係を示す図である。Nitride formation by utilizing B in the present invention and sol. It is a figure which shows the relationship with Al. 本発明の低炭素アルミキルド鋼板の降伏強度に及ぼすB添加量効果を調査した結果を示す図である。It is a figure which shows the result of having investigated the B addition amount effect on the yield strength of the low carbon aluminum killed steel plate of this invention.

Claims (2)

mass%で、
C:0.015〜0.08%以下、
Si:0.05%以下、
Mn:0.05〜0.6%、
P:0.04%以下、
S:0.02%以下、
sol.Al:0.04%以下、
N:0.006以下、
B:0.003〜0.008%を含有し、残部はFeおよび不可避的不純物からなる鋼をスラブとなし、熱間圧延し、酸洗においてデスケーリングし、冷間圧延して冷延鋼板となし、連続焼鈍において均熱炉板温が再結晶温度以上660℃以下、かつ、均熱炉出側から一次冷却開始までの時間が0.9秒以下、かつ一次冷却開始時板温が再結晶温度以上660℃以下、かつ一次冷却速度が100℃/秒以上とした直後急冷を施し、次いで過時効処理炉にて板温:300〜450℃かつ30秒以上の過時効処理と二次冷却を施し、次いで圧下率:0.5〜3%の調質圧延を行うことを特徴とする軟質遅時効な容器用表面処理鋼板または薄鋼板の製造方法。
mass%,
C: 0.015-0.08% or less,
Si: 0.05% or less,
Mn: 0.05 to 0.6%,
P: 0.04% or less,
S: 0.02% or less,
sol. Al: 0.04% or less,
N: 0.006 or less,
B: 0.003 to 0.008% contained, the balance being Fe and steel of unavoidable impurities as a slab, hot rolled, descaled in pickling, cold rolled and cold rolled steel sheet None, soaking furnace plate temperature is above recrystallization temperature and below 660 ° C in continuous annealing, time from soaking furnace exit side to primary cooling start is 0.9 seconds or less, and plate temperature at primary cooling start is recrystallization Immediately after the temperature is set to 660 ° C. or less and the primary cooling rate is set to 100 ° C./second or more, the plate temperature is 300 to 450 ° C. and the secondary cooling is performed for 30 seconds or more in the overaging furnace. A method for producing a soft, slow-aged surface-treated steel sheet for steel or thin steel sheet, which is subjected to temper rolling at a rolling reduction of 0.5 to 3%.
請求項1に記載の方法にて製造し、210℃で30分ベーキング後の鋼板ロックウェルT硬さ:HR30Tが46〜60であり、かつ圧延方向の降伏点伸び:YP−El値が8%以下であることを特徴とする軟質遅時効な容器用表面処理鋼板。
Steel plate Rockwell T hardness produced by the method according to claim 1 and baked at 210 ° C for 30 minutes: HR30T is 46-60, and yield point elongation in the rolling direction: YP-El value is 8% A surface-treated steel sheet for a soft, slow-aged container characterized by:
JP2006115285A 2006-04-19 2006-04-19 Method for producing soft and slow-aged surface-treated steel sheet or thin steel sheet for containers, and surface-treated steel sheet for containers Expired - Fee Related JP4630221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006115285A JP4630221B2 (en) 2006-04-19 2006-04-19 Method for producing soft and slow-aged surface-treated steel sheet or thin steel sheet for containers, and surface-treated steel sheet for containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006115285A JP4630221B2 (en) 2006-04-19 2006-04-19 Method for producing soft and slow-aged surface-treated steel sheet or thin steel sheet for containers, and surface-treated steel sheet for containers

Publications (2)

Publication Number Publication Date
JP2007284763A JP2007284763A (en) 2007-11-01
JP4630221B2 true JP4630221B2 (en) 2011-02-09

Family

ID=38756821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006115285A Expired - Fee Related JP4630221B2 (en) 2006-04-19 2006-04-19 Method for producing soft and slow-aged surface-treated steel sheet or thin steel sheet for containers, and surface-treated steel sheet for containers

Country Status (1)

Country Link
JP (1) JP4630221B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150075351A (en) * 2013-12-24 2015-07-03 주식회사 포스코 Rolled steel and method of manufacturing the same
KR20150075014A (en) * 2013-12-24 2015-07-02 주식회사 포스코 Rolled steel and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1044318A (en) * 1996-08-06 1998-02-17 Toyo Kohan Co Ltd Polyester resin-coated steel sheet for thin-walled deep drawn ironed can
JPH11222647A (en) * 1998-01-31 1999-08-17 Kawasaki Steel Corp Original sheet for surface treated steel sheet excellent in aging resistance and small in generating rate of earing and its production
JP2001089829A (en) * 1998-04-08 2001-04-03 Kawasaki Steel Corp Steel sheet for can and method for manufacting the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1044318A (en) * 1996-08-06 1998-02-17 Toyo Kohan Co Ltd Polyester resin-coated steel sheet for thin-walled deep drawn ironed can
JPH11222647A (en) * 1998-01-31 1999-08-17 Kawasaki Steel Corp Original sheet for surface treated steel sheet excellent in aging resistance and small in generating rate of earing and its production
JP2001089829A (en) * 1998-04-08 2001-04-03 Kawasaki Steel Corp Steel sheet for can and method for manufacting the same

Also Published As

Publication number Publication date
JP2007284763A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
EP3372703B1 (en) Ultra-high strength steel plate having excellent formability and hole-expandability, and method for manufacturing same
US8795443B2 (en) Lacquered baked steel sheet for can
CN110088332A (en) Steel plate and its manufacturing method with the tempered of excellent formability and coating
TW201211268A (en) Cold rolled steel sheet having excellent shape fixability and method for manufacturing the same
US10633730B2 (en) Material for cold-rolled stainless steel sheet
JP6028884B1 (en) Steel plate for cans and method for producing steel plate for cans
WO2012060294A1 (en) High-strength cold-rolled steel sheet having excellent deep-drawability and bake hardenability, and method for manufacturing same
JP5099126B2 (en) Soft tin steel sheet and manufacturing method thereof
JP4900179B2 (en) Manufacturing method of steel plate for can
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP2007197742A (en) Cold rolled steel sheet for welded can, and its manufacturing method
JP2010150571A (en) Method for manufacturing steel sheet for can-making
JP2008291314A (en) High-strength hot-dip galvannealed steel sheet and method for manufacturing the same
JP6007571B2 (en) High-strength cold-rolled steel sheet and high-strength galvanized steel sheet
JP4630221B2 (en) Method for producing soft and slow-aged surface-treated steel sheet or thin steel sheet for containers, and surface-treated steel sheet for containers
JP2006283070A (en) Method for producing galvannealed steel sheet having good workability
JP4779737B2 (en) Manufacturing method of steel sheet for ultra thin can and steel sheet for ultra thin can
JPS6114213B2 (en)
JP7421650B2 (en) High-strength ferritic stainless steel for clamps and its manufacturing method
JP4333356B2 (en) Cold rolled steel sheet manufacturing method
JP4604883B2 (en) Steel plate with small anisotropy and method for producing the same
JP2006118018A (en) Cr-CONTAINING HIGH STRENGTH COLD ROLLED STEEL SHEET HAVING EXCELLENT STRETCH FLANGE FORMABILITY AND ITS PRODUCTION METHOD
JP5644148B2 (en) Stainless cold-rolled steel sheet with excellent surface appearance after processing and method for producing the same
JP4930393B2 (en) Cold rolled steel sheet manufacturing method
JP5826398B2 (en) Ultra-thin cold-rolled steel sheet having high strength and high formability and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4630221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees