JPH08176673A - Production of steel sheet for can - Google Patents

Production of steel sheet for can

Info

Publication number
JPH08176673A
JPH08176673A JP31842894A JP31842894A JPH08176673A JP H08176673 A JPH08176673 A JP H08176673A JP 31842894 A JP31842894 A JP 31842894A JP 31842894 A JP31842894 A JP 31842894A JP H08176673 A JPH08176673 A JP H08176673A
Authority
JP
Japan
Prior art keywords
rolling
steel sheet
less
steel
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31842894A
Other languages
Japanese (ja)
Inventor
Akio Tosaka
章男 登坂
Masatoshi Araya
昌利 荒谷
Toshiyuki Kato
俊之 加藤
Hideo Kukuminato
英雄 久々湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP31842894A priority Critical patent/JPH08176673A/en
Publication of JPH08176673A publication Critical patent/JPH08176673A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To obviate the necessity of continuous annealing stage and to produce an extra thin steel sheet with excellent characteristics at a low cost by specifying the chemical composition of an extra low carbon steel, hot rolling conditions, coiling temp. of steel sheet, etc., to soften a base material and reducing the strength of a cold rolled steel sheet. CONSTITUTION: A continuously cast slab, having a composition which consists of, by weight, <=0.0050% C, <=0.020% Si, <=0.20% Mn, <=0.020% P, <=0.010% S, <=0.0030% N, <=0.200% Al, and the balance Fe and to which one or more kinds among 0.020-0.500% Cr, 0.0020-0.0200% Nb, 0.0050-0.0200% Ti, and 0.0002-0.0020% B are further added as additive elements, is used. This cast slab is hot-rolled under the conditions of <=950 deg.C finish rolling mill inlet temp., >=40% total draft at temps. not higher than the Ar3 transformation point, and >=25% final draft. The resultant hot rolled plate is coiled at 500-750 deg.C. After ordinary acid pickling, cold rolling is performed at 50-98% draft. Moreover, lubricating rolling is performed at the time of rolling at the temp. not higher than the Ar3 transformation point.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主として飲料缶等に使
われる缶用鋼板の合理的かつ高能率的な製造方法に関す
る。より詳細には、現在急速に進展しているこれら鋼板
のゲージダウン要求と低価格化要求に応えるべく、従来
必須であった冷延後の連続焼鈍工程を省略し、冷間圧延
ままで製品化するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rational and highly efficient manufacturing method of steel plates for cans mainly used for beverage cans and the like. More specifically, in order to meet the demands for gauge down and price reduction of these steel sheets, which are rapidly progressing at present, the continuous annealing process after cold rolling, which was indispensable in the past, is omitted and commercialized as it is in cold rolling. To do.

【0002】[0002]

【従来の技術】昨今、大量に消費されている飲料缶、1
8リットル缶、ペール缶などはその製造方法によって、
2ピース缶と3ピース缶に大別することができる。2ピ
ース缶は錫めっき、クロムめっき、化成処理、塗油など
の処理を施した表面処理鋼板に、浅い絞り加工、DWI
(Draw and Wall Ironed)加工、
DRD(Draw Redraw)加工等の加工を施し
これに蓋を取りつけた2部品からなる缶である。3ピー
ス缶は表面処理鋼板を円筒状または角筒状に曲げて端部
を接合して缶胴を形成したのち、これに天蓋と底蓋をと
りつけた3部品からなる缶である。これらについては、
いずれも缶コストに占める素材コストの割合が高いため
鋼板のコスト低減の要求は強い。従って、製造工程は非
効率的で材料の歩留り、表面性質に劣る従来の箱焼鈍で
はなく、生産効率が高く、歩留り、表面品質に優れた連
続焼鈍の適用が必須であり、例えば特公昭63−102
13号公報のような技術がある。その技術は、C、M
n、酸可溶Al、N量を特定したAlキルド鋼を、連続
鋳造あるいは造塊−分塊圧延でスラブとし、次いでAr
1 点以下に冷却し該スラブを950〜1100℃に再加
熱して低温スラブ加熱を行い、熱間圧延における仕上温
度をAr3 点以上、捲取温度を620〜710℃とし、
その後、冷間圧延し、特定条件下に連続焼鈍し、次いで
圧下荷重1.7トン/mm以上の高圧下力で1.5〜
5.0%の圧下率で調質圧延するものである。その技術
は、上記従来技術に改善を加えた技術で、T2程度まで
の軟質な容器用鋼板の製造が行われてきた。
2. Description of the Related Art Beverage cans, which are consumed in large quantities these days, 1
Depending on the manufacturing method, 8 liter cans, pail cans, etc.
It can be roughly divided into two-piece cans and three-piece cans. 2 pics
The base can be tin plated, chrome plated, chemical conversion treated, oiled, etc.
Shallow drawing, DWI
(Draw and Wall Ironed) processing,
Processing such as DRD (Draw Redraw) processing
It is a two-part can with a lid attached to it. 3 pcs
For the can, bend the surface-treated steel plate into a cylindrical or square tube shape
After joining the cans to form a can body, attach the canopy and bottom cover to it.
It is a can made up of three attached parts. For these,
In both cases, the material cost accounts for a high proportion of the can cost.
There is a strong demand for steel plate cost reduction. Therefore, the manufacturing process is
Conventional box annealing that is efficient and has poor material yield and surface properties
, The production efficiency is high, and the yield and surface quality are excellent.
The application of continuous annealing is essential, for example, Japanese Patent Publication No. 63-102.
There is a technique as disclosed in Japanese Patent No. The technology is C, M
n, acid-soluble Al, Al killed steel with specified N content continuously
Casting or ingot-slab rolling to slab, then Ar
1 Cool below the point and reapply the slab to 950 to 1100 ° C.
Finishing temperature in hot rolling by heating to low temperature slab heating
Degree Ar3 Or more, the winding temperature is 620 to 710 ° C.,
After that, cold rolling, continuous annealing under specific conditions, then
Pressing load 1.7 tons / mm or more with high-pressure downward force of 1.5 to
The temper rolling is performed at a rolling reduction of 5.0%. The technology
Is a technology that is an improvement of the above-mentioned conventional technology, up to about T2.
Of soft steel sheets for containers have been manufactured.

【0003】さらに軟質な鋼板を連続焼鈍法で製造する
ための開発も行われ、例えば特公平1−52452号公
報のごとく極低炭素鋼を用いて、それと焼鈍後の加工硬
化の組合せで種々の硬さの缶用鋼板を作り分ける技術が
開発されている。すなわち、連続鋳造スラブを1050
〜1150℃で加熱後、600〜770℃の温度範囲で
熱間圧延を終了し、通常の工程で冷間圧延と720〜8
50℃の温度域での連続焼鈍とを施して硬さをHR 30
Tで42以下とした後、圧下率5〜10%のウェット調
質圧延にて所定硬さに調質するものである。しかしさら
なるコストダウンの要求がありこれに応えるためには新
たな製造プロセス並びに素材を開発する必要があった。
Development has also been carried out for producing a softer steel sheet by a continuous annealing method. For example, as disclosed in Japanese Examined Patent Publication No. 1-52452, ultra-low carbon steel is used, and it is combined with work hardening after annealing in various ways. Techniques have been developed for making hard steel plates for cans. That is, 1050 continuous casting slab
After heating at ˜1150 ° C., hot rolling is completed within a temperature range of 600 to 770 ° C., and cold rolling and 720 to 8
The hardness is H R 30 by continuous annealing in a temperature range of 50 ° C.
After T is set to 42 or less, it is tempered to a predetermined hardness by wet temper rolling with a rolling reduction of 5 to 10%. However, there was a demand for further cost reduction, and in order to meet this demand, it was necessary to develop new manufacturing processes and materials.

【0004】さらに、コストダウンの1手法として使用
する鋼板の板厚の減少と上蓋径の縮小化をねらった縮径
(ネックイン)成形の強化の動きもあり、これらは要求
する材料特性をさらに厳しいものとしている。また缶と
しての必要な強度を得るためには、薄肉化に伴って、硬
質化も要求されネックイン加工特性とは相容れない特性
であった。
Further, there is a movement to strengthen the diameter reduction (neck-in) forming aiming at the reduction of the thickness of the steel sheet and the reduction of the diameter of the upper lid, which are used as one method of cost reduction. It is tough. Further, in order to obtain the required strength as a can, it was required to be hardened as the wall thickness was reduced, which was a property incompatible with the neck-in processing property.

【0005】[0005]

【発明が解決しようとする課題】上記の従来プロセス以
外の方法では、厳しい低コスト化要求には到底応えられ
ず、より画期的な手法が必要であった。そのため、従来
工程では材質の安定化のためには必須であった連続焼鈍
工程を省略することによって、コストの低減を図ること
ができることに注目し、それに適した成分系並びに製造
法を開発したものである。焼鈍がないため冷間圧延まま
の状態でいかに鋼板の強度を低く抑制するかが技術的ポ
イントである。本発明は溶接缶、接着缶、はんだ缶等の
いわゆる3ピース缶素材を対象とするが、2ピース缶へ
の適用も制限するものではない。
With methods other than the above-mentioned conventional processes, the demand for cost reduction cannot be met at all, and a more innovative method is required. Therefore, we paid attention to the fact that the cost can be reduced by omitting the continuous annealing process, which was indispensable for stabilizing the material in the conventional process, and we have developed a component system and manufacturing method suitable for it. Is. Since there is no annealing, the technical point is how to suppress the strength of the steel sheet in the cold rolled state. The present invention is intended for so-called three-piece can materials such as welding cans, adhesive cans, and solder cans, but the application to two-piece cans is not limited.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記の目
的を達成するために、成分および熱延条件を検討しつ
つ、さらに容器用鋼板の使用特性についてそれを支配す
る冶金的な因子の検討を行い、以下の知見を得た。まず
特に3ピース缶で重要な特性は以下である。 1)自動車等に用いられる深絞り用鋼板とは異なり、高
いr値は必須条件ではない。
In order to achieve the above-mentioned object, the present inventors have studied the components and hot rolling conditions, and further, the metallurgical factors that govern the usage characteristics of the steel sheet for containers. The following findings were obtained. First of all, the following characteristics are particularly important for 3-piece cans. 1) Unlike deep drawing steel sheets used for automobiles and the like, a high r value is not an essential condition.

【0007】2)r値の面内異方性(Δr)は何れも小
さい方が望ましい。 3)リジングのような変形の不均一性を生ずることは不
可である。 4)変形の均一性の面から微細な組織が望ましい。 5)時効性は必ずしも箱焼鈍材(低炭素アルミキルド
鋼)のような完全非時効である必要はないがある水準に
は制御しないと通常の連続焼鈍材(低炭素アルミキルド
鋼)では製缶工程及びその後の2次、3次の工程で不具
合を生ずる可能性もある。
2) It is desirable that the in-plane anisotropy (Δr) of the r value is small. 3) It is impossible to cause nonuniformity of deformation such as ridging. 4) A fine structure is desirable from the viewpoint of uniform deformation. 5) Aging does not have to be completely non-aged such as box annealed material (low carbon aluminum killed steel), but if it is not controlled to a standard level, normal continuous annealed material (low carbon aluminum killed steel) can Problems may occur in the subsequent secondary and tertiary steps.

【0008】6)通常の引張り試験で得られるような延
性ではなく、それらより1桁から2桁速い加工速度での
局部延性が重要である。 7)機械的特性としては特にYSの均一性が要求され
る。これにより曲げ成形の際のスプリングバック量が安
定化する結果有利である。 8)ゲージタウンに伴って、缶体の強度を維持するため
の鋼板強度の下限値がある。
6) Local ductility at processing speeds one to two orders of magnitude faster than those obtained by normal tensile testing is important. 7) As the mechanical properties, YS uniformity is particularly required. This is advantageous as a result of stabilizing the amount of springback during bending. 8) There is a lower limit value of steel plate strength for maintaining the strength of the can body with the gauge town.

【0009】9)余りに高い強度(特に降伏強度:Y
S)では製缶工程で不具合を生ずるため鋼板の強度に上
限値がある。 これらの特性を満足しつつ、さらに低コストである合理
的な製造工程として従来の焼鈍工程を省略する工程につ
いて種々の検討を行い以下の発明を完成するに至った。
9) Too high strength (especially yield strength: Y
In S), there is an upper limit in the strength of the steel sheet because a problem occurs in the can making process. While satisfying these characteristics, various studies have been conducted on a process that omits the conventional annealing process as a rational manufacturing process at a lower cost, and the following invention has been completed.

【0010】本発明は重量比で C:0.0050%以下 Si:0.020%以下 Mn:0.20%以下 P:0.020%以下 S:0.010%以下 N:0.0030%以下 Al:0.200%以下 さらに選択添加元素として Cr:0.020%〜0.500% Nb:0.0020%〜0.0200% Ti:0.0050%〜0.0200% B:0.0002%〜0.0020% の1種又は2種以上を単独または複合添加し、残部がF
e及び不可避的不純物元素よりなる連続鋳造スラブを、
仕上圧延機入側温度を950℃以下として、Ar 3 変態
点以下での合計圧下率を40%以上、かつ、最終圧下率
を25%以上とし、500℃以上750℃以下の温度で
巻取り、通常の酸洗の後、圧下率50〜98%の冷間圧
延を行うことを特徴とする缶用鋼板の製造方法である。
この圧延に際してAr3 変態点以下での圧延工程におい
て、潤滑を行いつつ圧延することとすると好適である。
In the present invention, C: 0.0050% or less by weight, Si: 0.020% or less, Mn: 0.20% or less, P: 0.020% or less, S: 0.010% or less, N: 0.0030% Below Al: 0.200% or less Further as a selective addition element Cr: 0.020% to 0.500% Nb: 0.0020% to 0.0200% Ti: 0.0050% to 0.0200% B: 0. One or more of 0002% to 0.0020% is added alone or in combination, and the balance is F
a continuous cast slab consisting of e and inevitable impurity elements,
The temperature on the inlet side of the finish rolling mill is set to 950 ° C or lower and Ar 3 transformation
40% or more of the total rolling reduction below the point, and the final rolling reduction
At 25% or more and at a temperature of 500 ° C to 750 ° C
After winding and ordinary pickling, cold reduction with a reduction rate of 50-98%
It is a method of manufacturing a steel sheet for a can, which is characterized by performing rolling.
Ar for this rolling3 In the rolling process below the transformation point
Therefore, it is preferable to perform rolling while performing lubrication.

【0011】[0011]

【作用】本発明は、極低炭素鋼を素材とし、熱延仕上条
件を最適化することによって母板の軟質化を図り、冷延
鋼板の強度を低く抑えることによって従来の焼鈍工程を
簡略化することができるものである。r値を向上させる
には、冷間圧延を行いその後に再結晶焼鈍を行うことが
ほとんど必須条件であるが、高r値の必要がなければ本
工程を省くことが可能であることは想像できる。
The present invention uses ultra-low carbon steel as a raw material, optimizes the hot rolling finishing conditions to soften the base plate, and suppresses the strength of the cold rolled steel plate to a low level to simplify the conventional annealing process. Is what you can do. In order to improve the r-value, cold rolling and then recrystallization annealing are almost indispensable conditions, but it can be imagined that this step can be omitted if a high r-value is not required. .

【0012】しかし、組織制御が可能である工程が1つ
減ることにより逆の組織の細粒化が困難になると共に、
リジングの発生の危険性が増大する。さらに、歪みを開
放する焼鈍工程が省略化されることによって鋼が顕著に
硬質化し、通常の製缶工程では全く製缶不能というよう
な事態も予想された。従って、過剰な硬化を生じないよ
う軟質化を図る必要があった。これらを可能にしたの
が、成分を適性に制御した鋼を用いることと、熱延工程
の加工熱処理条件を厳密に最適化することの組合せであ
る。
However, by reducing the number of steps in which the structure can be controlled by one, it becomes difficult to reduce the size of the reverse structure, and
The risk of ridging increases. Furthermore, it was expected that the steel could be significantly hardened by omitting the annealing process for releasing the strain, and that the normal can-making process would make it impossible to make a can at all. Therefore, it is necessary to soften it so as not to cause excessive hardening. What made these possible is the combination of using steel whose components are properly controlled and strictly optimizing the thermomechanical treatment conditions in the hot rolling process.

【0013】以下本発明の成分の限定理由について述べ
る。 C:C量が0.0050%を超えると冷間圧延後の最終
的な製品の強度が顕著に増加することに加え、延性の劣
化も著しい。硬質であっても、製缶後のフランジ加工等
には耐える必要があり、C量を0.0050%以下、さ
らに望ましくは15ppm以下とする必要がある。これ
については特に成分の下限値は設定されていないが工業
的に製造できる数ppmのC量であっても何ら支障はな
く適用可能である。
The reasons for limiting the components of the present invention will be described below. C: When the C content exceeds 0.0050%, not only the strength of the final product after cold rolling remarkably increases, but also the ductility deteriorates remarkably. Even if it is hard, it is necessary to withstand flange processing after can manufacturing, and the C content needs to be 0.0050% or less, more preferably 15 ppm or less. Regarding this, the lower limit of the component is not set in particular, but even if the amount of C is several ppm which can be industrially produced, there is no problem and it can be applied.

【0014】Si:Si含有量が0.020%を超える
と鋼板の表面性状が劣化し、表面処理鋼板として望まし
くないばかりでなく、鋼が硬化して熱延工程が困難化す
るので0.020%以下に限定する。 Mn:Mnはある程度の量以上は添加しないといわゆる
熱間脆性が懸念されたが、本発明においては、特にスラ
ブ状態で高温に均熱する必要はないため、含有S量を低
減することと相まって、Mnの添加は脆性の面で必ずし
も必須ではない。また詳細な理由は不明であるがMn添
加量を低減することによって、冷間圧延後の鋼板の強度
は顕著に低減することが知見された。従って特に下限は
なく工業的に達成される0.010%程度でも何ら問題
はない。上限は鋼の硬質化とのバランスで決定されるが
概ね0.20%以下とすることで顕著な硬質化(YSの
上昇)を抑制することができる。さらに望ましくは0.
10%以下である。
Si: When the Si content exceeds 0.020%, not only is the surface property of the steel sheet deteriorated, which is not desirable as a surface-treated steel sheet, but also the steel hardens and the hot rolling process becomes difficult. % Or less. Mn: If Mn is not added in a certain amount or more, so-called hot brittleness was feared. However, in the present invention, since it is not necessary to soak to a high temperature particularly in a slab state, it is coupled with the reduction of the S content. , Mn are not necessarily essential in terms of brittleness. Further, although the detailed reason is not clear, it has been found that the strength of the steel sheet after cold rolling is remarkably reduced by reducing the Mn addition amount. Therefore, there is no particular lower limit, and there is no problem even if it is about 0.010% which is industrially achieved. The upper limit is determined by the balance with the hardening of the steel, but by setting it to approximately 0.20% or less, remarkable hardening (increase in YS) can be suppressed. More preferably, 0.
It is 10% or less.

【0015】P:Pも鋼の強化元素であり低減すること
が望ましいが、それだけでなく、Pを低減することによ
り耐食性の改善効果もある。加えて、詳細な機構は不明
であるが、熱延ままの状態での鋼板の軟質化にも単なる
固溶強化の低減以上の効果をもたらすため、できるだけ
低減することが望ましい。概ね0.020%以下とすれ
ばほぼ満足しうる結果が得られるが、さらに望ましくは
0.010%以下である。
P: P is also a strengthening element of steel, and it is desirable to reduce it. However, not only that, but reducing P also has the effect of improving corrosion resistance. In addition, although the detailed mechanism is unknown, it is desirable to reduce as much as possible because it brings more effects than merely reducing solid solution strengthening to softening the steel sheet in the as-hot rolled state. If it is about 0.020% or less, almost satisfactory results are obtained, but it is more preferably 0.010% or less.

【0016】S:Sは加工性の改善の面から低減する必
要がある。特に熱延鋼板を冷延したままの本発明鋼にお
いては鋼中に存在する非金属介在物は延性の確保の点で
極めて有害であり、極限まで低減することが望まれる。
概ね0.010%以下とすることで十分に加工性(特に
伸びフランジ特性)が改善するが、さらなる低減、概ね
0.005%以下とすることで極めて大きな改善効果が
得られる。
S: S needs to be reduced from the viewpoint of improving workability. Particularly in the steel of the present invention in which the hot-rolled steel sheet is cold-rolled, the non-metallic inclusions present in the steel are extremely harmful in terms of ensuring ductility, and it is desired to reduce the content to the limit.
By setting the content to about 0.010% or less, the workability (particularly the stretch flange characteristic) is sufficiently improved, but further reduction, and by setting it to about 0.005% or less, an extremely large improvement effect can be obtained.

【0017】N:Nは鋼を顕著に強化するため本発明に
おいては極限まで低減したい元素である。しかしながら
本発明鋼ではAlも同時に含有しているため、概ね0.
0030%以下とすることで十分な特性を得ることがで
きる。しかしさらに低減することで特性は改善できるた
め0.0020%以下とすることが用途によってはさら
に望ましい。
N: N is an element that is desired to be reduced to the limit in the present invention because it remarkably strengthens steel. However, since the steel of the present invention also contains Al at the same time, it is almost 0.
Sufficient characteristics can be obtained by setting the content to 0030% or less. However, the characteristics can be improved by further reducing it, so 0.0020% or less is more desirable for some applications.

【0018】Al:Alは脱酸材として、清浄度を向上
させるためにその添加が必須である。その最低限度とし
て概ね0.005%の添加が望ましいがこれは特に規定
されるものでなく、これ以下であっても鋼中のOが十分
に低減できれば固溶のNの害は特に延性に対しては小さ
いので問題とはなりにくい。しかし0.200%を越え
て添加した場合はその清浄度改善効果が飽和することに
加え、鋼の硬質化、製造コストの上昇、表面欠陥発生傾
向の増大など缶用鋼板としては極めて重大な問題を生ず
るので、0.200%以下とした。さらに好適な範囲は
0.150%以下である。
Al: Al is a deoxidizing agent, and its addition is essential to improve cleanliness. It is desirable to add about 0.005% as the minimum limit, but this is not particularly specified, and even if it is less than this, if the O in the steel can be sufficiently reduced, the damage of solid solution N is especially against ductility. Is small, so it is unlikely to cause a problem. However, when it is added in an amount exceeding 0.200%, the effect of improving the cleanliness is saturated, and the hardness of the steel is increased, the manufacturing cost is increased, and the tendency for the occurrence of surface defects is increased. Therefore, it is set to 0.200% or less. A more preferable range is 0.150% or less.

【0019】次いで選択添加元素について述べる。 Cr:Crは必須元素ではないが、添加することによ
り、熱延ままの状態での鋼板の強度を低下させる効果が
あり、結果的に冷延後の鋼板強度を低下させることがで
きることを知見した。このような効果が発揮されるのは
およそ0.020%以上の添加であり、およそ0.50
%程度でこの有用な効果が飽和する傾向を示す。従っ
て、0.020%〜0.500%の範囲とした。なお、
さらに材質上から好適な範囲は0.050〜0.20%
である。
Next, the selective addition element will be described. Cr: Cr is not an essential element, but it has been found that the addition of Cr has the effect of reducing the strength of the steel sheet in the as-hot-rolled state, and as a result, the steel sheet strength after cold rolling can be reduced. . This effect is exhibited by addition of about 0.020% or more, and about 0.50
%, This useful effect tends to be saturated. Therefore, the range is 0.020% to 0.500%. In addition,
Further, the preferable range from the viewpoint of material is 0.050 to 0.20%.
Is.

【0020】Nb:Nbは従来鋼の強化元素として知ら
れているものであるが、本発明鋼のような組成鋼、熱延
条件および冷延条件に対して適用した場合は、詳細な機
械等は不明であるが鋼の強度を上昇させることなく、組
織の微細化に有効であることを知見した。そのような有
用な効果が顕在化するのは概ね0.0020%以上の添
加からである。しかしながら、0.0200%を超えて
添加した場合は組織の細粒化効果が飽和することに加
え、鋼の材質も硬化してしまう。従って0.0020%
〜0.0200%の範囲とした。材質の観点からさらに
好適な範囲は0.0050〜0.150%である。
Nb: Nb has been conventionally known as a strengthening element for steel, but when it is applied to the composition steel such as the steel of the present invention, hot rolling conditions and cold rolling conditions, detailed machinery etc. Although it is unknown, it was found that it is effective for refining the structure without increasing the strength of steel. It is from the addition of 0.0020% or more that such useful effects become apparent. However, if it is added in excess of 0.0200%, the grain refining effect of the structure is saturated and the material of the steel is hardened. Therefore 0.0020%
It was set to a range of 0.0200%. A more preferable range from the viewpoint of material is 0.0050 to 0.150%.

【0021】Ti:TiもNbと同様に鋼の組織の微細
化、並びに、鋼中のNの固定安定化に有効である。この
ような望ましい硬化が得られるのは概ね0.0050%
以上の添加である。また0.0200%を超えて添加す
るとNbの場合と同様に鋼の硬質化が起こり好ましくな
い。従ってTi添加量は0.0050〜0.0200%
とした。材質上の観点からさらに好適な範囲は0.00
70〜0.0150%である。
Similar to Nb, Ti: Ti is also effective for refining the structure of steel and stabilizing and fixing N in steel. About 0.0050% of such desired curing is obtained
The above is the addition. If it is added in excess of 0.0200%, the steel becomes hard as in the case of Nb, which is not preferable. Therefore, the Ti addition amount is 0.0050 to 0.0200%.
And A more preferable range from the viewpoint of material is 0.00
It is 70 to 0.0150%.

【0022】B:Bは特に溶接缶などに用いた場合、熱
影響部の異常な粒成長を抑制するのに有効であり添加が
望ましい。概ね0.0002%の添加でその効果が顕在
化するが、0.0020%を超えて添加しても、その効
果が飽和し、さらには材質のばらつきを生ずる原因とな
って好ましくない。従って、0.0002%〜0.00
20%に限定する。材質の観点からさらに好適な範囲は
0.0005から0.0015%である。
B: B is effective in suppressing abnormal grain growth in the heat-affected zone, especially when used in a welding can or the like, and is preferably added. The effect becomes apparent when the content is added in an amount of approximately 0.0002%, but even when the content is added in excess of 0.0020%, the effect is saturated, and further variation in material is caused, which is not preferable. Therefore, 0.0002% to 0.00
Limited to 20%. A more preferable range from the viewpoint of material is 0.0005 to 0.0015%.

【0023】次いで熱間圧延条件についての限定理由に
ついて述べる。スラブ加熱温度については特に、規制は
ないが、通常の範囲で特に問題はない。またいわゆる連
続鋳造後の直接圧延、加熱炉への温片挿入圧延を適用し
ても問題はない。しかし、加熱の燃料原単位の問題、仕
上げ圧延温度を考慮すれば従来に比して低い温度である
ことが望ましいと考えられる。
Next, the reasons for limiting the hot rolling conditions will be described. There are no particular restrictions on the slab heating temperature, but there is no particular problem within the normal range. Further, there is no problem even if direct rolling after so-called continuous casting or hot piece insertion rolling into a heating furnace is applied. However, in consideration of the problem of the fuel consumption per unit of heating and the finish rolling temperature, it is considered preferable that the temperature is lower than the conventional temperature.

【0024】仕上げ圧延機入側温度:仕上げ圧延機入側
温度は、組織の均一化・微細化のために規制が必要であ
る。すなわち、この温度が950℃超であると、(詳細
な機構については不明であり、おそらく初期のオーステ
ナイト粒径が粗大化してしまうためと推定されるが)仕
上げ圧延の終段で、目標とする均一微細な組織の熱延鋼
板を得ることができないので950℃以下とする。
Temperature on the inlet side of the finish rolling mill: The temperature on the inlet side of the finish rolling mill needs to be regulated in order to make the structure uniform and fine. That is, if this temperature exceeds 950 ° C. (although the detailed mechanism is unknown, it is presumed that the initial austenite grain size is coarsened), it is targeted at the final stage of finish rolling. Since it is not possible to obtain a hot-rolled steel sheet having a uniform fine structure, the temperature is set to 950 ° C or lower.

【0025】Ar3 変態点以下での合計圧下率、最終圧
下:Ar3 変態点以下での合計圧下率を40%以上と
し、かつ、最終の圧下率を25%以上にしないと、組織
の不均一性が充分に除去できず、製缶時にリジングと考
えられる不均一な歪みを発生し望ましくない。これらの
圧下率の上限はスラブ厚みと製品厚み及び付与すべき冷
間圧下率からある程度必然的に定まるものである。また
当然、Ar3 変態点超えでの圧下率も材質に影響を及ぼ
すが、Ar3 変態点以下での圧下率が支配的であり、こ
れらの条件は副次的に決定される。材質面からさらに望
ましい条件は合計圧下率45%以上、最終圧下率30%
以上である。
Total rolling reduction below the Ar 3 transformation point, final rolling reduction: Unless the total rolling reduction below the Ar 3 transformation point is 40% or more and the final rolling reduction is 25% or more, the structural failure The uniformity cannot be removed sufficiently, resulting in non-uniform distortion that is considered to be ridging during can making, which is not desirable. The upper limits of these rolling reductions are inevitably determined to some extent based on the slab thickness, product thickness, and the cold rolling reduction to be applied. Naturally, the rolling reduction above the Ar 3 transformation point also affects the material, but the rolling reduction below the Ar 3 transformation point is dominant, and these conditions are secondarily determined. From a material standpoint, a more desirable condition is a total reduction of 45% or more and a final reduction of 30%
That is all.

【0026】潤滑圧延:Ar3 変態点以下での圧延時に
おいて潤滑圧延を行うことによって、圧延荷重を低減す
ることができる、加えて、鋼板の板厚方向での組織の均
一化を達成することができ、最終的な冷延鋼板の材質の
均一化、ひいては、製缶工程における作業の安定化に寄
与することができる。またこの際の潤滑方法は特に規制
するものではなく、どのような手法であっても、従来法
よりも摩擦係数を低減させる方法であれば上記の望まし
い効果を享受することができる。
Lubrication rolling: By performing lubrication rolling during rolling below the Ar 3 transformation point, the rolling load can be reduced, and in addition, the homogenization of the structure in the thickness direction of the steel sheet can be achieved. Therefore, it is possible to contribute to the final homogenization of the material of the cold-rolled steel sheet and eventually to the stabilization of the work in the can making process. In addition, the lubricating method at this time is not particularly limited, and any desired method can enjoy the above-described desired effects as long as it is a method of reducing the friction coefficient as compared with the conventional method.

【0027】巻取り温度:巻取り温度は次工程の酸洗・
冷間圧延に支障をきたさないことに加え、冷延後の最終
的な強度をできるだけ低減できることが重要である。少
なくとも、500℃を超える温度で巻取らないと鋼板が
硬質化し望ましくない。さらに望ましい温度は600℃
以上である。一方、巻取り温度が750℃を越える場合
は鋼板のスケール厚みが顕著に増大し酸洗時の脱スケー
ル性が劣化することに加え、鋼板自身の高温強度の低下
に伴ってコイルの変形などの問題を生ずる。また750
℃を超えるような温度で巻取りした場合は鋼板の長手方
向・幅方向の材質のばらつきが極度に増大化する結果、
冷間圧延後の鋼板形状の劣化が顕著になり好ましくな
い。上限はさらに望ましくは700℃以下である。
Winding temperature: The winding temperature is pickling in the next step.
It is important that the final strength after cold rolling can be reduced as much as possible, in addition to causing no hindrance to cold rolling. If the steel sheet is not wound at a temperature of at least 500 ° C., the steel sheet becomes hard, which is not desirable. More desirable temperature is 600 ℃
That is all. On the other hand, when the coiling temperature exceeds 750 ° C, the scale thickness of the steel sheet remarkably increases and the descaling property at the time of pickling deteriorates. Cause problems. Again 750
When coiled at a temperature exceeding ℃, the variation in the material in the longitudinal and width directions of the steel sheet will be extremely increased.
It is not preferable because deterioration of the steel sheet shape after cold rolling becomes remarkable. The upper limit is more preferably 700 ° C. or lower.

【0028】酸洗は通常の工程とはほぼ同一であり、特
に規制はない。酸洗後の冷間圧延は50から98%とす
る。50%以上の冷間圧下をかけないと、通常の目標と
なる最終板厚を得ることが困難である。また、詳細な機
構は不明であるが、十分に均一な材質がえられない。ま
た冷間圧下が50%未満となるまで熱延母板を薄くした
場合は、全体的な操業コストが増大し、むしろ好ましく
ない。従って、冷間圧下率の下限は50%とした。一方
冷間圧下率が98%を超えた場合は熱延母材の材質に関
わらず、冷延後の強度が顕著に増加し、延性の劣化も顕
著になり、実質的に使用が困難なものとなってしまう。
従って、上限は98%とした。材質上は90%以下であ
ることがさらに望ましい。
The pickling is almost the same as the usual process, and there is no particular restriction. The cold rolling after pickling is 50 to 98%. Unless a cold reduction of 50% or more is applied, it is difficult to obtain a normal target final thickness. Although the detailed mechanism is unknown, a sufficiently uniform material cannot be obtained. Further, if the hot-rolled base plate is thinned until the cold reduction becomes less than 50%, the overall operating cost increases, which is rather undesirable. Therefore, the lower limit of the cold reduction is set to 50%. On the other hand, when the cold rolling reduction exceeds 98%, the strength after cold rolling remarkably increases and the ductility deteriorates irrespective of the material of the hot rolled base material, which makes it practically difficult to use. Will be.
Therefore, the upper limit is set to 98%. It is more desirable for the material to be 90% or less.

【0029】[0029]

【実施例】【Example】

〔実施例1〕表1に示す種々の鋼を溶製し、熱延条件/
冷延条件を種々に変化させた時の冷延鋼板の特性の調査
した結果を表2に示す。このうちリジング特性は鋼板を
圧延直角方向に5%引張りを行い、リジングしわを目視
で判定した。
[Example 1] Various steels shown in Table 1 were melted, and hot rolling conditions /
Table 2 shows the examination results of the characteristics of the cold rolled steel sheet when various cold rolling conditions were changed. Among them, the ridging property was determined by visually observing ridging wrinkles by pulling the steel sheet 5% in the direction perpendicular to the rolling direction.

【0030】なお、熱延時のスラブ加熱温度は1000
〜1200℃の範囲とした。表1、表2から明らかなご
とく、本発明法によればリジングの発生を伴わず、比較
的YSが低く、延性も良好な、すなわち成形性の良好な
鋼板を製造することができる。 〔実施例2〕表1の成分の鋼を用いて表3に示す冷延鋼
板を製造し、通常の条件で#25相当(錫目付量で2.
8g/m2 )の錫めっきを行い、これをロールフォーン
ミング、高速シーム溶接で3ピース缶の缶胴部相当に成
形し、伸びフランジ加工を行い、割れ発生の有無を調査
した。通常の350ml缶を想定した条件で行ったフラ
ンジ成形試験で3%以上のHAZ(熱影響部)割れの発
生の有無で判定した。製品厚みは0.150mm一定と
した。またロールフォーミング成形時に局部的な折れを
生じたり、ストレッチャーストレインが発生するなどの
不具合を生じたものは表中で×印で表記した。本発明の
条件で製造されたものが必要特性を満足していることが
明らかである。
The slab heating temperature during hot rolling is 1000.
The range was up to 1200 ° C. As is clear from Tables 1 and 2, according to the method of the present invention, it is possible to produce a steel sheet that does not cause ridging, has a relatively low YS, and has good ductility, that is, good formability. [Example 2] The cold-rolled steel sheet shown in Table 3 was produced using the steel having the components shown in Table 1, and was equivalent to # 25 under normal conditions (tin weight is 2.
8 g / m 2 ) of tin was plated, and this was formed by roll-foaming and high-speed seam welding into a can body part of a three-piece can, stretch flange processing was performed, and the presence or absence of cracking was examined. In a flange forming test conducted under the conditions assuming a normal 350 ml can, the presence or absence of HAZ (heat affected zone) cracking of 3% or more was judged. The product thickness was fixed at 0.150 mm. In addition, those that caused local folds during roll forming, or problems such as stretcher strain that occurred were marked with an X in the table. It is clear that the products manufactured under the conditions of the present invention satisfy the required characteristics.

【0031】〔実施例3〕表1に示す成分の鋼を用い、
表4に示す製造条件で冷延鋼板を製造し、表面にCrめ
っきを行い、いわゆるDRD缶に成形し、表面の状態そ
の他を調査した。本発明鋼が必要な特性を満足している
ことがわかる。また、耐食性についても通常の方法に従
って調査したが、全く問題はなかった。
Example 3 Using the steels having the components shown in Table 1,
A cold-rolled steel sheet was manufactured under the manufacturing conditions shown in Table 4, the surface was plated with Cr, and a so-called DRD can was formed, and the surface condition and other conditions were investigated. It can be seen that the steel of the present invention satisfies the required properties. Further, the corrosion resistance was investigated according to a usual method, but there was no problem at all.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【表4】 [Table 4]

【0036】[0036]

【発明の効果】本発明は、以上述べたように構成されて
いるので、本発明鋼を原板として使用した容器用鋼板は
場合によっては特別な表面処理を行わない場合でも容器
として成形・加工して使用するにあたり、従来の工程で
製造されたものと実質的に同等な特性を有している。従
って、工程が簡略化された分だけ、より低コストで製造
できる合理的な製造方法である。
Since the present invention is constructed as described above, the steel sheet for containers using the steel of the present invention as the original plate can be formed and processed as a container even if no special surface treatment is performed. When used as, it has substantially the same characteristics as those manufactured by the conventional process. Therefore, it is a rational manufacturing method that can be manufactured at a lower cost because the process is simplified.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 俊之 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社鉄鋼研究所内 (72)発明者 久々湊 英雄 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Toshiyuki Kato 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture Steel Research Laboratory, Kawasaki Steel Co., Ltd. (72) Hideo Kuminato 1 Kawasaki-cho, Chuo-ku, Chiba Chiba Steel Works, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量比で C:0.0050%以下 Si:0.020%以下 Mn:0.20%以下 P:0.020%以下 S:0.010%以下 N:0.0030%以下 Al:0.200%以下 さらに選択添加元素として Cr:0.020%〜0.500% Nb:0.0020%〜0.0200% Ti:0.0050%〜0.0200% B:0.0002%〜0.0020% の1種又は2種以上を単独または複合添加し、残部がF
e及び不可避的不純物元素よりなる連続鋳造スラブを、
仕上圧延機入側温度を950℃以下、Ar3 変態点以下
での合計圧下率を40%以上、かつ、最終圧下率を25
%以上とし、500℃以上750℃以下の温度で巻取
り、通常の酸洗の後、圧下率50〜98%の冷間圧延を
行うことを特徴とする缶用鋼板の製造方法。
1. By weight ratio, C: 0.0050% or less Si: 0.020% or less Mn: 0.20% or less P: 0.020% or less S: 0.010% or less N: 0.0030% or less Al: 0.200% or less Further as a selective addition element Cr: 0.020% to 0.500% Nb: 0.0020% to 0.0200% Ti: 0.0050% to 0.0200% B: 0.0002 % To 0.0020% alone or in combination of two or more, with the balance being F
a continuous cast slab consisting of e and inevitable impurity elements,
The finish rolling mill inlet temperature is 950 ° C. or lower, the total reduction ratio at the Ar 3 transformation point or lower is 40% or more, and the final reduction ratio is 25.
% Or more, winding at a temperature of 500 ° C. or more and 750 ° C. or less, ordinary pickling, and then cold rolling at a rolling reduction of 50 to 98%.
【請求項2】 上記のAr3 変態点以下の圧延に際して
潤滑圧延を行うことを特徴とする請求項1記載の缶用鋼
板の製造方法。
2. The method for producing a steel sheet for a can according to claim 1, wherein lubrication rolling is performed when rolling at the Ar 3 transformation point or lower.
JP31842894A 1994-12-21 1994-12-21 Production of steel sheet for can Withdrawn JPH08176673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31842894A JPH08176673A (en) 1994-12-21 1994-12-21 Production of steel sheet for can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31842894A JPH08176673A (en) 1994-12-21 1994-12-21 Production of steel sheet for can

Publications (1)

Publication Number Publication Date
JPH08176673A true JPH08176673A (en) 1996-07-09

Family

ID=18099046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31842894A Withdrawn JPH08176673A (en) 1994-12-21 1994-12-21 Production of steel sheet for can

Country Status (1)

Country Link
JP (1) JPH08176673A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123294A1 (en) * 2008-03-31 2009-10-08 Jfeスチール株式会社 Method for producing can manufacturing steel sheet
WO2021125684A1 (en) * 2019-12-19 2021-06-24 주식회사 포스코 Cold-rolled steel sheet for structural section having excellent hardness and processability, and method for manufacturing same
CN117165845A (en) * 2023-04-28 2023-12-05 鞍钢股份有限公司 340 MPa-level alloying hot dip galvanized sheet for new energy automobile and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123294A1 (en) * 2008-03-31 2009-10-08 Jfeスチール株式会社 Method for producing can manufacturing steel sheet
JP2009242857A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp Method for producing steel sheet for can-making
KR101235415B1 (en) * 2008-03-31 2013-02-20 제이에프이 스틸 가부시키가이샤 Method for producing can manufacturing steel sheet
EP2275581A4 (en) * 2008-03-31 2015-09-02 Jfe Steel Corp Method for producing can manufacturing steel sheet
WO2021125684A1 (en) * 2019-12-19 2021-06-24 주식회사 포스코 Cold-rolled steel sheet for structural section having excellent hardness and processability, and method for manufacturing same
CN117165845A (en) * 2023-04-28 2023-12-05 鞍钢股份有限公司 340 MPa-level alloying hot dip galvanized sheet for new energy automobile and preparation method thereof

Similar Documents

Publication Publication Date Title
EP1006203B1 (en) Can steel strip and method of producing can steel strip
EP0731182B1 (en) Method for making a steel sheet suitable as a material for can making
JP4943244B2 (en) Steel sheet for ultra-thin containers
WO2006100796A1 (en) Flexible sheet steel for can and process for producing the same
WO2010074308A1 (en) Method for manufacturing steel plate for can-making
EP1394276B1 (en) High tensile hot-rolled steel sheet excellent in resistance to scuff on mold and in fatigue characteristics
JP2001335888A (en) Steel sheet for lightweight two-piece can, and its production method
JP3826442B2 (en) Manufacturing method of steel plate for can making with good workability and no rough skin
JP2001107187A (en) High strength steel sheet for can and its producing method
JP4677914B2 (en) Steel plate for soft can and method for producing the same
JP2009174055A (en) Mother sheet for high strength extra-thin cold rolled steel sheet, and method for producing the same
JP5262242B2 (en) Manufacturing method of steel plate for can manufacturing
JP4835015B2 (en) Steel plate for soft can and method for producing the same
JP3108330B2 (en) Manufacturing method of steel sheet for high strength cans
JPH08176673A (en) Production of steel sheet for can
JP3596037B2 (en) Manufacturing method of steel plate for can-making
JPH08269568A (en) Production of steel sheet for can making excellent in flange formability
JPH08127816A (en) Production of starting steel sheet for vessel, excellent in wrinkling resistance
KR102587650B1 (en) Steel sheet for cans and method of producing same
JP3546286B2 (en) Hot rolled base sheet for good formability cold rolled steel sheet, method for producing the same, and method for producing good formability cold rolled steel sheet
JP2002097549A (en) Steel tube superior in formability and manufacturing method therefor
JP3596036B2 (en) Manufacturing method of steel plate for can-making
JP2816358B2 (en) Manufacturing method of steel sheet for DI can
JPH1088233A (en) Production of steel sheet for can
JP5076871B2 (en) Hot rolled mother board for steel plate for cans

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020305