JP2001107187A - High strength steel sheet for can and its producing method - Google Patents

High strength steel sheet for can and its producing method

Info

Publication number
JP2001107187A
JP2001107187A JP2000057085A JP2000057085A JP2001107187A JP 2001107187 A JP2001107187 A JP 2001107187A JP 2000057085 A JP2000057085 A JP 2000057085A JP 2000057085 A JP2000057085 A JP 2000057085A JP 2001107187 A JP2001107187 A JP 2001107187A
Authority
JP
Japan
Prior art keywords
less
steel sheet
cold
rolled steel
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000057085A
Other languages
Japanese (ja)
Other versions
JP4284815B2 (en
Inventor
Akio Tosaka
章男 登坂
Tsutomu Kami
力 上
Yasuyuki Shono
保之 荘野
Osamu Furukimi
古君  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000057085A priority Critical patent/JP4284815B2/en
Publication of JP2001107187A publication Critical patent/JP2001107187A/en
Application granted granted Critical
Publication of JP4284815B2 publication Critical patent/JP4284815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a high strength extra-thin cold rolled steel sheet with a sheet thickness of <=0.3 mm, excellent in baking hardenability in which the baking hardening quantity is >=50 MPa, and yield stress after coating/baking treatment is >=550 MPa and to provide a method for producing the same. SOLUTION: A hot rolled steel sheet having a composition containing, by mass, <=0.02% C, <=0.10% Si, <=1.5% Mn, <=0.20% P, <=0.01% S, <=0.01% Al and 0.0050 to 0.0250% N and containing solid solution N by >=80% of the N content is cold-rolled, is thereafter, in a continuous annealing stage, soaked in the temperature range of 500 deg.C to the one at which the recrystallization ratio reaches <90%, is subsequently subjected to rapid cooling treatment at a cooling rate of >=150 deg.C/s to the temperature region of <=250 deg.C and, within 5 min after the completion of the soaking to 40 deg.C, is cooled. After the cooling, cold rolling at a draft of <=10% may be executed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種容器用として
用いられる缶用鋼板に係り、特に、製缶加工前に施され
る印刷工程、乾燥工程などで焼入れ時効および歪時効硬
化して、十分に高い強度を示し、鋼板の薄肉化を優位に
進められる新規な鋼板およびその製造方法に関する。
本発明が対象とするものは、0.3 mm以下、主として0.2
mm以下の極薄鋼板と呼ばれる範疇の缶用鋼板である。こ
れら鋼板は、錫めっき、ニッケル−錫めっき、クロムめ
っき(いわゆるティンフリーめっき)あるいは、さらに
有機被覆等を施され、極めて広範囲な用途に適用可能で
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel plate for cans used for various containers, and more particularly to a quenching aging and strain aging hardening in a printing process, a drying process, etc., which are performed before a can-making process. The present invention relates to a novel steel sheet which exhibits high strength and which can be made to be superior in thinning a steel sheet, and a method for producing the same.
The object of the present invention is 0.3 mm or less, mainly 0.2 mm
It is a steel sheet for cans in the category called ultra-thin steel sheet of mm or less. These steel sheets are coated with tin plating, nickel-tin plating, chromium plating (so-called tin-free plating), or further with an organic coating, and are applicable to an extremely wide range of applications.

【0002】[0002]

【従来の技術】飲料缶、食缶をはじめとして、ペール
缶、18リットル缶など、各種内容物を収納する缶容器
は、その部品構造から、底面を含む缶胴と上蓋からなる
2ピース缶と、缶胴および上蓋、底蓋からなる3ピース
缶とに大別される。近年の製缶コストの低減要求の強ま
りに鑑み、製缶素材の低コスト化が迫られ、素材費用の
低減のため、絞り成形を行う2ピース缶はもとより、単
純な円筒成形が主体の3ピース缶であっても、使用する
鋼板の薄肉化が進められている。
2. Description of the Related Art A can container for storing various contents such as a beverage can, a food can, a pail can, an 18 liter can, and the like has a two-piece can consisting of a can body including a bottom surface and an upper lid due to its component structure. , A three-piece can consisting of a can body, top lid, and bottom lid. In view of the growing demand for reduction in can-making costs in recent years, cost reduction of can-making materials has been urged, and in order to reduce material costs, not only two-piece cans that are formed by drawing but also three-pieces that mainly consist of simple cylindrical molding Even for cans, the thickness of steel sheets used is being reduced.

【0003】しかし、鋼板を薄肉化しても、缶体として
の強度は従来どおり維持する必要があり、このため、成
形・時効後の缶体強度に優れ、薄肉化に有効に寄与でき
る硬質で極薄の缶用鋼板が望まれていた。硬質で極薄の
缶用鋼板の製造方法で、現在、主流となっているのは、
焼鈍後に2次冷延を施す、いわゆるDR(Double cold
Reduced )法である。DR法は、冷延−焼鈍した後にさ
らに30%近い冷間圧延を加え、加工硬化により鋼板を硬
質化するとともに板厚の減少を図るものである。
[0003] However, even if the steel sheet is thinned, it is necessary to maintain the strength as a can body as before, so that the strength of the can body after forming and aging is excellent, and it is hard and extremely effective to contribute to thinning. A thin steel plate for cans has been desired. Currently, the mainstream method for producing hard and ultra-thin steel plates for cans is
So-called DR (Double cold rolling)
Reduced) method. In the DR method, cold rolling-annealing is followed by cold rolling of nearly 30% to harden the steel sheet by work hardening and reduce the thickness of the steel sheet.

【0004】しかしながら、DR法には、冷延−焼鈍し
た後の極薄鋼板をさらに高圧下で冷間圧延するため、強
力な圧延機が必要であり、また、焼鈍後のインライン処
理ができない場合には、工程が増加するという設備上の
デメリットがある。さらに、DR法で製造された鋼板で
は、慢性的に発生する表面疵、表面汚れなどを完全にな
くすことが極めて困難である。
However, the DR method requires a strong rolling mill in order to cold-roll the ultra-thin steel sheet after cold-rolling and annealing under a higher pressure, and requires a strong rolling mill. Has a disadvantage in equipment that the number of processes increases. Further, it is extremely difficult to completely eliminate chronically generated surface flaws, surface stains, and the like in steel plates manufactured by the DR method.

【0005】このようなことから、DR法で、健全な表
面性状を有する硬質で極薄の缶用鋼板を安定して、しか
も低コストで製造するには問題があった。また、DR法
以外の他の高強度化の方法としては、例えば自動車用の
鋼板で広範囲に行われているように合金元素を多量に添
加して鋼を固溶強化する方法が考えられる。しかし、缶
用鋼板の場合には特殊な耐食性が要求されているため、
添加できる合金元素量は制限される。実際に、ASTM規
格、JIS 規格では、添加元素が制限されており、十分な
固溶強化を達成することができない。
[0005] Thus, there has been a problem in manufacturing a hard and ultrathin steel sheet for cans having sound surface properties stably and at low cost by the DR method. As a method of increasing the strength other than the DR method, for example, a method in which a large amount of alloying elements are added to solid-solution strengthen the steel as in a wide range of steel plates for automobiles is considered. However, steel plates for cans require special corrosion resistance,
The amount of alloying elements that can be added is limited. Actually, in the ASTM standard and the JIS standard, additional elements are limited, and sufficient solid solution strengthening cannot be achieved.

【0006】その他、変態組織強化を使う方法、Nb、Ti
およびVなどの炭窒化物形成元素による析出強化を使う
方法など、いずれも缶用鋼板製造プロセスにおいては適
用が困難であった。一方、缶用鋼板で利用できる固溶強
化元素である、C、Nを有効に使用した高強度缶用鋼板
の製造方法が特開平5−345926号公報に提案されてい
る。特開平5−345926号公報に記載された技術では、
C:0.01wt%以下、N:0.04wt%以下で、かつC+Nを
0.008 wt%以上、Al:0.005 wt%以下を含む鋼片を熱間
圧延、冷間圧延を施し、再結晶温度以上の温度で連続焼
鈍を行い、その後圧下率5%以上の調質圧延を施すこと
によりT−4以上の硬質材が得られるとしている。
[0006] In addition, the method using the transformation structure strengthening, Nb, Ti
And methods using precipitation strengthening by carbonitride-forming elements such as V, etc., were difficult to apply in the steel plate manufacturing process for cans. On the other hand, Japanese Patent Application Laid-Open No. 5-345926 proposes a method for producing a high-strength steel sheet for cans that effectively uses C and N, which are solid solution strengthening elements that can be used in steel sheets for cans. In the technology described in JP-A-5-345926,
C: 0.01 wt% or less, N: 0.04 wt% or less, and C + N
Hot rolling and cold rolling of a slab containing 0.008 wt% or more and Al: 0.005 wt% or less, continuous annealing at a temperature higher than the recrystallization temperature, and then temper rolling at a draft of 5% or more It is described that a hard material of T-4 or more can be obtained.

【0007】また、特開平8−311609号公報には、炭
素:0.01〜0.08wt%、N:0.01wt%以下、酸可溶Al:0.
20wt%以下を含み、固溶C量が5 〜25ppm である、圧延
方向の降伏強度が30〜44kgf/mm2 のDI缶用鋼板が提案
されている。また、特開平10−72640 号公報には、C:
0.0010〜0.04wt%、N:0.0020〜0.0150wt%、Al:0.00
5 〜0.060wt %を含み、上記したN量の25%以上で、か
つ0.001 〜0.01wt%の固溶Nを含有する時効硬化性が大
きく、材質安定性に優れる缶用鋼板が提案されている。
Japanese Patent Application Laid-Open No. Hei 8-311609 discloses that carbon: 0.01 to 0.08 wt%, N: 0.01 wt% or less, acid-soluble Al: 0.
A steel sheet for a DI can containing less than 20 wt% and having a solid solution C content of 5 to 25 ppm and a yield strength in the rolling direction of 30 to 44 kgf / mm 2 has been proposed. Japanese Patent Application Laid-Open No. Hei 10-72640 discloses that C:
0.0010 to 0.04 wt%, N: 0.0020 to 0.0150 wt%, Al: 0.00
A steel sheet for cans containing 5 to 0.060 wt%, containing 25% or more of the above-mentioned N amount, and containing 0.001 to 0.01 wt% of solute N has high age hardening properties and excellent material stability. .

【0008】[0008]

【発明が解決しようとする課題】しかしながら、特開平
5−345926号公報、特開平8−311609号公報、特開平10
−72640 号公報に記載された技術では、T−5相当の硬
質材までが限度であり、それ以上の硬質材を得るために
は、焼鈍後に高圧下率の2次圧延を施すDR法の適用が
必要となる。しかし、DR法では、健全な表面性状を有
する硬質で極薄の缶用鋼板を安定して、しかも低コスト
で製造するには問題があった。
However, Japanese Patent Application Laid-Open Nos. Hei 5-345926, Hei 8-31609 and Hei 10
In the technique described in JP-A-72640, a hard material equivalent to T-5 is limited, and in order to obtain a hard material larger than that, application of the DR method of performing high-pressure reduction secondary rolling after annealing is applied. Is required. However, the DR method has a problem in producing a hard and ultrathin steel sheet for cans having sound surface properties stably and at low cost.

【0009】一方、3ピース缶、あるいは2ピース缶で
もDRD缶のように製缶前に塗装焼付けが行われる場合
には、塗装焼付け工程での時効により強度上昇が期待で
きる。本発明は、上記した従来技術の問題を解決し、D
R8相当あるいはそれ以上の硬さを有し、しかも焼付硬
化性に優れコスト競争力も高い高強度極薄冷延鋼板およ
びその製造方法を提案することを目的とする。本発明の
鋼板は、板厚:0.3 mm以下で、塗装焼付処理後の降伏強
さが550 MPa 以上と高く、かつ、缶用鋼板に特有な塗装
焼付けでの硬化量(焼付硬化量)が50MPa 以上と焼付硬
化性に優れた高強度極薄冷延鋼板である。本発明では、
いわゆるDR法を適用することなく、焼鈍後に10%以下
の調質圧延を適用するだけで、DR8相当あるいはそれ
以上の硬さを有する高強度極薄冷延鋼板とするものであ
る。なお、本発明でいう焼付硬化量(BH量)は、鋼板
に2%の引張歪を付与した後、塗装・焼付処理相当の21
0℃×20min の熱処理を施した後、引張試験を行う際
の、塗装・焼付処理相当の熱処理前後の降伏応力の差を
意味するものとする。また、塗装・焼付処理後の降伏応
力は、冷延鋼板に2%の引張歪を付与し、塗装・焼付処
理相当の210 ℃×20min の熱処理を施した後の降伏応力
をいうものとする。
On the other hand, when paint baking is performed before can-making, such as a DRD can, even in a three-piece can or a two-piece can, an increase in strength can be expected due to aging in the paint baking step. The present invention solves the problems of the prior art described above, and
It is an object of the present invention to propose a high-strength ultrathin cold-rolled steel sheet having a hardness of R8 or more, and having excellent bake hardenability and high cost competitiveness, and a method for producing the same. The steel sheet of the present invention has a sheet thickness of 0.3 mm or less, a high yield strength after baking treatment of 550 MPa or more, and a hardening amount (baking hardening amount) in baking specific to can steel plates of 50 MPa. Thus, it is a high-strength ultra-thin cold-rolled steel sheet excellent in bake hardenability. In the present invention,
A high-strength ultra-thin cold-rolled steel sheet having a hardness of DR8 or more is obtained by applying a temper rolling of 10% or less after annealing without applying the so-called DR method. The bake hardening amount (BH amount) in the present invention is determined by applying a 2% tensile strain to a steel sheet and then applying a 21% equivalent to a coating and baking treatment.
It means the difference in yield stress between before and after heat treatment equivalent to painting and baking when conducting a tensile test after heat treatment at 0 ° C x 20 min. The yield stress after the coating and baking treatment means the yield stress after applying a 2% tensile strain to the cold-rolled steel sheet and performing a heat treatment at 210 ° C. for 20 minutes corresponding to the coating and baking treatment.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記した
課題を達成するため、鋼成分・製造条件に関し、鋭意研
究を行った。その結果、DR法を適用することなく、D
R8相当あるいはそれ以上の硬質化と大きな焼付硬化量
を得るためには、 鋼組成・熱間圧延条件および熱間圧延後の冷却条件を
調整して、冷間圧延用母板中の固溶N量を全N量の80%
以上とすること、 従来のように完全に再結晶が終了する高温でではな
く、いわゆる部分再結晶状態で連続焼鈍を行うこと、 連続焼鈍後に低温域まで急速冷却を行うこと、 鋼組成を高延性である低炭素鋼組成、あるいは極低炭
素鋼組成とすること、が重要であるという知見を得た。
Means for Solving the Problems In order to achieve the above objects, the present inventors have conducted intensive studies on steel components and production conditions. As a result, without applying the DR method, D
In order to obtain a hardening equivalent to or greater than R8 and a large amount of bake hardening, the steel composition, hot rolling conditions, and cooling conditions after hot rolling are adjusted to adjust the solid solution N in the cold rolling base plate. 80% of the total N amount
The above, continuous annealing should be performed in a so-called partial recrystallization state, not at a high temperature at which complete recrystallization is completed as in the past, rapid cooling to a low temperature region after continuous annealing, steel composition with high ductility It has been found that it is important to use a low-carbon steel composition or a very low-carbon steel composition.

【0011】〜を確保することにより、AIN として
析出することによる固溶N量の減少を防止し、さらに固
溶Cの炭化物としての析出を防止することができ、製品
板での強化に十分な量の固溶C、Nを確保することがで
きる。また、一部分は析出するものの、十分に低い温度
での析出であり、大きな強度上昇がもたらされる。固溶
C、固溶Nを有効に活用し、いわゆる歪み時効あるいは
焼入れ時効を活用することにより、鋼板の強度を著しく
増加させることができる。このため、連続焼鈍後に強度
増加のために従来の2次圧延のような強圧下(圧下率30
%程度)を施す必要がなくなり、鋼板表面の硬さ調整、
粗度調整、形状矯正のために軽圧下(圧下率:10%以
下)を施すだけでよいという知見を得た。
As a result, it is possible to prevent a decrease in the amount of solute N due to precipitation as AIN, and further to prevent the precipitation of solute C as carbide, which is sufficient for strengthening a product plate. The amount of solid solution C and N can be secured. In addition, although a part is precipitated, the precipitation is at a sufficiently low temperature, and a large increase in strength is brought about. By effectively utilizing solid solution C and solid solution N, and utilizing so-called strain aging or quenching aging, the strength of the steel sheet can be significantly increased. For this reason, after continuous annealing, in order to increase the strength, a strong reduction (reduction rate of 30) as in conventional secondary rolling is performed.
%) To adjust the hardness of the steel sheet surface,
It has been found that it is only necessary to apply a light reduction (reduction rate: 10% or less) for roughness adjustment and shape correction.

【0012】本発明は上記のような知見に基づいて構成
されたものである。すなわち、第1の本発明は、質量%
で、C:0.02%以下、Si:0.10%以下、Mn:1.5 %以
下、P:0.20%以下、S:0.01%以下、Al:0.01%以
下、N:0.0050〜0.0250%を含み、かつ前記N量の80%
以上の固溶Nを含み、残部がFeおよび不可避的不純物か
らなる組成を有することを特徴とする高強度冷延鋼板用
母板であり、また、本発明では、前記組成に加えてさら
に、質量%で、次第1群〜第2群 第1群:Nb:0.001 〜0.040 %、Ti:0.001 〜0.040
%、B:0.0002〜0.0020%のうちから選ばれた1種また
は2種以上、ただし、Nbは次(1)式、Tiは次(2)式
を満足するものとする。
The present invention has been made based on the above findings. That is, the first aspect of the present invention
C: 0.02% or less, Si: 0.10% or less, Mn: 1.5% or less, P: 0.20% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.0050 to 0.0250%, and N 80% of quantity
A high-strength cold-rolled steel base plate comprising the above-mentioned solid solution N and having a balance of Fe and unavoidable impurities, and in the present invention, in addition to the composition, %, First group to second group, first group: Nb: 0.001 to 0.040%, Ti: 0.001 to 0.040
%, B: one or more selected from 0.0002 to 0.0020%, provided that Nb satisfies the following formula (1) and Ti satisfies the following formula (2).

【0013】 (12/93) ×( Nb/C)≦0.8 ……(1) (12/48) ×( Ti */C)≦0.8 ……(2) なお、Ti *=Ti−(48/32 )S −(48/14 )N 第2群:Cu:0.01〜0.2 %、Ni:0.01〜0.2 %、Cr:0.
01〜0.2 %、Mo:0.01〜0.2 %のうちから選ばれた1種
または2種以上のうちから選ばれた1群または2群を含
有することが好ましい。
(12/93) × (Nb / C) ≦ 0.8 (1) (12/48) × (Ti * / C) ≦ 0.8 (2) where Ti * = Ti− (48 / 32) S- (48/14) N Second group: Cu: 0.01 to 0.2%, Ni: 0.01 to 0.2%, Cr: 0.
It is preferable to contain one or two selected from one or more selected from 01 to 0.2% and Mo: 0.01 to 0.2%.

【0014】また、第2の本発明は、質量%で、C:0.
02%以下、Si:0.10%以下、Mn:1.5 %以下、P:0.20
%以下、S:0.01%以下、Al:0.01%以下、N:0.0050
〜0.0250%を含み、かつ(固溶C+固溶N)を0.0050%
以上含有し、残部がFeおよび不可避的不純物からなる組
成と、再結晶率60%以上90%未満の組織を有し、焼付硬
化量:50MPa 以上、塗装・焼付処理後の降伏応力:550
MPa 以上を有することを特徴とする板厚:0.3 mm以下の
高強度缶用極薄冷延鋼板であり、また、本発明では、前
記組成に加えてさらに、質量%で、次第1群〜第2群 第1群:Nb:0.001 〜0.040 %、Ti:0.001 〜0.040
%、B:0.0002〜0.0020%のうちから選ばれた1種また
は2種以上、ただし、Nbは次(1)式、Tiは次(2)式
を満足するものとする。
[0014] The second present invention relates to a method of the present invention, wherein C: 0.
02% or less, Si: 0.10% or less, Mn: 1.5% or less, P: 0.20
%, S: 0.01% or less, Al: 0.01% or less, N: 0.0050
-0.0250%, and 0.0050% of (Solute C + Solute N)
The composition contains at least the following, with the balance being Fe and unavoidable impurities, a structure having a recrystallization rate of 60% or more and less than 90%, a bake hardening amount of 50 MPa or more, and a yield stress after painting and baking treatment: 550
It is an ultra-thin cold-rolled steel sheet for high-strength cans having a thickness of 0.3 mm or less, characterized by having a pressure of not less than 1 MPa. 2nd group 1st group: Nb: 0.001 to 0.040%, Ti: 0.001 to 0.040
%, B: one or more selected from 0.0002 to 0.0020%, provided that Nb satisfies the following formula (1) and Ti satisfies the following formula (2).

【0015】 (12/93) ×( Nb/C)≦0.8 ……(1) (12/48) ×( Ti */C)≦0.8 ……(2) なお、Ti *=Ti−(48/32 )S −(48/14 )N 第2群:Cu:0.01〜0.2 %、Ni:0.01〜0.2 %、Cr:0.
01〜0.2 %、Mo:0.01〜0.2 %のうちから選ばれた1種
または2種以上のうちから選ばれた1群または2群を含
有することが好ましい。
(12/93) × (Nb / C) ≦ 0.8 (1) (12/48) × (Ti * / C) ≦ 0.8 (2) where Ti * = Ti− (48 / 32) S- (48/14) N Second group: Cu: 0.01 to 0.2%, Ni: 0.01 to 0.2%, Cr: 0.
It is preferable to contain one or two selected from one or more selected from 01 to 0.2% and Mo: 0.01 to 0.2%.

【0016】また、第3の本発明は、上記した第2の本
発明である極薄冷延鋼板の表面、少なくとも片面に、め
っき層を形成したことを特徴とする高強度缶用極薄めっ
き鋼板である。第4の本発明は、質量%で、C:0.02%
以下、Si:0.10%以下、Mn:1.5 %以下、P:0.20%以
下、S:0.01%以下、Al:0.01%以下、N:0.0050〜0.
0250%を含み、あるいはさらに、次第1群〜第2群 第1群:Nb:0.001 〜0.040 %、Ti:0.001 〜0.040
%、B:0.0002〜0.0020%のうちから選ばれた1種また
は2種以上、ただし、Nbは次(1)式、Tiは次(2)式
を満足するものとする。
According to a third aspect of the present invention, there is provided the ultra-thin cold-rolled steel sheet according to the second aspect, wherein a plating layer is formed on at least one surface of the ultra-thin cold-rolled steel sheet. It is a steel plate. In the fourth invention, C: 0.02% by mass%.
Below, Si: 0.10% or less, Mn: 1.5% or less, P: 0.20% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.0050-0.
0250%, or more gradually, Group 1 to Group 2 Group 1: Nb: 0.001 to 0.040%, Ti: 0.001 to 0.040
%, B: one or more selected from 0.0002 to 0.0020%, provided that Nb satisfies the following formula (1) and Ti satisfies the following formula (2).

【0017】 (12/93) ×( Nb/C)≦0.8 ……(1) (12/48) ×( Ti */C)≦0.8 ……(2) なお、Ti *=Ti−(48/32 )S −(48/14 )N 第2群:Cu:0.01〜0.2 %、Ni:0.01〜0.2 %、Cr:0.
01〜0.2 %、Mo:0.01〜0.2 %のうちから選ばれた1種
または2種以上のうちから選ばれた1群または2群を含
有し、残部Feおよび不可避的不純物である組成を有する
圧延素材を用い、前記N量の90%以上が固溶状態となる
温度にて圧延を開始し、仕上げ圧延温度を(Ar3変態点
−30℃)以上とする熱間圧延を施し、該熱間圧延終了
後、 0.5s以内に強制冷却を開始し600 ℃以下の巻取温
度で巻取り、さらに巻取り後水冷し、好ましくは30min
以内に水冷を開始し20℃/h以上の冷却速度で冷却し、
前記N量の80%以上の固溶Nを含む熱延板とすることを
特徴とする高強度極薄冷延鋼板用母板の製造方法であ
る。
(12/93) × (Nb / C) ≦ 0.8 (1) (12/48) × (Ti * / C) ≦ 0.8 (2) where Ti * = Ti− (48 / 32) S- (48/14) N Second group: Cu: 0.01 to 0.2%, Ni: 0.01 to 0.2%, Cr: 0.
01-0.2%, Mo: One or two or more selected from at least 0.01-0.2% selected from the group consisting of two or more selected from the group consisting of a balance of Fe and unavoidable impurities. Using a material, rolling is started at a temperature at which 90% or more of the N amount is in a solid solution state, and hot rolling is performed at a finishing rolling temperature of (Ar 3 transformation point −30 ° C.) or higher. After rolling is completed, forced cooling is started within 0.5 s, winding is performed at a winding temperature of 600 ° C or less, and further cooling is performed, followed by water cooling, preferably for 30 minutes.
Start water cooling within 20 ℃ / h
A method for producing a base plate for a high-strength ultra-thin cold-rolled steel sheet, wherein the hot-rolled sheet contains solute N of 80% or more of the N amount.

【0018】また、第5の本発明は、質量%で、C:0.
02%以下、Si:0.10%以下、Mn:1.5 %以下、P:0.20
%以下、S:0.01%以下、Al:0.01%以下、N:0.0050
〜0.0250%を含み、あるいはさらに、次第1群〜第2群
第1群:Nb:0.001 〜0.040 %、Ti:0.001 〜0.040
%、B:0.0002〜0.0020%のうちから選ばれた1種また
は2種以上、ただし、Nbは次(1)式、Tiは次(2)式
を満足するものとする。
Further, the fifth invention is characterized in that C: 0.
02% or less, Si: 0.10% or less, Mn: 1.5% or less, P: 0.20
%, S: 0.01% or less, Al: 0.01% or less, N: 0.0050
0.00.0250%, or more gradually, the first group to the second group, the first group: Nb: 0.001 to 0.040%, Ti: 0.001 to 0.040
%, B: one or more selected from 0.0002 to 0.0020%, provided that Nb satisfies the following formula (1) and Ti satisfies the following formula (2).

【0019】 (12/93) ×( Nb/C)≦0.8 ……(1) (12/48) ×( Ti */C)≦0.8 ……(2) なお、Ti *=Ti−(48/32 )S −(48/14 )N 第2群:Cu:0.01〜0.2 %、Ni:0.01〜0.2 %、Cr:0.
01〜0.2 %、Mo:0.01〜0.2 %のうちから選ばれた1種
または2種以上のうちから選ばれた1群または2群を含
有し、残部Feおよび不可避的不純物である組成を有する
圧延素材を用い、前記N量の90%以上が固溶状態となる
温度にて圧延を開始し、仕上げ圧延温度を(Ar3変態点
−30℃)以上とする熱間圧延を施し、該熱間圧延終了
後、 0.5s以内に強制冷却を開始し600 ℃以下の巻取温
度で巻取り、さらに巻取り後水冷し、好ましくは30min
以内に水冷を開始し20℃/h以上の冷却速度で冷却し、
前記N量の80%以上の固溶Nを含む熱延板とし、つい
で、該熱延板に冷間圧延を施したのち、連続焼鈍工程
で、500 ℃以上でかつ再結晶率が90%未満となる温度範
囲で均熱後、150 ℃/s以上の冷却速度で250 ℃以下の
温度域までの急冷処理を施し、ついで40℃まで均熱終了
後5min 以内に冷却することを特徴とする焼付硬化量:
50MPa 以上、塗装・焼付処理後の降伏応力:550 MPa 以
上を有する板厚:0.3 mm以下の高強度缶用極薄冷延鋼板
の製造方法であり、また本発明では、前記冷却後、さら
に圧下率:10%以下の冷間圧延を施すことが好ましい。
(12/93) × (Nb / C) ≦ 0.8 (1) (12/48) × (Ti * / C) ≦ 0.8 (2) where Ti * = Ti− (48 / 32) S- (48/14) N Second group: Cu: 0.01 to 0.2%, Ni: 0.01 to 0.2%, Cr: 0.
01-0.2%, Mo: One or two or more selected from at least 0.01-0.2% selected from the group consisting of two or more selected from the group consisting of a balance of Fe and unavoidable impurities. Using a material, rolling is started at a temperature at which 90% or more of the N amount is in a solid solution state, and hot rolling is performed at a finishing rolling temperature of (Ar 3 transformation point −30 ° C.) or higher. After rolling is completed, forced cooling is started within 0.5 s, winding is performed at a winding temperature of 600 ° C or less, and further cooling is performed, followed by water cooling, preferably for 30 minutes.
Start water cooling within 20 ℃ / h
A hot rolled sheet containing solute N of 80% or more of the above-mentioned amount of N is then cold-rolled. Then, in a continuous annealing step, the temperature is 500 ° C. or more and the recrystallization rate is less than 90%. After soaking in the temperature range, baking is performed at a cooling rate of 150 ° C / s or more, followed by quenching to a temperature range of 250 ° C or less, then cooling to 40 ° C within 5 minutes after completion of soaking. Curing amount:
This is a method for producing an ultra-thin cold-rolled steel sheet for high-strength cans having a yield stress after painting and baking treatment of at least 50 MPa and having a thickness of at least 550 MPa, which is 0.3 mm or less. It is preferable to perform cold rolling at a rate of 10% or less.

【0020】[0020]

【発明の実施の形態】本発明の冷延鋼板は、焼付硬化
量:50MPa 以上、塗装・焼付処理後の降伏応力:550 MP
a 以上を有する板厚:0.3 mm以下の高強度缶用極薄冷延
鋼板である。本発明の冷延鋼板は、塗装・焼付処理後の
降伏応力:550 MPa 以上を有し鋼板の薄肉化を優位に進
めることができる。また、本発明の冷延鋼板は、固溶C
+固溶Nの作用を有効に利用することにより、プレス成
形前の塗装焼付工程時に、塗装焼付硬化量(BH量)50
MPa 以上という顕著な時効硬化現象があり、さらに、多
量の固溶C、固溶Nを含有し、製缶後の缶体、とくに缶
胴部に耐デント性(凹みに対する抵抗性)を付与するこ
とができ、缶体強度の飛躍的な増加をもたらす。
BEST MODE FOR CARRYING OUT THE INVENTION The cold rolled steel sheet of the present invention has a bake hardening amount of 50 MPa or more and a yield stress after painting and baking treatment of 550 MP.
a Ultra-thin cold-rolled steel sheet for high-strength cans with a thickness of 0.3 mm or less, having a thickness of at least 0.3 mm. The cold-rolled steel sheet of the present invention has a yield stress after the coating and baking treatment of 550 MPa or more, and can promote the thinning of the steel sheet. The cold-rolled steel sheet of the present invention has a solid solution C
+ By effectively utilizing the effect of solid solution N, the paint bake hardening amount (BH amount) 50 during the paint baking process before press molding
There is a remarkable age hardening phenomenon of MPa or more, and furthermore, it contains a large amount of solid solution C and solid solution N and imparts dent resistance (resistance to dents) to the can body after can making, especially the can body. Can result in a dramatic increase in can strength.

【0021】まず、本発明の冷延鋼板用母板および冷延
鋼板の組成限定理由について説明する。以下、質量%は
単に%と記す。 C:0.02%以下 Cは、固溶強化により鋼の強度を増加させる有効な元素
であるが、一方では、炭化物を形成し、鋼板の延性、ひ
いては加工性を低下させる。このため、本発明では、C
含有量を低減することにより、鋼中の炭化物量を低減
し、鋼板の延性、ひいては、加工性を安定して高い値に
確保する。また、固溶Cが析出する場所となる鋼中に存
在する炭化物の量が低減することにより、結果的に固溶
Cが多く残存するようになり、鋼板の高強度化が可能と
なる。このような望ましい効果は、C含有量を0.02%以
下とすることにより認められる。このため、Cは0.02%
以下に限定した。なお、固溶Cによる高強度化をさらに
促進させるためには、C含有量を0.010 %以下の極低炭
素域とすることが望ましい。一方、目標とする高い焼付
硬化性(BH性)を得るためには、C含有量は0.002 %
以上とするのが好ましい。
First, the reasons for limiting the composition of the base plate for cold-rolled steel sheet and the cold-rolled steel sheet of the present invention will be described. Hereinafter, mass% is simply described as%. C: 0.02% or less C is an effective element for increasing the strength of steel by solid solution strengthening, but on the other hand, it forms carbides and reduces the ductility of the steel sheet and, consequently, the workability. Therefore, in the present invention, C
By reducing the content, the amount of carbides in the steel is reduced, and the ductility of the steel sheet and, consequently, the workability are stably secured at a high value. Further, by reducing the amount of carbides present in the steel where the solid solution C precipitates, a large amount of solid solution C is consequently left, and the strength of the steel sheet can be increased. Such a desirable effect is recognized by making the C content 0.02% or less. Therefore, C is 0.02%
Limited to the following. In order to further enhance the strength by solid solution C, it is desirable that the C content is in an extremely low carbon region of 0.010% or less. On the other hand, in order to obtain the target high bake hardenability (BH property), the C content is 0.002%.
It is preferable to make the above.

【0022】Si:0.10%以下 Siは、固溶強化により鋼の強度を増加させる元素である
が、多量の添加は表面処理性の劣化、耐食性の劣化等の
問題を生じるため、Siは0.10%以下に限定した。なお、
とくに優れた耐食性が要求される場合は、Siは0.02%以
下とするのが好ましい。
Si: 0.10% or less Si is an element which increases the strength of steel by solid solution strengthening. However, since addition of a large amount causes problems such as deterioration of surface treatment properties and deterioration of corrosion resistance, Si is 0.10% or less. Limited to the following. In addition,
When particularly excellent corrosion resistance is required, the content of Si is preferably set to 0.02% or less.

【0023】Mn:1.5 %以下 Mnは、Sによる熱間割れを防止する有効な元素であり、
本発明では、含有するS量に応じて適宜添加する。ま
た、Mnは、結晶粒を微細化する効果を有している。この
ような効果は0.1 %以上の含有により顕著に認められ、
Mnは0.1 %以上含有するのが好ましい。一方、Mnを多量
に含有すると、鋼板の高強度化は達成できるものの、耐
食性が劣化する傾向となり、さらに、フランジ加工性の
劣化傾向が顕著となる。このため、Mnは1.5 %以下に限
定した。なお、より良好な成形性が要求される用途で
は、Mnは0.50%以下とするのが好ましい。
Mn: 1.5% or less Mn is an effective element for preventing hot cracking due to S.
In the present invention, it is added as appropriate according to the amount of S contained. Further, Mn has an effect of making crystal grains fine. Such an effect is remarkably recognized when the content is 0.1% or more.
Mn is preferably contained at 0.1% or more. On the other hand, when Mn is contained in a large amount, although high strength of the steel sheet can be achieved, the corrosion resistance tends to deteriorate, and further, the flange workability tends to deteriorate. For this reason, Mn was limited to 1.5% or less. In applications where better moldability is required, Mn is preferably set to 0.50% or less.

【0024】P:0.20%以下 Pは、鋼を著しく硬質化させるが、フランジ加工性やネ
ック加工性を劣化させるとともに、耐食性を著しく劣化
させる。このため、本発明では、Pは0.20%以下に限定
した。フランジ加工性、ネック加工性、耐食性がとくに
重要視される用途の場合には、Pは0.01%以下とするの
が望ましい。
P: 0.20% or less P significantly hardens the steel, but deteriorates the flange workability and the neck workability and also significantly deteriorates the corrosion resistance. Therefore, in the present invention, P is limited to 0.20% or less. In applications where flange workability, neck workability, and corrosion resistance are particularly important, P is desirably 0.01% or less.

【0025】S:0.01%以下 Sは、鋼中では介在物(硫化物)として存在し、鋼板の
延性を減少させ、さらに耐食性を劣化させる元素であ
り、本発明ではできるだけ低減するのが望ましいが、0.
01%までは許容できる。このため、本発明ではSは0.01
%以下に限定した。なお、特に良好な加工性が要求され
る用途の場合には、Sは0.005 %以下とするのが好まし
い。
S: 0.01% or less S is an element present as an inclusion (sulfide) in steel, which reduces the ductility of the steel sheet and further deteriorates the corrosion resistance. In the present invention, it is desirable to reduce as much as possible. , 0.
Up to 01% is acceptable. Therefore, in the present invention, S is 0.01
% Or less. For applications requiring particularly good workability, S is preferably set to 0.005% or less.

【0026】Al:0.01%以下 Alは、固溶Nと結合し、AlN を形成し、固溶N量を低減
する効果を有する。また、Al含有量の増加は再結晶温度
の上昇をもたらし、焼鈍温度を高温とする必要がある。
高温焼鈍では、AlN 形成のため、固溶N量が低減し、時
効硬化量が低減し、したがって鋼板強度の低下をもたら
す。このような現象が顕著となるのは、Al含有量が0.01
%を超える場合である。このようなことから、Alは0.01
%以下に限定した。なお、鋼の溶製工程における安定操
業の観点からは、Alは0.001 %以上とするのが望まし
い。また、材質のさらなる安定化という観点からは、Al
は0.005 %以下とするのがより望ましい。
Al: 0.01% or less Al combines with solute N to form AlN and has the effect of reducing the amount of solute N. In addition, an increase in the Al content causes an increase in the recrystallization temperature, and it is necessary to increase the annealing temperature.
In high-temperature annealing, the amount of solute N is reduced due to the formation of AlN, the amount of age hardening is reduced, and thus the strength of the steel sheet is reduced. This phenomenon is remarkable because the Al content is 0.01%.
%. From this, Al is 0.01
% Or less. From the viewpoint of stable operation in the steel smelting process, the content of Al is desirably 0.001% or more. Also, from the viewpoint of further stabilizing the material, Al
Is more preferably not more than 0.005%.

【0027】N:0.0050〜0.0250% Nは、時効硬化性を増加させる元素であり、本発明にお
いては、積極的に含有させる。時効硬化性の顕著な増加
は0.0050%以上の含有で認められる。一方、0.0250%を
超えて含有すると、圧延素材(スラブ)に割れ欠陥を発
生する危険性が顕著に増大する。したがって、Nは0.00
50〜0.0250%に限定した。なお、材質の安定性からはN
は0.0070%以上とするのが好ましい。
N: 0.0050 to 0.0250% N is an element that increases age hardening, and is positively contained in the present invention. A marked increase in age hardening is observed at a content of 0.0050% or more. On the other hand, if the content exceeds 0.0250%, the risk of generating cracking defects in the rolled material (slab) is significantly increased. Therefore, N is 0.00
Limited to 50-0.0250%. In addition, from the stability of the material, N
Is preferably 0.0070% or more.

【0028】冷延鋼板用母板中の固溶N:全N量の80%
以上 本発明の特徴である冷延鋼板の大きな時効硬化性を確保
するためには、冷延鋼板用母板(熱延板)中の固溶N量
を全N量の80%以上とする必要がある。本発明の冷延鋼
板は、好ましくは、熱延板を酸洗したのち、冷間圧延
し、ついで短時間の連続焼鈍を行い、製造されるが、こ
の連続焼鈍工程ではAIN は析出傾向にある。熱延板(冷
延鋼板用母板)の固溶N量が、全N量の80%未満では、
所望の冷延鋼板の時効硬化性が達成できない。なお、本
発明では、通常実施されるブロムエステルによる溶解処
理後の抽出分析によりAlN となっているN量を求め(以
下、N as AlN )、全N量からN as AlN を引いた値を
固溶N量とする。
Solid solution N in base plate for cold rolled steel sheet: 80% of total N content
As described above, in order to secure a large age hardening property of the cold-rolled steel sheet, which is a feature of the present invention, the amount of solid solution N in the base plate (hot-rolled sheet) for the cold-rolled steel sheet needs to be 80% or more of the total N amount. There is. The cold-rolled steel sheet of the present invention is preferably produced by pickling a hot-rolled sheet, cold-rolling, and then performing continuous annealing for a short time.In this continuous annealing step, AIN tends to precipitate. . If the solute N content of the hot rolled sheet (base sheet for cold rolled steel sheet) is less than 80% of the total N amount,
The desired age hardening of the cold rolled steel sheet cannot be achieved. In the present invention, the amount of N in the form of AlN is determined by extraction analysis after the usual dissolution treatment with bromoester (hereinafter referred to as N as AlN), and the value obtained by subtracting N as AlN from the total N amount is fixed. Let it be the amount of dissolved N.

【0029】冷延鋼板中の(固溶C+固溶N):0.0050
%以上 製品板(冷延鋼板)の時効硬化性を高め、製品板の強度
を増加させるために、本発明では、冷延鋼板中の(固溶
C+固溶N)量を0.0050%以上とする。上記した基本組
成に加えて、必要に応じ選択元素を含有できる。選択元
素としては、次の第1群〜第2群のうちから選ばれた1
群または2群を必要に応じ選択できる。
(Solute C + Solute N) in cold rolled steel sheet: 0.0050
% Or more In order to increase the age hardening property of the product sheet (cold rolled steel sheet) and increase the strength of the product sheet, in the present invention, the amount of (solid solution C + solid solution N) in the cold rolled steel sheet is made 0.0050% or more. . In addition to the basic composition described above, a selective element can be contained as needed. As the selected element, one selected from the following first and second groups:
A group or two groups can be selected as needed.

【0030】第1群:Nb:0.001 〜0.040 %、Ti:0.00
1 〜0.040 %、B:0.0002〜0.0020%のうちから選ばれ
た1種または2種以上、Nb、Ti、Bはいずれも、強度を
増加させる元素であり、必要に応じ1種または2種以上
を選択できる。Nbは、微細な炭窒化物を形成し、結晶粒
を微細化し、成形後の鋼の強度を増加させるうえで有効
な元素である。このような効果はNb0.001 %以上の含有
で認められる。しかし、0.040 %を超えて含有すると、
鋼の再結晶温度が顕著に上昇し、冷間圧延後の焼鈍工程
に支障をきたすうえ、固溶状態のNが高温焼鈍で析出し
て鋼の高強度化機能を失う。このため、Nbは0.040 %以
下とするのが好ましい。なお、焼鈍条件の観点からはNb
は0.007 %以下とするのが望ましい。Nbを含有する場合
は、さらに、次(1)式 (12/93) ×(Nb/C)≦0.8 ……(1) を満足するものとする。(1)式を満足しない場合に
は、固溶C量が顕著に低下するという不都合がある。
First group: Nb: 0.001 to 0.040%, Ti: 0.00
1 to 0.040%, B: one or more selected from 0.0002 to 0.0020%, Nb, Ti, and B are elements that increase the strength, and one or more as needed. Can be selected. Nb is an element effective for forming fine carbonitrides, refining crystal grains, and increasing the strength of steel after forming. Such an effect is recognized when the content of Nb is 0.001% or more. However, if the content exceeds 0.040%,
The recrystallization temperature of the steel rises remarkably, hindering the annealing process after cold rolling, and N in the solid solution state precipitates by high-temperature annealing, losing the function of strengthening the steel. For this reason, Nb is preferably set to 0.040% or less. From the viewpoint of annealing conditions, Nb
Is desirably 0.007% or less. When Nb is contained, the following formula (1) is further satisfied: (12/93) × (Nb / C) ≦ 0.8 (1) If the formula (1) is not satisfied, there is an inconvenience that the amount of solid solution C is significantly reduced.

【0031】Tiは、Nbと同様に微細な炭窒化物を形成
し、結晶粒を微細化し、成形後の鋼の強度を増加させる
うえで有効な元素である。このような効果は、0.001 %
以上の含有で認められ、0.003 %以上の含有で顕著とな
る。したがってTiは0.001 %以上、より好ましくは0.00
3 %以上を含有させるのが好ましい。一方、Tiを0.040
%を超えて含有すると、固溶C、Nの減少による時効硬
化量の低下が顕著となる。このため、Tiは0.040 %以下
とするのが好ましい。なお、材質の安定化という観点か
らは、Tiは0.003 〜0.007 %の範囲とするのがより好ま
しい。なお、Tiを含有する場合には、次(2)式 (12/48) ×(Ti */C)≦0.8 ……(2) なお、Ti *=Ti−(48/32 )S −(48/14 )N を満足するものとする。(2)式を満足しない場合に
は、固溶C量、固溶N量が顕著に低下するという不都合
がある。
Ti is an element effective for forming fine carbonitrides like Nb, refining crystal grains, and increasing the strength of steel after forming. Such effects are 0.001%
The above content is recognized, and becomes significant when the content is 0.003% or more. Therefore, the content of Ti is 0.001% or more, more preferably 0.001%.
It is preferable to contain 3% or more. On the other hand, Ti
%, The decrease in the amount of age hardening due to the decrease in solid solution C and N becomes remarkable. For this reason, Ti is preferably set to 0.040% or less. From the viewpoint of stabilizing the material, the content of Ti is more preferably in the range of 0.003 to 0.007%. When Ti is contained, the following equation (2) is used: (12/48) × (Ti * / C) ≦ 0.8 (2) where Ti * = Ti− (48/32) S− (48) / 14) N shall be satisfied. If the expression (2) is not satisfied, there is a disadvantage that the amount of solute C and the amount of solute N are significantly reduced.

【0032】Bは、窒化物を作る傾向があるにもかかわ
らず、本発明の条件下においては時効硬化性を安定さ
せ、鋼の強度を安定して確保するのに有効な元素であ
る。このような効果は0.0002%以上の含有で顕著に認め
られ、0.0002%以上含有するのが好ましい。一方、0.00
20%を超えて含有しても、効果が飽和するか、あるい
は、逆に時効硬化性が低下する傾向を示す。このため、
Bは0.0020%以下とするのが好ましい。なお、機械的性
質の安定化・均一化という観点から、Bは0.0003〜0.00
08%とするのがより好ましい。
B is an element effective in stabilizing the age hardenability and stably ensuring the strength of the steel under the conditions of the present invention, despite the tendency to form nitrides. Such an effect is remarkably observed at a content of 0.0002% or more, and is preferably contained at a content of 0.0002% or more. On the other hand, 0.00
If the content exceeds 20%, the effect tends to be saturated or, conversely, age hardenability tends to decrease. For this reason,
B is preferably set to 0.0020% or less. In addition, from the viewpoint of stabilization and uniformity of mechanical properties, B is 0.0003 to 0.00.
More preferably, it is set to 08%.

【0033】第2群:Cu:0.01〜0.2 %、Ni:0.01〜0.
2 %、Cr:0.01〜0.2 %、Mo:0.01〜0.2 %のうちから
選ばれた1種または2種以上 Cu、Ni、Cr、Moは、いずれも時効硬化性を害することな
く、最終的な強度を増加させる効果を有し、必要に応じ
選択して含有できる。このような効果は、Cu、Ni、Cr、
Moいずれもそれぞれ0.01%以上の含有で認められる。一
方、Cu、Ni、Cr、Moはいずれも、それぞれ0.2 %を超え
て含有すると、顕著に冷延鋼板用母板(熱延板)が硬質
化し、冷間圧延工程での不具合を発生する危険性が増大
する。このため、Cu:0.01〜0.2 %、Ni:0.01〜0.2
%、Cr:0.01〜0.2 %、Mo:0.01〜0.2 %に限定するの
が好ましい。なお、Cu、Ni、Cr、Moの効果は複合添加し
ても相殺されることはない。したがって、Cu、Ni、Cr、
Moは単独または複合添加することが可能である。なお、
Cu、Ni、Cr、Moの合計量で0.2 %以下とすることがさら
に望ましい。
Second group: Cu: 0.01-0.2%, Ni: 0.01-0.
1% or more selected from 2%, Cr: 0.01 to 0.2%, Mo: 0.01 to 0.2% Cu, Ni, Cr, Mo can be used in the final It has the effect of increasing the strength and can be selected and contained as needed. Such effects are caused by Cu, Ni, Cr,
Each of Mo is recognized at a content of 0.01% or more. On the other hand, if each of Cu, Ni, Cr, and Mo exceeds 0.2%, the base plate (hot-rolled plate) for cold-rolled steel sheet hardens remarkably, and there is a risk of causing troubles in the cold rolling process. Sex is increased. Therefore, Cu: 0.01-0.2%, Ni: 0.01-0.2%
%, Cr: 0.01-0.2%, Mo: 0.01-0.2%. Note that the effects of Cu, Ni, Cr, and Mo are not canceled out even if they are added in combination. Therefore, Cu, Ni, Cr,
Mo can be added alone or in combination. In addition,
More preferably, the total amount of Cu, Ni, Cr and Mo should be 0.2% or less.

【0034】残部がFeおよび不可避的不純物 上記した成分以外の残部は、Feおよび不可避的不純物で
ある。なお、不可避的不純物としては、例えばSn:0.01
%以下が許容できる。本発明の冷延鋼板は、上記した組
成と、さらに再結晶率が60%以上90%未満である組織を
有する。なお、本発明でいう再結晶率とは、光学顕微鏡
観察により、面積法で求めた値をいうものとする。再結
晶率が60%未満では、加工性、とくに伸び特性が不足
し、一方、90%を超えると強度、硬さが低下する。この
ため、本発明では、再結晶率が60%以上90%未満に限定
した。
The balance is Fe and unavoidable impurities. The balance other than the above components is Fe and unavoidable impurities. The unavoidable impurities include, for example, Sn: 0.01
% Or less is acceptable. The cold-rolled steel sheet of the present invention has the above composition and a structure having a recrystallization ratio of 60% or more and less than 90%. In addition, the recrystallization rate in the present invention refers to a value obtained by an area method based on observation with an optical microscope. If the recrystallization ratio is less than 60%, the workability, particularly the elongation properties, will be insufficient, while if it exceeds 90%, the strength and hardness will decrease. For this reason, in the present invention, the recrystallization rate is limited to 60% or more and less than 90%.

【0035】つぎに、本発明鋼板の製造方法について説
明する。上記した組成の溶鋼を転炉等を用いた通常公知
の溶製方法により、溶製し、ついで、連続鋳造法等の通
常公知の鋳造方法で圧延素材(スラブ)とする。つい
で、これら圧延素材を用い、熱間圧延により熱延板とす
る。本発明では、圧延開始時に圧延素材が、全N量の90
%以上が固溶状態となる温度以上となっていることが肝
要となる。
Next, a method for producing the steel sheet of the present invention will be described. The molten steel having the above-described composition is smelted by a generally known smelting method using a converter or the like, and then a rolled material (slab) is formed by a generally known casting method such as a continuous casting method. Next, a hot rolled sheet is formed by hot rolling using these rolled materials. In the present invention, at the start of rolling, the rolling material is 90% of the total N content.
It is important that the temperature is equal to or higher than the temperature at which% or more is in a solid solution state.

【0036】圧延開始時温度:全N量の90%以上が固溶
状態となる温度以上 全N量の90%以上を固溶状態とするには、成分にも依存
するが、おおむね1150℃以上に加熱するか、あるいはAl
N の析出が遅れる直送圧延プロセスの場合には、圧延素
材を連続鋳造後変態点以下に冷却することなく、圧延可
能温度に保持した加熱炉に挿入し加熱するのが好まし
い。いずれにしろ、本発明では、熱間圧延の開始時に、
圧延素材において全N量の90%以上が固溶状態となって
いればよい。このため、熱延開始温度は1100℃以上とす
るのが好ましい。熱間圧延開始時に、全N量の90%以上
が固溶状態にないと、製品板で固溶Nによる時効硬化が
十分に発揮されない。
Rolling start temperature: at least the temperature at which 90% or more of the total N content is in a solid solution state. To make 90% or more of the total N content into a solid solution state, although it depends on the components, it is generally 1150 ° C or more. Or Al
In the case of the direct-feed rolling process in which the precipitation of N is delayed, it is preferable that the rolled material be inserted into a heating furnace maintained at a rollable temperature and heated without cooling to a transformation point or lower after continuous casting. In any case, in the present invention, at the start of hot rolling,
It suffices that 90% or more of the total N amount in the rolled material is in a solid solution state. Therefore, the hot rolling start temperature is preferably set to 1100 ° C. or higher. Unless 90% or more of the total amount of N is in a solid solution state at the start of hot rolling, age hardening due to solid solution N is not sufficiently exhibited on a product sheet.

【0037】仕上げ圧延温度:(Ar3 変態点−30℃)以
上 本発明では、AlN の析出を有効に抑制するため、熱間圧
延における仕上げ圧延温度を、(Ar3 変態点−30℃)以
上とするのが好ましい。仕上げ圧延温度が(Ar 3 変態点
−30℃)未満では、AlN の析出が顕著となり、固溶Nが
低減する。なお、より好ましくは(Ar3 変態点−10℃)
以上である。
Finish rolling temperature: (ArThreeTransformation point -30 ℃)
In the present invention, in order to effectively suppress the precipitation of AlN,
The finishing rolling temperature in rollingThreeTransformation point -30 ℃)
Preferably it is above. Finish rolling temperature is (Ar ThreeTransformation point
Below −30 ° C.), precipitation of AlN becomes remarkable, and
Reduce. In addition, more preferably (ArThreeTransformation point -10 ℃)
That is all.

【0038】強制冷却:熱間圧延終了後、 0.5s以内に
開始 強制冷却は、冷却能力の観点から水冷とするのが好まし
い。強制冷却は熱間圧延終了後、 0.5s以内に開始する
のが好ましい。強制冷却の開始が圧延終了から0.5sを
超えると、AlN の析出を抑制できない。 巻取り温度:600 ℃以下 巻取り温度は、AlによるNの固定を抑制するため、600
℃以下とするのが好ましい。巻取り温度が600 ℃を超え
ると、AlN 析出量が顕著に増加し、固溶Nが減少する結
果、目標とする時効硬化性を得ることができない。な
お、高い時効硬化性を安定して得るためには、巻取り温
度は570 ℃以下とするのがさらに好ましい。また、巻取
り温度を600 ℃以下、より好ましくは 570℃以下とする
ことにより、巻取り後の冷却中に生ずる炭化物をより微
細かつ均一に分散させることが可能となり、これにより
鋼板製品の状態における固溶C量を増加させることがで
きる。
Forced cooling: started within 0.5 s after completion of hot rolling Forced cooling is preferably water-cooled from the viewpoint of cooling capacity. The forced cooling is preferably started within 0.5 s after the end of the hot rolling. If the start of forced cooling exceeds 0.5 s from the end of rolling, precipitation of AlN cannot be suppressed. Winding temperature: 600 ° C or less Winding temperature is set at 600 ° C to prevent N from being fixed by Al.
C. or lower is preferred. If the winding temperature exceeds 600 ° C., the amount of AlN precipitated increases remarkably and the amount of solute N decreases, so that the target age hardening property cannot be obtained. In order to stably obtain high age hardening properties, the winding temperature is more preferably set to 570 ° C. or lower. Further, by setting the winding temperature to 600 ° C. or lower, more preferably 570 ° C. or lower, it becomes possible to more finely and uniformly disperse carbides generated during cooling after winding, thereby reducing the steel sheet product state. The amount of solid solution C can be increased.

【0039】巻取り後:水冷 本発明では、巻取り後コイル状態で、30min 以内に水冷
を開始し、平均冷却速度で20℃/h 以上の冷却速度で冷
却するのが好ましい。なお、ここで冷却速度は鋼帯の長
手方向の中央部でかつ板幅中央部の平均冷却速度をい
う。これにより、AlN の析出を防止することができるう
え、巻取り後の冷却過程で析出する炭化物をより微細
に、さらにより均一に分散させることができる。巻取り
後の水冷開始が30min を超えると、水冷効果が不十分と
なる。また、冷却速度が20℃/h 未満では、特に炭化物
の分布の改善効果が十分でない。巻取り後の水冷はコイ
ル状態で行うが、これを再度巻戻して冷却しても何ら問
題はない。
After Winding: Water Cooling In the present invention, it is preferable to start water cooling within 30 minutes in a coil state after winding, and to cool at an average cooling rate of 20 ° C./h or more. Here, the cooling rate refers to the average cooling rate at the central portion in the longitudinal direction of the steel strip and at the central portion of the plate width. As a result, precipitation of AlN can be prevented, and carbides precipitated during the cooling process after winding can be more finely and evenly dispersed. If the start of water cooling after winding exceeds 30 min, the water cooling effect will be insufficient. If the cooling rate is less than 20 ° C./h, the effect of improving the distribution of carbides is not sufficient. Water cooling after winding is performed in a coil state, but there is no problem even if it is rewound and cooled again.

【0040】上記した熱間圧延、および圧延後冷却によ
り、全N量の80%以上が固溶状態となる熱延板とするこ
とができる。このような熱延板を冷延鋼板用母板とし
て、酸洗、冷間圧延を施し、冷延板とする。酸洗は常法
に従い、塩酸、硫酸等の酸で表面スケールを除去すれば
よい。冷間圧下率も常法に従うが、板厚が薄いほど高め
となる。
By the above-mentioned hot rolling and cooling after rolling, a hot rolled sheet in which 80% or more of the total N content is in a solid solution state can be obtained. Pickling and cold rolling are performed on such a hot-rolled sheet as a base sheet for a cold-rolled steel sheet to obtain a cold-rolled sheet. The pickling may be carried out in a conventional manner by removing the surface scale with an acid such as hydrochloric acid or sulfuric acid. The cold rolling reduction also follows the usual method, but the higher the sheet thickness, the higher the reduction.

【0041】ついで、冷延板は、連続焼鈍を施される。 連続焼鈍の均熱温度:500 ℃以上でかつ再結晶率が90%
未満となる温度範囲 連続焼鈍工程では、500 ℃以上でかつ再結晶率が90%未
満となる温度範囲で均熱する。均熱温度が500 ℃未満で
は、再結晶の進行が遅く連続焼鈍では再結晶率が60%未
満となり、冷間圧延で導入された加工歪が残留している
ため延性が極めて低く、プレス加工に適さない。一方、
再結晶率が90%未満となる温度を超えると、延性は十分
に増加するものの、強度が顕著に低下し好ましくない。
このため、本発明では、500 ℃以上でかつ再結晶率が90
%未満となる温度範囲で均熱するのが好ましい。これに
より、通常の用途では十分な加工性が確保され、目標と
する高強度も得ることができる。なお、90%の再結晶率
となる温度は、光学顕微鏡による組織観察によって決定
するのが好ましいが、冷間圧延まま状態の硬度を0%、
完全焼鈍状態の硬度を100 %として、90%の硬度減少が
達成される温度未満としてもよい。また、X線回析の手
法でも決定できる。これは、回折線のピークの幅が残存
している歪量、すなわち再結晶率と対応することに基づ
く手法である。
Next, the cold-rolled sheet is subjected to continuous annealing. Soaking temperature for continuous annealing: 500 ° C or higher and recrystallization rate of 90%
Temperature range of less than In the continuous annealing step, the temperature is soaked in a temperature range of 500 ° C. or more and a recrystallization rate of less than 90%. If the soaking temperature is less than 500 ° C, the progress of recrystallization is slow, and the recrystallization rate is less than 60% in continuous annealing. Since the processing strain introduced by cold rolling remains, the ductility is extremely low. Not suitable. on the other hand,
When the temperature exceeds the temperature at which the recrystallization ratio is less than 90%, the ductility is sufficiently increased, but the strength is remarkably reduced, which is not preferable.
For this reason, in the present invention, the recrystallization rate is higher than 500 ° C.
% Is preferably carried out in a temperature range of less than 10%. As a result, sufficient workability can be ensured in normal use, and a target high strength can be obtained. The temperature at which the recrystallization rate of 90% is obtained is preferably determined by observing the structure with an optical microscope.
The hardness in the fully annealed state may be set at 100%, and may be lower than the temperature at which the hardness reduction of 90% is achieved. Also, it can be determined by an X-ray diffraction technique. This is a technique based on the fact that the width of the peak of the diffraction line corresponds to the remaining strain amount, that is, the recrystallization rate.

【0042】また、この温度範囲内であれば、とくに一
定の温度に保持する必要はない。操業の安定性から10s
以上の均熱相当時間があれば十分である。なお、加工性
の観点からは、再結晶率を60%以上とする。 連続焼鈍均熱後の急冷処理:150 ℃/s以上の冷却速度
で250 ℃以下の温度域まで 連続焼鈍均熱後の冷却条件は、本発明において最も重要
な要件の一つである。この冷却の目的は、焼鈍後に極め
て微細な炭化物が微細に分散した組織にすることと、そ
れによって時効硬化性を確保するために十分な量の固溶
C、固溶Nを確保することである。このため、均熱温度
から150 ℃/s以上の冷却速度で急冷するのが好まし
い。この冷却速度より低い冷却速度では、固溶Nと固溶
Cのうち、、とくに固溶Cの減少が顕著となる。なおさ
らに安定して目標特性を得るためには200 ℃/s以上の
冷却速度とするのが望ましい。
It is not necessary to maintain a constant temperature within this temperature range. 10s from operational stability
The above soaking time is sufficient. In addition, from the viewpoint of workability, the recrystallization rate is set to 60% or more. Rapid cooling after continuous annealing and soaking: Cooling rate of 150 ° C / s or more to a temperature range of 250 ° C or less Cooling conditions after continuous annealing and soaking are one of the most important requirements in the present invention. The purpose of this cooling is to obtain a structure in which extremely fine carbides are finely dispersed after annealing, and thereby to secure a sufficient amount of solid solution C and solid solution N to secure age hardenability. . For this reason, it is preferable to rapidly cool at a cooling rate of 150 ° C./s or more from the soaking temperature. At a cooling rate lower than this cooling rate, the reduction of solid solution C among solid solution N and solid solution C becomes remarkable. In order to obtain the target characteristics more stably, it is desirable to set the cooling rate to 200 ° C./s or more.

【0043】また、この急冷処理は、250 ℃以下の温度
域まで継続するのが好ましい。250℃より高い温度で急
冷処理を停止すると炭化物の析出形態が粗くなり、それ
に付随して固溶C量も激減する。なお、より好ましく
は、200 ℃以下の温度域まで急冷処理を行うのが望まし
い。このような急冷処理を安定して行うには、従来のガ
スジェット冷却の能力を増強すること、冷却ガスとして
水素を適用すること、高速通板処理の可能な連続焼鈍を
利用することおよびこれらの技術の組合せなどが必要と
なる。
The quenching treatment is preferably continued up to a temperature range of 250 ° C. or less. When the quenching treatment is stopped at a temperature higher than 250 ° C., the precipitation form of carbides becomes coarse, and the amount of solute C is drastically reduced. It is more preferable to perform the quenching treatment to a temperature range of 200 ° C. or less. In order to stably perform such quenching processing, it is necessary to enhance the capacity of conventional gas jet cooling, apply hydrogen as a cooling gas, use continuous annealing capable of high-speed sheet passing processing, and use these methods. A combination of technologies is required.

【0044】さらに、均熱の終了(冷却の開始)から積
算して5min 以内に40℃以下まで冷却するのが好まし
い。40℃以下まで冷却するのに、これ以上の時間を要す
ると、いわゆる過時効現象に類似の現象が生じ、固溶C
量が低下して鋼板の時効硬化能が低下する。連続焼鈍、
急冷処理ののち、さらに、圧下率:10%以下の2次圧延
を施してもよい。本発明における2次圧延は、強度増加
を主目的とするものではなく、表面粗さの調整、形状調
整等が主目的であり、好ましくは1.0 %以上の圧下率と
するのが好ましい。圧下率が10%を超えると、延性が低
下することとともに、変形抵抗の増加に伴い圧延作業が
困難となる。圧下率が10%以下と軽圧下であるため、設
備的な負荷の低減という観点では工業的に有用である。
Further, it is preferable to cool to 40 ° C. or less within 5 minutes integrated from the end of soaking (start of cooling). If it takes more time to cool down to 40 ° C. or less, a phenomenon similar to the so-called overaging phenomenon occurs, and solid solution C
The amount decreases and the age hardening ability of the steel sheet decreases. Continuous annealing,
After the quenching treatment, secondary rolling with a draft of 10% or less may be further performed. The secondary rolling in the present invention is not mainly intended to increase the strength, but is mainly intended to adjust the surface roughness, shape, etc., and it is preferable that the rolling reduction is 1.0% or more. If the rolling reduction exceeds 10%, the ductility decreases, and the rolling operation becomes difficult due to the increase in deformation resistance. Since the rolling reduction is a light reduction of 10% or less, it is industrially useful from the viewpoint of reducing equipment load.

【0045】上記した工程を経て冷延鋼板とする。本発
明の冷延鋼板は、製缶加工前(プレス加工前)の塗装・
焼付処理により硬質材となっており、板厚が0.3 mm以下
の極薄鋼板に適用された場合にその優位性がより有効に
発揮される。上記した工程により製造される冷延鋼板
は、(固溶C+固溶N)量が0.0050%以上を有し、焼付
硬化量:50MPa 以上、塗装・焼付処理後の降伏応力:55
0 MPa以上を有する高強度缶用極薄冷延鋼板となる。本
発明の鋼板は、固溶Cと固溶Nの両者作用を組み合わせ
て、従来にない大きな時効硬化性を得ている。そのため
本発明の冷延鋼板は、塗装・焼付処理後の降伏応力:55
0 MPa 以上を有し鋼板の薄肉化を優位に進めることがで
きる。また、本発明の冷延鋼板は、固溶C+固溶Nの作
用を有効に利用することにより、めっき後のリフロー処
理後にも強度が増加し、また、プレス成形後の塗装焼付
工程時にも、焼付硬化量(BH量)50MPa以上という顕
著な時効硬化現象が起こり、缶体強度の飛躍的な増加を
もたらすことができる。
Through the above steps, a cold-rolled steel sheet is obtained. The cold-rolled steel sheet of the present invention can be used for coating and coating before can-making (before pressing).
It becomes a hard material by baking, and when applied to ultra-thin steel sheets with a thickness of 0.3 mm or less, its superiority is more effectively exhibited. The cold-rolled steel sheet manufactured by the above process has a (solid solution C + solid solution N) amount of 0.0050% or more, a bake hardening amount of 50 MPa or more, and a yield stress after painting and baking treatment: 55
Ultra-thin cold-rolled steel sheet for high-strength cans having 0 MPa or more. The steel sheet of the present invention obtains an unprecedented large age hardening property by combining both actions of solid solution C and solid solution N. Therefore, the cold-rolled steel sheet of the present invention has a yield stress of 55 after painting and baking.
Since it has a pressure of 0 MPa or more, it is possible to advance thinning of steel sheets. Further, the cold-rolled steel sheet of the present invention increases the strength even after reflow treatment after plating by effectively utilizing the action of solid solution C + solid solution N, and also at the time of paint baking after press forming, A remarkable age hardening phenomenon of a bake hardening amount (BH amount) of 50 MPa or more occurs, which can bring about a dramatic increase in can strength.

【0046】本発明では、極薄冷延鋼板の表面に(少な
くとも片面)めっき層を形成し、極薄めっき鋼板とする
ことができる。表面に形成されるめっき層は缶用鋼板に
適用されるいずれのものも適用可能である。めっき層と
しては、錫めっき、クロムめっき、ニッケルめっき、ニ
ッケル・クロムめっきが例示できる。また、これらのめ
っき処理後に塗装、有機樹脂フィルム等を貼ることもな
んら問題ない。
In the present invention, an ultrathin cold-rolled steel sheet can be formed into an ultrathin plated steel sheet by forming a plating layer (at least one side) on the surface. As the plating layer formed on the surface, any of those applied to steel plates for cans can be applied. Examples of the plating layer include tin plating, chromium plating, nickel plating, and nickel / chrome plating. In addition, there is no problem in applying a coating, an organic resin film or the like after these plating treatments.

【0047】[0047]

【実施例】(実施例1)表1に示す成分の鋼を転炉で溶
製し、連続鋳造法でスラブとした。ついで、これらスラ
ブを、表2に示す条件で熱間圧延を施し板厚:1.8 mmの
熱延板とした。なお、これら鋼板の製造に際しては、コ
イル水冷を行う場合、巻き取り後30min以内に水冷を開
始した。その後、これら熱延板に酸洗による脱スケール
処理を施し、さらに冷間圧延を施し、ついで表2に示す
条件で連続焼鈍および2次圧延を行い、最終仕上げ板
厚:0.15mmの極薄冷延鋼板とした。なお、2次圧延で圧
下率を30%と高めた冷延鋼板(鋼板No.12 )を従来例
(DR鋼板)とした。
EXAMPLES (Example 1) Steels having the components shown in Table 1 were melted in a converter and made into slabs by a continuous casting method. Next, these slabs were subjected to hot rolling under the conditions shown in Table 2 to obtain a hot-rolled sheet having a thickness of 1.8 mm. In the production of these steel sheets, when performing coil water cooling, water cooling was started within 30 minutes after winding. Thereafter, the hot-rolled sheet is subjected to descaling treatment by pickling, further subjected to cold rolling, and then subjected to continuous annealing and secondary rolling under the conditions shown in Table 2 to obtain an extremely thin cold sheet having a final finished sheet thickness of 0.15 mm. It was a rolled steel sheet. Note that a cold-rolled steel sheet (steel No. 12) in which the rolling reduction was increased to 30% by the secondary rolling was used as a conventional example (DR steel sheet).

【0048】このようにして得られた極薄冷延鋼板につ
いて、固溶C、固溶N量の測定、再結晶率の測定(組織
調査)、引張試験、硬さ試験、および焼付硬化試験を実
施した。 (i)固溶C、固溶N量の分析 化学分析により冷延鋼板中のN量を分析し、また、ブロ
ムエステルによる溶解処理後の抽出分析によりAlN とし
て存在するN量を求めた。冷延鋼板中の固溶N量は、
{(冷延鋼板中のN量)−(AlN として存在するN
量)}の値を用いた。
The ultra-thin cold-rolled steel sheet thus obtained was subjected to the measurement of the amount of solute C and the amount of solute N, the measurement of the recrystallization ratio (structure examination), the tensile test, the hardness test, and the bake hardening test. Carried out. (I) Analysis of the amount of solute C and the amount of solute N The amount of N in the cold-rolled steel sheet was analyzed by chemical analysis, and the amount of N existing as AlN was determined by extraction analysis after dissolution treatment with bromoester. The amount of solute N in the cold rolled steel sheet is
{(N content in cold rolled steel sheet)-(N existing as AlN
The value of}) was used.

【0049】また、固溶C量は、内耗により測定した。
捩り振子型内部摩擦測定装置によりC、Nのピークを分
離し、Cピークを採用した。Nについては、化学分析の
結果と整合することを確認した。 (ii)組織調査 冷延鋼板の幅方向中央部から、試験片を採取し、圧延方
向と平行な断面で、表層部を除く板厚方向断面につい
て、光学顕微鏡による観察により、再結晶粒の面積を測
定し、これにより再結晶粒面積の全面積に占める割合を
算出し、再結晶率とした。 (iii )引張試験 これら冷延鋼板の幅方向の中央部から圧延方向に、JIS
13号-B引張試験片を採取し、歪速度クロスヘッド速度:
10mm/s で引張試験を実施し、降伏点YS、引張強さT
S、伸びElを測定した。なお、引張試験は製品化後1
日以内に実施した。引張試験片をJIS 13号-B試験片とし
たのは、標点外で破断する現象を極力低減するためであ
る。 (iv)焼付硬化性試験 これら冷延鋼板の幅方向の中央部から圧延方向に、JIS
13号-B引張試験片を採取し、2%の引張予歪を付加した
のち一旦除荷し、210 ℃×20min の塗装焼付処理相当の
熱処理を施し、その後、引張試験を行い変形応力(降伏
応力)を求めた。塗装焼付処理相当の熱処理前後の降伏
応力の差、((塗装焼付処理相当熱処理後の降伏応力)
−(塗装焼付処理相当熱処理前の2%変形応力))を求
め、焼付硬化量(BH量)とした。 (v )硬さ試験 これら冷延鋼板およびこれら冷延鋼板に塗装焼付処理相
当の熱処理を施したのちの鋼板について、JIS Z 2245の
規定に準拠してHR30T硬さを測定した。
The amount of solute C was measured by internal wear.
C and N peaks were separated by a torsional pendulum type internal friction measuring device, and the C peak was adopted. It was confirmed that N was consistent with the result of the chemical analysis. (Ii) Structural investigation A test specimen was sampled from the center of the cold-rolled steel sheet in the width direction, and the cross-section in the sheet thickness direction excluding the surface layer was observed by an optical microscope, and the area of the recrystallized grains was observed. Was measured, and the ratio of the area of the recrystallized grains to the total area was calculated, and the result was defined as the recrystallization rate. (Iii) Tensile test From the center in the width direction of these cold-rolled steel sheets, JIS
No. 13-B Tensile test piece was sampled and the strain rate crosshead speed:
Tensile test was conducted at 10mm / s, yield point YS, tensile strength T
S and elongation El were measured. In addition, the tensile test is 1
Carried out within days. The reason why the tensile test piece was a JIS No. 13-B test piece was to minimize the phenomenon of breaking outside the gauge. (Iv) Bake hardening test From the center in the width direction of these cold-rolled steel sheets, JIS
A No. 13-B tensile test specimen was sampled, subjected to a 2% tensile prestrain, unloaded, subjected to a heat treatment equivalent to a paint baking treatment at 210 ° C for 20 minutes, and then subjected to a tensile test to determine the deformation stress (yield). Stress). Difference in yield stress before and after heat treatment equivalent to paint bake treatment, ((Yield stress after heat treatment equivalent to paint bake treatment)
− (2% deformation stress before heat treatment corresponding to paint baking treatment)) was obtained and defined as a bake hardening amount (BH amount). (V) Hardness test The HR30T hardness of these cold-rolled steel sheets and the steel sheets obtained by subjecting these cold-rolled steel sheets to heat treatment equivalent to paint baking treatment were measured in accordance with the provisions of JIS Z 2245.

【0050】これらの結果を表3に示す。Table 3 shows the results.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

【0053】[0053]

【表3】 [Table 3]

【0054】本発明例は、2次圧延の圧下率を高くする
ことなく(大きな圧下率のDR法を適用することなく)
塗装焼付処理後の降伏強さが550MPa以上、かつ焼付硬化
量が50MPa 以上で、DR8相当の硬さを有する高強度極
薄冷延鋼板となっている。これに対し、本発明の範囲を
外れる比較例は、塗装焼付硬化量が少ない。さらに、こ
れら鋼板を用いて、2ピースのDRD 缶(缶径70mm)を製
造し、缶体、とくに缶胴の凹みに対する抵抗(耐デント
性)を評価した。胴の凹みに対する抵抗の評価は、蓋を
捲き締めたと等価な形状とした缶体を圧子で静的に押込
み変形して、永久歪を生ずる荷重を測定し評価する試験
である。
In the present invention, the rolling reduction of the secondary rolling is not increased (without applying the DR method with a large rolling reduction).
It is a high-strength ultrathin cold-rolled steel sheet having a yield strength after paint baking treatment of 550 MPa or more, a bake hardening amount of 50 MPa or more, and a hardness equivalent to DR8. On the other hand, Comparative Examples outside the scope of the present invention have a small amount of paint bake hardening. Further, using these steel plates, two-piece DRD cans (can diameter: 70 mm) were manufactured, and the resistance (dent resistance) to dents in the can body, particularly the can body, was evaluated. The evaluation of the resistance to the dent of the body is a test in which a can body having a shape equivalent to that of a closed lid is statically pushed and deformed with an indenter to measure and evaluate a load that causes permanent deformation.

【0055】その結果、本発明例は、同一の調質度のD
R鋼板(従来例)に比べデントを生ずる荷重が約20%高
い値を示し、本鋼板の歪み時効による缶体強度増加の効
果が確認された。 (実施例2)表1に示す鋼Aについて、表4に示す製造
条件で板厚:0.14mmの極薄冷延鋼板とした。なお、これ
ら鋼板の製造に際しては、コイル水冷を行う場合、巻き
取り後30min 以内に水冷を開始した。これら冷延鋼板に
ついて、固溶C、固溶N量の測定、再結晶率の測定(組
織調査)、引張試験、硬さ試験、および焼付硬化試験を
実施した。試験方法は実施例1と同様とした。なお、こ
れら鋼板表面には、焼鈍前にNiめっきを施し連続焼鈍に
より表面にNiの拡散層を形成した。なお、2次圧延で圧
下率を30%と高めた冷延鋼板(鋼板No.2-11 )を従来例
(DR鋼板)とした。
As a result, according to the present invention, the D
The load causing dent was about 20% higher than that of the R steel plate (conventional example), and the effect of increasing the strength of the can by strain aging of this steel plate was confirmed. (Example 2) An ultrathin cold-rolled steel sheet having a thickness of 0.14 mm was prepared from steel A shown in Table 1 under the manufacturing conditions shown in Table 4. In the production of these steel sheets, when performing coil water cooling, water cooling was started within 30 minutes after winding. For these cold-rolled steel sheets, the measurement of the amount of solute C and the amount of solute N, the measurement of the recrystallization ratio (structure examination), the tensile test, the hardness test, and the bake hardening test were performed. The test method was the same as in Example 1. The surfaces of these steel plates were subjected to Ni plating before annealing, and a Ni diffusion layer was formed on the surfaces by continuous annealing. A cold-rolled steel sheet (steel No. 2-11) in which the rolling reduction was increased to 30% by secondary rolling was used as a conventional example (DR steel sheet).

【0056】これらの結果を表5に示す。Table 5 shows the results.

【0057】[0057]

【表4】 [Table 4]

【0058】[0058]

【表5】 [Table 5]

【0059】本発明の冷延鋼板(本発明例)は、2次圧
延の圧下率を高くすることなく(DR法を適用すること
なく)塗装焼付処理後の降伏強さが550MPa以上、かつ焼
付硬化量が50MPa 以上で、DR8相当の硬さを有する、
従来にない優れた特性を有する高強度極薄冷延鋼板とな
っている。これに対し、本発明の範囲を外れる比較例
は、塗装焼付硬化量が少なく、塗装焼付処理後の降伏強
さも550MPa未満と、低強度である。
The cold-rolled steel sheet of the present invention (Example of the present invention) has a yield strength after painting and baking of 550 MPa or more without increasing the rolling reduction in the secondary rolling (without applying the DR method) and baking. With a hardening amount of 50MPa or more, and having a hardness equivalent to DR8,
It is a high-strength ultra-thin cold-rolled steel sheet that has unprecedented excellent properties. On the other hand, Comparative Examples outside the scope of the present invention have a low amount of paint bake hardening and a low strength of less than 550 MPa in yield strength after paint bake treatment.

【0060】ついで、これら冷延鋼板に、電気錫めっき
ラインにて錫めっき処理(めっき目付量25g/m2)を施
し、ついでインラインにて、リフロー処理を行い、島状
の錫相を有する錫めっき鋼板とした。これら錫めっき鋼
板について冷延鋼板と同様に特性を調査したが、めっき
前の冷延鋼板の特性とほとんど変化はなかった。また、
これら高強度極薄めっき鋼板を用いて、3ピース缶に成
形して、軸方向圧縮強度および缶胴部の凹みに対する抵
抗(耐デント性)を評価した。缶胴部の耐デント性は、
実施例1と同様な方法で評価した。その結果、本発明例
は同一の調質度のDR鋼板(従来例)を用いて錫めっき
を行った従来例と比べて耐デント性がほぼ25%程度改善
された。
Next, these cold-rolled steel sheets are subjected to a tin plating treatment (a plating weight of 25 g / m 2 ) in an electric tin plating line, and then subjected to a reflow treatment in-line to obtain tin having an island-like tin phase. It was a plated steel sheet. The properties of these tin-plated steel sheets were examined in the same manner as the cold-rolled steel sheets, but there were almost no changes from the properties of the cold-rolled steel sheets before plating. Also,
Using these high-strength ultra-thin plated steel sheets, they were formed into three-piece cans, and their axial compressive strength and resistance to dents in the can body (dent resistance) were evaluated. The dent resistance of the can body is
Evaluation was performed in the same manner as in Example 1. As a result, in the example of the present invention, the dent resistance was improved by about 25% as compared with the conventional example in which tin plating was performed using a DR steel sheet (conventional example) having the same tempering degree.

【0061】[0061]

【発明の効果】本発明によれば、従来、焼鈍後に高圧下
率の2次圧延を実施して初めて得られていた高硬質材
を、焼鈍のままあるいは圧下率10%以下の低い圧下率の
2次圧延を施すだけで得られ、産業上格段の効果を奏す
る。本発明の鋼板は成形後の塗装焼付処理により、降伏
応力が大きく上昇し、それに伴い缶体強度が大きく上昇
するため、鋼板の薄肉化に大きく寄与できる。
According to the present invention, a high-hardness material, which has been obtained for the first time after the secondary rolling at a high reduction rate after annealing, can be used as it is or as a low reduction rate of 10% or less. It can be obtained only by performing secondary rolling, and has a remarkable industrial effect. In the steel sheet of the present invention, the yield stress is greatly increased by the coating baking treatment after forming, and accordingly the strength of the can body is greatly increased, so that it can greatly contribute to thinning of the steel sheet.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荘野 保之 東京都千代田区内幸町2丁目2番3号 川 崎製鉄株式会社内 (72)発明者 古君 修 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 Fターム(参考) 4K037 EA01 EA02 EA04 EA05 EA11 EA13 EA15 EA17 EA18 EA19 EA20 EA23 EA25 EA27 EA31 EB02 EB03 EB06 FC07 FC08 FE01 FE02 FJ04 FK03 FK08 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yasuyuki Shono 2-3-2 Uchisaiwaicho, Chiyoda-ku, Tokyo Inside Kawasaki Steel Corporation (72) Inventor Osamu Furukuni 1 Kawasakicho, Chuo-ku, Chiba-shi, Chiba 4K037 EA01 EA02 EA04 EA05 EA11 EA13 EA15 EA17 EA18 EA19 EA20 EA23 EA25 EA27 EA31 EB02 EB03 EB06 FC07 FC08 FE01 FE02 FJ04 FK03 FK08

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C:0.02%以下、 Si:0.10%以下、 Mn:1.5 %以下、 P:0.20%以下、 S:0.01%以下、 Al:0.01%以下、 N:0.0050〜0.0250%を含み、かつ前記N量の80%以上
の固溶Nを含み、残部がFeおよび不可避的不純物からな
る組成を有することを特徴とする高強度冷延鋼板用母
板。
1. Mass%: C: 0.02% or less, Si: 0.10% or less, Mn: 1.5% or less, P: 0.20% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.0050 to 0.0250 %, And a composition comprising 80% or more of the solute N of the N amount and a balance of Fe and unavoidable impurities.
【請求項2】 前記組成に加えてさらに、質量%で、下
記第1群〜第2群のうちから選ばれた1群または2群を
含有することを特徴とする請求項1に記載の高強度冷延
鋼板用母板。 記 第1群:Nb:0.001 〜0.040 %、Ti:0.001 〜0.040
%、B:0.0002〜0.0020%のうちから選ばれた1種また
は2種以上、ただし、Nbは次(1)式、Tiは次(2)式
を満足するものとする。 (12/93) ×( Nb/C)≦0.8 ……(1) (12/48) ×( Ti */C)≦0.8 ……(2) なお、Ti *=Ti−(48/32 )S −(48/14 )N 第2群:Cu:0.01〜0.2 %、Ni:0.01〜0.2 %、Cr:0.
01〜0.2 %、Mo:0.01〜0.2 %のうちから選ばれた1種
または2種以上
2. The composition according to claim 1, further comprising one or two groups selected from the following first and second groups by mass% in addition to the composition. Base plate for high strength cold rolled steel sheet. 1st group: Nb: 0.001 to 0.040%, Ti: 0.001 to 0.040
%, B: one or more selected from 0.0002 to 0.0020%, provided that Nb satisfies the following formula (1) and Ti satisfies the following formula (2). (12/93) × (Nb / C) ≦ 0.8 (1) (12/48) × (Ti * / C) ≦ 0.8 (2) where Ti * = Ti− (48/32) S -(48/14) N Second group: Cu: 0.01 to 0.2%, Ni: 0.01 to 0.2%, Cr: 0.
01-0.2%, Mo: One or more selected from among 0.01-0.2%
【請求項3】 質量%で、 C:0.02%以下、 Si:0.10%以下、 Mn:1.5 %以下、 P:0.20%以下、 S:0.01%以下、 Al:0.01%以下、 N:0.0050〜0.0250%を含み、かつ(固溶C+固溶N)
を0.0050%以上含有し、残部がFeおよび不可避的不純物
からなる組成と、再結晶率60%以上90%未満の組織を有
し、焼付硬化量:50MPa 以上、塗装・焼付処理後の降伏
応力:550 MPa 以上を有することを特徴とする板厚:0.
3 mm以下の高強度缶用極薄冷延鋼板。
3. In mass%, C: 0.02% or less, Si: 0.10% or less, Mn: 1.5% or less, P: 0.20% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.0050 to 0.0250 % And (Solute C + Solute N)
Of 0.0050% or more, with the balance being Fe and unavoidable impurities and a structure with a recrystallization rate of 60% or more and less than 90%, bake hardening amount: 50 MPa or more, yield stress after painting and baking treatment: Sheet thickness characterized by having 550 MPa or more: 0.
Ultra-thin cold rolled steel sheet for high strength cans of 3 mm or less.
【請求項4】 前記組成に加えてさらに、質量%で、下
記第1群〜第2群のうちから選ばれた1群または2群を
含有することを特徴とする請求項3に記載の高強度缶用
極薄冷延鋼板。 記 第1群:Nb:0.001 〜0.040 %、Ti:0.001 〜0.040
%、B:0.0002〜0.0020%のうちから選ばれた1種また
は2種以上、ただし、Nbは次(1)式、Tiは次(2)式
を満足するものとする。 (12/93) ×( Nb/C)≦0.8 ……(1) (12/48) ×( Ti */C)≦0.8 ……(2) なお、Ti *=Ti−(48/32 )S −(48/14 )N 第2群:Cu:0.01〜0.2 %、Ni:0.01〜0.2 %、Cr:0.
01〜0.2 %、Mo:0.01〜0.2 %のうちから選ばれた1種
または2種以上
4. The composition according to claim 3, further comprising one or two groups selected from the following first group and second group in mass% in addition to the composition. Ultra-thin cold rolled steel sheet for strength cans. 1st group: Nb: 0.001 to 0.040%, Ti: 0.001 to 0.040
%, B: one or more selected from 0.0002 to 0.0020%, provided that Nb satisfies the following formula (1) and Ti satisfies the following formula (2). (12/93) × (Nb / C) ≦ 0.8 (1) (12/48) × (Ti * / C) ≦ 0.8 (2) where Ti * = Ti− (48/32) S -(48/14) N Second group: Cu: 0.01 to 0.2%, Ni: 0.01 to 0.2%, Cr: 0.
01-0.2%, Mo: One or more selected from among 0.01-0.2%
【請求項5】 請求項3または4に記載の極薄冷延鋼板
の表面に、めっき層を形成したことを特徴とする高強度
缶用極薄めっき鋼板。
5. An ultrathin plated steel sheet for a high-strength can, wherein a plated layer is formed on the surface of the ultrathin cold-rolled steel sheet according to claim 3 or 4.
【請求項6】 質量%で、 C:0.02%以下、 Si:0.10%以下、 Mn:1.5 %以下、 P:0.20%以下、 S:0.01%以下、 Al:0.01%以下、 N:0.0050〜0.0250%を含む組成を有する圧延素材を用
い、前記N量の90%以上が固溶状態となる温度にて圧延
を開始し、仕上げ圧延温度を(Ar3変態点−30℃)以上
とする熱間圧延を施し、該熱間圧延終了後、 0.5s以内
に強制冷却を開始し600 ℃以下の巻取温度で巻取り、さ
らに巻取り後水冷し、前記N量の80%以上の固溶Nを含
む熱延板とすることを特徴とする高強度極薄冷延鋼板用
母板の製造方法。
6. In mass%, C: 0.02% or less, Si: 0.10% or less, Mn: 1.5% or less, P: 0.20% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.0050 to 0.0250 % At a temperature at which 90% or more of the N amount is in a solid solution state, and the finish rolling temperature is (Ar 3 transformation point −30 ° C.) or higher. After the completion of the hot rolling, forced cooling is started within 0.5 s, winding is performed at a winding temperature of 600 ° C. or lower, and further cooling is performed, followed by water cooling to remove solid solution N of 80% or more of the N amount. A method for producing a mother plate for a high-strength ultra-thin cold-rolled steel sheet, comprising:
【請求項7】 質量%で、 C:0.02%以下、 Si:0.10%以下、 Mn:1.5 %以下、 P:0.20%以下、 S:0.01%以下、 Al:0.01%以下、 N:0.0050〜0.0250%を含む組成を有する圧延素材を用
い、前記N量の90%以上が固溶状態となる温度にて圧延
を開始し、仕上げ圧延温度を(Ar3変態点−30℃)以上
とする熱間圧延を施し、該熱間圧延終了後、 0.5s以内
に強制冷却を開始し600 ℃以下の巻取温度で巻取り、さ
らに巻取り後水冷をし、熱延板とし、ついで、該熱延板
に冷間圧延を施したのち、連続焼鈍工程で、500 ℃以上
でかつ再結晶率が90%未満となる温度範囲で均熱後、15
0 ℃/s以上の冷却速度で250 ℃以下の温度域までの急
冷処理を施し、ついで40℃まで均熱終了後5min 分以内
に冷却することを特徴とする、焼付硬化量:50MPa 以
上、塗装焼付処理後の降伏応力:550 MPa 以上を有する
板厚:0.3 mm以下の高強度缶用極薄冷延鋼板の製造方
法。
7. In mass%, C: 0.02% or less, Si: 0.10% or less, Mn: 1.5% or less, P: 0.20% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.0050 to 0.0250 % At a temperature at which 90% or more of the N amount is in a solid solution state, and the finish rolling temperature is (Ar 3 transformation point −30 ° C.) or higher. After completion of the hot rolling, forced cooling is started within 0.5 s, winding is performed at a winding temperature of 600 ° C. or less, and further cooling is performed, followed by water cooling to form a hot rolled sheet. After cold-rolling, the steel sheet is soaked in a temperature range of 500 ° C or higher and a recrystallization rate of less than 90% in a continuous annealing process,
A quenching treatment is performed at a cooling rate of 0 ° C / s or more to a temperature range of 250 ° C or less, and then cooling within 5 minutes after the completion of soaking to 40 ° C. Baking hardening amount: 50MPa or more, coating Production method of ultra-thin cold rolled steel sheet for high-strength cans having a yield stress after baking treatment of 550 MPa or more and a thickness of 0.3 mm or less.
【請求項8】 前記冷却後、さらに圧下率:10%以下の
冷間圧延を施すことを特徴とする請求項7に記載の高強
度缶用極薄冷延鋼板の製造方法。
8. The method for producing an ultrathin cold-rolled steel sheet for a high-strength can according to claim 7, wherein after the cooling, cold rolling is further performed at a rolling reduction of 10% or less.
JP2000057085A 1999-08-04 2000-03-02 Steel plate for high-strength can and manufacturing method thereof Expired - Fee Related JP4284815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000057085A JP4284815B2 (en) 1999-08-04 2000-03-02 Steel plate for high-strength can and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-221111 1999-08-04
JP22111199 1999-08-04
JP2000057085A JP4284815B2 (en) 1999-08-04 2000-03-02 Steel plate for high-strength can and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009022349A Division JP5316036B2 (en) 1999-08-04 2009-02-03 Mother board for high-strength ultrathin cold-rolled steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001107187A true JP2001107187A (en) 2001-04-17
JP4284815B2 JP4284815B2 (en) 2009-06-24

Family

ID=26524093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000057085A Expired - Fee Related JP4284815B2 (en) 1999-08-04 2000-03-02 Steel plate for high-strength can and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4284815B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064446A (en) * 2001-08-21 2003-03-05 Kawasaki Steel Corp Cold rolled steel sheet and plated cold rolled steel sheet each having excellent strain age hardening characteristic and free from degradation due to room- temperature aging, and manufacturing method of them
WO2009107856A1 (en) * 2008-02-29 2009-09-03 Jfeスチール株式会社 Cold-rolled steel sheet and process for production thereof
JPWO2008018531A1 (en) * 2006-08-11 2010-01-07 新日本製鐵株式会社 DR steel sheet and manufacturing method thereof
JP2011063881A (en) * 2009-08-21 2011-03-31 Jfe Steel Corp High-strength cold-rolled steel sheet and method for producing the same
JP2011174101A (en) * 2010-02-23 2011-09-08 Jfe Steel Corp High tensile strength cold rolled steel sheet, and method for producing the same
CN104975225A (en) * 2015-07-14 2015-10-14 山东众冠钢板有限公司 High-strength and corrosion-resistance SPHC steel plate and preparing method thereof
WO2015182360A1 (en) * 2014-05-30 2015-12-03 Jfeスチール株式会社 Steel sheet for cans and manufacturing method thereof
EP2794935B1 (en) * 2011-12-22 2017-01-11 ThyssenKrupp Rasselstein GmbH Easy-open lid for cans and method to produce an easy-open lid
JP6191807B1 (en) * 2016-02-29 2017-09-06 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
KR20190127827A (en) * 2017-03-31 2019-11-13 제이에프이 스틸 가부시키가이샤 Steel plate and its manufacturing method and crown and DRD can
EP3476965A4 (en) * 2016-06-23 2019-12-04 Baoshan Iron & Steel Co., Ltd. High-strength high-elongation tinned primary plate and double cold reduction method therefor

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064446A (en) * 2001-08-21 2003-03-05 Kawasaki Steel Corp Cold rolled steel sheet and plated cold rolled steel sheet each having excellent strain age hardening characteristic and free from degradation due to room- temperature aging, and manufacturing method of them
JP4622187B2 (en) * 2001-08-21 2011-02-02 Jfeスチール株式会社 Cold-rolled steel sheet, cold-rolled steel sheet having excellent strain age hardening characteristics and no room temperature aging deterioration, and methods for producing them
JPWO2008018531A1 (en) * 2006-08-11 2010-01-07 新日本製鐵株式会社 DR steel sheet and manufacturing method thereof
WO2009107856A1 (en) * 2008-02-29 2009-09-03 Jfeスチール株式会社 Cold-rolled steel sheet and process for production thereof
JP2009228128A (en) * 2008-02-29 2009-10-08 Jfe Steel Corp Cold rolled steel sheet and method for manufacturing the same
JP2011063881A (en) * 2009-08-21 2011-03-31 Jfe Steel Corp High-strength cold-rolled steel sheet and method for producing the same
JP2011174101A (en) * 2010-02-23 2011-09-08 Jfe Steel Corp High tensile strength cold rolled steel sheet, and method for producing the same
EP2794935B1 (en) * 2011-12-22 2017-01-11 ThyssenKrupp Rasselstein GmbH Easy-open lid for cans and method to produce an easy-open lid
WO2015182360A1 (en) * 2014-05-30 2015-12-03 Jfeスチール株式会社 Steel sheet for cans and manufacturing method thereof
CN106460118A (en) * 2014-05-30 2017-02-22 杰富意钢铁株式会社 Steel sheet for cans and manufacturing method thereof
JPWO2015182360A1 (en) * 2014-05-30 2017-04-20 Jfeスチール株式会社 Steel plate for cans
CN106460118B (en) * 2014-05-30 2018-12-25 杰富意钢铁株式会社 Steel plate for tanks and its manufacturing method
US10301702B2 (en) 2014-05-30 2019-05-28 Jfe Steel Corporation Steel sheet for cans and manufacturing method thereof
CN104975225A (en) * 2015-07-14 2015-10-14 山东众冠钢板有限公司 High-strength and corrosion-resistance SPHC steel plate and preparing method thereof
JP6191807B1 (en) * 2016-02-29 2017-09-06 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
CN108779526A (en) * 2016-02-29 2018-11-09 杰富意钢铁株式会社 Steel plate for tanks and its manufacturing method
WO2017150066A1 (en) * 2016-02-29 2017-09-08 Jfeスチール株式会社 Steel sheet for cans and manufacturing method therefor
US10941456B2 (en) 2016-02-29 2021-03-09 Jfe Steel Corporation Steel sheet for can and method for manufacturing the same
EP3476965A4 (en) * 2016-06-23 2019-12-04 Baoshan Iron & Steel Co., Ltd. High-strength high-elongation tinned primary plate and double cold reduction method therefor
US11519059B2 (en) 2016-06-23 2022-12-06 Baoshan Iron & Steel Co., Ltd. High-strength high-elongation tinned primary plate and double cold reduction method therefor
KR20190127827A (en) * 2017-03-31 2019-11-13 제이에프이 스틸 가부시키가이샤 Steel plate and its manufacturing method and crown and DRD can
CN110475893A (en) * 2017-03-31 2019-11-19 杰富意钢铁株式会社 Steel plate and its manufacturing method and bottle cap and DRD tank
EP3604598A4 (en) * 2017-03-31 2020-02-05 JFE Steel Corporation Steel sheet, production method therefor, bottle cap, and drd can
US10837078B2 (en) 2017-03-31 2020-11-17 Jfe Steel Corporation Steel sheet, method of manufacturing same, crown cap, and drawing and redrawing (DRD) can
KR102288711B1 (en) 2017-03-31 2021-08-10 제이에프이 스틸 가부시키가이샤 Steel sheet, method of manufacturing same, crown cap, and drawing and redrawing(drd) can
CN110475893B (en) * 2017-03-31 2022-02-08 杰富意钢铁株式会社 Steel sheet, method for producing same, bottle cap, and DRD can

Also Published As

Publication number Publication date
JP4284815B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
JP5365312B2 (en) Steel plate for high-strength can and manufacturing method thereof
JP5135868B2 (en) Steel plate for can and manufacturing method thereof
EP2811047B1 (en) Hot-dip galvanized steel sheet and production method therefor
JP5453884B2 (en) Steel plate for high-strength container and manufacturing method thereof
JP4244486B2 (en) Steel plate for high-strength can and manufacturing method thereof
WO2016157878A1 (en) Steel sheet for cans and method for manufacturing steel sheet for cans
JP4943244B2 (en) Steel sheet for ultra-thin containers
JP4284815B2 (en) Steel plate for high-strength can and manufacturing method thereof
JP5316036B2 (en) Mother board for high-strength ultrathin cold-rolled steel sheet and manufacturing method thereof
JP2001335888A (en) Steel sheet for lightweight two-piece can, and its production method
JPH03277741A (en) Dual-phase cold roller steel sheet excellent in workability, cold nonaging properties and baking hardenability and its manufacture
EP3399065B1 (en) Steel sheet for can and method for manufacturing the same
JP3108330B2 (en) Manufacturing method of steel sheet for high strength cans
JPH0676618B2 (en) Manufacturing method of steel plate for DI can with excellent stretch flange formability
JP3596037B2 (en) Manufacturing method of steel plate for can-making
JPH1060542A (en) Production of steel sheet for can
JPH09316543A (en) Production of steel sheet for can, excellent in formability
JP3222239B2 (en) Hard surface-treated original sheet with high BH property and excellent workability
WO2024082755A1 (en) Tin plate and manufacturing method therefor
KR102587650B1 (en) Steel sheet for cans and method of producing same
JPH07228921A (en) Production of starting sheet for surface treated steel sheet, excellent in workability
JPH08283863A (en) Production of hard steel sheet for can excellent in uniformity of material
JP2021155849A (en) Steel plate for can and method for manufacturing the same
JP3596036B2 (en) Manufacturing method of steel plate for can-making
JP3238460B2 (en) Manufacturing method of non-aged cold-rolled steel sheet for deep drawing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4284815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees