JPH08127816A - Production of starting steel sheet for vessel, excellent in wrinkling resistance - Google Patents

Production of starting steel sheet for vessel, excellent in wrinkling resistance

Info

Publication number
JPH08127816A
JPH08127816A JP6265893A JP26589394A JPH08127816A JP H08127816 A JPH08127816 A JP H08127816A JP 6265893 A JP6265893 A JP 6265893A JP 26589394 A JP26589394 A JP 26589394A JP H08127816 A JPH08127816 A JP H08127816A
Authority
JP
Japan
Prior art keywords
rolling
less
annealing
steel
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6265893A
Other languages
Japanese (ja)
Inventor
Takehide Senuma
武秀 瀬沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6265893A priority Critical patent/JPH08127816A/en
Publication of JPH08127816A publication Critical patent/JPH08127816A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE: To reduce the occurrence of wrinkle and flange cracking at the time of can manufacture by applying lubricating rolling to a steel of specific composition at a temp. in a specific region, specifying total draft and sheet thickness, respectively, performing.recrystallization annealing, and then subjecting the resulting sheet to specific cold rolling. CONSTITUTION: A steel, having a composition consisting of, by weight, <=0.01% C, <=0.01% N, 0.005-0.5% Al, Ti and/or Nb under the condition of C/12+N/14+S /32<1.2(Ti/48+Nb/93), and the balance Fe with inevitable impurities, is used. This steel is subjected to lubricating rolling at a temp. in the range between the Ar, transformation point and 500 deg.C at <=0.2 average friction coefficient, and total draft and sheet thickness are regulated to >=50% and 1.4-0.6mm, respectively, and then recrystallization annealing is performed in the course of cooling, coiling, or annealing. After acid pickling, cold rolling is executed at 60-80% to regulate sheet thickness to 0.24-0.1mm, and annealing is not applied. By this method, energy saving can be attained by omitting annealing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐しわ性およびフラン
ジ加工性に優れた低コスト容器用鋼板の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a low cost steel sheet for containers which is excellent in wrinkle resistance and flange formability.

【0002】[0002]

【従来の技術】通常の容器用鋼板の製造方法は熱延をA
3 変態点以上で終了し、酸洗後90%前後の冷延を行
い、焼鈍、スキンパスを行なって製造されるが、昨今、
焼鈍後のスキンパス率を高くした2CR材の製造も定着
しつつある。とくに2CRによる製造が注目を集めはじ
めたのは容器用原板の薄手化と連動している。すなわ
ち、市場ニーズとしての低コスト化、軽量化の要請に応
えるべく、容器用原板を通常の製造方法で薄手化すると
冷延板の板厚が薄くなり、連続焼鈍時にヒートバックル
などが生じやすくなり製造が困難になる。そこで、焼鈍
までは板厚をある程度の厚さに確保し、焼鈍後、20%
から50%の高スキンパスを行う2CR技術が開発さ
れ、特公平1−52451号公報に開示されている。し
かし、この方法は必ずしも低コスト化の市場ニーズに十
分応えているとはいえない。
2. Description of the Related Art A conventional method for manufacturing a steel sheet for containers is hot rolling.
It is manufactured by finishing at r 3 transformation point or higher, pickling, cold rolling about 90%, annealing, and skin pass.
The production of 2CR materials with a high skin pass ratio after annealing is also becoming established. The production of 2CR has begun to attract a lot of attention in connection with the thinning of container original plates. That is, in order to meet the demand for cost reduction and weight reduction as market needs, if the original plate for a container is thinned by a normal manufacturing method, the thickness of the cold-rolled sheet becomes thin, and heat buckles easily occur during continuous annealing. Manufacturing becomes difficult. Therefore, secure a certain thickness until annealing, and after annealing, 20%
2CR technology for achieving a high skin pass of 50% has been developed and is disclosed in Japanese Examined Patent Publication No. 1-52451. However, this method does not always meet the market needs for cost reduction.

【0003】一方、低廉価容器用原板の製造方法とし
て、冷延まま材の製造技術が開示されている。しかし、
通常の冷延まま材では成形性が劣り、容器用原板として
の使用範囲は極めて限られている。
On the other hand, as a method of manufacturing a low-priced container original plate, a cold rolled material manufacturing technique is disclosed. But,
Normal cold-rolled material has poor formability, and its range of use as a container base plate is extremely limited.

【0004】[0004]

【発明が解決しようとする課題】本発明は、前記従来技
術における問題点即ち、冷延まま材の容器用原板の成形
性を向上させる方法を提供するものである。
DISCLOSURE OF THE INVENTION The present invention provides a problem in the above-mentioned prior art, that is, a method for improving the formability of an original plate for a container of a cold-rolled material.

【0005】[0005]

【課題を解決するための手段】本発明は冷延まま材の成
形性について詳細な実験を行い検討した結果、以下の知
見を得た。 1)冷延率は低いほど成形性は良いが、特に冷延率が8
5%を超えると耐しわ性並びにフランジ加工性の劣化が
著しくなる。 2)耐しわ性並びにフランジ加工性は板厚が薄い程悪
い。 3)鋼の構成化学成分によって加工性は影響を受け、冷
延率が85%以下ではC量の低下は加工性に有利に働
き、特にTi,Nb等を添加して固溶C量を低減するこ
とが有効である。 4)少なくとも50%以上の圧延をフェライト域で潤滑
熱延をすることにより、耐しわ性並びにフランジ加工性
が向上する。特に、圧延時のロールと鋼板の摩擦係数が
0.2以下であるとその効果が大きい。 5)4)のフェライト域での潤滑熱延の効果を得るには
成分との組み合わせが必須であり、極低炭素鋼にTi,
Nbを添加し、固溶Cを極力低減する必要がある。
According to the present invention, the following findings have been obtained as a result of detailed experiments conducted on the formability of cold-rolled material. 1) The lower the cold rolling rate, the better the formability, but especially the cold rolling rate is 8
If it exceeds 5%, wrinkle resistance and flange formability are significantly deteriorated. 2) The wrinkle resistance and flange formability are worse as the plate thickness is thinner. 3) The workability is affected by the chemical constituents of the steel, and when the cold rolling rate is 85% or less, the decrease in the C content has an advantageous effect on the workability. In particular, Ti, Nb, etc. are added to reduce the solid solution C content. It is effective to do. 4) Wrinkle resistance and flange formability are improved by rolling at least 50% or more by rolling hot rolling in the ferrite region. In particular, the effect is large when the coefficient of friction between the roll and the steel sheet during rolling is 0.2 or less. 5) In order to obtain the effect of lubrication hot rolling in the ferrite region of 4), it is essential to combine with the components, such as ultra low carbon steel, Ti,
It is necessary to add Nb to reduce the solid solution C as much as possible.

【0006】これらの知見を総合して、冷延まま材の成
形性を向上させる基本原理を検討した。容器材料の薄手
化は耐しわ性並びにフランジ加工性を劣化するので、今
までに開示された技術で製造された冷延まま材では、現
在検討されている板厚0.2mm前後の容器用原板として
使用は不可能である。そこで、容器の成形に必要な成形
性を確保する手段として第1に冷延率をできるだけ下げ
る必要がある。もし、容器用原板の板厚を0.2mmとし
たとき、冷延率が80%だと熱延板の板厚は1mmでなけ
ればならない。
Based on these findings, the basic principle for improving the formability of as-cold rolled material was examined. Since thinning of the container material deteriorates wrinkle resistance and flanging workability, the cold-rolled material produced by the technology disclosed thus far is currently being studied as a container base plate with a thickness of about 0.2 mm. Cannot be used as. Therefore, as a means for ensuring the formability required for forming a container, firstly, it is necessary to reduce the cold rolling rate as much as possible. If the thickness of the container base plate is 0.2 mm and the cold rolling ratio is 80%, the thickness of the hot rolled plate must be 1 mm.

【0007】本発明のポイントであるフェライト域で潤
滑熱延をする理由は後記するように金属物理的な理由に
よるものであるが、製造技術的にも有利な技術になって
いる。すなわち、1mmの熱延板をAr3 変態点以上で仕
上圧延をして得ようとすると加熱温度の高温化やエッジ
ヒーターの採用など操業上困難な問題が存在するが、A
3 変態点以下で圧延するとなると温度制約が緩和され
るため操業上やりやすくなる。その上、潤滑圧延を行う
ことにより圧延温度が低くなったことによる圧延荷重並
びに圧延トルクの増加を最小限に抑えることが出来る。
The reason for the lubrication hot rolling in the ferrite region, which is the point of the present invention, is due to the physical reason of metal as will be described later, but it is also an advantageous technique in terms of manufacturing technology. That is, if a 1 mm hot-rolled sheet is to be finish-rolled at the Ar 3 transformation point or higher, there are problems in operation such as a higher heating temperature and the use of an edge heater.
Rolling below the r 3 transformation point eases the operation because temperature restrictions are relaxed. Moreover, by performing the lubrication rolling, it is possible to minimize an increase in rolling load and rolling torque due to a reduction in rolling temperature.

【0008】フェライト域の潤滑熱延が容器用原板の成
形性に有利に働く理由は必ずしも明確ではないが、熱延
板のr値並びに析出物の状態が影響をあたえているもの
と思われる。すなわち、フェライト域で熱延することに
よりTi,Nb等を含む析出物の粗大化が起こり、鋼が
軟質化し、冷延時の加工硬化も緩和され、冷延後の降伏
点(YP)などが比較的低く抑えることができることに
より、耐しわ性並びにフランジ加工性が改善されると考
えられる。また、潤滑の効果は鋼の固溶C低減と組み合
わせることにより板厚全域で熱延板の集合組織を{111}
主体の集合組織にすることができ、高r値の熱延鋼板が
製造できる。この鋼板を冷延すると<111> //ND周りの
回転を起こし、冷延後も強い{111} が形成される。この
ような鋼板をネック加工すると板厚方向のひずみ変化が
少なくしわの発生が抑制されると考えられる。
The reason why the hot rolling lubrication in the ferrite region works favorably on the formability of the original plate for a container is not always clear, but it is considered that the r value of the hot rolled plate and the state of precipitates have an influence. That is, hot rolling in the ferrite region causes coarsening of precipitates containing Ti, Nb, etc., softens the steel, relaxes work hardening during cold rolling, and compares the yield point (YP) after cold rolling. It is considered that the wrinkle resistance and the flanging workability are improved by being able to suppress it to an extremely low level. In addition, the effect of lubrication is to improve the texture of hot-rolled sheet over the entire thickness by combining with solid solution C reduction of steel {111}.
The main texture can be formed, and a hot rolled steel sheet with a high r value can be manufactured. When this steel sheet is cold rolled, it rotates around <111> // ND and strong {111} is formed even after cold rolling. It is considered that necking such a steel sheet suppresses the change in strain in the sheet thickness direction and suppresses the occurrence of wrinkles.

【0009】以上の技術思想から、本発明の要旨とする
ところは、C:0.01%以下、N:0.01%以下、
Al:0.005%以上0.5%以下を含みTiおよび
Nbのいずれか一方または双方をC/12+N/14+
S/32<1.2(Ti/48+Nb/93)なる条件
を満足するように含有し、残部Feおよび不可避的不純
物からなる鋼をAr3 変態点以下、500℃以上の温度
域で平均摩擦係数が0.2以下の潤滑圧延を行ない、合
計圧下率を50%以上とし、熱延板の板厚を1.4mm以
下0.6mm以上とし、その後冷却、巻取あるいは焼鈍過
程において再結晶させ、通常の酸洗後,60%以上85
%以下の冷延を行ない、板厚を0.24mm以下0.1mm
以上とし、その後焼鈍を施さないことを特徴をする容器
用鋼板の製造方法にある。
From the above technical idea, the gist of the present invention is that C: 0.01% or less, N: 0.01% or less,
Al: 0.005% or more and 0.5% or less, and either or both of Ti and Nb are C / 12 + N / 14 +
Steel containing S / 32 <1.2 (Ti / 48 + Nb / 93) so as to satisfy the condition, balance Fe and unavoidable impurities is used as the average friction coefficient in the temperature range below the Ar 3 transformation point and above 500 ° C. Is 0.2 or less, the total rolling reduction is 50% or more, the thickness of the hot rolled sheet is 1.4 mm or less and 0.6 mm or more, and then recrystallization is performed in the cooling, winding or annealing process, After normal pickling, 60% or more 85
% Cold-rolled with a thickness of 0.24mm or less 0.1mm
The above is the method for manufacturing a steel sheet for containers, which is characterized in that the subsequent annealing is not performed.

【0010】以下に、本発明を詳細に説明する。本発明
において、TiおよびNbのいずれか一方又は双方C/
12+N/14+S/32<1.2(Ti/48+Nb
/93)なる関係を満足するように添加すると限定した
のは、鋼中のCおよびNを大部分析出物の形で固定する
ことにより、固溶C,Nを極力下げ、熱延板の集合組織
を{111} 主体にすると共に、加工硬化を抑制し、缶成形
のネック加工時のしわの発生を抑制するためである。
The present invention will be described in detail below. In the present invention, either one or both of Ti and Nb C /
12 + N / 14 + S / 32 <1.2 (Ti / 48 + Nb
/ 93) is added so as to satisfy the relationship of (93). The reason is that C and N in the steel are mostly fixed in the form of precipitates to reduce the solid solution C and N as much as possible, This is because the texture is mainly composed of {111}, work hardening is suppressed, and wrinkles are prevented from occurring during neck processing of can forming.

【0011】一方、C:0.01%以下、N:0.01
%以下としたのはこれらの量を超えて、C,N,Sを添
加すると製品の加工性を損なうのみならず上記条件式を
満足せしめるに必要なTiあるいはNbの量が多くな
り、製造コストの面で不利になるためである。Alの添
加量の下限を0.005%としたのは、これ以下の添加
では脱酸が十分達成されず介在物の量が増え、缶成形時
に破断が起こる頻度が高くなるためである。また、上限
を0.5%としたのは、加工性が劣化するためである。
なお本発明において、他の成分として、強度向上のため
に通常含まれる成分即ち、Si:1.0%以下、Mn:
1.5%以下、P:0.15%以下を含有せしめてもよ
い。また、0.0050%以下のBを添加しても本発明
の趣旨を損なうものではない。
On the other hand, C: 0.01% or less, N: 0.01
%, The amount of Ti or Nb required to satisfy the above conditional expression is increased if C, N, and S are added in excess of these amounts, and not only the workability of the product is impaired, but the manufacturing cost is increased. This is because it is disadvantageous in terms of. The lower limit of the amount of Al added is set to 0.005% because if it is added below this amount, deoxidation is not sufficiently achieved, the amount of inclusions increases, and the frequency of breakage during can forming increases. Further, the upper limit is set to 0.5% because workability deteriorates.
Incidentally, in the present invention, as other components, components usually contained for improving strength, that is, Si: 1.0% or less, Mn:
You may make it contain 1.5% or less and P: 0.15% or less. Further, addition of 0.0050% or less of B does not impair the gist of the present invention.

【0012】次に、熱延条件の限定は次の理由による。
熱延仕上げ温度がAr3 変態点以上の場合、γ→α変態
時に結晶方位分布がランダム化するため、特定の方位を
優先的に持つ集合組織を形成することが難しい。変態点
以下で熱延すると特定の方位を優先的に持つ集合組織の
形成が可能になるが、{111} を主方位にもつ熱延鋼板を
製造するには所定の条件を満足しなければならない。そ
の1つが上記の成分の限定条件であり、もう1つが熱延
条件である。熱延仕上げ温度がAr3 変態点(Ar
3 [℃]=916−509C(wt%)+27Si(w
t%)−64Mn(wt%))以下でも、Ar3 変態点
以下の合計圧下率が50%以下だと潤滑状態で圧延して
も{111} が発達しにくい。潤滑を施さないで圧延した場
合はAr3 変態点以下の合計圧下率が50%でも表層近
傍で{111} が発達しない。ロールと鋼板の圧延中の摩擦
係数が0.2以下になると板厚全域にわたって{111} が
発達するようになり、r値が顕著に向上する。それに伴
い、しわの発生頻度も下がり、フランジ加工性も向上す
る。
Next, the hot rolling conditions are limited for the following reasons.
When the hot rolling finishing temperature is equal to or higher than the Ar 3 transformation point, the crystal orientation distribution is randomized during the γ → α transformation, so that it is difficult to form a texture having a specific orientation preferentially. When hot-rolling below the transformation point, it is possible to form a texture preferentially with a specific orientation, but in order to manufacture a hot-rolled steel sheet with {111} in the main orientation, the prescribed conditions must be satisfied. . One of them is a limiting condition for the above components, and the other is a hot rolling condition. Hot rolling finish temperature is Ar 3 transformation point (Ar
3 [° C] = 916-509C (wt%) + 27Si (w
t%)-64 Mn (wt%)) or less, and if the total rolling reduction below the Ar 3 transformation point is 50% or less, {111} is difficult to develop even when rolled in a lubricated state. When rolled without lubrication, {111} does not develop in the vicinity of the surface layer even if the total rolling reduction below the Ar 3 transformation point is 50%. When the coefficient of friction between the roll and the steel sheet during rolling becomes 0.2 or less, {111} develops over the entire thickness of the sheet, and the r value remarkably improves. Along with this, the frequency of wrinkles decreases and the flange formability also improves.

【0013】圧延仕上温度の下限を500℃としたの
は、これ以下の温度で熱延することは変形抵抗も高くな
り経済的な圧延ができなくなるためで、容器の成形性に
関しては500℃で仕上圧延をしても差つかえない。ま
た、熱延板は再結晶状態である必要があり、熱延後の冷
却中、巻取過程あるいは別途焼鈍により再結晶処理をし
なければならない。
The lower limit of the rolling finish temperature is set to 500 ° C., because hot rolling at a temperature lower than this temperature increases deformation resistance and economical rolling cannot be performed. Even if it is finish rolled, it cannot be replaced. Further, the hot-rolled sheet needs to be in a recrystallized state and must be recrystallized by a winding process or a separate annealing during cooling after hot rolling.

【0014】冷延率を60%以上、85%以下と限定し
たのは、冷延率が85%以上になると、優れた成形性が
得られなくなるためである。また、下限を60%とした
のは冷延率が小さくなり過ぎると熱延板の板厚を薄くす
る必要があり、熱延の操業に支障が生じるためである。
また、最終の板厚を0.24mm以下0.1mm以上とした
のは、板厚が0.24mmを超えると軽量化のメリットが
無くなるためで、逆に0.1mm未満の冷延をすると生産
性が悪く、形状の劣化が生じる可能性も高くなり低コス
ト化のニーズに十分対応できないためである。また、熱
延板の板厚を1.4mm以下0.6mm以上と限定したの
は、これ以上熱延板が厚くなると適性冷延率で所定の最
終板厚が得られなくなるためである。一方、熱延板の板
厚がこれ以上薄くなると熱延の操業に支障が生じるため
である。
The cold rolling rate is limited to 60% or more and 85% or less because excellent moldability cannot be obtained when the cold rolling rate is 85% or more. Further, the lower limit is set to 60% because if the cold rolling rate becomes too small, it is necessary to reduce the thickness of the hot rolled sheet, which hinders the hot rolling operation.
In addition, the reason why the final plate thickness is 0.24 mm or less and 0.1 mm or more is that there is no merit of weight reduction when the plate thickness exceeds 0.24 mm. This is because it is difficult to meet the needs of cost reduction because of poor performance and possibility of deterioration of shape. Further, the reason why the thickness of the hot-rolled sheet is limited to 1.4 mm or less and 0.6 mm or more is that if the hot-rolled sheet becomes thicker than this, a predetermined final sheet thickness cannot be obtained at an appropriate cold rolling rate. On the other hand, if the thickness of the hot-rolled sheet becomes thinner than this, the hot-rolling operation will be hindered.

【0015】[0015]

【実施例】本発明の実施例を、比較例と共に説明する。
表1に示した成分組成を有する鋼を種々の条件で熱間圧
延した。ここで、Ar3 は冷速10℃/secで冷却したと
きのγ→α変態の開始温度をフォーマスターを用いて測
定して求めた。表2はこれらの鋼種を用いて容器用原板
を製造した時の製造条件とそれを用いて製缶したときの
加工性を示す。実験番号6を除いて、熱延は250mm厚
のスラブを1100℃から1250℃の間で加熱し、γ
域で圧延を行った後、α域熱延を行っている。実験番号
6はすべてをγ域で熱延したものである。
EXAMPLES Examples of the present invention will be described together with comparative examples.
Steels having the chemical compositions shown in Table 1 were hot rolled under various conditions. Here, Ar 3 was obtained by measuring the starting temperature of the γ → α transformation when cooled at a cooling rate of 10 ° C./sec using a Formaster. Table 2 shows the manufacturing conditions when a container original plate was manufactured using these steel types and the workability when a can was manufactured using the same. Hot rolling was performed by heating a slab having a thickness of 250 mm at a temperature between 1100 ° C and 1250 ° C except for Experiment No. 6,
After rolling in the zone, hot rolling in the α zone is performed. Experiment No. 6 is all hot rolled in the γ region.

【0016】容器製造における加工性の評価はDI(Dra
wing & Ironing)缶と溶接缶のネック加工性とその後の
フランジ加工性で整理した。定量的評価としてはラボの
製缶機で100缶を製造し、その際の不良缶発生率を%
で示した。錫めっき量はDI缶ではl平方メートル当た
り2.8g、溶接缶では1平方メートル当たり1gであ
る。ネック加工はスピンネッカーを用いて行った。ま
た、フランジ加工にはスピンフランジアーを用いた。
DI (Dra
Wing & Ironing) Welded cans and welded cans are arranged according to neck processability and subsequent flange processability. As a quantitative evaluation, 100 cans were manufactured with a can manufacturing machine in the lab, and the rate of defective cans at that time was%.
Indicated by. The amount of tin plating is 2.8 g per 1 square meter for DI cans and 1 g per square meter for welded cans. Neck processing was performed using a spin necker. A spin flanger was used for flanging.

【0017】本発明の範囲内である実験番号1,2,
3,4,5,11,12,13,14はネック加工性な
らびにフランジ加工性共に良好である。一方、熱延をγ
域で終了した実験番号6は欠陥の発生頻度が高かった。
また、Ar3 変態点以下、500℃以上の温度域での圧
下率が43%と本発明の範囲外の実験番号8ならびに平
均摩擦係数が0.226と高かった実験番号7でも欠陥
の発生頻度が高かった。冷延率が90%と本発明の範囲
以上である実験番号9,10は共に欠陥の発生率が著し
く高い。特に、最終板厚が薄い実験番号10は欠陥が顕
著に発生する。Cの添加量が本発明の範囲以上であった
鋼を用いた実験番号9でも製缶時に欠陥が顕著に発生し
た。Ti,Nbの添加量がC/12+N/14+S/3
2<1.2(Ti/48+Nb/93)なる条件を満足
しなかった鋼を用いた実験番号16,17では固溶C,
Nが多く存在したためか欠陥が発生した。
Experiment numbers 1, 2, within the scope of the present invention
3, 4, 5, 11, 12, 13, and 14 have good neck workability and flange workability. On the other hand,
Experiment No. 6 completed in the area had a high frequency of defects.
In addition, in the experiment number 8 which is 43% in the temperature range below the Ar 3 transformation point and in the temperature range of 500 ° C. or more, which is outside the range of the present invention, and the experiment number 7 in which the average coefficient of friction was as high as 0.226, the defect occurrence frequency Was high. In the case of Experiment Nos. 9 and 10 in which the cold rolling rate was 90%, which was above the range of the present invention, the occurrence rate of defects was extremely high. In particular, in Experiment No. 10 in which the final plate thickness is thin, defects are significantly generated. In Experiment No. 9 using steel in which the amount of C added was more than the range of the present invention, defects were significantly generated during can making. The amount of Ti and Nb added is C / 12 + N / 14 + S / 3
In experiments Nos. 16 and 17 using steels that did not satisfy the condition of 2 <1.2 (Ti / 48 + Nb / 93), solid solution C,
Defects occurred probably because there was a large amount of N.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【発明の効果】本発明によれば、容器用原板の薄手化に
伴い顕在化してきた製缶時のしわの発生及びフランジ割
れを低減でき、焼鈍を省略することにより省エネルギー
も達成でき工業的に価値の高い発明である。
EFFECTS OF THE INVENTION According to the present invention, it is possible to reduce the occurrence of wrinkles and flange cracks at the time of can manufacturing that have become apparent with the thinning of container original plates, and energy saving can be achieved by omitting annealing, which is industrially possible. It is a valuable invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.01%以下、N:
0.01%以下、Al:0.005%以上0.5%以下
を含み、TiおよびNbのいずれか一方または双方を、
C/12+N/14+S/32<1.2(Ti/48+
Nb/93)なる条件を満足するように含有し、残部F
eおよび不可避的不純物からなる鋼をAr3 変態点以下
500℃以上の温度域で平均摩擦係数が0.2以下の潤
滑圧延を行い、合計圧下率を50%以上とし、熱延板の
板厚を1.4mm以下0.6mm以上とし、その後冷却、巻
取あるいは焼鈍過程において再結晶させ、通常の酸洗
後、60%以上85%以下の冷延を行ない、板厚を0.
24mm以下0.1mm以上とし、その後焼鈍を施さないこ
とを特徴をする容器用鋼板の製造方法。
1. By weight%, C: 0.01% or less, N:
0.01% or less, Al: 0.005% or more and 0.5% or less, and either or both of Ti and Nb,
C / 12 + N / 14 + S / 32 <1.2 (Ti / 48 +
Nb / 93) so as to satisfy the condition
Steel consisting of e and unavoidable impurities is lubricated and rolled with an average friction coefficient of 0.2 or less in a temperature range of 500 ° C. or higher below the Ar 3 transformation point, and the total rolling reduction is 50% or higher. Of 1.4 mm or more and 0.6 mm or more, and then recrystallized in a cooling, winding or annealing process, and after ordinary pickling, cold rolling of 60% or more and 85% or less is performed to obtain a plate thickness of 0.
A method for producing a steel sheet for containers, which is characterized by having a thickness of 24 mm or less and 0.1 mm or more and not performing annealing thereafter.
JP6265893A 1994-10-28 1994-10-28 Production of starting steel sheet for vessel, excellent in wrinkling resistance Pending JPH08127816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6265893A JPH08127816A (en) 1994-10-28 1994-10-28 Production of starting steel sheet for vessel, excellent in wrinkling resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6265893A JPH08127816A (en) 1994-10-28 1994-10-28 Production of starting steel sheet for vessel, excellent in wrinkling resistance

Publications (1)

Publication Number Publication Date
JPH08127816A true JPH08127816A (en) 1996-05-21

Family

ID=17423569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6265893A Pending JPH08127816A (en) 1994-10-28 1994-10-28 Production of starting steel sheet for vessel, excellent in wrinkling resistance

Country Status (1)

Country Link
JP (1) JPH08127816A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102006A1 (en) * 2007-02-23 2008-08-28 Corus Staal Bv Packaging steel, method of producing said packaging steel and its use
WO2009123294A1 (en) * 2008-03-31 2009-10-08 Jfeスチール株式会社 Method for producing can manufacturing steel sheet
EP2123780B1 (en) 2007-02-21 2015-12-02 JFE Steel Corporation Processes for production of steel sheets for cans
CN107012302A (en) * 2017-05-12 2017-08-04 宁波诺宏金属材料技术咨询有限公司 A kind of anti-creping of stainless steel
WO2021125684A1 (en) * 2019-12-19 2021-06-24 주식회사 포스코 Cold-rolled steel sheet for structural section having excellent hardness and processability, and method for manufacturing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2123780B1 (en) 2007-02-21 2015-12-02 JFE Steel Corporation Processes for production of steel sheets for cans
WO2008102006A1 (en) * 2007-02-23 2008-08-28 Corus Staal Bv Packaging steel, method of producing said packaging steel and its use
WO2009123294A1 (en) * 2008-03-31 2009-10-08 Jfeスチール株式会社 Method for producing can manufacturing steel sheet
JP2009242857A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp Method for producing steel sheet for can-making
EP2275581A4 (en) * 2008-03-31 2015-09-02 Jfe Steel Corp Method for producing can manufacturing steel sheet
CN107012302A (en) * 2017-05-12 2017-08-04 宁波诺宏金属材料技术咨询有限公司 A kind of anti-creping of stainless steel
WO2021125684A1 (en) * 2019-12-19 2021-06-24 주식회사 포스코 Cold-rolled steel sheet for structural section having excellent hardness and processability, and method for manufacturing same

Similar Documents

Publication Publication Date Title
EP1006203B1 (en) Can steel strip and method of producing can steel strip
JPH08246060A (en) Production of steel sheet for can
JP2001335888A (en) Steel sheet for lightweight two-piece can, and its production method
JP3826442B2 (en) Manufacturing method of steel plate for can making with good workability and no rough skin
JP2001107187A (en) High strength steel sheet for can and its producing method
JPH06248339A (en) Production of steel sheet for vessel with high rigidity
JPH08127816A (en) Production of starting steel sheet for vessel, excellent in wrinkling resistance
JP3108330B2 (en) Manufacturing method of steel sheet for high strength cans
JPS63134645A (en) Steel sheet for di can excellent in stretch-flange formability
JP3735142B2 (en) Manufacturing method of hot-rolled steel sheet with excellent formability
KR102587650B1 (en) Steel sheet for cans and method of producing same
JP3244956B2 (en) Method for producing ultra-thin container steel sheet with excellent can formability
JP2002080933A (en) Steel sheet having excellent shape fixability and its production method
JP3474647B2 (en) Manufacturing method of steel sheet for thin containers
JP3224265B2 (en) Non-aging steel plate for container with excellent necked-in workability
JP3596036B2 (en) Manufacturing method of steel plate for can-making
JPH08283863A (en) Production of hard steel sheet for can excellent in uniformity of material
JP3609883B2 (en) Method for producing steel plate for containers with extremely small earrings during drawing
JPH073395A (en) Thin steel sheet excellent in deep drawability and weldability and production thereof
JPH1088233A (en) Production of steel sheet for can
JP3324074B2 (en) High strength and high ductility steel plate for container and method of manufacturing the same
JPH08176673A (en) Production of steel sheet for can
JPH0881715A (en) Production of steel sheet for can
JP3917749B2 (en) Manufacturing method of steel sheets for ultra-thin soft containers
JPS63140039A (en) Production of steel sheet for di can

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030819