JP2007197742A - Cold rolled steel sheet for welded can, and its manufacturing method - Google Patents

Cold rolled steel sheet for welded can, and its manufacturing method Download PDF

Info

Publication number
JP2007197742A
JP2007197742A JP2006015567A JP2006015567A JP2007197742A JP 2007197742 A JP2007197742 A JP 2007197742A JP 2006015567 A JP2006015567 A JP 2006015567A JP 2006015567 A JP2006015567 A JP 2006015567A JP 2007197742 A JP2007197742 A JP 2007197742A
Authority
JP
Japan
Prior art keywords
steel sheet
less
steel
solid solution
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006015567A
Other languages
Japanese (ja)
Inventor
Hiroichi Yokoya
博一 横矢
Seiichi Tanaka
聖市 田中
Hidekuni Murakami
英邦 村上
Koichi Noguchi
幸一 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006015567A priority Critical patent/JP2007197742A/en
Publication of JP2007197742A publication Critical patent/JP2007197742A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for providing, with high productivity, a steel sheet for cans in which the formability of welded resealable cans can be remarkably improved and which has expanding workability capable of applying practical strength to can bodies after forming. <P>SOLUTION: In the steel sheet, the percentage of precipitated N is ≥85%, and the difference between hardness at a depth of 25 μm from the surface of the steel sheet in thickness direction and hardness in the central part of the steel sheet in thickness direction, after heating and holding at 170°C for 7 min, is ≥15 points by micro Vickers hardness. The steel sheet has a composition containing, by mass, 0.015 to 0.08% C, 0.10 to 0.60% Mn, ≤0.02% P, ≤0.02% S, 0.02 to 0.10% acid-soluble Al and ≤0.006% N. The sum of solid-solution N and solid-solution C, contained in the steel sheet, is 10 to 20 ppm and also a relation of [(solid-solution C)≥(solid-solution N)×2] is satisfied. Temper rolling is performed at a draft of 1.5 to 3.0% and a tension of 50 to 200 MPa using rolls of ≤470 mm roll diameter. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ぶりきやティンフリースチールなどの容器用鋼板のうち、異形加工溶接缶用として好適であり、調質度がT−3以下で、かつ箱焼鈍と同等の耐St−St(ストレッチャーストレイン)性を有する連続焼鈍法による軟質容器用鋼板とその製造方法に関する。   The present invention is suitable for deformed welded cans among steel plates for containers such as tinplate and tin-free steel, and has a tempering degree of T-3 or less and an equivalent St-St resistance (stoke resistance) equivalent to box annealing. The present invention relates to a steel plate for a soft container by a continuous annealing method having (retcher strain) properties and a method for producing the same.

近年において、スチール缶に大口径のキャップを使用することで開けやすくし、リシール機能を付与したリシール缶といわれる異形缶が普及している。このリシール缶は、は缶胴に継ぎ目を無くした絞り成形タイプとして具体化されるケースが一般的であるが、最近は外観の美麗さで差別化を進める動きが強まり、継ぎ目ありの溶接成形タイプにつき新たな分野開拓が始まっている。溶接成形は缶印刷および缶胴成形の自由度が高く、特に缶胴部にエキスパンド加工を施すことができるため、缶形状のデザイン性は絞り成形タイプに比べはるかに優れている。   In recent years, deformed cans called reseal cans that have been made easy to open by using large-diameter caps on steel cans and have a reseal function have become widespread. This re-sealed can is generally embodied as a draw-molded type with no joints in the can body, but recently there has been an increasing trend toward differentiation due to the beauty of the appearance, and the weld-molded type with seams. New field development has begun. Welding has a high degree of freedom in can printing and can body forming, and in particular, since the can body can be expanded, the design of the can shape is far superior to the draw forming type.

溶接成形タイプのリシール缶に供される鋼板には、(a) 所定の形状を安定的に得るため高いエキスパンド成形性および形状凍結性を有すること、(b) 加工後の表面にストレッチャーストレイン(St−St)と言われるしわが出ないこと、(c) 缶体質量を軽減するため素材を薄肉化した場合に耐デント性を損なわない十分な降伏強度を有すること、等の特性を持つ材質が望まれる。このような要求を満足させるためには、加工時は軟質で、かつ缶体成形後の加熱処理において降伏強度を容易に向上させることができ、さらに時効性に優れるなどの特性を持たせることが必要となる。   Steel sheets used in weld-type reseal cans have (a) high expandability and shape freezing properties in order to stably obtain a predetermined shape, and (b) stretcher strain ( (St-St) material that has no wrinkles, and (c) has sufficient yield strength that does not impair dent resistance when the material is thinned to reduce the mass of the can. Is desired. In order to satisfy such requirements, it is soft at the time of processing, and can easily improve the yield strength in the heat treatment after can body molding, and further has characteristics such as excellent aging properties. Necessary.

既に、特性としての(a) 、(b)を両立させた箱焼鈍法によるエキスパンド加工用冷延鋼板は市販されているが、軟質で耐デント性に弱いという本質的な問題があり、(c)の改善は進んでいない。一方、連続焼鈍法による冷延鋼板は(a) 、(b)に関して課題は残るが、降伏強度は極めて強く、(c)の缶体質量の軽減に関しては望ましい特性を有している。   Already cold rolled steel sheets for expanding by the box annealing method that have both the characteristics (a) and (b) are commercially available, but there is an essential problem that they are soft and weak in dent resistance. ) Is not improving. On the other hand, the cold-rolled steel sheet by the continuous annealing method has problems with respect to (a) and (b), but has a very high yield strength, and has desirable characteristics with regard to the reduction of the can body mass of (c).

連続焼鈍法による冷延鋼板で(a) 、(b)の課題を解決した例として、特許文献1の軟質表面処理用鋼板の製造方法が開示されている。これは低炭素アルミキルド鋼を素材として熱間圧延(熱延)後の鋼板中の固溶Nを10ppm以下に低減し、Cをひも状あるいは球状のセメンタイトとして分散析出させ、AlNの形態を維持することによる結晶粒を粗粒化し、冷延後の連続焼鈍を650〜710℃で行ない、調質圧延(調質圧延)をロール径470mm以下の小径ロールで圧下率1.5〜5%の乾式調質圧延を施すことにより、形状凍結性に有利な軟質特性と耐フルーティング性に優れた鋼板が得られるとしたものである。ここでフルーティングとは鋼板の曲げ加工に現れるSt−St同様の歪み時効現象であるが、曲げ加工はエキスパンド加工ほど厳しい加工条件ではないため、この技術ではエキスパンド加工用の鋼板としては不十分である。   As an example of solving the problems (a) and (b) with a cold-rolled steel sheet by a continuous annealing method, a method for manufacturing a steel sheet for soft surface treatment in Patent Document 1 is disclosed. This is to reduce the solid solution N in the steel sheet after hot rolling (hot rolling) to 10 ppm or less using low carbon aluminum killed steel as a raw material, and to disperse and precipitate C as string-like or spherical cementite to maintain the form of AlN. The crystal grains are coarsened, the continuous annealing after cold rolling is performed at 650 to 710 ° C., and the temper rolling (temper rolling) is a dry roll having a rolling reduction of 1.5 to 5% with a small diameter roll having a roll diameter of 470 mm or less. By performing temper rolling, a steel sheet excellent in soft characteristics and fluting resistance advantageous for shape freezing property can be obtained. Here, fluting is a strain aging phenomenon similar to St-St that appears in the bending process of steel sheets, but since bending is not as severe as the expansion process, this technique is not sufficient as a steel sheet for expanding processes. is there.

また、連続焼鈍法で耐St−St性を改善した技術が特許文献2に開示されている。連続焼鈍温度を710℃超〜780℃に高温化し、さらに調質圧延をロール径470mm以下の小径ロールを使い湿式調質圧延法で圧下率3〜7%に高圧下することで、固溶C、固溶Nによる歪み時効を効果的に抑えて、耐St−St性に優れた軟質な冷延鋼板を製造可能にしている。しかしながら、この湿式調質圧延法は通常の冷延に相当する圧延法であるため、鋼板には冷延組織が形成され、「加工時は軟質で、かつ缶体成形後の加熱処理において降伏強度が容易に増加する」特性が弱まり、形状凍結性やエキスパンド成形性が必ずしも十分でないという問題点がある。
特開昭61−23719号公報 特開平4−107218号公報
Further, Patent Document 2 discloses a technique in which St-St resistance is improved by a continuous annealing method. The continuous annealing temperature is increased to over 710 ° C. to 780 ° C., and the temper rolling is further reduced to 3-7% by a wet temper rolling method using a small diameter roll having a roll diameter of 470 mm or less. Further, the strain aging due to the solid solution N is effectively suppressed, and a soft cold-rolled steel sheet having excellent St-St resistance can be manufactured. However, since this wet temper rolling method is a rolling method corresponding to ordinary cold rolling, a cold-rolled structure is formed on the steel sheet, and “yield strength is soft during processing and yields in heat treatment after forming the can body. However, there is a problem in that the property of “easily increases” is weakened and the shape freezing property and the expand moldability are not always sufficient.
JP 61-23719 JP-A-4-107218

そこで本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、上記に説明したような従来の低炭素アルミキルド鋼を素材とした連続焼鈍鋼板に残る形状凍結性やエキスパンド成形性の向上を耐St−St性や耐デント性を損なうことなく解消し、「加工時は軟質で、かつ缶体成形後の加熱処理において降伏強度が容易に増加する」特性を生かすことが可能な溶接缶用冷延鋼板とその製造方法を確立することにある。   Therefore, the present invention has been devised in view of the above-described problems, and the object of the present invention is to freeze the shape remaining in a continuously annealed steel plate made of the conventional low carbon aluminum killed steel as described above. Improved properties and expand moldability without losing St-St resistance and dent resistance, "soft during processing, and yield strength easily increases during heat treatment after can molding" It is to establish a cold-rolled steel sheet for a welding can that can be utilized and a manufacturing method thereof.

上述した課題を解決するために、本発明は、下記(1)〜(4)をその構成要素とするものである。   In order to solve the above-described problems, the present invention includes the following (1) to (4) as its constituent elements.

(1) 析出N率(NasAlN×100/トータルN)が85%以上で、かつ170℃で7分の加熱保定後の、鋼板表面から厚み方向25μm深さの硬度と、鋼板の厚み方向中心部の硬度との差が、マイクロビッカース硬さで15ポイント以上であることを特徴とする溶接缶用冷延鋼板。 (1) Precipitation N ratio (NasAlN × 100 / total N) is 85% or more, and after heat retention at 170 ° C. for 7 minutes, the hardness in the thickness direction of 25 μm from the steel sheet surface and the thickness direction center of the steel sheet A cold-rolled steel sheet for welding cans, wherein the difference from the hardness is 15 points or more in terms of micro Vickers hardness.

(2) 鋼成分として質量%で、C:0.015〜0.08%、Mn:0.10〜0.60%、P:0.02%以下、S:0.02%以下、酸可溶Al:0.02〜0.10%、N:0.006%以下を含有し、残部がFeおよび不可避的不純物からなり、鋼板に含まれる固溶Nおよび固溶Cの合計が10〜20ppmであり、かつ固溶C≧固溶N×2なる関係を有することを特徴とする(1)の溶接缶用冷延鋼板。 (2) Mass% as a steel component, C: 0.015 to 0.08%, Mn: 0.10 to 0.60%, P: 0.02% or less, S: 0.02% or less, acid acceptable Molten Al: 0.02 to 0.10%, N: 0.006% or less, the balance is made of Fe and inevitable impurities, and the total of solid solution N and solid solution C contained in the steel sheet is 10 to 20 ppm. The cold-rolled steel sheet for welded cans according to (1), which has a relationship of solid solution C ≧ solid solution N × 2.

(3) 鋼成分としてさらに質量%で、Nb:0.001〜0.003%、Ti:0.001〜0.003%、B:0.0001〜0.001%、Cu:0.05%以下、Ni:0.05%以下、Cr:0.05%以下、Mo:0.05%以下、V:0.003%以下より選ばれた1種または2種以上の元素を含むことを特徴とする(2)の溶接缶用冷延鋼板。 (3) Further, as a steel component in mass%, Nb: 0.001 to 0.003%, Ti: 0.001 to 0.003%, B: 0.0001 to 0.001%, Cu: 0.05% Hereinafter, it contains one or more elements selected from Ni: 0.05% or less, Cr: 0.05% or less, Mo: 0.05% or less, and V: 0.003% or less. (2) The cold-rolled steel sheet for welding cans.

(4) (2)または(3)の成分の連続鋳造スラブを一旦700℃以下まで冷却後、熱延加熱炉に挿入して950〜1100℃に再加熱し、次いで仕上げ温度をAr3点〜950℃、捲取り温度を650〜720℃にて熱間圧延し、酸洗、冷延後、均熱温度650〜720℃に10〜60秒保持し、500℃以下に冷却後、300〜500℃で60秒以上保定する連続焼鈍を行ない、次いでロール径470mm以下のロールにて圧下率1.5〜3.0%かつ張力50〜200MPaで調質圧延を実施することを特徴とする溶接缶用冷延鋼板の製造方法。 (4) After the continuous cast slab of the component (2) or (3) is cooled to 700 ° C. or less, it is inserted into a hot rolling furnace and reheated to 950 to 1100 ° C., and then the finishing temperature is set at Ar 3 to 950. C., hot rolling at 650 to 720.degree. C., pickling, cold rolling, holding at a soaking temperature of 650 to 720.degree. C. for 10 to 60 seconds, cooling to 500.degree. C. or lower, and 300 to 500.degree. For a welding can characterized by performing continuous annealing for 60 seconds or more and then performing temper rolling with a roll having a roll diameter of 470 mm or less at a rolling reduction of 1.5 to 3.0% and a tension of 50 to 200 MPa. A method for producing a cold-rolled steel sheet.

本発明によれば、溶接缶タイプのリシール容器の成形性は著しく改善され、かつ成形後の缶体に実用的な強度付与が可能となるエキスパンド加工性を備えた溶接缶用鋼板が、高い生産性をもって提供できるものである。   According to the present invention, the formability of a welded can-type reseal container is remarkably improved, and a steel plate for welded cans with expanded workability that enables practical strength to be imparted to the molded can body has high production. It can be provided with sex.

本発明者らは上記(c)に示す耐デント性に優れる連続焼鈍鋼板の特性を生かしつつ、(a) エキスパンド成形性および形状凍結性、(b) 耐St−St(ストレッチャーストレイン)性の要求特性をいかに向上させるかにつき、種々の検討を行なった。まず本発明を開発する端緒となった実験結果について説明する。以下、組成における質量%(mass%)は、単に%と記載する。   While taking advantage of the characteristics of the continuously annealed steel sheet having excellent dent resistance shown in (c) above, the present inventors have (a) expand formability and shape freezing property, and (b) St-St (stretcher strain) resistance. Various studies were conducted on how to improve the required characteristics. First, the experimental results that led to the development of the present invention will be described. Hereinafter, mass% (mass%) in the composition is simply described as%.

本発明者は、先ず連続焼鈍で細粒組織の冷延鋼板を作り、(c)耐デント性を向上させ、さらにこれを箱焼鈍することで、(b) 耐St−St性低下の原因となる固溶C、固溶Nの極微量化と、それに伴う伸び向上による(a)エキスパンド成形性や形状凍結性の両立を目指した。以下に示す表1〜3に記載されている鋼No.1、2がその実験結果である。   The inventor first made a cold-rolled steel sheet having a fine-grained structure by continuous annealing, and (c) improved dent resistance, and further box-annealed (b) caused a decrease in St-St resistance. The aim was to achieve both (a) expand formability and shape freezeability by reducing the amount of solid solution C and solid solution N to be extremely small and the accompanying improvement in elongation. Steel No. described in Tables 1 to 3 shown below. 1 and 2 are the experimental results.

先ず、表1に示す成分からなるスラブから表2の製造条件で鋼板を製造した。ちなみに、この鋼No.1、2についての実験では、連続焼鈍と箱焼鈍(保定時間:12時間)とを併用している。焼鈍後の鋼板を170℃かつ7分の加熱保定で人工時効し、液圧バルジ試験機による10mm張出し後に目視によるSt−St観察と、張出し高さ10mmに対するバラツキ(±0.5mm)からの形状凍結性の評価と、JIS5号試験片による引張り試験の降伏強度よる耐デント性の有無の確認を行った。その結果を表3の材質調査結果に整理した。   First, a steel plate was produced from the slab comprising the components shown in Table 1 under the production conditions shown in Table 2. Incidentally, this steel No. In the experiment about 1 and 2, continuous annealing and box annealing (holding time: 12 hours) are used together. The steel sheet after annealing was artificially aged by heating and holding at 170 ° C. for 7 minutes. After 10 mm overhanging by a hydraulic bulge tester, visual St-St observation and shape from variation (± 0.5 mm) with respect to the overhanging height of 10 mm Evaluation of freezing and the presence or absence of dent resistance by the yield strength of a tensile test using a JIS No. 5 specimen were confirmed. The results were organized into the material survey results in Table 3.

以上の鋼No.1、2についての実験により以下のような新知見が得られた。   Steel No. above. The following new findings were obtained through experiments on 1 and 2.

1)人工時効を施した鋼板の降伏点伸び、YP−El値は鋼No.1が0%、鋼No.2が1.2%で、連続焼鈍と箱焼鈍の併用で鋼板の固溶C、固溶N量は極めて低く抑えられており、耐St−St性に優れている。   1) Yield point elongation and YP-El value of steel plate subjected to artificial aging 1 is 0%, steel no. 2 is 1.2%, and the solid solution C and the solid solution N amount of the steel sheet are suppressed to be extremely low by the combined use of continuous annealing and box annealing, and the St-St resistance is excellent.

2)一方、箱焼鈍、連続焼鈍の組み合わせで鋼板の細粒化を進めても、形状凍結性は、張出し高さ10mmに対して±0.5mm以内に収まるため良好だが、圧延方向の時効後降伏強度は284〜287MPaで、耐デント性に必要な降伏強度としての320MPaに及ばない。   2) On the other hand, even if the steel plate is refined by a combination of box annealing and continuous annealing, the shape freezing property is good because it is within ± 0.5mm with respect to the overhang height of 10mm, but after aging in the rolling direction. The yield strength is 284 to 287 MPa, which is less than 320 MPa as the yield strength necessary for dent resistance.

3)ただし、極めて細粒な鋼No.1と一般的な結晶粒である鋼No.2の時効後降伏強度に大きな差異はなく、その理由はYP−El値の比較から固溶C、固溶Nによる歪み時効硬化が鋼No.2に強く作用しているためと推察された。   3) However, extremely fine steel No. No. 1 and steel No. 1 which is a general crystal grain. No significant difference was found in the yield strength after aging of No. 2 because the strain aging hardening due to solid solution C and solid solution N was found in Steel No. It was inferred to be acting strongly on 2.

この3)の知見に基づけば、リシール缶の耐デント性を向上させるためには、固溶C、固溶Nを鋼中に残留させた時効性鋼板の採用が望ましいと言える。ただし従来知見から固溶C、固溶Nを利用するためには、その添加量の上限があって、調質圧延方法は乾式が望ましいことは自明である。   Based on this knowledge of 3), in order to improve the dent resistance of the reseal can, it can be said that it is desirable to use an aging steel plate in which solute C and solute N remain in the steel. However, from the conventional knowledge, in order to use solute C and solute N, there is an upper limit of the amount of addition, and it is obvious that the temper rolling method is preferably dry.

次に本発明者らは、鋼板中に残留させる固溶C、固溶Nの限定量と乾式調質圧延による鋼板に対して付加すべき歪み量の最適組み合わせ方法につき検討を進めた。その結果、特に鋼板に冷延組織を形成させずに耐St−St性を向上させる好ましい調質圧延方法を知見するに至った。即ち、冷延組織は調質圧延中の張力によって形成されるものであるから、鋼板への圧下率付与は圧延ロールによる圧下を主に行なうべきであって、加えて圧延力を効果的に歪みに変換できる小径ロールの使用が望ましく、他方、張力の使用は鋼板形状矯正のみに限定して冷延組織の生成抑制を図ることが好ましいとしたものである。表1〜3に記載の鋼No.3〜6は本発明の請求項4記載の調質圧延条件で製造された実験結果である。これに対して、鋼No.7、8は本発明の請求項4記載の調質圧延条件を逸脱させた比較例である。   Next, the inventors proceeded with investigations on an optimal combination method of a limited amount of solute C and solute N remaining in the steel plate and a strain amount to be added to the steel plate by dry temper rolling. As a result, the inventors have come to know a preferable temper rolling method that improves St-St resistance without forming a cold-rolled structure on the steel sheet. That is, since the cold-rolled structure is formed by the tension during temper rolling, the rolling rate should be imparted to the steel sheet mainly by rolling with a rolling roll, and in addition, the rolling force is effectively distorted. It is desirable to use a small-diameter roll that can be converted into a steel sheet. On the other hand, it is preferable to limit the use of tension only to the correction of the shape of a steel sheet to suppress the formation of a cold-rolled structure. Steel Nos. Listed in Tables 1-3. 3-6 are the experimental results manufactured on the temper rolling conditions of Claim 4 of this invention. On the other hand, Steel No. 7 and 8 are comparative examples that deviate from the temper rolling conditions described in claim 4 of the present invention.

鋼No.3〜6は低炭素アルミキルド鋼を素材に、熱延の再加熱温度を1100℃前後、熱延後の捲取り温度を670℃前後とすることで、固溶N量を0.0003〜0.0014%に低減し、酸洗、冷延後、連続焼鈍温度690℃で再結晶し、400℃で60秒以上保定して過時効処理を行なった後、450mm前後の小径ロールで圧下率2%程度かつ張力137〜196MPaの乾式調質圧延を施し、板厚を0.19mmとした。得られた鋼板の固溶C量は内部摩擦法による測定で0.0006〜0.0014%に抑えられており調質度はT−3でリシール缶に要求される材質を満足した。   Steel No. 3 to 6 are made of low carbon aluminum killed steel, the reheating temperature of hot rolling is about 1100 ° C., and the scraping temperature after hot rolling is about 670 ° C., so that the amount of solute N is 0.0003 to 0.00. Reduced to 0014%, pickled, cold-rolled, recrystallized at a continuous annealing temperature of 690 ° C, held at 400 ° C for 60 seconds or more and over-aged, then reduced to 2% with a small diameter roll of around 450mm A dry temper rolling with a degree of tension of 137 to 196 MPa was applied to a plate thickness of 0.19 mm. The amount of solute C in the obtained steel sheet was suppressed to 0.0006 to 0.0014% as measured by the internal friction method, and the tempering degree was T-3 and satisfied the material required for the reseal can.

一方、鋼No.7、8は、鋼No.3〜6とほぼ同様の熱延条件で固溶N量を0.0007〜0.0008%に低減し、酸洗、冷延、連続焼鈍、過時効処理もほぼ同様の条件で行なった後、520〜530mmの大径ロールで圧下率2%程度かつ張力245〜294MPaの乾式調質圧延を施し板厚を0.19mmとした。得られた鋼板の固溶C量は内部摩擦法による測定で0.0009〜0.0010%にあり調質度はT−3でリシール缶に要求される材質を満足した。   On the other hand, Steel No. 7 and 8 are steel Nos. After reducing the amount of dissolved N to 0.0007 to 0.0008% under the same hot rolling conditions as 3 to 6, pickling, cold rolling, continuous annealing, and overaging treatment were also performed under substantially the same conditions. A dry temper rolling with a rolling ratio of about 2% and a tension of 245 to 294 MPa was performed with a large diameter roll of 520 to 530 mm, and the plate thickness was set to 0.19 mm. The amount of solute C in the obtained steel sheet was 0.0009 to 0.0010% as measured by the internal friction method, and the tempering degree was T-3, which satisfied the material required for the reseal can.

以上により製造された鋼No.3〜6および鋼No.7、8の鋼板について、まず170℃かつ7分の人工時効処理を施して鋼板に歪み時効硬化を起こした後、エキスパンド加工に関するSt−St発生および形状凍結性と耐デント性を確認するため、液圧バルジ試験機による10mm張出しとJIS5号試験片による引張り試験を行った。その結果を表3の材質調査結果に示す。また鋼No.3、4および鋼No.7、8の鋼板については、鋼板の圧延方向断面のマイクロビッカース硬度測定を実施した。試験荷重は鋼No.3、4が10g、鋼No.7、8は25gで、安定した硬度測定が可能な鋼板表面から25μm深さを起点に厚み方向に5μmピッチで鋼板中心部まで連続測定を行った。鋼No.3、4におけるマイクロビッカース硬度測定結果を図1(a)に、また鋼No.7、8におけるマイクロビッカース硬度測定結果を図1(b)に示す。これら図1では、鋼板表面からの位置(μm)を横軸に、またマイクロビッカース硬度(Hv)を縦軸にとる。   Steel No. manufactured as described above. 3-6 and steel no. For the steel sheets 7 and 8, first, artificial aging treatment was performed at 170 ° C. for 7 minutes to cause strain age hardening in the steel sheet, and then to confirm St-St generation and shape freezing property and dent resistance related to the expanding process. A 10 mm overhang using a hydraulic bulge tester and a tensile test using a JIS No. 5 test piece were performed. The results are shown in the material survey results in Table 3. Steel no. 3, 4 and steel no. For the steel sheets 7 and 8, micro Vickers hardness measurement was performed on the cross section in the rolling direction of the steel sheet. The test load was Steel No. 3 and 4 are 10 g, steel no. 7 and 8 were 25 g, and the measurement was continuously performed from the steel sheet surface capable of stable hardness measurement to the center of the steel sheet at a pitch of 5 μm starting from the depth of 25 μm. Steel No. The results of micro Vickers hardness measurement in FIGS. 3 and 4 are shown in FIG. The micro Vickers hardness measurement results in 7 and 8 are shown in FIG. In these FIG. 1, the horizontal axis represents the position (μm) from the steel plate surface, and the vertical axis represents the micro Vickers hardness (Hv).

その結果、表3に示すように本発明の鋼No.3、4はエキスパンド加工でSt−St発生がなく、形状凍結性と耐デント性に優れるが、鋼No.5、6は僅かながらSt−St発生があり、鋼No.7、8はSt−St発生と形状凍結性に劣る結果となった。また図1の鋼No.3、4のマイクロビッカース硬度は表層25μm点が最も高く、測定はできないが最表層から25μm点までは調質圧延によるスキンパス効果で更に硬質な層が形成されていると推察された。一方、30μm点から急激な硬度低下が観察され、中心部硬度は表層25μm点より15ポイント(Hv)以上軟質になっており人工時効による歪み時効硬化が生じていないと推察された。   As a result, as shown in Table 3, the steel No. of the present invention. Nos. 3 and 4 do not generate St-St in the expansion process and are excellent in shape freezing property and dent resistance. Nos. 5 and 6 have a slight St-St occurrence. 7 and 8 resulted in inferior St-St generation and shape freezing property. Steel No. 1 in FIG. The micro Vickers hardness of 3 and 4 is the highest at the surface layer of 25 μm and cannot be measured, but it was assumed that a harder layer was formed from the outermost layer to the 25 μm point by the skin pass effect by temper rolling. On the other hand, a sharp decrease in hardness was observed from the 30 μm point, and the central hardness was 15 points (Hv) or more softer than the surface layer of 25 μm, and it was assumed that no strain age hardening was caused by artificial aging.

一方、鋼No.7、8のマイクロビッカース硬度は鋼No.3、4より表層25μm点から中心層までの硬度変化が小さく板厚中心でやや軟質な部分が認められるものの一様に歪み時効硬化した状態が観察された。このような硬度分布の差異は、調質圧延ロール径、圧延力、張力の複合的な作用の結果と考えられるが、特にロール径は鋼板表面の歪み形成への影響が大きく、また張力は鋼板の厚み方向への歪み形成に強く影響することから、両者の相互作用が上記硬度分布の差異の主因と推察される。   On the other hand, Steel No. The micro Vickers hardness of Nos. 7 and 8 is Steel No. From 3 and 4, although the hardness change from the surface layer 25 μm point to the center layer was small, a slightly soft part was observed at the center of the plate thickness, but a state of uniform strain age hardening was observed. This difference in hardness distribution is considered to be a result of the combined action of the temper rolling roll diameter, rolling force, and tension. In particular, the roll diameter has a large effect on the formation of strain on the steel sheet surface. This strongly influences the formation of strain in the thickness direction of the steel, and it is assumed that their interaction is the main cause of the difference in hardness distribution.

一方、本発明の調質圧延条件で製造したにもかかわらず、鋼No.5、6にはSt−St発生があった。固溶Nは常温時効性が固溶Cより強いとされており、鋼No.5、6は固溶N量が固溶C量より多いことでSt−Stが発生したと推察される。この推察に基づき、本発明者は、表1〜3に記載の鋼No.9〜12を更に作製することにより、鋼板の固溶C、固溶N量とSt−St発生の関係につき調査を進めた。   On the other hand, despite the production under the temper rolling conditions of the present invention, the steel No. 5 and 6 had St-St generation. Solid solution N is said to have stronger aging at room temperature than solid solution C. In Nos. 5 and 6, it is speculated that St-St was generated because the amount of solute N was larger than the amount of solute C. Based on this inference, the present inventor has obtained the steel Nos. Listed in Tables 1 to 3. By further producing 9 to 12, investigation was made on the relationship between the solid solution C and solid solution N amount of the steel sheet and the generation of St-St.

鋼No.9〜12は低炭素アルミキルド鋼を素材に熱延にて1100℃前後に再加熱し熱延後の捲取り温度を650〜720℃とすることで固溶N量を0.0004〜0.0010%の範囲で作り分け、酸洗、冷延後、連続焼鈍温度700℃で再結晶し、400℃で60秒以上保定して過時効処理を行なった後、460mmの小径ロールで圧下率2%程度かつ張力196MPaの乾式調質圧延を施し、板厚を0.19mmとした。得られた鋼板の固溶C量は内部摩擦法による測定で0.0010〜0.0013%に抑えられており、調質度はT−3でリシール缶に要求される材質を満足している。   Steel No. 9-12 is a low carbon aluminum killed steel made of a raw material and reheated to around 1100 ° C. by hot rolling, and the scraping temperature after hot rolling is set to 650-720 ° C., so that the amount of solute N is 0.0004-0.0010. %, After pickling and cold rolling, recrystallized at a continuous annealing temperature of 700 ° C., held at 400 ° C. for 60 seconds or more and over-aged, and then reduced by a 460 mm small diameter roll to a reduction rate of 2%. A dry temper rolling with a tension of 196 MPa was applied to a thickness of 0.19 mm. The solute C content of the obtained steel sheet is suppressed to 0.0010 to 0.0013% as measured by the internal friction method, and the tempering degree satisfies the material required for the reseal can at T-3. .

表1に示すように、鋼No.9〜12の固溶C量と固溶N量の合計は20mass ppm(以下、単にppmと記載する)以下にあり、かつ鋼No.9、10は固溶C量と固溶N量がほぼ同等量であり、鋼No.11、12は固溶C≧固溶N×2なる量関係がある。この鋼板のエキスパンド加工に関するSt−St発生状況を確認するため、170℃かつ7分で人工時効し、液圧バルジ試験機による10mm張出し試験を行なった。その結果を表3に示す。鋼No.9、10はエキスパンド加工でわずかながらSt−St発生が認められ、他方、鋼No.11、12にはSt−St発生はなかった。   As shown in Table 1, steel no. The total of the solid solution C amount and the solid solution N amount of 9 to 12 is below 20 mass ppm (hereinafter simply referred to as ppm). Nos. 9 and 10 have substantially the same amount of solute C and solute N. 11 and 12 have a quantity relationship of solid solution C ≧ solid solution N × 2. In order to confirm the St-St generation state regarding the expanding process of this steel sheet, artificial aging was performed at 170 ° C. for 7 minutes, and a 10 mm overhang test was performed by a hydraulic bulge tester. The results are shown in Table 3. Steel No. Nos. 9 and 10 show a slight St-St generation in the expanding process. 11 and 12 did not generate St-St.

図2に固溶Cと固溶Nの量に対するエキスパンド加工後のSt−St発生有無との関係を示す。この図2では、横軸に固溶C量(ppm)を、また縦軸に固溶N量ppm)をとる。この図2において、固溶Cと固溶N合計量が20ppm以下であり、かつ固溶C≧固溶N×2なる関係を有する、斜線部分の領域の成分からなる鋼板は、エキスパンド加工後にSt−Stの発生がなかったことを示している。
以上の鋼No.3〜12の実験結果より得られた知見をまとめると以下のようになる。
FIG. 2 shows the relationship between the amount of solid solution C and solid solution N and the presence or absence of St-St after expansion processing. In FIG. 2, the horizontal axis represents the amount of dissolved C (ppm) and the vertical axis represents the amount of dissolved N (ppm). In FIG. 2, the total amount of solid solution C and solid solution N is 20 ppm or less, and the steel plate composed of the components in the shaded area having the relationship of solid solution C ≧ solid solution N × 2 is St. -Indicates that there was no occurrence of St.
Steel No. above. The findings obtained from the experimental results of 3 to 12 are summarized as follows.

(1)ロール径が小さく、かつ低めの張力で調質圧延された鋼板は、表層に強い歪みは入るが内層の歪みが小さく軟質なため形状凍結性に優れる、(2)図2に示すように固溶Cと固溶N合計量が20ppm以下かつ固溶C≧固溶N×2なる関係を有する鋼板は、時効後エキスパンド加工でSt−Stが発生し難い、(3)一方、固溶Cと固溶N合計量が20ppm超または固溶N≧固溶Cなる関係を有する鋼板では、表層に強い歪みを有してもSt−Stが発生し易い、(4)さらに固溶Cと固溶N合計量が20ppm以下にあっても大径ロールで低めの張力制御のない調質圧延を施された鋼板では板厚全体が歪み時効硬化してSt−St発生や形状凍結性が劣化する、(5)尚、連続焼鈍のみを施した鋼板であれば170℃かつ7分時効後の降伏強度は全て320MPa以上となり、耐デント性は確保されている。 (1) A steel sheet that has been temper-rolled with a small roll diameter and a low tension has a strong strain on the surface layer, but has a small strain on the inner layer and is soft, so it has excellent shape freezing properties. (2) As shown in FIG. Steel sheets having a total amount of solid solution C and solid solution N of 20 ppm or less and solid solution C ≧ solid solution N × 2 are less likely to generate St-St in the expansion process after aging. (3) On the other hand, In a steel plate having a relationship that the total amount of C and solid solution N exceeds 20 ppm or solid solution N ≧ solid solution C, St-St is likely to occur even if the surface layer has a strong strain. (4) Even when the total amount of solute N is 20 ppm or less, the steel sheet that has been subjected to temper rolling with a large diameter roll and low tension control is subjected to strain age hardening and deterioration of St-St generation and shape freezeability. (5) In addition, if the steel sheet is subjected only to continuous annealing, the yield strength after aging at 170 ° C. for 7 minutes Becomes all 320MPa or more, the dent resistance is secured.

このような一連の実験結果を得たことにより本発明者らは、エキスパンド加工による耐St−St性や缶体の耐デント性は鋼板表層へ調質圧延による強いスキンパス効果を施す、いわゆる表面改質が有効であり、他方、缶体加工の容易さや加工精度を保証する形状凍結性の確保には、鋼板内層を軟質に維持することで達成できることを知見した。   By obtaining such a series of experimental results, the present inventors have developed a so-called surface modification in which the St-St resistance by the expanding process and the dent resistance of the can body are subjected to a strong skin pass effect by temper rolling on the steel sheet surface layer. On the other hand, it has been found that securing the shape freezing property that guarantees the ease and accuracy of can body processing can be achieved by keeping the inner layer of the steel plate soft.

さらにこのような板厚方向で異なる材質特性を付与する手段としては、固溶C、固溶Nの上限値を20ppmとし、かつ乾式調質圧延法において小径ロール使用と低めの張力制御を施すことで達成可能であることを新たに知見したものである。ここで鋼No.3、4および鋼No.11、12にSt−Stが発生しない理由は明らかではないが、固溶Cと固溶Nが少なく、特に固溶Nが極めて少なく、かつ鋼板表層に調質圧延による強いスキンパス効果が与えられた場合、170℃かつ7分の人工時効後も十分な可動転位が残されてSt−St発生が抑えられるものと推察される。   Furthermore, as means for imparting such different material properties in the sheet thickness direction, the upper limit value of solute C and solute N is set to 20 ppm, and a small diameter roll is used and lower tension control is performed in the dry temper rolling method. It is a new finding that it can be achieved with this. Here, Steel No. 3, 4 and steel no. The reason why St-St does not occur in 11 and 12 is not clear, but there is little solid solution C and solid solution N, especially very little solid solution N, and a strong skin pass effect by temper rolling was given to the steel sheet surface layer. In this case, it is presumed that sufficient movable dislocations remain after 170 ° C. and 7 minutes of artificial aging, and the generation of St-St is suppressed.

次に、本発明を適用した溶接缶用冷延鋼板の化学成分を限定した理由について説明をする。本発明においては鋼成分として質量%でC:0.015〜0.08%、Mn:0.10〜0.60%、P:0.02%以下、S:0.02%以下、酸可溶Al:0.02〜0.10%、N:0.006%以下の組成を有する鋼を用いる。   Next, the reason which limited the chemical component of the cold rolled steel plate for welding cans to which this invention is applied is demonstrated. In the present invention, as steel components in mass%, C: 0.015 to 0.08%, Mn: 0.10 to 0.60%, P: 0.02% or less, S: 0.02% or less, acid acceptable A steel having a composition of molten Al: 0.02-0.10% and N: 0.006% or less is used.

C:0.015〜0.08%
Cは、鋼の冷延性と強度を制御する最も基本的な元素である。一般に、このCの添加量を低減させるほど強度は低下し、延性は向上する。C量は0.08%よりも多くなると全体の結晶粒径を小さくし、冷延性を低下させるほか、溶接部の強度を増大させてフランジ加工における割れを引き起こす。ただしC量が0.015%より少なくなると熱延におけるAr3変態点温度が上昇し、熱延時に鋼板の幅端部や長さ端部が変態点温度未満となって結晶粒を粗大化させ、最端部は繊維状組織となり、冷延時に結晶粒径の粗大化した部分は延びやすく、逆に最端部は延び難くなるので、複雑な耳波形状になり溶接缶用鋼板には適さなくなる。従ってC量は0.08%以下の範囲に抑える必要があり、0.015%以上を含有していることが重要である。
C: 0.015-0.08%
C is the most basic element that controls the cold-rollability and strength of steel. Generally, the strength decreases and the ductility improves as the amount of C added is reduced. When the amount of C exceeds 0.08%, the entire crystal grain size is reduced, the cold rolling property is lowered, and the strength of the welded portion is increased to cause cracking in flange processing. However, when the amount of C is less than 0.015%, the Ar3 transformation point temperature in hot rolling rises, and during hot rolling, the width end and length end of the steel sheet become less than the transformation point temperature to coarsen the crystal grains, The outermost part has a fibrous structure, and the portion where the crystal grain size becomes coarse during cold rolling is easy to extend, and conversely, the endmost part is difficult to extend. . Therefore, the C content must be limited to a range of 0.08% or less, and it is important that the C content is 0.015% or more.

Mn:0.10〜0.60%
Mnは、SをMnSとして固定することにより、Sに起因する熱延鋼板への耳割れを防止するため必要な元素であり、S含有量に応じて添加することが望ましい。本発明においては、後述する理由によりS含有量を0.02%以下とするため、Mnは、これに応じて下限を0.10%とした。即ち、S含有量の上限である0.02%のSをMnSとして固定するために十分な量として、Mnの下限値は0.10%とした。一方、Mnは、Ar3変態点を低下させる作用を通じて結晶粒径を微細化し、ひいては降伏強度を高めるので過度の添加は好ましくなく、また経済的にも不利になるので0.60%の上限が好ましい。
Mn: 0.10 to 0.60%
Mn is an element necessary for preventing ear cracks in the hot-rolled steel sheet due to S by fixing S as MnS, and is desirably added according to the S content. In the present invention, since the S content is set to 0.02% or less for the reason described later, the lower limit of Mn is set to 0.10% accordingly. That is, the lower limit of Mn was set to 0.10% as an amount sufficient to fix 0.02% S, which is the upper limit of the S content, as MnS. On the other hand, Mn refines the crystal grain size through the action of lowering the Ar3 transformation point and thus increases the yield strength, so excessive addition is not preferable, and it is economically disadvantageous, so an upper limit of 0.60% is preferable. .

P:0.02%以下
Pは、鋼中に不可避不純物として含有する元素であり、意図的に添加する元素ではない。このPは、過度に含有させると、オーステナイトの粒界に偏析し、鋼を硬質化させ、圧延性を劣化させ、また耐食性も悪くするので極力低濃度であることが望ましい。このため、本発明では、Pの上限を0.02%とした。
P: 0.02% or less P is an element contained as an inevitable impurity in steel, and is not an element intentionally added. If this P is excessively contained, it segregates at the grain boundaries of austenite, hardens the steel, deteriorates the rollability, and deteriorates the corrosion resistance. Therefore, the P content is preferably as low as possible. For this reason, in this invention, the upper limit of P was made into 0.02%.

S:0.02%以下
Sは、Mn量との関係において過剰に含有すると熱延の高温オーステナイト域で固溶していたSが温度低下にともない過飽和になり(Fe,Mn)Sとしてオーステナイト粒界に析出し、これが赤熱脆性による熱延鋼板の耳割れになる恐れがある。またSは非金属介在物としても残存し、粒界に偏析して鋼板の加工性を低下させ耐食性を悪くする元素でもあるので、その上限を0.02%とする。
S: 0.02% or less When S is excessively contained in relation to the amount of Mn, S dissolved in the hot-rolled high-temperature austenite region becomes supersaturated as the temperature decreases (Fe, Mn) as austenite grains There is a possibility that it precipitates in the boundary, and this becomes an ear crack of the hot-rolled steel sheet due to red heat embrittlement. Further, S also remains as a non-metallic inclusion and segregates at the grain boundary to lower the workability of the steel sheet and deteriorate the corrosion resistance, so the upper limit is made 0.02%.

酸可溶Al:0.02〜0.10%
Alは、脱酸元素として有効であるが、熱処理によってNと反応してAlNとなり、固溶N量を低減させる作用があるためAlは本発明の重要な構成要件である。Al量と熱延加熱温度を950〜1100℃と特定することで、熱延に先立つスラブ段階でAlNの再固溶を防止して熱延板のN析出率が85%以上となり、製缶時のエキスパンド加工で耐St−St性や形状凍結性の向上が図れる。ただしAl量が0.10%を超え過剰になると、アルミナ系介在物が増加し加工性を低下させるので、上限を0.10%とする。一方、少ない添加ではAlNが形成されなくなり析出N率85%が達成されず、エキスパンド加工によるSt−St発生や鋼板の硬質化による形状凍結性の劣化が生じるので、0.02%以上の添加が必要である。
Acid-soluble Al: 0.02-0.10%
Although Al is effective as a deoxidizing element, it reacts with N by heat treatment to become AlN, and has the effect of reducing the amount of dissolved N, Al is an important constituent element of the present invention. By specifying the amount of Al and the hot rolling heating temperature as 950 to 1100 ° C., the reprecipitation of AlN is prevented in the slab stage prior to hot rolling, and the N precipitation rate of the hot rolled sheet becomes 85% or more, at the time of canning The expansion process can improve the St-St resistance and the shape freezing property. However, if the Al content exceeds 0.10% and becomes excessive, alumina inclusions increase and the workability deteriorates, so the upper limit is made 0.10%. On the other hand, AlN is not formed with a small amount of addition, and a precipitation N ratio of 85% is not achieved, and St-St generation due to expansion processing and deterioration of shape freezing property due to hardening of the steel sheet occur. Therefore, addition of 0.02% or more is necessary.

N:0.006%以下
Nは製鋼の精錬過程で空気中から混入する元素であるが、本発明では固溶Nを低くすることが重要であるため、Nの添加量はより少ない方が望ましい。このため、N量の上限を0.006%とする。なおNは、調質圧延後の鋼板に歪み時効性を生じ、降伏強度を調整して缶の耐デント性を向上させるため、ある程度の含有は好ましく、この効果を発揮させるためには鋼板中の固溶Nとして0.0006%以上が必要であるが、過剰に混入すると降伏強度が大きくなりすぎて加工性を劣化する。
N: 0.006% or less N is an element mixed from the air in the refining process of steelmaking. However, in the present invention, it is important to lower the solid solution N, and therefore it is desirable that the addition amount of N is smaller. . For this reason, the upper limit of the N amount is set to 0.006%. In addition, N produces strain aging in the steel sheet after temper rolling and adjusts the yield strength to improve the dent resistance of the can. Therefore, it is preferable to contain a certain amount, and in order to exert this effect, As a solid solution N, 0.0006% or more is necessary. However, if it is excessively mixed, the yield strength becomes too high and the workability deteriorates.

以上の成分において、固溶Nおよび固溶Cが、合計で10〜20ppm、かつ固溶C≧固溶N×2なる関係とすることが必要である。この範囲外では、既に述べたように本発明の特性が得られない。   In the above components, it is necessary that the solid solution N and the solid solution C have a total relationship of 10 to 20 ppm and the solid solution C ≧ the solid solution N × 2. Outside this range, the characteristics of the present invention cannot be obtained as described above.

以上に挙げた成分の他、公知の溶接缶用鋼板中に一般的に存在する成分元素を含有してもよい。例えば、Nb:0.001〜0.003%、Ti:0.001〜0.003%、B:0.0001〜0.001%、Cu:0.05%以下、Ni:0.05%以下、Cr:0.05%以下、Mo:0.05%以下、V:0.003%以下より選ばれた1種または2種以上の元素を、目的に応じて含有させることができる。   In addition to the components listed above, component elements generally present in known steel plates for welding cans may be included. For example, Nb: 0.001-0.003%, Ti: 0.001-0.003%, B: 0.0001-0.001%, Cu: 0.05% or less, Ni: 0.05% or less One element or two or more elements selected from Cr: 0.05% or less, Mo: 0.05% or less, and V: 0.003% or less can be contained depending on the purpose.

Nb:0.001〜0.003%
Nbは、組織の微細粒化により靭性を向上させるが、その含有量が0.001%未満では固溶Nの低減が不十分であるため、その下限を0.001%とした。これに対して、Nbを0.003%以上含有させると、熱間圧延における未再結晶温度域を広げるため、降伏点の上昇を招くので、Nb量の上限を0.003%未満とした。
Nb: 0.001 to 0.003%
Nb improves toughness by making the structure finer, but if its content is less than 0.001%, the reduction of solid solution N is insufficient, so the lower limit was made 0.001%. On the other hand, when Nb is contained in an amount of 0.003% or more, the non-recrystallization temperature range in the hot rolling is expanded, and thus the yield point is increased. Therefore, the upper limit of the Nb content is set to less than 0.003%.

Ti:0.001〜0.003%
Tiは、Nとの親和力が強く凝固時にTiNとして析出し、さらに組織の微細化に寄与することにより、強度や靱性を向上させ、ひいては缶の耐デント性をも向上させる。このため、0.001% 未満ではTiNの析出量が不足し、これらの効果を発現し得ないためTi量の下限値を0.001% とした。これに対して、Tiが0.003%を越えると、必要な固溶N量を確保できないことから、その上限値を0.003%とした。
Ti: 0.001 to 0.003%
Ti has a strong affinity with N and precipitates as TiN during solidification, and further contributes to the refinement of the structure, thereby improving the strength and toughness, and thus improving the dent resistance of the can. For this reason, if it is less than 0.001%, the amount of TiN deposited is insufficient, and these effects cannot be exhibited, so the lower limit of the amount of Ti is set to 0.001%. On the other hand, if Ti exceeds 0.003%, the necessary amount of solute N cannot be secured, so the upper limit was made 0.003%.

B:0.0001〜0.001%
Bは、微量の添加によって焼入れ性を向上させる効果がある。また、このBは、組織の微細化と時効性の調整制御に有効な元素であるがNと結合し析出物となる。このような効果は0.0001%以上の添加で発揮されるが、0.001%を超えて添加するとBNを形成して必要な固溶N量を確保できないことから、Bは、0.0001〜0.001%の範囲で添加することとした。
B: 0.0001 to 0.001%
B has an effect of improving hardenability by adding a small amount. Further, B is an element effective for refinement of the structure and adjustment control of aging, but is combined with N to be a precipitate. Such an effect is exhibited by addition of 0.0001% or more, but if added over 0.001%, BN cannot be formed and a necessary amount of solid solution N cannot be secured. It was decided to add in the range of ˜0.001%.

Cu:0.05%以下、Ni:0.05%以下、Cr:0.05%以下、Mo:0.05%以下
これらの元素は、いずれも鋼板強度、ひいては缶の耐デント性を高める作用を有し、必要に応じて添加する。しかし、0.05%を超えて添加した場合には、圧延性を悪化させ、かつ、鋼鈑を必要以上に硬質化し、製缶加工性を悪化させるので、その上限を0.05%とした。
Cu: 0.05% or less, Ni: 0.05% or less, Cr: 0.05% or less, Mo: 0.05% or less These elements all increase the strength of the steel sheet and thus the dent resistance of the can. And added as needed. However, if added over 0.05%, the rollability is deteriorated, and the steel plate is hardened more than necessary, and the can-making processability is deteriorated, so the upper limit was made 0.05%. .

V:0.003%以下
Vは、炭窒化物形成元素であり、鋼材のミクロ組織およびC量、N量を調整するのに用いられるのが一般的であるが、本発明では、N量が少量であるため、これに追従させて、その上限を0.003%とした。
V: 0.003% or less V is a carbonitride-forming element, and is generally used to adjust the microstructure, C content, and N content of steel materials. Since the amount is small, the upper limit was set to 0.003% by following this.

続いて本発明の熱延工程について説明する。前述の成分を含有し残部がFe、および不可避的な不純物からなる鋼を連続鋳造スラブとして700℃以下に冷却して、スラブ中の固溶NのほとんどをAlN析出物として固定する。次いで析出処理後のスラブを950〜1100℃に再加熱する。この温度域に再加熱するのは析出したAlNの分解、再固溶を防止することで析出N率を85%以上にするためである。一方、再加熱温度の下限は熱延作業に支障をきたさない950℃にする必要がある。   Then, the hot rolling process of this invention is demonstrated. The steel containing the above-mentioned components, the balance being Fe, and inevitable impurities, is cooled to 700 ° C. or lower as a continuous cast slab, and most of the solid solution N in the slab is fixed as AlN precipitates. Next, the slab after the precipitation treatment is reheated to 950 to 1100 ° C. The reason for reheating to this temperature range is to prevent the precipitated AlN from decomposing and re-dissolving, so that the precipitation N ratio is 85% or more. On the other hand, the lower limit of the reheating temperature needs to be 950 ° C. which does not hinder hot rolling work.

次いでAr3点〜950℃の仕上げ温度で熱延し、650〜720℃の温度範囲で捲き取る。仕上げ温度をAr3点以上とするのは圧延中のオーステナイト−フェライト変態を抑制して熱延作業を安定化するためであるが、950℃を超えると熱延ワークロールの肌荒れが激しくなって、製品の表面欠陥が生じるとともにロール寿命も短くなるので、上限を950℃に限定した。捲取り温度の下限を650℃とするのは熱延板の幅・長手方向のN析出率を85%以上確保するためで、一方、上限を720℃にするのは熱延板の炭化物凝集を抑制して鋼板の加工性、耐食性を劣化させないためである。   Next, it is hot-rolled at a finishing temperature of Ar 3 to 950 ° C. and scraped off in a temperature range of 650 to 720 ° C. The finishing temperature is set at Ar3 or higher to suppress the austenite-ferrite transformation during rolling to stabilize hot rolling, but when it exceeds 950 ° C., the hot rolled work roll becomes rough and the product becomes rough. Since the surface defect of the film is generated and the roll life is shortened, the upper limit is limited to 950 ° C. The lower limit of the scraping temperature is set to 650 ° C. in order to secure the N precipitation rate of 85% or more in the width / longitudinal direction of the hot-rolled sheet. On the other hand, the upper limit is set to 720 ° C. This is to suppress the deterioration of the workability and corrosion resistance of the steel sheet.

続いて本発明の焼鈍工程について述べる。以上のようにして得られた熱延板を酸洗、冷延し、連続焼鈍する。焼鈍均熱温度を650℃以上とするのは再結晶と粒成長をさせて鋼板の加工性を高めるためである。一方、上限を720℃としたのは焼鈍中に炭化物が凝集し加工性、耐食性を劣化させるとともに、連続焼鈍通板時に炉内絞りが発生しやすくなるためである。   Then, the annealing process of this invention is described. The hot-rolled sheet obtained as described above is pickled, cold-rolled, and continuously annealed. The reason why the annealing soaking temperature is set to 650 ° C. or more is to improve the workability of the steel sheet by recrystallization and grain growth. On the other hand, the upper limit was set to 720 ° C. because carbides aggregate during annealing to deteriorate workability and corrosion resistance, and in-furnace drawing tends to occur during continuous annealing.

均熱保持時間の下限を10秒としたのは再結晶と粒成長に不可欠な時間であるためで、一方、60秒を超えた保持時間では粒成長にほとんど寄与しなくなるため、生産性の視点から上限を60秒とした。   The lower limit of the soaking time is 10 seconds because it is an indispensable time for recrystallization and grain growth. On the other hand, if the holding time exceeds 60 seconds, it hardly contributes to grain growth. The upper limit was set to 60 seconds.

過時効処理温度は300〜500℃が望ましく、300℃よりも低温になると固溶C析出に長時間を要するようになるため下限を規制した。一方、500℃より高温になると平衡的に固溶されるC量が多くなって鋼板にはSt−Stを発生させるに十分な固溶Cが残留するようになるため、上限を500℃に規制した。   The overaging temperature is desirably 300 to 500 ° C., and when the temperature is lower than 300 ° C., it takes a long time for solute C precipitation, so the lower limit is regulated. On the other hand, when the temperature is higher than 500 ° C., the amount of C dissolved in a balanced manner increases and sufficient solid solution C remains to generate St—St on the steel sheet, so the upper limit is regulated to 500 ° C. did.

続いて本発明の調質圧延工程について述べる。本発明においては、連続焼鈍後の鋼板に調質圧延を行う。圧延条件としては、ロール径470mm以下のワークロールにて、圧下率1.5〜3.0%のスキンパス効果を鋼板に施す。ロール径を470mm以下にするのは、通常の常温での時効と違って170℃かつ7分の厳しい時効を受けても、可動転位を鋼板に残すことで耐St−St性の劣化を抑えるためである。圧下率は1.5%より低いとSt−Stが発生するので規制する。一方、乾式調質圧延では3.0%以上の圧下率を鋼板に施すのは困難であり、鋼板表層の過剰な硬質化は製缶加工性を劣化するため上限を3.0%とした。   Then, the temper rolling process of this invention is described. In the present invention, temper rolling is performed on the steel sheet after continuous annealing. As the rolling conditions, a skin pass effect with a rolling reduction of 1.5 to 3.0% is applied to the steel sheet with a work roll having a roll diameter of 470 mm or less. The roll diameter is set to 470 mm or less in order to suppress the deterioration of St-St resistance by leaving movable dislocations on the steel sheet even when subjected to severe aging at 170 ° C. and 7 minutes, unlike normal aging at normal temperature. It is. If the rolling reduction is lower than 1.5%, St-St is generated, and thus the reduction is regulated. On the other hand, in dry temper rolling, it is difficult to apply a rolling reduction of 3.0% or more to the steel sheet, and excessive hardening of the steel sheet surface layer deteriorates can workability, so the upper limit was made 3.0%.

調質圧延時の張力は50〜200MPaとした。張力が200MPaを超えると冷延組織が生成し、形状凍結性やエキスパンド成形性が低下する。一方50MPa未満では通板性、圧延性が低下し、形状不良や作業性の低下をもたらす。   The tension during temper rolling was 50 to 200 MPa. When the tension exceeds 200 MPa, a cold-rolled structure is generated, and the shape freezing property and the expand moldability are lowered. On the other hand, if it is less than 50 MPa, the plate passing property and the rollability are lowered, resulting in poor shape and workability.

本発明の缶用鋼板には通常、表面処理が施されて製缶メーカーに出荷される。表面処理層としては特に限定しないが、ニッケル、錫、クロム、亜鉛、アルミ等を少なくとも1種類以上含むめっき層を用いる事ができる。または少なくとも片面にフィルムラミネート層を有することができる。   The steel plate for cans of the present invention is usually subjected to surface treatment and shipped to a can maker. Although it does not specifically limit as a surface treatment layer, The plating layer containing at least 1 or more types of nickel, tin, chromium, zinc, aluminum, etc. can be used. Or it can have a film laminate layer on at least one side.

以下に本発明を実施例にて具体的に説明する。表1に掲載の鋼成分を転炉にて溶製し、主要成分を調整後に低炭素アルミキルド鋼として出鋼し、連続鋳造機にてスラブとした。このスラブを表2に示す熱延条件で加熱し熱延し捲取りを行ない、微量の固溶Nを含む熱延コイルとなした。次いで塩酸酸洗にて脱スケールを行った後に6スタンドタンデム冷延機にて薄厚の冷延コイルとなし、次いで過時効処理のある連続焼鈍機にて再結晶焼鈍を施し、微量の固溶Cを有する焼鈍コイルとした。   The present invention will be specifically described below with reference to examples. Steel components listed in Table 1 were melted in a converter, and after adjusting the main components, steel was produced as low-carbon aluminum killed steel, and slabs were formed using a continuous casting machine. This slab was heated under the hot rolling conditions shown in Table 2 and hot rolled and scraped to form a hot rolled coil containing a small amount of solute N. Next, after descaling with hydrochloric acid pickling, a thin cold-rolled coil was formed with a 6-stand tandem cold-roller, and then recrystallization annealing was performed with a continuous annealing machine with an overaging treatment, so that a small amount of solid solution C An annealing coil having

なお比較用の鋼No.1、2は連続焼鈍後に箱焼鈍を施して固溶C、Nを極めて少なくした非時効鋼板となし、一方、比較の実施例5〜10はAl添加量を少なめにするか、N添加量を多めにして、更に熱延捲取り温度をやや低めにすることで、熱延コイルの析出N率が85%未満になるように製造した。逆に本発明の実施例3、4および11、12はAl添加量を多めにするか、N添加量を少なめにして、更に熱延捲取り温度をやや高めにすることで熱延コイルの析出N率が85%以上になるように製造した。   Steel No. for comparison was used. 1 and 2 are box-annealed after continuous annealing to form non-aged steel sheets in which the solid solution C and N are extremely reduced. On the other hand, in Comparative Examples 5 to 10, the addition amount of Al is reduced or the addition amount of N is reduced. The amount of precipitation N of the hot rolled coil was made to be less than 85% by increasing the amount of the hot rolled coiling temperature slightly lower. On the contrary, in Examples 3, 4 and 11, 12 of the present invention, precipitation of hot-rolled coils was achieved by increasing the amount of Al added or decreasing the amount of N added, and further increasing the hot-rolling temperature. It manufactured so that N rate might be 85% or more.

調質圧延は、鋼No.5、6は大径ロール使用かつ高張力による調質圧延を施し、その他は小径ロール、低張力を適用した。   The temper rolling is performed using steel No. Nos. 5 and 6 were subjected to temper rolling using a large-diameter roll and high tension, and a small-diameter roll and low tension were applied to the others.

調質圧延を終えた鋼板はアルカリ洗浄、硫酸酸洗の前処理を行ない、メッキ液としてワット浴にて下層に650〜750mg/m2のNiメッキ層を形成し次いでクロメート浴にて上層が5〜10mg/m2のCrメッキから成る複層メッキを施した。 The temper-rolled steel sheet is pretreated with alkali washing and sulfuric acid washing, and a Ni plating layer of 650 to 750 mg / m 2 is formed in the lower layer with a watt bath as a plating solution, and then the upper layer is 5 in a chromate bath. Multi-layer plating consisting of 10 mg / m 2 Cr plating was applied.

このメッキ鋼板に、フィルムラミネート鋼板の熱処理条件として相当な170℃かつ7分のベーキングを行なった。表3には上記のCr−Ni複層メッキ鋼板からサンプルを採取し、ベーキングして得られた材質を記載した。   The plated steel plate was baked at 170 ° C. for 7 minutes, which is a heat treatment condition for the film-laminated steel plate. Table 3 lists the materials obtained by taking samples from the above Cr—Ni multilayer plated steel plates and baking them.

表3から明らかなように、本発明による鋼板では目標とした従来の低炭素アルミキルド鋼を素材とした連続焼鈍鋼板に残る形状凍結性やエキスパンド成形性の向上を耐St−St性や耐デント性を損なうことなく解消し、「加工時は軟質で、かつ缶体成形後の加熱処理において降伏強度が容易に増加する」特性を生かせるリシール缶用鋼板が製造できる。   As is apparent from Table 3, the steel sheet according to the present invention has improved Stability and Dent resistance as well as improvement in shape freezing property and expand formability remaining in a continuously annealed steel sheet made of the conventional low carbon aluminum killed steel. Thus, a steel plate for a resealable can be produced that takes advantage of the properties of “soft during processing and easily increased in yield strength in the heat treatment after forming the can body”.

170℃かつ7分の人工時効後の鋼板厚み方向のビッカース硬度分布を示す図である。It is a figure which shows the Vickers hardness distribution of the steel plate thickness direction after 170 degreeC and the artificial aging for 7 minutes. 本発明鋼板の固溶C、固溶N量とSt−St発生との関係を示す図である。It is a figure which shows the relationship between the solid solution C of this invention steel plate, the amount of solid solution N, and St-St generation | occurrence | production.

Claims (4)

析出N率(NasAlN×100/トータルN)が85%以上で、かつ170℃で7分の加熱保定後の、鋼板表面から厚み方向25μm深さの硬度と、鋼板の厚み方向中心部の硬度との差が、マイクロビッカース硬さで15ポイント以上であることを特徴とする溶接缶用冷延鋼板。   Precipitation N ratio (NasAlN × 100 / total N) is 85% or more, and after heat holding at 170 ° C. for 7 minutes, the hardness at the depth of 25 μm in the thickness direction from the steel plate surface, and the hardness at the center in the thickness direction of the steel plate Is a cold-rolled steel sheet for welding cans, characterized in that the difference is 15 points or more in micro Vickers hardness. 鋼成分として質量%で、
C :0.015〜0.08%、
Mn:0.10〜0.60%、
P :0.02%以下、
S :0.02%以下、
酸可溶Al:0.02〜0.10%、
N :0.006%以下
を含有し、残部がFeおよび不可避的不純物からなり、鋼板に含まれる固溶Nおよび固溶Cの合計が10〜20ppmであり、かつ固溶C≧固溶N×2なる関係を有することを特徴とする請求項1記載の溶接缶用冷延鋼板。
As a steel component in mass%,
C: 0.015-0.08%,
Mn: 0.10 to 0.60%,
P: 0.02% or less,
S: 0.02% or less,
Acid-soluble Al: 0.02-0.10%
N: 0.006% or less, the balance being Fe and inevitable impurities, the total of solid solution N and solid solution C contained in the steel sheet is 10 to 20 ppm, and solid solution C ≧ solid solution N × The cold-rolled steel sheet for welding cans according to claim 1, wherein:
鋼成分としてさらに質量%で、
Nb:0.001〜0.003%、
Ti:0.001〜0.003%、
B :0.0001〜0.001%、
Cu:0.05%以下、
Ni:0.05%以下、
Cr:0.05%以下、
Mo:0.05%以下、
V :0.003%以下
より選ばれた1種または2種以上の元素を含むことを特徴とする請求項2に記載の溶接缶用冷延鋼板。
As a further steel component,
Nb: 0.001 to 0.003%,
Ti: 0.001 to 0.003%,
B: 0.0001 to 0.001%,
Cu: 0.05% or less,
Ni: 0.05% or less,
Cr: 0.05% or less,
Mo: 0.05% or less,
The cold-rolled steel sheet for a welding can according to claim 2, comprising one or more elements selected from V: 0.003% or less.
請求項2または請求項3に記載の成分の連続鋳造スラブを一旦700℃以下まで冷却後、熱延加熱炉に挿入して950〜1100℃に再加熱し、次いで仕上げ温度をAr3点〜950℃、捲取り温度を650〜720℃にて熱間圧延し、酸洗、冷延後、均熱温度650〜720℃に10〜60秒保持し、500℃以下に冷却後、300〜500℃で60秒以上保定する連続焼鈍を行ない、次いでロール径470mm以下のロールにて圧下率1.5〜3.0%かつ張力50〜200MPaで調質圧延を実施することを特徴とする溶接缶用冷延鋼板の製造方法。   The continuous cast slab of the component according to claim 2 or 3 is once cooled to 700 ° C or lower, then inserted into a hot rolling furnace and reheated to 950 to 1100 ° C, and then the finishing temperature is set at Ar3 point to 950 ° C. , After hot rolling at 650 to 720 ° C., pickling and cold rolling, holding at a soaking temperature of 650 to 720 ° C. for 10 to 60 seconds, cooling to 500 ° C. or lower, and 300 to 500 ° C. Cold annealing for welding cans, characterized by performing continuous annealing for 60 seconds or more and then performing temper rolling with a roll having a roll diameter of 470 mm or less at a rolling reduction of 1.5 to 3.0% and a tension of 50 to 200 MPa. A method for producing rolled steel sheets.
JP2006015567A 2006-01-24 2006-01-24 Cold rolled steel sheet for welded can, and its manufacturing method Pending JP2007197742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006015567A JP2007197742A (en) 2006-01-24 2006-01-24 Cold rolled steel sheet for welded can, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006015567A JP2007197742A (en) 2006-01-24 2006-01-24 Cold rolled steel sheet for welded can, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007197742A true JP2007197742A (en) 2007-08-09

Family

ID=38452627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006015567A Pending JP2007197742A (en) 2006-01-24 2006-01-24 Cold rolled steel sheet for welded can, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007197742A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209382A (en) * 2008-02-29 2009-09-17 Jfe Steel Corp Cold rolled steel sheet having excellent surface quality after molding, and method for producing the same
JP2010106295A (en) * 2008-10-29 2010-05-13 Nippon Steel Corp Cold-rolled steel sheet for drum can and method of producing the same
CN101603147B (en) * 2009-07-09 2011-07-20 武汉钢铁(集团)公司 Hard tinned plate suitable for stamping processing and production process thereof
US20130045128A1 (en) * 2009-12-02 2013-02-21 Jfe Steel Corporation Tin mill black plate and method for manufacturing the same
JP2013185211A (en) * 2012-03-08 2013-09-19 Nippon Steel & Sumitomo Metal Corp Surface treated steel sheet for welded can, and method for producing the same
CN106868401A (en) * 2017-03-21 2017-06-20 德龙钢铁有限公司 A kind of Low Defectivity bottle cap tinplate base-material and minimizing production technology
CN115151668A (en) * 2019-12-20 2022-10-04 Posco公司 Tin-plated raw plate for processing and method for manufacturing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123719A (en) * 1984-07-09 1986-02-01 Nippon Steel Corp Manufacture of soft steel sheet for surface treatment superior in fluting resistance by continuous annealing
JPH08193243A (en) * 1995-01-18 1996-07-30 Nippon Steel Corp Resin coated steel sheet for drawn can, free from occurrence of stretcher strain mark in can bottom, and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123719A (en) * 1984-07-09 1986-02-01 Nippon Steel Corp Manufacture of soft steel sheet for surface treatment superior in fluting resistance by continuous annealing
JPH08193243A (en) * 1995-01-18 1996-07-30 Nippon Steel Corp Resin coated steel sheet for drawn can, free from occurrence of stretcher strain mark in can bottom, and its production

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209382A (en) * 2008-02-29 2009-09-17 Jfe Steel Corp Cold rolled steel sheet having excellent surface quality after molding, and method for producing the same
JP2010106295A (en) * 2008-10-29 2010-05-13 Nippon Steel Corp Cold-rolled steel sheet for drum can and method of producing the same
CN101603147B (en) * 2009-07-09 2011-07-20 武汉钢铁(集团)公司 Hard tinned plate suitable for stamping processing and production process thereof
US20130045128A1 (en) * 2009-12-02 2013-02-21 Jfe Steel Corporation Tin mill black plate and method for manufacturing the same
US8557065B2 (en) * 2009-12-02 2013-10-15 Jfe Steel Corporation Steel sheet for cans and method for manufacturing the same
JP2013185211A (en) * 2012-03-08 2013-09-19 Nippon Steel & Sumitomo Metal Corp Surface treated steel sheet for welded can, and method for producing the same
CN106868401A (en) * 2017-03-21 2017-06-20 德龙钢铁有限公司 A kind of Low Defectivity bottle cap tinplate base-material and minimizing production technology
CN115151668A (en) * 2019-12-20 2022-10-04 Posco公司 Tin-plated raw plate for processing and method for manufacturing same
CN115151668B (en) * 2019-12-20 2023-10-20 Posco公司 Tin plating original plate for processing and manufacturing method thereof

Similar Documents

Publication Publication Date Title
TWI422690B (en) High strength hot-dip galvanizing steel sheet superior in bendability and weldability, and method of producing the same
US10662495B2 (en) High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
JP5135868B2 (en) Steel plate for can and manufacturing method thereof
JP5884714B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
US7534312B2 (en) Steel plate exhibiting excellent workability and method for producing the same
TWI464296B (en) High strength galvanized steel sheet with excellent formability and method for manufacturing the same
KR101287331B1 (en) Steel sheet with high tensile strength and superior ductility and method for producing same
KR101497427B1 (en) Hot-rolled steel sheet and method for producing same
KR102242067B1 (en) High-strength steel sheet and its manufacturing method
JP5825481B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and bake hardenability and its manufacturing method
WO2016021193A1 (en) High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
KR20120023129A (en) High-strength steel sheet and manufacturing method therefor
JP2019502822A (en) High-strength hot-dip galvanized steel strip
WO2011118421A1 (en) Method for producing high-strength steel plate having superior deep drawing characteristics
JP2007231369A (en) High-strength cold rolled steel, high-strength hot dip galvanized steel sheet and high-strength galvannealed steel sheet having excellent formability and weldability, method for producing high-strength cold rolled steel sheet, method for producing high-strength hot dip galvanized steel sheet and method for producing high-strength galvannealed steel sheet
WO2017168957A1 (en) Thin steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing thin steel sheet, and method for producing plated steel sheet
WO2016157258A1 (en) High-strength steel sheet and production method therefor
JP2007197742A (en) Cold rolled steel sheet for welded can, and its manufacturing method
WO2009116680A1 (en) High-strength metal sheet for use in cans, and manufacturing method therefor
JP4943244B2 (en) Steel sheet for ultra-thin containers
JP2005029867A (en) High strength and high ductility galvanized steel sheet having excellent aging resistance, and its production method
JP2007077510A (en) High-strength high-ductility galvanized steel sheet excellent in aging resistance and its production method
KR102245332B1 (en) High-strength steel sheet and its manufacturing method
WO2016157257A1 (en) High-strength steel sheet and production method therefor
JP2007092154A (en) Method for manufacturing ultrahigh-strength cold-rolled steel sheet superior in formability

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080306

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100223

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100330

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100810

Free format text: JAPANESE INTERMEDIATE CODE: A02