JP4333356B2 - Cold rolled steel sheet manufacturing method - Google Patents
Cold rolled steel sheet manufacturing method Download PDFInfo
- Publication number
- JP4333356B2 JP4333356B2 JP2003421866A JP2003421866A JP4333356B2 JP 4333356 B2 JP4333356 B2 JP 4333356B2 JP 2003421866 A JP2003421866 A JP 2003421866A JP 2003421866 A JP2003421866 A JP 2003421866A JP 4333356 B2 JP4333356 B2 JP 4333356B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- less
- steel sheet
- cold
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、冷延鋼板の製造方法に関し、特に延性や伸びフランジ性等の加工性に優れる冷延鋼板の製造方法に関するものである。 The present invention relates to a method for producing a cold-rolled steel sheet, and more particularly to a method for producing a cold-rolled steel sheet having excellent workability such as ductility and stretch flangeability.
冷延鋼板は、特定の成分組成に調整された鋼スラブを熱間圧延し、その後、酸洗し、冷間圧延し、加工性を付与する焼鈍工程を経て製造されるのが普通である。上記焼鈍工程は、一般に、バッチ焼鈍または連続焼鈍のいずれかの方法で行われる。バッチ焼鈍は、箱型焼鈍炉を用いて、タイトに巻かれたタイトコイルあるいはルーズに巻かれたオープンコイルを何段かに積層し、還元性雰囲気下で熱処理する焼鈍方法であり、その加熱速度は、直火式の加熱方式の場合、100℃/hr程度である。 Cold-rolled steel sheets are usually manufactured through an annealing process in which a steel slab adjusted to a specific component composition is hot-rolled, then pickled, cold-rolled, and imparted with workability. The annealing step is generally performed by either batch annealing or continuous annealing. Batch annealing is an annealing method that uses a box-type annealing furnace to stack several layers of tightly wound tight coils or loosely wound open coils and heat-treat them in a reducing atmosphere. Is about 100 ° C./hr in the case of a direct heating type heating system.
一方、連続焼鈍は、連続焼鈍ラインを用いて、コイルを巻き戻しながらストリップの状態で加熱し、還元性雰囲気下で焼鈍し、冷却する焼鈍方法である。この連続焼鈍における加熱は一般に、直火式の還元加熱や無酸化加熱あるいはラジアントチューブ加熱等によって行われており、その加熱速度は10℃/sec程度と、バッチ焼鈍と比べて非常に速いことが特徴である。なお、急速加熱焼鈍法については、非特許文献1に、板厚:0.9mm、幅:600〜750mmのストリップを、電磁誘導加熱装置を用いて200℃/sec程度の速度で急速加熱し、その幅方向の温度分布を±2%以内に抑えることができる技術も提案されている。
On the other hand, continuous annealing is an annealing method in which a continuous annealing line is used to heat in a strip state while rewinding a coil, to anneal in a reducing atmosphere, and to cool. The heating in this continuous annealing is generally performed by direct flame reduction heating, non-oxidation heating, radiant tube heating, etc., and the heating rate is about 10 ° C / sec, which is very fast compared to batch annealing. It is a feature. As for the rapid heating annealing method, Non-Patent
一方、上記のような急速加熱焼鈍を利用した新たな材料も開発されている。例えば、非特許文献2には、Cを0.003mass%および0.05mass%含有する熱延鋼板を、70%の圧下率で冷間圧延し、その後、加熱速度を50℃/secから1000℃/secに上昇させた熱処理を行うことで、結晶粒径をそれぞれ20μmから12μm、6μmから5μmに小さくできる技術が開示されている。また、特許文献1には、低炭素鋼を用いた冷延鋼板の製造方法において、熱延コイルを650〜800℃の高温で巻き取って炭化物を凝集粗大化させ、続く冷間圧延後の焼鈍過程において100℃/sec以上の速度で加熱し、析出した粗大炭化物の再溶解を抑制することにより、その後の冷却、過時効処理におけるセメンタイトの粒内への微細析出を抑制して粒内を軟質化し、もって、均一伸びを向上させた時効性および加工性に優れる冷延鋼板の製造方法が提案されている。さらに、特許文献2には、低炭素鋼を用いた冷延鋼板の製造方法において、熱間圧延後、急冷し、270℃以下の温度で巻き取り、熱延板中に多量の固溶Cを残存させ、続く冷間圧延後の焼鈍過程における加熱を1〜100℃/secの速度で行い、セメンタイトを微細に析出させることにより、時効性および成形性に優れた冷延鋼板を製造する方法が提案されている。
しかしながら、非特許文献2に記載された熱延コイルの巻き取り後の冷却速度は20℃/hrと記載されていることから、この技術では、巻き取り後のコイルが自然放冷されたものと考えられる。このように緩冷却された熱延板では、冷却時にセメンタイトが析出して大きく成長する。そして、このような熱延板を冷間圧延し、急速加熱した場合には、粗大なセメンタイトが溶解する時間が確保できずに残留することが知られている。この残留した粗大なセメンタイトは、その後、鋼板が加工を受けた際の割れの起点となり、局部伸びを大きく劣化させる。特に、穴拡げ加工など優れた局部伸びを必要とする加工においては、加工性を著しく損なうという問題がある。また、粗大なセメンタイトを再溶解させるために、急速加熱後、高温で長時間の保持を行った場合には、急速加熱により得られた微細粒が粗大化し、急速加熱した効果が得られないという問題がある。さらに、セメンタイトの周辺部はC濃度が高くなるために再結晶が抑制されることから、粗大なセメンタイトが存在する場合には、再結晶が不均一に進行し、再結晶後の組織も不均一となって加工性が劣化するという問題がある。
However, since the cooling rate after winding the hot-rolled coil described in Non-Patent
また、特許文献1に記載された技術は、熱間圧延後のコイルを高温で巻き取り、セメンタイトを粗大化させるものである。そのため、非特許文献2の技術と同様に、冷間圧延後の焼鈍における急速加熱でセメンタイトが未溶解のまま残留し、局部伸びが大きく低下し、加工性が著しく損なわれるという問題がある。さらに、特許文献2の技術は、熱延後の巻取温度を低くし、熱延板中に多量の固溶Cを残存させた状態で冷間圧延を行うことから、冷間圧延時の変形抵抗が増大するという問題がある。さらに、固溶Cが多量に存在すると、冷間圧延時に鋼板に導入される剪断歪みが不均一となり、その結果、焼鈍後の再結晶組織も不均一となって加工性の低下を招くという問題もある。
Moreover, the technique described in
本発明の目的は、従来技術が抱える上記問題点を解決し、冷間圧延後の鋼板を急速加熱焼鈍しても、加工性、特に延性および伸びフランジ性に優れる冷延鋼板を得ることができる有利な製造方法を提案することにある。 The object of the present invention is to solve the above-mentioned problems of the prior art and to obtain a cold-rolled steel sheet that is excellent in workability, particularly ductility and stretch flangeability, even if the steel sheet after cold rolling is rapidly heated and annealed. It is to propose an advantageous manufacturing method.
発明者らは、上記急速加熱焼鈍における問題点を解決すべく鋭意検討を行った。その結果、所定量のCを含有する熱延鋼板を、冷間圧延し、急速加熱焼鈍を行う場合には、熱延後の巻取温度を適切な範囲とすると共に、コイルに巻き取り後、所定時間内に強制冷却することにより、熱延鋼板のセメンタイトを微細化し、適量の固溶Cを残留させることができるので、その後の急速加熱焼鈍で組織が均一微細化し、加工性の良好な冷延鋼板が得られることを見出し、本発明に想到するに至った。 The inventors diligently studied to solve the problems in the rapid heating annealing. As a result, when hot-rolled steel sheet containing a predetermined amount of C is cold-rolled and subjected to rapid heating annealing, the coiling temperature after hot rolling is set to an appropriate range, and after winding on a coil, By forcibly cooling within a predetermined time, the cementite of the hot-rolled steel sheet can be refined and an appropriate amount of solid solution C can be left. Therefore, the structure is uniformly refined by subsequent rapid heating annealing, and cooling with good workability is achieved. The present inventors have found that a rolled steel sheet can be obtained and have come to the present invention.
すなわち、本発明は、C:0.02〜0.2mass%、Si:0.1〜2.0mass%、Mn:3.0mass%以下、P:0.2mass%以下、S:0.01mass%以下、Al:3.0mass%以下、N:0.02mass%以下を含有し、残部がFeおよび不可避的不純物からなる鋼スラブを熱間圧延し、300〜650℃の温度で巻き取り、その後、10〜60分以内で強制冷却してから酸洗、冷間圧延し、600℃以上均熱温度までを30℃/sec以上で加熱して焼鈍することを特徴とする冷延鋼板の製造方法である。 That is, the present invention, C: 0.02~0.2mass%, Si: 0.1~ 2.0mass%, Mn: 3.0mass% or less, P: 0.2 mass% or less, S: 0.01 mass% Hereinafter, hot rolled steel slab containing Al: 3.0 mass% or less, N: 0.02 mass% or less , the balance consisting of Fe and unavoidable impurities , wound at a temperature of 300-650 ° C., then In the manufacturing method of the cold-rolled steel sheet, which is forcibly cooled within 10 to 60 minutes, then pickled and cold-rolled, and heated to 600 ° C or higher and a soaking temperature at 30 ° C / sec or higher and annealed. is there.
また、本発明の鋼スラブは、上記成分組成に加えて、Ti:1.0mass%以下、Nb:1.0mass%以下およびV:1.0mass%以下の中から選ばれる1種以上を含有すること、および/または、上記成分組成に加えて、Cr:1.0mass%以下、Ni:1.0mass%以下、Mo:1.0mass%以下およびB:0.01mass%以下の中から選ばれる1種以上を含有することが好ましい。 In addition to the above component composition, the steel slab of the present invention contains at least one selected from Ti: 1.0 mass% or less, Nb: 1.0 mass% or less, and V: 1.0 mass% or less, and / Or in addition to the above component composition, Cr: 1.0 mass% or less, Ni: 1.0 mass% or less, Mo: 1.0 mass% or less and B: 0.01 mass% or less preferable.
なお、本発明の冷延鋼板は、冷間圧延後、連続焼鈍ラインで急速加熱焼鈍されて製造される冷延鋼板だけでなく、その後、電気めっきや塗装処理等の表面処理が施される表面処理鋼板を含む。さらに、本発明の冷延鋼板は、連続溶融亜鉛めっきラインで急速加熱焼鈍され、溶融亜鉛めっき処理される溶融亜鉛めっき鋼板、さらにその後、合金化処理が施される合金化溶融亜鉛めっき鋼板をも含むものである。 In addition, the cold-rolled steel sheet of the present invention is not only a cold-rolled steel sheet manufactured by rapid heating annealing in a continuous annealing line after cold rolling, but also a surface on which surface treatment such as electroplating or coating treatment is performed thereafter. Includes treated steel sheet. Furthermore, the cold-rolled steel sheet of the present invention includes a hot-dip galvanized steel sheet that is rapidly heated and annealed in a continuous hot dip galvanizing line and then subjected to a hot dip galvanizing process, and then an alloyed hot dip galvanized steel sheet that is subjected to alloying treatment. Is included.
本発明によれば、所定量のCを含有する鋼スラブを素材とし、熱間圧延工程における巻取温度および巻き取り後の冷却条件を制御することにより、冷延後、急速加熱焼鈍を行っても均一微細な組織が得られ、加工性に優れた冷延鋼板を製造することができる。 According to the present invention, a steel slab containing a predetermined amount of C is used as a raw material, and rapid heating annealing is performed after cold rolling by controlling the winding temperature and the cooling condition after winding in the hot rolling process. In addition, a uniform and fine structure can be obtained, and a cold-rolled steel sheet having excellent workability can be produced.
本発明の冷延鋼板の製造方法は、基本成分としてCを0.02〜0.2mass%含有する鋼スラブを熱間圧延し、所定温度で巻き取ってから一定時間の範囲内に強制冷却し、酸洗し、冷間圧延した後、急速加熱焼鈍を行うものである。
本発明に係る冷延鋼板の成分組成を限定する理由について説明する。
C:0.02〜0.2mass%
Cは、微細なセメンタイトやパーライトの析出あるいはベイナイト、マルテンサイトなどの低温変態相の生成によって組織変化を促進するので、高強度化のためには有効な元素である。しかし、C量が0.02mass%を下回ると、熱延コイル巻き取り後の冷却時におけるセメンタイトの析出が困難となり、鋼中に多量の固溶Cが残存する。この多量の固溶Cは、その後の冷間圧延において、不均一な剪断歪みの導入を促進し、焼鈍後の再結晶組織を不均一化し、加工性の低下を招く。一方、C量が0.2mass%を超えると、パーライト量の増大やセメンタイトの粗大化を招き、焼鈍後の鋼板の加工性(延性、伸びフランジ性)を劣化する他、溶接性にも悪影響を及ぼす。よって、C量の添加範囲は、0.02〜0.2mass%とする。好ましくは、0.04〜0.1mass%である。
The method for producing a cold-rolled steel sheet according to the present invention comprises hot rolling a steel slab containing 0.02 to 0.2 mass% of C as a basic component, forcibly cooling the steel slab within a predetermined time after winding at a predetermined temperature, and pickling. Then, after cold rolling, rapid heating annealing is performed.
The reason for limiting the component composition of the cold-rolled steel sheet according to the present invention will be described.
C: 0.02-0.2 mass%
C promotes the structural change by precipitation of fine cementite or pearlite or the formation of low-temperature transformation phase such as bainite or martensite, and is therefore an effective element for increasing the strength. However, if the amount of C is less than 0.02 mass%, it becomes difficult to precipitate cementite during cooling after winding the hot-rolled coil, and a large amount of solute C remains in the steel. This large amount of solute C promotes the introduction of non-uniform shear strain in the subsequent cold rolling, makes the recrystallized structure after annealing non-uniform, and causes a decrease in workability. On the other hand, if the C content exceeds 0.2 mass%, it causes an increase in the amount of pearlite and coarsening of cementite, which deteriorates the workability (ductility, stretch flangeability) of the steel sheet after annealing, and also adversely affects weldability. . Therefore, the addition range of the C amount is 0.02 to 0.2 mass%. Preferably, it is 0.04 to 0.1 mass%.
本発明に係る冷延鋼板は、C以外の成分は、Si,Mn,P,S,AlおよびNを下記の範囲で含有することが好ましい。
Si:0.1〜2.0mass%
Siは、加工性を劣化することなくフェライトを固溶強化し、強度と加工性のバランスを向上させるので、要求される強度レベルに応じて添加することができる。ただし、2.0mass%を超える添加は、靭性および溶接性を劣化させるので、Si添加量の上限は2.0mass%とするのが好ましい。また、Siは、熱間圧延前に行うスラブ加熱において、その表面でのファイヤライトの生成を促進し、いわゆる赤スケールと呼ばれる表面模様の発生を助長する他、溶融亜鉛メッキ鋼板に用いられる場合には、不メッキの原因ともなる。そのため、良好な表面性状を必要とする冷延鋼板や溶融亜鉛メッキ鋼板を製造する場合には、Siの添加量は0.5mass%を上限とすることが好ましく、望ましくは0.2mass%以下である。なお、強度確保を目的としてSiを添加する場合、含有量が少なすぎると、鋼板の強度と加工性のバランスが低くなることから、0.1mass%%以上添加する。
Cold-rolled steel sheet according to the present invention, components other than C, the Si, Mn, P, S, it is preferable that Al and N contained in the following range.
Si: 0.1 to 2.0 mass %
Si solidifies and strengthens ferrite without degrading workability, and improves the balance between strength and workability, so it can be added according to the required strength level. However, since addition exceeding 2.0 mass % deteriorates toughness and weldability, the upper limit of the Si addition amount is preferably 2.0 mass %. In addition, when slab heating is performed before hot rolling, Si promotes the generation of firelite on the surface and promotes the generation of a surface pattern called a so-called red scale. May cause unplating. Therefore, when manufacturing cold-rolled steel sheets and hot-dip galvanized steel sheets that require good surface properties, the upper limit of the amount of Si added is preferably 0.5 mass%, and desirably 0.2 mass% or less. is there. Incidentally, when adding Si to securing strength purposes, if the content is too small, since the strength and workability of the balance of the steel sheet is low, it added 0.1mass %% more.
Mn:3.0mass%以下
Mnは、固溶強化および組織強化を介して高強度化するのに有効な元素であるので、要求される強度レベルに応じて添加することができる。ただし、Mnの多量の添加は、溶接性の劣化を招くため、3.0mass%を上限とするのが好ましい。より好ましくは、2.5mass%以下である。なお、Mnは、熱間加工性を劣化させるSをMnSとして固定し、熱間割れを回避するのに有効であるため、0.2mass%以上添加することが好ましい。
Mn: 3.0mass% or less
Since Mn is an element effective for increasing the strength through solid solution strengthening and structure strengthening, it can be added according to the required strength level. However, since addition of a large amount of Mn causes deterioration of weldability, the upper limit is preferably set to 3.0 mass%. More preferably, it is 2.5 mass% or less. In addition, since Mn is effective in fixing S which degrades hot workability as MnS and avoiding hot cracking, it is preferable to add 0.2 mass% or more.
P:0.2mass%以下
Pは、加工性を害することなく固溶強化できる元素であるので、高強度化に有効である。また、Si添加鋼の場合には、赤スケールの発生を抑制する効果もあることから、必要に応じて添加することができる。ただし、Pの多量の添加は、粒界への偏析を助長し、延性、靭性を低下させるとともに、溶接性を劣化させる。よって、Pの上限は0.2mass%とするのが好ましい。また、Pは、溶融亜鉛メッキ鋼板の合金化速度の遅滞を招くことから、合金化溶融亜鉛メッキ鋼板を製造する場合には、0.1mass%を上限とするのが望ましい。一方、Pは、不可避的に鋼中に含まれる元素であり、極度のP含有量の低減は、製造コストの上昇を招くだけであるので、その下限値は0.005mass%とすることが好ましい。
P: 0.2 mass% or less P is an element that can be solid-solution strengthened without harming workability, and is therefore effective for increasing the strength. In addition, in the case of Si-added steel, there is an effect of suppressing the generation of red scale, so that it can be added as necessary. However, the addition of a large amount of P promotes segregation to grain boundaries, lowers ductility and toughness, and degrades weldability. Therefore, the upper limit of P is preferably 0.2 mass%. In addition, P causes a delay in the alloying speed of the hot dip galvanized steel sheet, so when manufacturing an galvannealed steel sheet, it is desirable that the upper limit is 0.1 mass%. On the other hand, P is an element inevitably contained in the steel, and an extreme reduction in the P content only causes an increase in production cost. Therefore, the lower limit is preferably set to 0.005 mass%.
S:0.01mass%以下
Sは、熱間での延性を著しく低下する元素であり、熱間圧延中に割れを誘発し、表面性状を著しく劣化させる。また、Sは、強度にほとんど寄与しないばかりか、不純物元素として粗大なMnSを形成し、さらに、Ti添加鋼の場合には、多量の粗大なTi系硫化物を生成して、耐食性や延性、伸びフランジ性を劣化させるので、Sは極力低減し、0.01mass%以下とするのが好ましい。延性および伸びフランジ性をより向上するためには、Sは0.005mass%以下とすることがより好ましい。
S: 0.01 mass% or less S is an element that remarkably reduces hot ductility, induces cracking during hot rolling, and significantly deteriorates surface properties. S does not contribute to the strength, but also forms coarse MnS as an impurity element. Further, in the case of Ti-added steel, a large amount of coarse Ti-based sulfides are produced, and corrosion resistance, ductility, Since stretch flangeability is deteriorated, S is preferably reduced to 0.01 mass% or less. In order to further improve the ductility and stretch flangeability, S is more preferably 0.005 mass% or less.
Al:3.0mass%以下
Alは、固溶強化元素であり、高強度化に有効な元素である。しかし、Alは、フェライト安定化元素であるため、多量の添加は熱間圧延におけるオーステナイトからフェライトへの変態点の上昇を招き、熱延鋼板の粒径を粗大化して、焼鈍後の鋼板の加工性を低下させる。また、強化元素としてのAlの添加は、コストの増加を招く。そのため、Alは、3.0mass%以下の範囲で、必要に応じて添加することが好ましい。なお、Alは脱酸元素としても有効な元素であり、鋼中の介在物を減少させる効果を有する。しかし、多量に添加した場合には、アルミナ系介在物が増加し、表面性状や内部性状の劣化の他、延性の低下を招く。よって、これらの特性を重要視する場合には、Alは、0.1mass%以下とすることがより好ましい。また、Alは、固溶NをAlNとして固定することで、鋼板の耐時効性を改善することから、0.02mass%以上含有していることが好ましい。
Al: 3.0mass% or less
Al is a solid solution strengthening element and is an element effective for increasing the strength. However, since Al is a ferrite stabilizing element, the addition of a large amount leads to an increase in the transformation point from austenite to ferrite in hot rolling, coarsening the grain size of the hot rolled steel sheet, and processing the steel sheet after annealing. Reduce sex. Moreover, the addition of Al as a strengthening element causes an increase in cost. Therefore, Al is preferably added as necessary within a range of 3.0 mass% or less. Note that Al is an effective element as a deoxidizing element and has an effect of reducing inclusions in the steel. However, when a large amount is added, alumina inclusions increase, leading to deterioration of ductility as well as deterioration of surface properties and internal properties. Therefore, when these characteristics are regarded as important, Al is more preferably 0.1 mass% or less. Moreover, since Al improves the aging resistance of a steel plate by fixing solid solution N as AlN, it is preferable to contain 0.02 mass% or more.
N:0.02mass%以下
Nは、Alと結合して微細なAlNを形成し、鋼板の強度上昇に寄与する元素である。また、必要に応じ、固溶Nを鋼中に残存させることで、焼き付け硬化性を得ることができる。しかし、0.02mass%を超えて多量に添加すると、熱間圧延中にスラブ割れを引き起こし、表面庇が発生する虞がある。そのため、N含有量は、0.02mass%を上限とするのが好ましい。なお、Nは、耐時効性が求められる場合には極力低減し、0.005mass%以下とすることが好ましい。
N: 0.02 mass% or less N is an element that combines with Al to form fine AlN and contributes to an increase in the strength of the steel sheet. Moreover, bake hardenability can be acquired by making solid solution N remain in steel as needed. However, if it is added in a large amount exceeding 0.02 mass%, slab cracking may occur during hot rolling, and surface defects may occur. Therefore, it is preferable that the N content has an upper limit of 0.02 mass%. Note that N is preferably reduced to 0.005 mass% or less when aging resistance is required.
また、本発明の冷延鋼板は、上記成分に加えてさらに、Ti,NbおよびVの中から選ばれる1種以上、および/または、Cr,Ni,MoおよびBの中から選ばれる1種以上を下記の範囲で含有することができる。
Ti:1.0mass%以下、Nb:1.0mass%以下およびV:1.0mass%以下の中から選ばれる1種以上
Ti,NbおよびVは、いずれも炭窒化物形成元素であり、炭窒化物を微細に析出すると共に、再結晶や粒成長を抑制して鋼板の結晶粒を微細化することで、強度上昇に寄与する元素であり、必要に応じて添加することができる。上記効果を得るためには、それぞれ、Ti:0.02mass%以上、Nb:0.005mass%以上およびV:0.05mass%以上を添加することが好ましい。しかし、Ti,Nb,Vを多量に添加した場合には、通常の熱延工程における再加熱時に、炭窒化物が全固溶することができず、粗大な炭窒化物が残存するため、強度上昇にあまり寄与しない。また、連続鋳造して得た鋼スラブを冷却、再加熱を行うことなくそのまま熱間圧延する場合には、Ti,Nb,Vの添加は、1.0mass%を超えて添加しても、強度上昇への寄与は小さく、合金コストの上昇を招くだけである。さらに、Ti,Nb,Vの多量の添加は、熱延鋼板の強度を上昇するため、冷間圧延の圧延負荷が増大し、製造コストの上昇を招くので、それぞれ、Ti:1.0mass%以下、Nb:1.0mass%以下およびV:1.0mass%以下の範囲で添加することが好ましい。
In addition to the above components, the cold-rolled steel sheet of the present invention is further one or more selected from Ti, Nb and V, and / or one or more selected from Cr, Ni, Mo and B. Can be contained in the following range.
One or more selected from Ti: 1.0 mass% or less, Nb: 1.0 mass% or less, and V: 1.0 mass% or less
Ti, Nb and V are all carbonitride-forming elements, and while carbonitrides are finely precipitated, the recrystallization and grain growth are suppressed and the steel grains are refined to increase the strength. It is a contributing element and can be added as necessary. In order to acquire the said effect, it is preferable to add Ti: 0.02 mass% or more, Nb: 0.005 mass% or more, and V: 0.05 mass% or more, respectively. However, when a large amount of Ti, Nb, V is added, the carbonitride cannot completely dissolve at the time of reheating in the normal hot rolling process, and coarse carbonitride remains, so that the strength Does not contribute much to the rise. In addition, when steel slabs obtained by continuous casting are hot-rolled as they are without cooling and reheating, the addition of Ti, Nb and V increases the strength even if added over 1.0 mass%. The contribution to is small and only increases the alloy costs. Furthermore, addition of a large amount of Ti, Nb, V increases the strength of the hot-rolled steel sheet, so the rolling load of cold rolling increases, leading to an increase in manufacturing cost. Therefore, Ti: 1.0 mass% or less, It is preferable to add in the range of Nb: 1.0 mass% or less and V: 1.0 mass% or less.
Cr:1.0mass%以下、Ni:1.0mass%以下、Mo:1.0mass%以下およびB:0.01mass%以下の中から選ばれる1種以上
Cr,Ni,MoおよびBはいずれも、焼入れ性を向上して組織を強化することにより強度上昇に寄与する元素であり、必要に応じて添加することができる。上記効果を得るためには、それぞれ、Cr:0.1mass%以上、Ni:0.1mass%以上、Mo:0.1mass%以上およびB:0.0005mass%以上添加することが好ましい。しかし、Cr,Ni,Mo,Bの多量の添加は、合金コストの上昇を招くので、それぞれ、Cr:1.0mass%以下、Ni:1.0mass%以下、Mo:1.0mass%以下の範囲で添加することが好ましい。また、Bの多量の添加は、焼入れ性向上の効果が飽和するだけでなく、再結晶抑制作用により熱間圧延時の荷重負荷が著しく増加するため、B:0.01mass%以下の範囲で添加することが好ましい。
One or more selected from Cr: 1.0 mass% or less, Ni: 1.0 mass% or less, Mo: 1.0 mass% or less, and B: 0.01 mass% or less
Cr, Ni, Mo, and B are all elements that contribute to strength increase by improving the hardenability and strengthening the structure, and can be added as necessary. In order to acquire the said effect, it is preferable to add Cr: 0.1 mass% or more, Ni: 0.1 mass% or more, Mo: 0.1 mass% or more, and B: 0.0005 mass% or more, respectively. However, addition of a large amount of Cr, Ni, Mo, and B leads to an increase in alloy cost. Therefore, Cr is added in a range of 1.0 mass% or less, Ni: 1.0 mass% or less, and Mo: 1.0 mass% or less, respectively. It is preferable. Addition of a large amount of B not only saturates the effect of improving hardenability, but also significantly increases the load load during hot rolling due to the recrystallization suppressing action, so B is added in the range of 0.01 mass% or less. It is preferable.
なお、本発明においては、素材に含有される上記成分以外の残部は、Feおよび不可避的不純物とすることが好ましいが、本発明の作用・効果を損なわない限り、他の元素を含有しても構わない。 In the present invention, the balance other than the above components contained in the material is preferably Fe and inevitable impurities, but may contain other elements as long as the effects and effects of the present invention are not impaired. I do not care.
次に、本発明に係る冷延鋼板の製造条件について説明する。
上記成分組成を有する鋼の溶製方法は、転炉法、電炉法等、通常公知の方法を適宜適用することができる。溶製された鋼は、連続鋳造法あるいは造塊−分塊圧延法により鋼スラブとし、そのまま、あるいは、冷却してから再加熱し、熱間圧延する。熱間圧延における圧延温度、圧下率等の圧延条件は、特に規定する必要はなく、常法に従って行えばよい。
熱間圧延後の熱延鋼板は、下記の巻取温度で巻き取り、下記の所定時間以内に強制冷却し、その後、通常の酸洗、冷間圧延をし、その後、急速加熱を伴う焼鈍工程を経て製造する。
Next, the manufacturing conditions of the cold rolled steel sheet according to the present invention will be described.
As a method for melting steel having the above component composition, generally known methods such as a converter method and an electric furnace method can be appropriately applied. The melted steel is made into a steel slab by a continuous casting method or an ingot-bundling rolling method, and is subjected to hot rolling as it is or after being cooled and reheated. The rolling conditions such as the rolling temperature and the rolling reduction in the hot rolling need not be particularly defined, and may be performed according to ordinary methods.
The hot-rolled steel sheet after hot rolling is wound at the following winding temperature, forcibly cooled within the following predetermined time, and then subjected to normal pickling and cold rolling, and then an annealing process with rapid heating. To manufacture.
巻取温度:300〜650℃
熱間圧延後のコイルの巻取温度は、300〜650℃の範囲とする必要がある。巻取温度が650℃を上回った場合には、巻き取り後の冷却中に、鋼板中に析出したセメンタイトが粗大化する。そのため、冷間圧延後に行われる急速加熱焼鈍において、セメンタイトが完全に溶解することができずに残存し、加工性の著しい劣化を招く。また、残存したセメンタイトは、急速加熱後、均熱温度に長時間保持することにより溶解させることができるが、均熱保持時間の増加は、結晶粒径の粗大化を招き、急速加熱による細粒化効果を失わせる。さらに、セメンタイトの周囲は、C濃度が高く、再結晶が抑制されるため、粗大なセメンタイトが存在する場合には、再結晶が不均一に進行し、焼鈍後の鋼板組織も不均一化して加工性が劣化する。一方、巻取温度が300℃を下回った場合には、冷却中にセメンタイトが析出できず、固溶Cが多量に残存する。そのため、冷間圧延時に剪断歪みが不均一に導入されて、焼鈍後の再結晶組織も不均一となり、加工性の低下を招くこととなる。したがって、熱間圧延後の巻取温度は、300〜650℃の範囲とする必要がある。
Winding temperature: 300-650 ° C
The coiling temperature after hot rolling needs to be in the range of 300 to 650 ° C. When the coiling temperature exceeds 650 ° C., cementite precipitated in the steel sheet becomes coarse during cooling after winding. Therefore, in rapid heating annealing performed after cold rolling, cementite cannot be completely dissolved and remains, resulting in significant deterioration of workability. In addition, the remaining cementite can be dissolved by holding it at a soaking temperature for a long time after rapid heating, but an increase in the soaking time leads to a coarsening of the crystal grain size, resulting in fine grains by rapid heating. The effect is lost. Furthermore, since the C concentration is high around the cementite and recrystallization is suppressed, when coarse cementite is present, the recrystallization proceeds non-uniformly and the steel sheet structure after annealing becomes non-uniform and processed. Deteriorates. On the other hand, when the coiling temperature is below 300 ° C., cementite cannot be precipitated during cooling, and a large amount of solute C remains. Therefore, shear strain is introduced non-uniformly during cold rolling, the recrystallized structure after annealing becomes non-uniform, and the workability is reduced. Therefore, the coiling temperature after hot rolling needs to be in the range of 300 to 650 ° C.
冷却開始時間:巻き取り後10〜60分以内
熱延コイル巻き取り後の冷却条件は、上述した巻取温度と共に、本発明の根幹をなす部分であり、巻き取り終了から10〜60分の間に、強制冷却を行う必要がある。これにより、セメンタイトを適度に析出させかつ固溶Cをほどほどに確保すること、具体的には、概ね直径1μm以下の微細な炭化物を析出させると共に、0.001〜0.008mass%程度のCを固溶させることができ、ひいては、冷間圧延、焼鈍後に優れた加工性を得ることができるからである。巻き取り終了から冷却開始までの時間が10分未満の場合には、セメンタイトの析出が不十分となり、鋼中には固溶Cが多量に存在することとなる。その結果、冷間圧延において不均一な剪断歪みの導入を促進し、再結晶焼鈍後の鋼板における加工性の劣化をもたらす。逆に、巻き取り終了から冷却開始までの時間が60分を超える場合には、析出したセメンタイトが粗大化し、この粗大セメンタイトは、焼鈍の急速加熱過程では完全に溶解できないため、鋼中に残存し、加工割れの起点となる。また、セメンタイトが粗大化するほど析出が進んだ場合には、鋼中の固溶Cは、大部分がセメンタイトとなり、ほとんど残存していない。さらに、急速加熱時にセメンタイトが分解し、再固溶したCは、旧セメンタイト近傍に存在するため、この部分のC濃度が一時的に高くなり、その部分の再結晶が抑制されて焼鈍後の鋼板組織を不均一化し、加工性の低下を招くこととなる。この点、コイル巻き取り完了後、10〜60分の間に強制冷却した場合には、鋼中に固溶Cがある程度の量(0.001〜0.008mass%程度)残留しているので、急速加熱によってセメンタイト近傍の固溶C量が増加しても、マトリックス中の固溶C量との差が少ない。そのため、再結晶が均一に進行し、焼鈍後の組織も均一となって加工性を向上させることができる。
Cooling start time: within 10 to 60 minutes after winding The cooling condition after winding the hot-rolled coil is a part of the present invention together with the winding temperature described above, and between 10 and 60 minutes from the end of winding. In addition, forced cooling is required. As a result, cementite is appropriately precipitated and solid solution C is moderately secured. Specifically, fine carbide having a diameter of approximately 1 μm or less is precipitated, and about 0.001 to 0.008 mass% of C is dissolved. This is because excellent workability can be obtained after cold rolling and annealing. When the time from the end of winding to the start of cooling is less than 10 minutes, the precipitation of cementite becomes insufficient, and a large amount of solid solution C exists in the steel. As a result, introduction of non-uniform shear strain is promoted in cold rolling, resulting in deterioration of workability in the steel sheet after recrystallization annealing. Conversely, when the time from the end of winding to the start of cooling exceeds 60 minutes, the precipitated cementite becomes coarse, and this coarse cementite cannot be completely dissolved in the rapid heating process of annealing, so it remains in the steel. This is the starting point of processing cracks. Moreover, when precipitation progresses so that cementite coarsens, most of the solid solution C in steel becomes cementite and hardly remains. Further, C, which is decomposed and re-dissolved during rapid heating, is present in the vicinity of the old cementite, so the C concentration in this part temporarily increases, and recrystallization of that part is suppressed, and the steel sheet after annealing The structure becomes non-uniform and the workability is reduced. In this respect, when the coil is forcibly cooled for 10 to 60 minutes after coil winding is completed, a certain amount of solid solution C (about 0.001 to 0.008 mass%) remains in the steel. Even if the amount of solute C in the vicinity of cementite increases, the difference from the amount of solute C in the matrix is small. Therefore, recrystallization proceeds uniformly, the structure after annealing becomes uniform, and workability can be improved.
また、熱延コイルを所定の温度で巻き取り、一定時間保持した後、強制冷却を行う必要があるが、この時の冷却は、200℃以下までの冷却速度が100℃/hr以上である強制冷却とすることが好ましい。というのは、巻き取られた熱延コイルが自然放冷される場合は、15℃/hr程度の非常に遅い冷却速度である。そのため、熱延後のコイルが自然放冷される場合には、結果として巻き取り後の保持時間を延長させたのと同じ結果となり、鋼中に粗大なセメンタイトを析出し、加工性を劣化する。このような、粗大なセメンタイトの析出を抑制するためには、巻き取り後、一定時間保持した後のコイルは、セメンタトの析出に影響しない200℃以下の温度まで強制冷却する必要があり、この時の冷却速度は、100℃/hr以上とすることが好ましい。固溶Cを均一に分散させて残留させる点からは、300℃/hr以上とすることが好ましい。コイルの強制冷却する方法としては、巻き取り後のコイルを、そのまま冷却水に浸漬する方法、冷却水をスプレーする方法あるいは送風による冷却方法等いずれの方法で行ってもよい。また、コイルを巻き戻しながら、上記冷却方法を併用する方法でも構わない。 In addition, it is necessary to wind the hot-rolled coil at a predetermined temperature and hold it for a certain period of time, followed by forced cooling. The cooling at this time is forced to a cooling rate of 200 ° C or lower and 100 ° C / hr or higher Cooling is preferred. This is because when the wound hot-rolled coil is allowed to cool naturally, it has a very slow cooling rate of about 15 ° C./hr. Therefore, when the coil after hot rolling is allowed to cool naturally, the result is the same as extending the holding time after winding, resulting in precipitation of coarse cementite in the steel and deterioration of workability. . In order to suppress such coarse cementite precipitation, the coil after being held for a certain period of time after winding needs to be forcibly cooled to a temperature of 200 ° C. or less that does not affect the precipitation of cementate. The cooling rate is preferably 100 ° C./hr or more. From the standpoint that the solid solution C is uniformly dispersed and left, it is preferably 300 ° C./hr or more. As a method for forcibly cooling the coil, any method such as a method of immersing the coil after winding in cooling water as it is, a method of spraying cooling water, or a cooling method by blowing air may be used. Moreover, the method of using the said cooling method together may be sufficient, rewinding a coil.
上記熱延後のコイルを強制冷却した後は、常法に従い酸洗し、冷間圧延する。この際の冷間圧延は、再結晶に必要な加工歪を与え、再結晶後の結晶粒を微細化する観点からは、圧下率を50%以上とすることが好ましい。一方、過大な圧下率とすることは、圧延負荷を増大させることから、85%以下とすることが好ましい。 After the hot-rolled coil is forcibly cooled, it is pickled and cold-rolled according to a conventional method. In this cold rolling, it is preferable to set the rolling reduction to 50% or more from the viewpoint of giving processing strain necessary for recrystallization and refining the crystal grains after recrystallization. On the other hand, an excessive reduction ratio is preferably 85% or less because it increases the rolling load.
焼鈍加熱速度:600℃以上均熱温度までを30℃/sec以上
冷間圧延に続いて、鋼板を再結晶させ加工性を付与するための連続焼鈍を行う。この焼鈍の加熱速度は、上述した熱間圧延後の巻取温度と共に本発明の根幹をなす部分であり、600℃以上均熱温度までを30℃/sec以上で急速加熱する必要がある。上記加熱速度が30℃/sec未満と低い場合には、加熱の途中で歪みの回復が先行し、再結晶の核発生頻度が低下することから、微細な再結晶粒を得ることができない。さらに、核発生頻度の低下は、結晶の不均一な成長を助長し、再結晶粒の大きさを不均一とすることから、加工性の低下を招く。これに対して、加熱速度を30℃/sec以上とした場合には、加熱途中での歪みの回復が抑制され、再結晶核が一気にランダムに発生するので、均一かつ微細な再結晶粒を得ることができる。
Annealing heating rate: 600 ° C. or higher up to a soaking temperature of 30 ° C./sec or higher Continuous cold rolling is followed by continuous annealing to recrystallize the steel sheet and impart workability. The heating rate of this annealing is a portion that forms the basis of the present invention together with the above-described coiling temperature after hot rolling, and it is necessary to rapidly heat from 600 ° C. to a soaking temperature at 30 ° C./sec or more. When the heating rate is as low as less than 30 ° C./sec, strain recovery is preceded during heating, and the frequency of recrystallization nucleation decreases, so that fine recrystallized grains cannot be obtained. Furthermore, the decrease in the frequency of nucleation promotes non-uniform growth of crystals and makes the recrystallized grains non-uniform in size, leading to a decrease in workability. On the other hand, when the heating rate is set to 30 ° C./sec or more, recovery of strain during heating is suppressed, and recrystallization nuclei are randomly generated at once, so that uniform and fine recrystallized grains are obtained. be able to.
また、上記加熱速度の温度範囲を600℃以上均熱温度までに制限する理由は、連続焼鈍においては、実質的に歪みの回復や核発生に影響を及ぼす温度は600℃以上の高温域であり、600℃未満の温度域における加熱速度の影響は小さいためである。したがって、600℃までの加熱速度は、特に制限されない。なお、本発明における上記均熱温度とは、600℃以上かつ再結晶温度以上である焼鈍中の最高到達温度を意味し、鋼板の化学成分、焼鈍後の鋼板に要求される特性(機械的特性)等に応じて適宜決定することができる。好適な均熱温度は700〜900℃、より好ましくは800〜850℃の範囲である。均熱温度での保持時間、いわゆる、焼鈍時間は、長すぎると結晶粒の粗大化を招き、加工性の低下を引き起こすので、10秒間以下とするのが好ましく、均熱温度に到達後、直ちに冷却を開始する、いわゆる0秒間均熱としてもよく、素材の化学成分、焼鈍後の鋼板に要求される特性(機械的特性)等に応じて適宜決定することができる。上記均熱焼鈍後の冷却は、特に規定する必要はなく、徐冷でも急冷でもよく、冷却後さらに過時効処理を行ってもよい。とくに溶融亜鉛メッキ鋼板や合金化溶融亜鉛メッキ鋼板として製造される場合は、そのプロセスにおける熱処理サイクルで処理しても構わない。 The reason why the temperature range of the heating rate is limited to 600 ° C. or higher and the soaking temperature is that in continuous annealing, the temperature that substantially affects strain recovery and nucleation is in the high temperature range of 600 ° C. or higher. This is because the influence of the heating rate in the temperature range below 600 ° C. is small. Therefore, the heating rate up to 600 ° C. is not particularly limited. The soaking temperature in the present invention means the highest temperature reached during annealing that is 600 ° C. or higher and the recrystallization temperature or higher, and the chemical composition of the steel sheet, the characteristics required for the steel sheet after annealing (mechanical characteristics) ) And the like. A suitable soaking temperature is in the range of 700-900 ° C, more preferably 800-850 ° C. The holding time at the soaking temperature, so-called annealing time, is too long, leading to the coarsening of the crystal grains and causing the workability to deteriorate, so it is preferably set to 10 seconds or less, immediately after reaching the soaking temperature. It may be so-called soaking for 0 seconds at which cooling is started, and can be appropriately determined according to the chemical composition of the material, the characteristics (mechanical characteristics) required for the steel sheet after annealing, and the like. The cooling after the soaking is not particularly required, and may be slow cooling or rapid cooling, and may be further subjected to an overaging treatment after cooling. In particular, when it is produced as a hot dip galvanized steel sheet or an alloyed hot dip galvanized steel sheet, it may be processed by a heat treatment cycle in the process.
焼鈍に用いる炉は、通常の冷延鋼板を対象とした連続焼鈍ラインの他、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板を対象とした連続溶融亜鉛めっきライン等を用いることができる。また、急速加熱の方法は特に限定されないが、誘導加熱や直接通電加熱方式で室温から均熱温度までを加熱する方法、あるいは、室温から600℃までを、直火式加熱方式やラジアントチューブ加熱方式等で徐加熱し、600℃以上を誘導加熱や直接通電加熱で急速加熱する方式でもよい。 As the furnace used for annealing, a continuous hot dip galvanized steel sheet, a continuous hot dip galvanized steel line for alloyed hot dip galvanized steel sheets and the like can be used in addition to a continuous annealing line for ordinary cold rolled steel sheets. In addition, the method of rapid heating is not particularly limited, but the method of heating from room temperature to soaking temperature by induction heating or direct current heating method, or the method of heating directly from room temperature to 600 ° C, direct heating method or radiant tube heating method It is possible to use a method in which heating is performed slowly, etc., and rapid heating is performed at 600 ° C. or higher by induction heating or direct current heating.
C:0.08mass%、Si:0.2mass%、Mn:1.5mass%、P:0.01mass%、S:0.003mass%、Al:0.03mass%およびN:0.002mass%の成分組成を有する鋼Aを真空溶解炉にて溶製し、鋳造して50kg鋼塊とし、この鋼塊を1250℃に再加熱し、実験圧延機にて最終仕上温度を870℃とする熱間圧延を行い、板厚3.0mmの熱延鋼板とし、その後、巻取温度に相当する温度(巻取処理温度)まで冷却し、その温度に一定時間保持する熱処理を施した後、表1に示す条件で、コイル巻き取り後の自然放冷に相当する炉冷あるいは強制冷却に相当する空冷を行い室温まで冷却した。なお、上記巻取処理温度は、表1に示すように、280〜670℃の間で、また、その温度での保持時間は5〜80分の間で変化させた。また、上記巻取処理後の冷却速度は、炉冷(巻き取り後の自然放冷に相当)が15℃/hr、空冷(巻き取り後の強制冷却に相当)が600℃/hrであった。上記熱延鋼板について、セメンタイト径、固溶C量を測定した。セメンタイト径は、圧延方向に平行な断面を研磨し、ピクラール液で腐食した後、走査型電子顕微鏡を用いて3000倍にて3視野を撮像し、全セメンタイトの円相当径(直径)を画像解析により求め、その平均値をセメンタイト径とした。また、固溶C量は、熱延板の内部摩擦を測定し、スネークピーク高さから換算して求めた。 Steel A having a component composition of C: 0.08 mass%, Si: 0.2 mass%, Mn: 1.5 mass%, P: 0.01 mass%, S: 0.003 mass%, Al: 0.03 mass% and N: 0.002 mass% is vacuumed Melted in a melting furnace, cast into a 50kg steel ingot, this steel ingot was reheated to 1250 ° C, hot rolled to a final finishing temperature of 870 ° C with an experimental rolling mill, and a plate thickness of 3.0mm Then, after cooling to a temperature corresponding to the coiling temperature (coiling temperature) and performing a heat treatment for holding at that temperature for a certain period of time, under the conditions shown in Table 1, It was cooled to room temperature by performing furnace cooling corresponding to natural cooling or air cooling corresponding to forced cooling. As shown in Table 1, the winding treatment temperature was changed between 280 and 670 ° C., and the holding time at that temperature was changed between 5 and 80 minutes. The cooling rate after the winding process was 15 ° C./hr for furnace cooling (corresponding to natural cooling after winding) and 600 ° C./hr for air cooling (corresponding to forced cooling after winding). . About the said hot-rolled steel plate, the cementite diameter and the amount of solute C were measured. As for the cementite diameter, after grinding a cross section parallel to the rolling direction and corroding with a picral solution, three fields of view were imaged at 3000x using a scanning electron microscope, and image analysis of the equivalent circle diameter (diameter) of all cementite was performed. The average value was defined as the cementite diameter. Moreover, the amount of solid solution C was calculated | required by measuring the internal friction of a hot-rolled sheet and converting from snake peak height.
さらに、上記熱延鋼板を、酸洗して表面スケールを除去し、圧下率60%の冷間圧延を行い、板厚1.2mmの冷延鋼板とし、この冷延鋼板に対し、600℃までを加熱速度100℃/secで加熱し、600℃から均熱温度(850℃)までを加熱速度20〜300℃/secの間で変化させて加熱し、均熱温度に1秒間保持した後、冷却速度50℃/secで300℃まで冷却し、その温度で300秒間保持する過時効処理を施し、室温まで空冷する連続焼鈍に相当する熱処理を行った。 Further, the hot-rolled steel sheet is pickled to remove the surface scale, and cold-rolled at a reduction rate of 60% to obtain a cold-rolled steel sheet having a thickness of 1.2 mm. Heated at a heating rate of 100 ° C / sec, heated from 600 ° C to a soaking temperature (850 ° C) at a heating rate of 20 to 300 ° C / sec, held at the soaking temperature for 1 second, and then cooled. It was cooled to 300 ° C. at a rate of 50 ° C./sec, subjected to an overaging treatment that was maintained at that temperature for 300 seconds, and a heat treatment corresponding to continuous annealing was performed to air-cool to room temperature.
上記焼鈍後の冷延鋼板について、引張特性および伸びフランジ性を評価するための穴拡げ率の測定を行った。引張特性は、JIS Z 2201 に規定されたJIS 5号試験片を圧延直角方向に採取し、JIS Z 2241 に準拠して引張試験を行い、引張強度(TS)、破断伸び(El)を測定した。また、穴拡げ率は、冷延鋼板に10mmφの穴を打抜き、この穴に60°円錐ポンチを押し当てて穴拡げ加工を行い、穴縁に発生した亀裂が板厚を貫通した時の穴径を測定し、下記式;
穴拡げ率λ(%)=(d−d0)/d0×100
ここで、d:亀裂が板厚を貫通した時の穴径(mm)、d0:初期穴径(=10mm)
を用いて穴拡げ率λを求めた。
About the cold-rolled steel plate after the said annealing, the hole expansion rate for evaluating a tensile characteristic and stretch flangeability was measured. For tensile properties, JIS No. 5 test piece specified in JIS Z 2201 was sampled in the direction perpendicular to the rolling direction, subjected to a tensile test according to JIS Z 2241, and measured for tensile strength (TS) and elongation at break (El). . In addition, the hole expansion rate is determined by punching a 10mmφ hole into a cold-rolled steel sheet, pressing a 60 ° conical punch into the hole, and expanding the hole diameter. And measure the following formula:
Hole expansion ratio λ (%) = (d−d 0 ) / d 0 × 100
Here, d: hole diameter when the crack penetrates the plate thickness (mm), d 0 : initial hole diameter (= 10 mm)
Was used to determine the hole expansion ratio λ.
上記製造条件および引張試験、穴拡げ率の測定結果を表1に併記して示した。また、この結果を、図1〜図5に示した。図1は、巻取処理温度、即ち、熱延後の巻取温度が、破断伸び(El)および穴拡げ率(λ)に及ぼす影響を示したものであり、巻取温度が350〜650℃の範囲で良好な特性が得られることがわかる。図2は、巻取処理温度での保持時間、即ち、コイル巻き取り後から冷却開始までの時間が、Elおよびλに及ぼす影響を示したもので、巻き取り後、10〜60分の間に強制冷却した場合に良好な特性が得られることがわかる。図3は、巻き取り後の冷却速度が、Elおよびλに及ぼす影響を示したもので、強制冷却に相当する空冷の方が、放冷に相当する炉冷より、良好な特性が得られることがわかる。図4は、焼鈍時の加熱速度が、Elおよびλに及ぼす影響を示したものであり、加熱速度が30℃/sec以上で良好な特性が得られることがわかる。図5は、表1に記載された本発明の製造条件に適合した発明例と、本発明の製造条件を外れる比較例のTS×Elバランス、TS×λバランスを比較したものである。これから、本発明の製造方法に従えば、同一成分組成の素材を用いても、TS×Elバランスが20000 MPa・%以上で、TS×λバランスが65000 MPa・%以上の優れた特性を有する冷延鋼板を得られることがわかる。 The production conditions, the tensile test, and the measurement results of the hole expansion rate are shown together in Table 1. The results are shown in FIGS. FIG. 1 shows the influence of the coiling temperature, that is, the coiling temperature after hot rolling, on the elongation at break (El) and the hole expansion ratio (λ), and the coiling temperature is 350 to 650 ° C. It can be seen that good characteristics can be obtained within this range. FIG. 2 shows the effect on the El and λ of the holding time at the winding processing temperature, that is, the time from coil winding to the start of cooling, between 10 and 60 minutes after winding. It can be seen that good characteristics can be obtained when forced cooling is performed. FIG. 3 shows the effect of the cooling rate after winding on El and λ. Air cooling corresponding to forced cooling provides better characteristics than furnace cooling corresponding to cooling. I understand. FIG. 4 shows the influence of the heating rate during annealing on El and λ. It can be seen that good characteristics can be obtained at a heating rate of 30 ° C./sec or more. FIG. 5 is a comparison of the TS × El balance and TS × λ balance of the inventive example that meets the manufacturing conditions of the present invention described in Table 1 and a comparative example that deviates from the manufacturing conditions of the present invention. From this, according to the production method of the present invention, even if materials having the same component composition are used, a cooling property having excellent characteristics such as a TS × El balance of 20000 MPa ·% or more and a TS × λ balance of 65000 MPa ·% or more. It turns out that a rolled steel plate can be obtained.
表2に示す成分組成を有するB〜Nの鋼を真空溶解炉にて溶製し、鋳造して50kg鋼塊とし、この鋼塊を1250℃に再加熱し、実験圧延機にて最終仕上温度を870℃とする熱間圧延を行い板厚3.0mmの熱延鋼板とした。この熱延鋼板を600℃まで冷却し、600℃に設定された炉中に30分間保持した後、200℃までを600℃/hrで冷却する強制冷却相当の空冷を行った。なお、上記の熱延鋼板については、実施例1と同様にして、セメンタイト径と固溶C量を測定した。
その後、上記熱延鋼板を、酸洗して表面スケールを除去し、圧下率60%の冷間圧延を行い、板厚1.2mmの冷延鋼板とし、さらに、この冷延鋼板に対し、600℃までを加熱速度100℃/secで加熱し、600℃から均熱温度(850℃)までを加熱速度100℃/secで加熱し、均熱温度に1秒間保持した後、冷却速度50℃/secで300℃まで冷却し、その温度に300秒間保持する過時効処理を施した後、室温まで空冷する、連続焼鈍に相当する熱処理を行った。上記のようにして得た冷延鋼板について、実施例1と同様の要領で、引張試験と穴拡げ試験を行った。
B to N steels having the composition shown in Table 2 were melted in a vacuum melting furnace, cast into a 50 kg steel ingot, this steel ingot was reheated to 1250 ° C, and the final finishing temperature in an experimental rolling mill Was hot rolled to 870 ° C. to obtain a hot-rolled steel sheet having a thickness of 3.0 mm. The hot-rolled steel sheet was cooled to 600 ° C., held in a furnace set at 600 ° C. for 30 minutes, and then subjected to air cooling equivalent to forced cooling in which the temperature was reduced to 200 ° C. at 600 ° C./hr. In addition, about said hot-rolled steel plate, it carried out similarly to Example 1, and measured the cementite diameter and the amount of solute C.
Thereafter, the hot-rolled steel sheet is pickled to remove the surface scale, cold-rolled at a reduction rate of 60%, to obtain a cold-rolled steel sheet having a thickness of 1.2 mm, and further to this cold-rolled steel sheet at 600 ° C. Is heated at a heating rate of 100 ° C / sec, heated from 600 ° C to a soaking temperature (850 ° C) at a heating rate of 100 ° C / sec, held at the soaking temperature for 1 second, and then cooled at a cooling rate of 50 ° C / sec. After cooling to 300 ° C., an overaging treatment was performed to maintain that temperature for 300 seconds, and then a heat treatment corresponding to continuous annealing was performed to air-cool to room temperature. The cold rolled steel sheet obtained as described above was subjected to a tensile test and a hole expansion test in the same manner as in Example 1.
上記熱延鋼板および冷延鋼板についての、測定結果を表2に併記して示した。なお、表2のNo.1は、実施例1において、鋼Aを本実施例と同一の条件で測定した結果(表1のNo.1)を示したものである。また、図6に、表2に記載された発明例と比較例のTS×Elバランス、TS×λバランスを比較して示した。これらの結果から、本発明の製造方法に従えば、C量が本発明の範囲外であるNo.15(鋼B)を除いて、いずれも、Ti,Nb,V,Cr,Ni,Mo,Bを添加し高強度化した鋼であるにもかかわらず、TS×Elバランスが18000 MPa・%以上で、TS×λバランスが60000 MPa・%以上の優れた特性を有する冷延鋼板を得られることがわかる。 The measurement results for the hot-rolled steel sheet and the cold-rolled steel sheet are shown together in Table 2. Note that No. 1 in Table 2 shows the result (No. 1 in Table 1) of steel A measured in Example 1 under the same conditions as in this example. FIG. 6 shows a comparison of the TS × El balance and the TS × λ balance of the invention examples described in Table 2 and the comparative example. From these results, according to the production method of the present invention, all of Ti, Nb, V, Cr, Ni, Mo, C, except for No. 15 (steel B) whose C content is outside the scope of the present invention. Despite being a steel strengthened by adding B, it is possible to obtain a cold-rolled steel sheet having excellent characteristics with a TS × El balance of 18000 MPa ·% or more and a TS × λ balance of 60000 MPa ·% or more. I understand that.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003421866A JP4333356B2 (en) | 2003-12-19 | 2003-12-19 | Cold rolled steel sheet manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003421866A JP4333356B2 (en) | 2003-12-19 | 2003-12-19 | Cold rolled steel sheet manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005179732A JP2005179732A (en) | 2005-07-07 |
JP4333356B2 true JP4333356B2 (en) | 2009-09-16 |
Family
ID=34782916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003421866A Expired - Fee Related JP4333356B2 (en) | 2003-12-19 | 2003-12-19 | Cold rolled steel sheet manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4333356B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4894863B2 (en) * | 2008-02-08 | 2012-03-14 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof |
JP5320990B2 (en) * | 2008-02-29 | 2013-10-23 | Jfeスチール株式会社 | Cold rolled steel sheet and method for producing the same |
JP5375369B2 (en) * | 2009-06-29 | 2013-12-25 | 新日鐵住金株式会社 | Cold-rolled steel sheet for projection welding |
KR101960992B1 (en) * | 2011-07-15 | 2019-03-21 | 타타 스틸 이즈무이덴 베.뷔. | Apparatus for producing annealed steels and process for producing said steels |
US20190062863A1 (en) * | 2016-02-18 | 2019-02-28 | Jfe Steel Corporation | High-strength cold rolled steel sheet and method of producing same |
KR102093057B1 (en) * | 2016-02-18 | 2020-03-24 | 제이에프이 스틸 가부시키가이샤 | High-strength cold rolled steel sheet and method of producing same |
-
2003
- 2003-12-19 JP JP2003421866A patent/JP4333356B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005179732A (en) | 2005-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102470965B1 (en) | Steel sheet having excellent toughness, ductility and strength, and manufacturing method thereof | |
KR102389648B1 (en) | High strength multiphase steel, production method and use | |
JP6458833B2 (en) | Manufacturing method of hot-rolled steel sheet, manufacturing method of cold-rolled full hard steel sheet, and manufacturing method of heat-treated plate | |
JP4650006B2 (en) | High carbon hot-rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same | |
JP5310919B2 (en) | Method for producing high-strength cold-rolled steel sheets with excellent aging resistance and seizure curability | |
JP5320798B2 (en) | High-strength steel sheet with excellent bake hardenability with very little deterioration of aging and method for producing the same | |
JPWO2013061545A1 (en) | Manufacturing method of high-strength steel sheet with excellent workability | |
JP2015224359A (en) | Method of producing high strength steel sheet | |
JP5256690B2 (en) | High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same | |
WO2016024371A1 (en) | Method for manufacturing high-strength steel sheet | |
JPWO2019107042A1 (en) | High-strength cold-rolled steel sheet and manufacturing method thereof | |
JP4457681B2 (en) | High workability ultra-high strength cold-rolled steel sheet and manufacturing method thereof | |
JP5456026B2 (en) | High-strength steel sheet, hot-dip galvanized steel sheet with excellent ductility and no cracks at the edge, and manufacturing method thereof | |
JP4333356B2 (en) | Cold rolled steel sheet manufacturing method | |
WO2016194342A1 (en) | High strength steel sheet and method for producing same | |
JP4168750B2 (en) | Method for producing hot-dip galvanized cold-rolled steel sheet with an ultrafine grain structure and excellent fatigue properties | |
JP4848722B2 (en) | Method for producing ultra-high-strength cold-rolled steel sheet with excellent workability | |
JP5310920B2 (en) | High strength cold-rolled steel sheet with excellent aging resistance and seizure hardening | |
JP4010131B2 (en) | Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof | |
JP5434375B2 (en) | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof | |
JP2002226937A (en) | Cold rolled steel sheet and plated steel sheet capable of increasing strength by heat treatment after forming and method for producing the same | |
JP5076691B2 (en) | Manufacturing method of high-strength cold-rolled steel sheet | |
JP3925064B2 (en) | Hot-dip galvanized steel sheet excellent in press formability and strain age hardening characteristics and method for producing the same | |
KR101467057B1 (en) | Cold-rolled steel sheet and method of manufacturing the same | |
KR101467055B1 (en) | Cold-rolled steel sheet and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060929 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081125 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090602 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090615 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120703 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120703 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130703 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |