JP4622187B2 - Cold-rolled steel sheet, cold-rolled steel sheet having excellent strain age hardening characteristics and no room temperature aging deterioration, and methods for producing them - Google Patents

Cold-rolled steel sheet, cold-rolled steel sheet having excellent strain age hardening characteristics and no room temperature aging deterioration, and methods for producing them Download PDF

Info

Publication number
JP4622187B2
JP4622187B2 JP2001250101A JP2001250101A JP4622187B2 JP 4622187 B2 JP4622187 B2 JP 4622187B2 JP 2001250101 A JP2001250101 A JP 2001250101A JP 2001250101 A JP2001250101 A JP 2001250101A JP 4622187 B2 JP4622187 B2 JP 4622187B2
Authority
JP
Japan
Prior art keywords
mass
less
cold
steel sheet
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001250101A
Other languages
Japanese (ja)
Other versions
JP2003064446A (en
Inventor
章男 登坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001250101A priority Critical patent/JP4622187B2/en
Publication of JP2003064446A publication Critical patent/JP2003064446A/en
Application granted granted Critical
Publication of JP4622187B2 publication Critical patent/JP4622187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用鋼板等として用いられる、歪時効硬化特性に優れるとともに、室温での時効劣化のない冷延鋼板および冷延めっき鋼板ならびにそれらの製造方法に関するものである。
【0002】
【従来の技術】
一般に、自動車の車体には、各種の薄鋼板が使用され、とくに成形性に優れた冷延鋼板が多く使われているが、最近、とくに高張力鋼板の使用量が増大している。その理由は、昨今の地球環境問題に由来する自動車の排気ガス規制などから、車体重量の軽減が求められているところ、高張力鋼板を採用すると、鋼板の薄肉化に寄与できるからである。しかし、単に高張力鋼板を用いれば足りるのではなく、例えば、自動車用部品の場合、その要求特性は部品によっても異なるが、曲げ、ねじり変形に対する静的強度、疲労強度、耐衝撃特性などが個別に求められる。これらの特性は、鋼板の強度に依存するため、部品の軽量化(薄肉化)にあたっては、使用する鋼板に対して、下限強度が設定され、この下限強度を満足することが要求される。
【0003】
一般に、降伏応力または引張強度の高い高強度鋼板から部品をプレス成形する場合、次のような問題点があった。
1)降伏強度の上昇により、スプリングバック量が増加し、形状凍結性が低下する結果、ねじれ、ひねれ、反りなどの問題を生ずる。
2)鋼板の延性が低下し、成形時に割れやネッキングなどの不具合を生ずる。
3)単純に、高強度鋼板を適用して薄肉化を図った場合、剛性、耐デント特性(局部的な圧縮荷重負荷により生ずる凹みに対する抵抗性)が低下する。
そして、これらの問題点は、自動車車体への高強度鋼板の適用を妨げるものである。
【0004】
こうした問題点を打開する方法として、例えば、自動車外板用の冷延鋼板においては、極低炭素鋼を素材とし、最終的に、固溶状態で残存するC量を適正範囲に制御した鋼板を製造する技術が提案されている。この技術は、プレス成形後に行われる170℃×20分程度の塗装焼付工程で起こる歪時効による硬化現象を利用するものである。すなわち、プレス成形時は軟質で、形状凍結性の低下を生ずることがなく、また部品としての強度や耐デント特性は、焼付けによる歪時効硬化によって確保しようとするものである。
しかし、固溶C量の増加によって硬化量を大きくした塗装焼付硬化型の冷延鋼板の場合、室温での時効劣化、すなわち時間の経過とともに顕著な降伏応力の増加、並びに伸びの低下が生ずることが知られており、広範囲な適用は困難である。さらに、表面欠陥であるストレッチャーストレインを防止する必要性から、その強度上昇量は限られたものとなり、鋼板の薄肉化に寄与するところは小さいという難点がある。
【0005】
また、特公平8-23048号公報は、組織をフェライトとマルテンサイトからなる複合組織とすることで、より大きな焼付硬化性を有する熱延鋼板を製造する方法を開示している。しかし、この方法によって製造した鋼板は、極めて低い温度でコイルを巻取るため、歪時効硬化によって引張強度は増加するものの、機械的性質の変動、特に、降伏応力のばらつきが大きいという問題点があった。しかも、板厚が2.0mm以下の薄鋼板の場合には、冷却歪により鋼板の形状が大きく悪化し、プレス成形が著しく困難になるという問題点もあった。なお、冷延鋼板では、このような大きな歪時効硬化特性を有する鋼板の製造技術は開示されていない。
【0006】
【発明が解決しようとする課題】
以上説明したように、従来技術は、高い加工性を有するとともに、歪時効硬化特性に優れ、かつ時効劣化も小さいという諸特性を満足する鋼板を、工業的にかつ安価に、しかも安定して製造し得る方法ではなかった。
【0007】
本発明の目的は、高い加工性が要求され、かつ高強度で安定した品質を有する冷延鋼板および冷延めっき鋼板とそれらの製造方法を提案することにある。
【0008】
【課題を解決するための手段】
さて、発明者は、上述の課題を解決し、上記目的を実現するため、種々の成分組成の鋼板を製造し、材質評価実験を行った。その結果、従来、加工性が要求される鋼板には積極的に利用されていなかった窒素を強化元素として活用すること、そしてその窒素が持つ大きな歪時効硬化能を、自動車の塗装焼付処理あるいはさらに成形後の後熱処理による時効処理と組み合わせてより有効に活用するためには、鋼板の微視組織を制御すること等が、有効であるとの知見を得た。また、冷延鋼板等において、歪時効硬化特性を安定して出現させるためには、特にAlの添加量を制御することが重要であること、さらには、室温での時効劣化を低減するためには、従来技術において歪時効硬化に利用していた固溶Cを、むしろ低く抑制することが有効であるとの知見を得た。
【0009】
すなわち、固溶状態のNを強化元素として用い、Al含有量を適正な範囲に制御し、さらに熱延、冷延、焼鈍条件を適正化して、微視組織と固溶N量を最適化した場合、従来の固溶強化型のC−Mn鋼、析出強化鋼に比べて格段に優れた成形性と、歪時効硬化特性を有することが明らかになったのである。
このような知見の下に開発した本発明に係る冷延鋼板は、とくに自動車用部品に適用したときに、安定して高い諸特性が得られることがわかった。
また、係る冷延鋼板を原板とするめっき鋼板も、冷延鋼板と同様に優れた成形性と、歪時効硬化特性を有することがわかった。
【0010】
上記した知見に基づいて開発した本発明は、基本的に
C:0.01〜0.15mass%、Si:0.1mass%以下、
Mn:3.0mass%以下、 P:0.08mass%以下、
S:0.02mass%以下、 Al:0.02mass%以下、
N:0.0050〜0.0250mass%を含み、
固溶状態としてのNを0.0030mass%以上含み、
固溶状態としてのCの含有量が3mass ppm以下を満足し、かつ
N(mass%)/Al(mass%)が0.3以上であって、
残部がFeおよび不可避的不純物からなる成分組成と、フェライト相が面積率で50%以上の組織を有することを特徴とする歪時効硬化特性に優れるとともに室温時効劣化のない冷延鋼板である。
また、本発明は、上記の成分組成に加えてさらに、下記A群および/またはB群を含む成分組成からなる歪時効硬化特性に優れるとともに室温時効劣化のない冷延鋼板を提案する。

A群:Cu、Ni、CrおよびMoのうちから選ばれるいずれか1種または2種以上を合計で1.0 mass%以下
B群:Nb、Ti、VおよびBのうちから選ばれるいずれか1種または2種以上を合計で0.1 mass%以下
さらに、本発明は、上記の成分組成に加えてさらに、
Ca,REMの1種または2種を合計で0.0010〜0.010mass%含む成分組成からなる歪時効硬化特性に優れるとともに室温時効劣化のない冷延鋼板を提案する。
また、本発明に係る上記各冷延鋼板表面に、めっき層を有する冷延めっき鋼板を提案する。
【0011】
本発明はまた、
C:0.01〜0.15mass%、Si:0.1mass%以下、
Mn:3.0mass%以下、P:0.08mass%以下、
S:0.02mass%以下、Al:0.02mass%以下、
N:0.0050〜0.0250mass%を含有し、かつ
N(mass%)/Al(mass%)が0.3以上であって、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを、1000℃以上に加熱したのち、仕上圧延出側温度を800℃以上として熱間圧延を行い、650℃以下の温度で巻き取った後、酸洗と冷間圧延を行い、次いで箱焼鈍法により、加熱速度30℃/h以上、最高到達温度900℃以下、冷却速度10℃/h以上とする再結晶焼鈍を行うことを特徴とする歪時効硬化特性に優れ室温時効劣化のない冷延鋼板の製造方法を提案する。
本発明はまた、
C:0.01〜0.15mass%、Si:0.1mass%以下、
Mn:3.0mass%以下、P:0.08mass%以下、
S:0.02mass%以下、Al:0.02mass%以下、
N:0.0050〜0.0250mass%を含有し、かつ
N(mass%)/Al(mass%)が0.3以上であって、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを、1000℃以上に加熱したのち、仕上圧延出側温度を800℃以上として熱間圧延を行い、650℃以下の温度で巻き取った後、酸洗と冷間圧延を行い、次いで箱焼鈍法により、加熱速度30℃/h以上、最高到達温度900℃以下、冷却速度10℃/h以上とする再結晶焼鈍を行って冷延鋼板とし、次いでめっき処理を施すことを特徴とする歪時効硬化特性に優れ室温時効劣化のない冷延めっき鋼板の製造方法を提案する。
【0012】
なお、上記冷延鋼板あるいは冷延めっき鋼板の製造方法における鋼スラブとしては、上記成分組成に加えてさらに、下記(1)および/または(2)に記載の成分を含む成分組成からなる鋼スラブとすることが好ましい。
(1)A群および/またはB群の成

A群:Cu、Ni、CrおよびMoのうちから選ばれるいずれか1種または2種以上を合計で1.0mass%以下
B群:Nb、Ti、VおよびBのうちから選ばれるいずれか1種または2種以上を合計で0.1mass%以下
2)Ca,REMの1種または2種を合計で0.0010〜0.010mass
【0013】
ここで、本発明において、「歪時効硬化特性に優れた」とは、5%以上の引張予歪を付与後、100℃以上300℃以下にて30秒以上20分以下の熱処理を行うことにより、変形応力の増加と引張り強度の上昇が有利に得られることを意味する。特に、引張予歪5%を付与後、170℃で20分の時効処理を行った時の、時効処理前後の変形応力増加量、すなわち(時効処理後の降伏応力)−(時効処理前の予変形応力)をBH量と称する。また、歪時効処理後の引張強さすなわち(予歪変形+時効処理)後の引張強さと予歪付与前の引張強さの差をΔTSと称する。そして、歪時効硬化特性に優れるとは、BH量が80MPa以上であり、かつΔTSが40MPa以上であるものを指す。
【0014】
また、本発明において、「室温時効劣化のない」とは、製造後、長期間室温で保持しても降伏応力の増加や伸びの低下が無いことを意味し、特に、製造後1年間室温で保管する時効実験後の全伸びの低下で評価した場合、その低下量が2%以下であるものを指す。
【0015】
【発明の実施の形態】
本発明に係る冷延鋼板は、プレス成形後の熱処理(通常の塗装焼付処理あるいはさらに時効処理)により顕著に歪時効硬化するにもかかわらず、室温における時効劣化が実質的にないという特徴を有する。このような鋼板は、成形時は軟質であるため、高強度化に伴うプレス成形時の形状不良、割れなどの問題を生ずることはないし、一方で、かかる鋼板から成形された部品は、熱処理により顕著に歪時効硬化し、しかも高い剛性が得られるため、高強度鋼板を適用したのと同等の効果が得られるので、鋼板の薄肉化の実現に有効であるという特徴がある。
なお、本発明に係る鋼板は、強度的には軟鋼から、いわゆる高強度鋼板までを含む。また、その鋼板の用途は、比較的軽い加工用から、比較的厳しい絞り成形用にも適する。
以下、本発明の実施の形態について、具体的に説明する。
【0016】
まず、本発明鋼において、鋼板の化学成分を限定した理由について説明する。
C:0.01〜0.15mass%
Cは、0.15mass%を超えると鋼中の炭化物の分率が増加し、鋼板の延性さらには成形性を顕著に悪化させるため、成形性の上からは好ましくない。さらに、より重要な問題として、C量が0.15mass%を超えると、スポット溶接性、アーク溶接性などが顕著に低下する。したがって、C量は0.15mass%以下とするが、成形性の向上のためには0.08mass%以下が好ましい。特に、良好な延性が求められる用途に対しては、0.05mass%以下がより好ましい。一方、このC量は0.01mass%未満となると、本発明の特徴である固溶C量の低減が困難となるため、0.01mass%以上とする。これは、結晶粒径が顕著に粗大化し、炭化物の分率も低下する結果、固溶Cの析出サイトが減少するためと考えられる。
【0017】
Si:0.1mass%以下
Siは、本発明で採用する箱焼鈍のような比較的長時間の焼鈍後に、固溶Nを確保するためには0.1mass%以下に低減する必要がある。さらに、大きな歪み時効硬化を安定して得るためには0.05mass%以下とすることが望ましい。
【0018】
Mn:3.0mass%以下
Mnは、熱延条件の変動に対する鋼板の機械的性質、とくに本発明が目的とする優れた歪時効硬化特性の敏感性が顕著に改善されるという大きな利点があるため、0.1mass%以上の添加が好ましい。さらに、Mnは、Sによる熱間脆性を防止する有効な元素であり、S量に応じて添加することが好ましい。また、Mnは、結晶粒を微細化する効果がある他、固溶Nを安定して確保するという点からも有効な元素である。Sを安定して固定し、固溶Nを安定して確保するためには0.2mass%以上の添加がより好ましい。
しかし、このMnは、過度に添加すると、フェライトの生成が抑制され、延性が顕著に低下する。また、詳細な機構は不明であるが、鋼板の熱間変形抵抗を増加させる傾向があり、さらに、溶接性、溶接部の成形性も悪化する傾向にある。以上のことから、その上限を3.0mass%とする。より良好な耐食性と成形性が要求される用途では0.80mass%以下とすることが望ましい。
【0019】
P:0.08mass%以下
Pは、鋼の固溶強化元素として有効であり、要求される強度に応じ、適宜添加してよい元素であるが、過度に含有すると、鋼を脆化させ、さらに鋼板の伸びフランジ加工性を悪化させる。また、Pは、鋼中において偏析する傾向が強く、それに起因して、溶接部の脆化をもたらすので好ましくない。以上のことから、その上限を0.08mass%とする。これらの特性低下が特に重要視される場合には、0.04mass%以下とする必要がある。
【0020】
S:0.02mass%以下
Sは、鋼中に介在物として存在し、鋼板の延性を減少させ、さらに耐食性の劣化をもたらす元素なので、その上限を0.02mass%とする。特に、良好な加工性が要求される用途においては0.015mass%以下とすることが好ましい。さらに、S量に敏感な伸びフランジ特性が特に要求される場合は0.008mass%以下とすることが望ましい。また詳細な機構は不明であるが、Sを0.008mass%以下まで低減することは、歪み時効硬化特性を安定して高いレベルに維持するために有効である。
【0021】
Al:0.02mass%以下
Alは、鋼の脱酸元素として添加され、鋼の清浄度を向上させるのに有用な元素であると共に、本発明において重要な役割を担う成分である。また、鋼の組織を微細化するため、材質上も望ましい元素である。本発明においては、固溶状態のNを強化元素として利用するが、適正範囲のAlを添加したアルミキルド鋼の方が、Alを全く添加しないリムド鋼に比して、機械的性質が優れている。Al含有量が多くなると、表面性状の悪化、固溶Nの顕著な低下につながり、本発明の目的である極めて大きな時効硬化特性を確保することが困難となる。このため、上限は、従来鋼より低い0.020mass%とした。材質の安定性という観点からは0.001〜0.015mass%が好ましい。なお、Al添加量の低減は、結晶粒を粗大化し、材質劣化につながる懸念があるが、本発明では、Mn等の他の合金元素を適量添加することと、焼鈍条件を最適な範囲とすることで防止することができる。
【0022】
N:0.0050〜0.0250mass%
Nは、本発明においては最も重要な添加元素の1つである。すなわち、適正範囲のNを添加し、製造条件を制御することにより、必要かつ十分な固溶状態のNを確保することが可能となり、固溶強化と歪時効硬化による降伏応力および引張強度の上昇効果が安定して得られる。また、Nは、鋼の変態点を低下させる効果があり、薄物で変態点以下での熱間圧延を避けたい場合には、有効な添加元素である。このような効果は、0.0050mass%以上の添加によって安定して得られる。しかし、0.0250mass%を超えて添加すると、鋼板の内部欠陥の発生率が高くなるとともに、連続鋳造時のスラブ割れなどの発生も顕著となるため、上限を0.0250mass%とした。製造工程全体を考慮した、材質の安定性・歩留まり向上という観点からは、0.0070〜0.0170mass%の範囲が好適である。なお、本発明の窒素の添加範囲であれば、溶接性等には悪影響はない。
【0023】
固溶状態のN:0.0030mass%以上
鋼板の十分な強度が確保され、かつ、Nによる歪時効硬化が有効に発揮されるためには、固溶状態のNは、0.0030mass%以上が必要である。なお、ここで、固溶Nは、鋼中の全N量から、電解抽出による溶解法で求めた析出Nを差し引いた値とする。これは、析出Nの分析法を種々検討した結果、本発明で採用した方法が、最も良く材質の変化と対応したことに基づく。さらに大きな歪み時効硬化が必要な場合は、固溶Nを0.0050mass%以上とすることが有効である。
【0024】
固溶状態としてのCの含有量:3mass ppm以下
本発明においては、固溶状態としてのCの含有量(固溶C量ともいう)は、極力少なくする必要があり、固溶C量を3mass ppm以下の微量な範囲に抑制する必要がある。Cは、Nと異なり、固溶状態で多量に存在すると、室温での時効劣化が顕著である。このような低い固溶C量とするためには、合金元素の適正範囲での添加と、適正条件での箱焼鈍が必須条件となる。
なお、このような極微量Cの分析方法は、内部摩擦法によるのが好ましい。
【0025】
N(mass%)/Al(mass%)の比:0.3以上
Alは、Nを強力に固定する効果を有する元素であり、N含有量に応じてAlの添加量を低く制限することが望ましい。固溶N量に及ぼすAlの影響を調査した結果、本発明の鋼組成の場合には、N(mass%)/Al(mass%)の値を0.3以上とすることにより、安定して固溶N量を0.0030mass%以上確保でき、目標とする歪時効効果が得られることが確認された。したがって、N(mass%)/Al(mass%)の比は0.3以上とする。
【0026】
本発明に係る冷延鋼板は、上記した成分に加え、さらに次のA群および/またはB群の成分を含有することが、下記の効果を得るために好ましい。なお、A群、B群の各元素を単独あるいは複合添加しても、あるいはA,B群にわたって複合添加しても、これらの望ましい効果は相殺されることはない。
・A群:Cu,Ni,CrおよびMoのうちから選ばれるいずれか1種または2種以上を合計で1.0mass%以下
・B群:Nb、Ti、VおよびBのうちから選ばれるいずれか1種または2種以上を合計で0.1 mass%以下
【0027】
上記A群、B群の各元素は、いずれも鋼の組織を均一かつ微細化する効果があり、強度の上昇にも有効である。これらの効果は、それぞれ、Cu:0.01mass%以上、Ni:0.01mass%以上、Cr:0.01mass%以上、Mo:0.01mass%以上、Nb:0.002mass%以上、Ti:0.002mass%以上、V:0.01mass%以上、B:0.0002mass%以上で特に大きく認められる。
しかしながら、A群の元素およびB群の元素とも多量に含有すると、熱間圧延時の変形抵抗が大きくなり、また化成処理性等の表面処理特性が悪化する傾向にあり、さらに、溶接部の硬化により成形性の低下も顕著となる。そこで、これらの元素の添加量は、A群の各元素は合計で1.0mass%以下、B群の各元素は合計で0.1mass%以下とする必要がある。
【0028】
なお、特に、伸びフランジ成形性が要求される場合には、Ca,REMを添加して介在物の形態制御を行うことも有効である。おのおのの添加量は、合計で0.0010〜0.010mass%とすることにより、表面欠陥の発生などを伴うことなく伸びフランジ特性を改善することができる。
【0029】
次に、本発明に係る冷延鋼板の組織の限定理由について説明する。
フェライト相の面積率:50%以上
本発明は、高度な加工性が要求される自動車用鋼板等を対象としている。このような鋼板は、フェライトの面積率が50%未満では、必要な延性を確保することが困難となる。より良好な延性が要求される場合は、75%以上のフェライト分率が望ましい。ここで、フェライトとは、いわゆるポリゴナルフェライトのみでなく、炭化物の析出を含まないベイニティックフェライト、アシキュラーフェライトも含むものとする。フェライト以外の第2相組織としては、パーライト、セメンタイト、ベイナイト、残留オーステナイト、マルテンサイト等を含み得るが、歪時効硬化の観点からはマルテンサイトを含むことが好ましい。
なお、組織の微細化、特に主相であるフェライト組織を微細化することは、歪時効硬化特性の向上に効果的であるため、フェライトの平均結晶粒径を15μm程度以下とすることが好ましい。
【0030】
次に、歪時効の測定条件および歪時効特性について説明する。
5%の塑性変形
歪み時効硬化特性を規定する場合、予歪量は重要な因子である。自動車用鋼板が適用される変形様式を想定して、歪量が、その後の歪時効硬化特性に及ぼす影響について調査したが、極めて深い絞り加工以外は、おおむね1軸相当の歪量で整理できることが明らかになった。また、実部品においては、この1軸相当の歪量がおおむね5%を上回っていることと、部品強度が、5%の歪を付与した後に塗装焼付処理等の熱処理をして得られる強度と良く対応することが明らかになった。したがって、本発明では5%の塑性歪みを予歪条件とした。
【0031】
熱処理温度と時間
本発明に係る鋼板では、従来の鋼板では十分な硬化が達成されない低温、短時間でも大きな硬化が達成されるが、焼付硬化特性評価のための熱処理条件としては、従来から標準とされている170℃×20分を採用する。
一般に、時効温度には上限があるが、高温、長時間ほど硬化には有利である。
しかしながら、本発明に係る冷延鋼板のように、多量の固溶Nを残存させ、5%以上の歪みを付与する場合は、より緩やかな処理でも硬化が達成され、100℃に加熱することで硬化が顕著となる。また、300℃を超えるとその効果が飽和し、逆にやや軟化する傾向を示すほか、熱歪みやテンパーカラーなどの問題点が顕著となるので望ましくない。
熱処理時間は30秒以上20分以下とする。時効温度200℃では、30秒以上の保持により、ほぼ十分な硬化が得られる。より大きな安定した歪時効硬化を達成する場合には、60秒以上の保持が望ましい。しかし、20分以上の長時間の熱処理は、実用上、強度の変化が小さいため好ましくない。
加熱方法は、通常の塗装焼付のように、炉内の雰囲気で加熱される場合のみでなく、たとえば誘導加熱、無酸化炎、レーザー、プラズマなどによる加熱も当然有効となる。
【0032】
歪時効による強度上昇量(BH量:80MPa以上、ΔTS:40MPa以上)
本発明に係る鋼板においては、歪時効硬化により得られる降伏応力の増加(BH量)は80MPa以上、引張強度の増加(ΔTS)は40MPa以上とする。これらは、どちらか一方だけでは不十分である。すなわち、自動車用の部品には、複雑な外部応力がかかるため、小さな歪み域での強度特性だけでなく、大きな歪み域での強度特性も重要となるためである。これらの値は、さらに望ましくは、各々100MPa、50MPaである。また時効温度を上昇させ、時効時間を長くすることでさらに高強度を得ることができる。
なお、本発明鋼板では、特に加熱して加速時効(人工的な時効)を行なわなくとも、成形後に室温で放置しておくだけで、強度の増加が期待でき、標準条件で時効を行った時の40%程度は最低限見込むことが可能である。これは本発明鋼板の優位性の一つである。
しかし、一方で、塑性加工を付与しない状態では、いわゆる室温での保持による時効劣化は起こらないことが本発明鋼板の特徴である。本発明鋼板では、室温時効による伸び(El)の減少が2%以下である。
【0033】
次に、製造条件の限定理由について説明する。
スラブの製造方法は、成分のマクロな偏析を防止するために、連続鋳造法で製造することが望ましいが、造塊法、薄スラブ鋳造法によっても可能である。
スラブを熱間圧延するに当たっては、スラブ製造後、いったん室温まで冷却し、その後、再加熱する従来法に加え、冷却しないで温片のまま加熱炉に装入する、あるいはわずかの保熱をおこなった後に直ちに圧延する直送圧延、直接圧延などの省エネルギープロセスも問題なく適用できる。特に、固溶状態のNを有効に確保するには、直送圧延は有用な技術の一つである。
【0034】
熱延条件については、以下のように規定される。
スラブ加熱温度:1000℃以上
スラブ加熱温度は、固溶状態のNを確保するという点から下限が規定される。上限は特に規制しないが、酸化ロスの増大などから、1280℃以下とすることが望ましい。
【0035】
仕上圧延出側温度:800℃以上
仕上圧延出側温度を800℃以上として熱間圧延することにより、均一微細な熱延板組織を得ることができる。しかし、仕上圧延終了温度が800℃を下回ると、加工組織が残留し、鋼板の組織が不均一になり、冷延、焼鈍後にも均一な組織が得られないため、プレス成形時に種々の不具合を発生する危険性が増大する。この不均一性は、高温巻取を採用しても解消できず、逆に、粗大粒の発生による不具合を生ずる。また、固溶Nも低下し、目標とする固溶N量を得ることが難しくなる。従って、仕上圧延出側温度は800℃以上とする。さらに機械的性質を向上させるためには820℃以上が好ましい。特に上限温度は規制しないが、過度に高い温度で圧延した場合に、スケール疵が発生するので、1000℃程度を上限とする。
【0036】
熱延巻取温度:650℃以下
熱延巻取温度を低下することで、強度、歪時効特性は改善する傾向にある。車体の軽量化に寄与する十分高い引張強度、歪時効硬化量を得るには650℃以下の巻取温度とすることが必要である。下限温度は、材質上は厳しく規定しないが、200℃を下回ると鋼板の形状が乱れだし、使用上不具合を生ずる可能性が増大する。また、材質の均一性も低下する傾向にある。従って、熱延巻取温度は200℃以上が好ましい。より高い材質の均一性が要求される場合は、巻取温度300℃以上がより好ましい。
【0037】
酸洗、冷間圧延
酸洗は、常法に準じて行えばよい。なお、極めて薄いスケールの状態であれば酸洗を行わずに冷間圧延することも可能である。冷間圧延も、常法に準じて行えばよく、冷間圧延の圧下率は通常行われる40〜90%とすればよい。
【0038】
再結晶焼鈍
本発明においては、再結晶焼鈍を箱焼鈍法にておこなうことが特徴である。これにより、固溶Cを3mass ppm以下とし、室温時効劣化を防止することができる。焼鈍時の加熱速度は30℃/h以上とする必要がある。30℃/h未満では、組織が粗大となり、加工性が低下する。上限は特に制限する必要はなく、通常の箱焼鈍の設備で達成可能な300℃/h程度であれば許容される。箱焼鈍時の最高到達温度は、固溶Nが析出して減少することを防止するため900℃以下とする。なお、箱焼鈍における最高到達温度は、再結晶が完了する温度以上とすればよいが、再結晶温度以下では強度の確保はできるものの、未再結晶組織を含むため、延性が極めて低くなり好ましくない。また、冷却速度は、10℃/h未満では、フェライト結晶粒が粗大化して歪時効特性が低下する傾向にあるため、10℃/h以上とする必要がある。さらに、冷却速度が300℃/h以上では固溶C量が増加し、室温での時効劣化が顕著となるため好ましくない。
なお、本発明の効果は、板厚に関係なく発現するが、本発明では、焼鈍法として箱焼鈍法を採用しているので、連続焼鈍法に比べて板厚に対する柔軟性は高く、鋼板の厚みを特に限定する必要はない。
【0039】
めっき処理
また、本発明では、本願発明の冷延鋼板の表面に、電気めっきまたは溶融めっき等のめっき処理を施してめっき層を形成し、冷延めっき鋼板としても何ら問題はない。これら冷延めっき鋼板も、めっき前と同程度のTS、BH量、ΔTS量を示す。めっきの種類としては、電気亜鉛めっき、溶融亜鉛めっき、合金化溶融亜鉛めっき、電気錫めっき、電気クロムめっき、電気ニッケルめっき等、いずれも好ましく適用しうる。本発明では、上記再結晶焼鈍を行い冷延鋼板とした後、めっき処理を行うが、このときのめっき条件は、従来の鋼板と変える必要はなく、常法に従って行えばよい。
【0040】
調質圧延またはレベラー加工
調質圧延は、形状矯正、粗度調整という従来の目的以外に、鋼板の歪時効硬化特性を安定して高めるうえでも行うことが好ましい。本発明鋼板においては、レベラー加工によっても調質圧延と同じ効果が得られる。それらの効果は、圧下率、伸び率で評価でき、おおむね0.5%以上であれば十分であるが、5%を超えて付与した場合は、加工性が低下するので好ましくない。
【0041】
次いで、適用することが望ましい、その他の製造条件について述べる。
熱間圧延は、仕上圧延機の入側でシートバー同士を接合し、連続圧延することが望ましい。連続圧延を行うことにより、コイルの先端および後端のいわゆる非定常部がなくなり、コイル全長に亘って安定した熱延が可能となる。また、圧延後の鋼板をホットランテーブル上で冷却する場合にも、常に張力を鋼板に付与できるため、鋼板の形状を良好に保つことが可能である。さらに、通常のバッチ圧延では、通板性および噛込み性の観点から適用できなかった潤滑圧延を適用することも可能となり、圧延荷重の低減と同時に、ロール面圧の低減もできるので、ロール寿命の延長が可能となる。そのほかに、連続圧延は、熱延鋼板のみでなく冷延鋼板の断面の形状および寸法を改善するのにも極めて有効である。シートバーの接合方法については、特に規制はなく、圧接法、レーザー溶接法、電子ビーム溶接法、その他の接合法でも同様に適用できる。
【0042】
さらに、仕上圧延機入側では、シートバーにエッジヒーターおよびシートバーヒーターを適用することが望ましい。エッジヒーターによりシートバーのエッジ部を加熱することは、幅方向の圧延温度の差異を補償する上で望ましい。この際の加熱量は、仕上圧延での幅方向の温度差が20℃以下となるような条件が推奨されるが、鋼組成その他で変化する。また、シートバーヒーターの適用により、コイル先後端の温度低下部分をより均一なものとすることが可能である。この場合の加熱量は、材質均一化という観点から、長手方向中央部に対して+20℃以内の範囲が推奨される。
【0043】
また、熱間圧延荷重を低減するために潤滑圧延を行うことは、形状の均一化、材質の均一化の点からも有効である。潤滑圧延は、摩擦係数0.25〜0.10の範囲で行うことが好ましく、さらに、前述の連続圧延プロセスを適用することが熱間圧延の操業安定性の観点からも望ましい。
さらに、熱間圧延後の冷却において、エッジ部の過冷却を防止し、幅方向の材質の変動を抑えるために、エッジ部の冷却水のマスキング技術を用いることも有効である。
【0044】
【実施例】
次に、本発明の実施例について説明する。
(実施例1)
表1に示す成分組成を含み、残部が実質的にFeからなる鋼を転炉で溶製し、この鋼スラブを表2に示す条件で熱間圧延し、さらに酸洗、冷延後、箱焼鈍での再結晶焼鈍を行い、冷延鋼板を製造した。これらの鋼板について、固溶N量を前述の方法により求め、また、固溶C量を内部摩擦法で測定した。また、微視組織、引張特性および歪時効硬化特性の評価を下記の方法で行った。
・微視組織:各冷延焼鈍板から試験片を採取し、圧延方向に直交する断面(C断面)について、微視組織を観察し、フェライトの面積率および第2相の種類を調査した。また、主相であるフェライトの平均結晶粒径は、圧延方向に直交する断面(C断面)についての組織写真から、ASTMに規定の求積法により算出した値またはASTMに規定の切断法により求めた公称粒径のうち、いずれか大きい方を採用した。
・引張特性:各冷延焼鈍板から、JIS 5号試験片を圧延方向に採取し、JIS Z2241の規定に準拠して引張試験を行い、降伏強さ(YS)、引張強さ(TS)、伸び(El)を求めた。
・歪時効硬化特性:各試験材から、JIS 5号試験片を圧延方向に採取し、前述した5%の引張予歪と、170℃×20分の熱処理を施したのち、先述した定義に従い、BH量、ΔTSを求めた。
・室温時効特性:各冷延鋼板を製造後、室温(常温)にて1年間保管した後、前記引張特性の調査と同様に、引張試験を行って伸びを求め、製造直後の伸び(El1)、1年間保管した後の伸び(El2)の差(El1−El2)により評価した。なお、前記室温における1年間保持前後の伸びの差(低下量)が2%以下であれば、実質的に室温時効劣化がないといえる。
【0045】
【表1】

Figure 0004622187
【0046】
【表2】
Figure 0004622187
【0047】
表3に、調査の結果を示した。本発明の条件に適合したものは、引張特性、歪時効特性および室温時効特性のいずれも良好な特性を示しているのに対し、本発明の条件を外れるNo.15,16,17は、いずれかの特性を満たしていない。特に、No.16は、C量が高いため、スポット溶接性に劣るため自動車用鋼板としては不適である。
【0048】
【表3】
Figure 0004622187
【0049】
(実施例2)
C:0.015mass%、Si:0.005mass%、Mn:0.55mass%、P:0.009mass%、S:0.005mass%、Al:0.015mass%、N:0.0126mass%、N(mass%)/Al(mass%):0.84の鋼スラブを素材とし、表4に示したような製造条件で冷延鋼板とし、引き続き、溶融亜鉛めっき処理を常法に従って行い溶融亜鉛めっき鋼板を製造し、実施例1と同様にして機械的性質を調査した。その結果を表5に示す。
表5から、本願発明の製造方法に従えば、歪時効硬化特性、室温時効特性に優れ、かつ高加工性、高強度の溶融亜鉛めっき鋼板の製造が可能であることがわかる。
【0050】
【表4】
Figure 0004622187
【0051】
【表5】
Figure 0004622187
【0052】
【発明の効果】
以上説明したように、本願発明によれば、化学組成、熱延条件および冷延、焼鈍条件を適正化し、最終の製品段階での固溶状態のNを十分な量確保しつつ、固溶Cを制限することにより、加工するときは軟質で高い成形性を有しながら、加工後の歪時効により大きな強度上昇が得られ、かつ室温時効劣化のない冷延鋼板が得られる。また、この冷延鋼板を用いて、ほぼ同等の機械的性質を有する溶融亜鉛めっき鋼板などのめっき鋼板も製造できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cold-rolled steel sheet and a cold-rolled steel sheet that are excellent in strain age hardening characteristics and are not deteriorated by aging at room temperature, and methods for producing them.
[0002]
[Prior art]
In general, various thin steel sheets are used for the body of an automobile, and cold-rolled steel sheets with particularly excellent formability are used in many cases. Recently, however, the amount of high-tensile steel sheets is increasing. The reason for this is that reduction of the weight of the vehicle body is demanded due to automobile exhaust gas regulations derived from recent global environmental problems, and adopting a high-tensile steel plate can contribute to thinning of the steel plate. However, it is not sufficient to simply use high-tensile steel plates. For example, in the case of automotive parts, the required characteristics differ depending on the parts, but the static strength against bending and torsional deformation, fatigue strength, impact resistance characteristics, etc. Is required. Since these characteristics depend on the strength of the steel sheet, when reducing the weight (thinning) of parts, a lower limit strength is set for the steel sheet to be used, and it is required to satisfy this lower limit strength.
[0003]
In general, when a part is press-formed from a high-strength steel plate having a high yield stress or tensile strength, there are the following problems.
1) As the yield strength increases, the amount of springback increases and the shape freezeability decreases, resulting in problems such as twisting, twisting, and warping.
2) The ductility of the steel sheet is reduced, and problems such as cracking and necking occur during forming.
3) When thinning is achieved simply by applying a high-strength steel sheet, rigidity and dent resistance characteristics (resistance to dents caused by local compressive load loading) are reduced.
These problems hinder the application of high-strength steel sheets to automobile bodies.
[0004]
As a method for overcoming such problems, for example, in the cold-rolled steel sheet for automobile outer plates, a steel sheet that uses ultra-low carbon steel as a raw material, and finally controls the amount of C remaining in a solid solution state within an appropriate range. Manufacturing techniques have been proposed. This technique utilizes a hardening phenomenon caused by strain aging that occurs in a paint baking process of about 170 ° C. × 20 minutes performed after press molding. That is, it is soft at the time of press molding and does not cause a decrease in shape freezing property, and strength and dent resistance as a part are to be secured by strain age hardening by baking.
However, in the case of paint bake hardening type cold-rolled steel sheet, the hardening amount of which is increased by increasing the amount of solute C, aging deterioration at room temperature, that is, a remarkable increase in yield stress and a decrease in elongation occur over time. Is known and is difficult to apply in a wide range. Furthermore, the need to prevent stretcher strain, which is a surface defect, makes the amount of increase in strength limited, and there is a drawback that the contribution to thinning of the steel sheet is small.
[0005]
Japanese Patent Publication No. 8-23048 discloses a method of manufacturing a hot rolled steel sheet having a larger bake hardenability by making the structure a composite structure composed of ferrite and martensite. However, since the steel sheet manufactured by this method winds the coil at an extremely low temperature, the tensile strength increases due to strain aging hardening, but there is a problem that the mechanical properties fluctuate, in particular, the yield stress varies greatly. It was. In addition, in the case of a thin steel plate having a thickness of 2.0 mm or less, there is a problem that the shape of the steel plate is greatly deteriorated due to cooling strain, and press forming becomes extremely difficult. In the case of cold-rolled steel sheets, a technique for manufacturing a steel sheet having such a large strain age hardening characteristic is not disclosed.
[0006]
[Problems to be solved by the invention]
As described above, the conventional technology is an industrially, inexpensively and stably manufactured steel sheet that satisfies various properties such as high workability, excellent strain age hardening characteristics, and low aging deterioration. It wasn't possible.
[0007]
An object of the present invention is to propose a cold-rolled steel sheet and a cold-rolled steel sheet that require high workability and have high strength and stable quality, and methods for producing the same.
[0008]
[Means for Solving the Problems]
Now, in order to solve the above-mentioned problems and realize the above object, the inventor manufactured steel sheets having various component compositions and conducted material evaluation experiments. As a result, the use of nitrogen, which has not been actively used for steel sheets that require workability, as a strengthening element, and the large strain age hardening ability of the nitrogen, can be applied to automobile paint baking treatment or further In order to make more effective use in combination with aging treatment by post heat treatment after forming, it has been found that it is effective to control the microstructure of the steel sheet. Also, in order to make the strain age hardening characteristics appear stably in cold rolled steel sheets, etc., it is particularly important to control the amount of Al added, and to reduce aging deterioration at room temperature. Obtained the knowledge that it is effective to suppress the solid solution C used for strain age hardening in the prior art rather low.
[0009]
In other words, solid solution N was used as a strengthening element, the Al content was controlled within an appropriate range, and hot rolling, cold rolling, and annealing conditions were optimized to optimize the microstructure and the amount of solid solution N. In this case, it has become clear that the present invention has remarkably superior formability and strain age hardening characteristics compared to conventional solid solution strengthened C-Mn steel and precipitation strengthened steel.
It has been found that the cold-rolled steel sheet according to the present invention developed based on such knowledge can stably obtain various characteristics particularly when applied to automotive parts.
Moreover, it turned out that the plated steel plate which uses the cold-rolled steel plate as the original plate also has excellent formability and strain age-hardening properties as in the cold-rolled steel plate.
[0010]
The present invention developed based on the above knowledge is basically
C: 0.01-0.15 mass%, Si: 0.1 mass% or less,
Mn: 3.0 mass% or less, P: 0.08 mass% or less,
S: 0.02 mass% or less, Al: 0.02 mass% or less,
N: including 0.0050-0.0250 mass%,
Including N as a solid solution state of 0.0030 mass% or more,
The content of C as a solid solution satisfies 3 mass ppm or less, and
N (mass%) / Al (mass%) is 0.3 or more,
It is a cold-rolled steel sheet having excellent strain age hardening characteristics and no room temperature aging deterioration, characterized in that the balance is composed of Fe and inevitable impurities and the ferrite phase has a structure with an area ratio of 50% or more.
Further, the present invention proposes a cold-rolled steel sheet having excellent strain age hardening characteristics and having no room temperature aging deterioration, which comprises a component composition containing the following group A and / or group B in addition to the above component composition.
Record
Group A: 1.0 mass% or less in total of any one or more selected from Cu, Ni, Cr and Mo
Group B: Any one or more selected from Nb, Ti, V and B in total 0.1 mass% or less
In addition to the above component composition, the present invention further includes:
We propose a cold-rolled steel sheet that has excellent strain age hardening characteristics and is free from room temperature aging deterioration, and has a component composition containing one or two of Ca and REM in total of 0.0010 to 0.010 mass%.
Moreover, the cold-rolled plated steel plate which has a plating layer on the surface of each said cold-rolled steel plate which concerns on this invention is proposed.
[0011]
  The present invention also provides
C: 0.01 to 0.15 mass%, Si: 0.1 mass% or less,
Mn: 3.0 mass% or less, P: 0.08 mass% or less,
S: 0.02 mass% or less, Al: 0.02 mass% or less,
N: 0.0050 to 0.0250 mass%, and
N (mass%) / Al (mass%) is 0.3 or moreWherein the balance is composed of Fe and inevitable impuritiesAfter heating the steel slab having the composition to 1000 ° C. or higher, hot rolling is performed at a finish rolling exit temperature of 800 ° C. or higher, winding at a temperature of 650 ° C. or lower, and then pickling and cold rolling. Then, by box annealing, it is excellent in strain aging hardening characteristics characterized by performing recrystallization annealing at a heating rate of 30 ° C./h or more, a maximum achieved temperature of 900 ° C. or less, and a cooling rate of 10 ° C./h or more. We propose a method for manufacturing cold-rolled steel sheets without cracks.
  The present invention also provides
C: 0.01 to 0.15 mass%, Si: 0.1 mass% or less,
Mn: 3.0 mass% or less, P: 0.08 mass% or less,
S: 0.02 mass% or less, Al: 0.02 mass% or less,
N: 0.0050 to 0.0250 mass%, and
N (mass%) / Al (mass%) is 0.3 or moreWherein the balance is composed of Fe and inevitable impuritiesAfter heating the steel slab having the composition to 1000 ° C. or higher, hot rolling is performed at a finish rolling exit temperature of 800 ° C. or higher, winding at a temperature of 650 ° C. or lower, and then pickling and cold rolling. Then, by a box annealing method, a recrystallization annealing is performed with a heating rate of 30 ° C./h or more, a maximum achieved temperature of 900 ° C. or less, and a cooling rate of 10 ° C./h or more to obtain a cold-rolled steel sheet, and then a plating treatment is performed. We propose a method for producing cold rolled galvanized steel sheets with excellent strain age hardening characteristics and no deterioration at room temperature.
[0012]
  In addition, as a steel slab in the manufacturing method of the said cold-rolled steel plate or cold-rolled plated steel plate,In addition to the above component composition,Below (1)And / or (2)Described inConsists of component composition including componentsA steel slab is preferred.
(1) AFormation of group and / or group BMin
                        Record
Group A: Any one or two or more selected from Cu, Ni, Cr and Mo are 1.0 mass% or less in total.
Group B: Any one or more selected from Nb, Ti, V and B in total 0.1 mass% or less
(2) Ca, REM 1 type or 2 types in total 0.0010 to 0.010 mass%
[0013]
Here, in the present invention, “excellent strain age hardening characteristics” means that after applying a tensile pre-strain of 5% or more, heat treatment is performed at 100 ° C. or higher and 300 ° C. or lower for 30 seconds or longer and 20 minutes or shorter. This means that an increase in deformation stress and an increase in tensile strength can be obtained advantageously. In particular, the amount of deformation stress increase before and after aging treatment when applying aging treatment at 170 ° C. for 20 minutes after applying a tensile pre-strain of 5%, that is, (yield stress after aging treatment) − (pre-aging treatment before aging treatment). Deformation stress) is referred to as BH amount. Moreover, the difference between the tensile strength after strain aging treatment, that is, the tensile strength after (pre-strain deformation + aging treatment) and the tensile strength before applying pre-strain is referred to as ΔTS. And it is excellent in the strain age hardening characteristic that the amount of BH is 80 MPa or more and ΔTS is 40 MPa or more.
[0014]
Further, in the present invention, “no aging deterioration at room temperature” means that there is no increase in yield stress or decrease in elongation even if it is kept at room temperature for a long time after production. When evaluated by a decrease in total elongation after an aging experiment for storage, the amount of decrease is 2% or less.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The cold-rolled steel sheet according to the present invention has a feature that there is substantially no aging deterioration at room temperature despite remarkable strain age hardening by heat treatment after press forming (ordinary paint baking treatment or further aging treatment). . Since such a steel sheet is soft at the time of forming, it does not cause problems such as shape defects and cracks at the time of press forming accompanying the increase in strength. On the other hand, parts formed from such a steel sheet are subjected to heat treatment. Since it is remarkably strain age hardened and high rigidity is obtained, the same effect as that obtained by applying a high-strength steel sheet can be obtained, which is advantageous in realizing thinning of the steel sheet.
In addition, the steel plate which concerns on this invention includes from mild steel to what is called a high strength steel plate in terms of strength. Moreover, the use of the steel sheet is suitable for relatively light processing to relatively severe drawing.
Hereinafter, embodiments of the present invention will be specifically described.
[0016]
First, the reason for limiting the chemical composition of the steel sheet in the steel of the present invention will be described.
C: 0.01-0.15 mass%
If C exceeds 0.15 mass%, the fraction of carbides in the steel increases, and the ductility and further formability of the steel sheet are remarkably deteriorated. Furthermore, as a more important problem, when the C content exceeds 0.15 mass%, spot weldability, arc weldability, and the like are significantly reduced. Accordingly, the C content is 0.15 mass% or less, but 0.08 mass% or less is preferable for improving the moldability. Especially for applications where good ductility is required, 0.05 mass% or less is more preferable. On the other hand, if the amount of C is less than 0.01 mass%, it is difficult to reduce the amount of solid solution C, which is a feature of the present invention. This is presumably because the crystal grain size is remarkably coarsened and the fraction of carbides is reduced, resulting in a decrease in the precipitation sites of solid solution C.
[0017]
Si: 0.1 mass% or less
Si needs to be reduced to 0.1 mass% or less in order to ensure solid solution N after annealing for a relatively long time such as box annealing employed in the present invention. Furthermore, in order to stably obtain a large strain age hardening, it is desirable to set it to 0.05 mass% or less.
[0018]
Mn: 3.0mass% or less
Mn has the great advantage of significantly improving the mechanical properties of the steel sheet against fluctuations in hot rolling conditions, in particular the sensitivity of the excellent strain age hardening characteristics that the present invention is aimed at. Is preferred. Further, Mn is an effective element for preventing hot brittleness due to S, and is preferably added according to the amount of S. Further, Mn is an element effective in that it has the effect of refining crystal grains and also ensures stable solid solution N. In order to fix S stably and to secure solid solution N stably, addition of 0.2 mass% or more is more preferable.
However, if this Mn is added excessively, the formation of ferrite is suppressed and the ductility is significantly reduced. Moreover, although a detailed mechanism is unknown, there exists a tendency which increases the hot deformation resistance of a steel plate, and also exists in the tendency for weldability and the moldability of a weld part to deteriorate. From the above, the upper limit is set to 3.0 mass%. In applications where better corrosion resistance and formability are required, it is desirable that the content be 0.80 mass% or less.
[0019]
P: 0.08 mass% or less
P is effective as a solid solution strengthening element of steel, and is an element that may be added as appropriate according to the required strength. However, if excessively contained, it embrittles the steel and further increases the stretch flangeability of the steel sheet. make worse. Further, P is not preferable because it has a strong tendency to segregate in the steel, resulting in embrittlement of the weld. From the above, the upper limit is set to 0.08 mass%. When these characteristic deteriorations are regarded as particularly important, it is necessary to be 0.04 mass% or less.
[0020]
S: 0.02 mass% or less
S is an element that exists as an inclusion in the steel, reduces the ductility of the steel sheet, and further deteriorates the corrosion resistance. Therefore, the upper limit is set to 0.02 mass%. In particular, in applications where good workability is required, the content is preferably 0.015 mass% or less. Furthermore, when the stretch flange characteristic sensitive to the amount of S is particularly required, it is desirable to set it to 0.008 mass% or less. Moreover, although a detailed mechanism is unknown, reducing S to 0.008 mass% or less is effective in order to stably maintain the strain age hardening characteristics at a high level.
[0021]
Al: 0.02 mass% or less
Al is added as a deoxidizing element for steel, is an element useful for improving the cleanliness of steel, and is a component that plays an important role in the present invention. In addition, it is a desirable element in terms of material in order to refine the steel structure. In the present invention, solid solution N is used as a strengthening element, but aluminum killed steel to which Al in an appropriate range is added has better mechanical properties than rimmed steel to which no Al is added. . When the Al content is increased, the surface properties are deteriorated and the solid solution N is remarkably lowered, and it is difficult to ensure extremely large age-hardening characteristics, which is an object of the present invention. For this reason, the upper limit was made 0.020 mass% lower than that of the conventional steel. From the viewpoint of the stability of the material, 0.001 to 0.015 mass% is preferable. In addition, although there is a concern that the reduction of the Al addition amount may cause the crystal grains to become coarse and lead to deterioration of the material, in the present invention, an appropriate amount of other alloy elements such as Mn is added and the annealing condition is set to an optimum range. This can be prevented.
[0022]
N: 0.0050-0.0250 mass%
N is one of the most important additive elements in the present invention. That is, by adding N in an appropriate range and controlling the production conditions, it becomes possible to secure the necessary and sufficient solid solution N, and increase in yield stress and tensile strength due to solid solution strengthening and strain age hardening. The effect can be obtained stably. Further, N has an effect of lowering the transformation point of steel, and is an effective additive element when it is desired to avoid hot rolling below a transformation point with a thin material. Such an effect can be stably obtained by adding 0.0050 mass% or more. However, if added over 0.0250 mass%, the rate of occurrence of internal defects in the steel sheet increases and the occurrence of slab cracking during continuous casting becomes significant, so the upper limit was made 0.0250 mass%. The range of 0.0070 to 0.0170 mass% is preferable from the viewpoint of improving the stability and yield of the material in consideration of the entire manufacturing process. In addition, if it is the addition range of nitrogen of this invention, there will be no bad influence on weldability etc.
[0023]
Solid solution N: 0.0030 mass% or more
In order to ensure sufficient strength of the steel sheet and to effectively exhibit strain age hardening by N, N in a solid solution state needs to be 0.0030 mass% or more. Here, the solid solution N is a value obtained by subtracting the precipitation N obtained by the dissolution method by electrolytic extraction from the total N amount in the steel. This is based on the fact that the method employed in the present invention best copes with a change in material as a result of various examinations of the analysis method for precipitate N. When a larger strain age hardening is required, it is effective to make the solid solution N 0.0050 mass% or more.
[0024]
C content as a solid solution: 3 mass ppm or less
In the present invention, the content of C as a solid solution state (also referred to as a solid solution C amount) needs to be reduced as much as possible, and the solid solution C amount needs to be suppressed to a very small range of 3 mass ppm or less. C is different from N, and when it exists in a large amount in a solid solution state, aging deterioration at room temperature is remarkable. In order to obtain such a low solute C amount, addition of an alloy element in an appropriate range and box annealing under an appropriate condition are essential conditions.
In addition, it is preferable that the analysis method of such a trace amount C is based on the internal friction method.
[0025]
N (mass%) / Al (mass%) ratio: 0.3 or more
Al is an element having an effect of strongly fixing N, and it is desirable to limit the addition amount of Al low according to the N content. As a result of investigating the influence of Al on the amount of solute N, in the case of the steel composition of the present invention, the value of N (mass%) / Al (mass%) is set to 0.3 or more, so that the solid solution is stably formed. It was confirmed that the N amount can be secured by 0.0030 mass% or more and the target strain aging effect can be obtained. Therefore, the ratio of N (mass%) / Al (mass%) is 0.3 or more.
[0026]
In order to obtain the following effects, the cold-rolled steel sheet according to the present invention preferably contains the following components of Group A and / or Group B in addition to the components described above. In addition, even if each element of Group A and Group B is added singly or in combination, or combined over A and B groups, these desirable effects are not offset.
-Group A: Any one or more selected from Cu, Ni, Cr and Mo total 1.0 mass% or less
-Group B: Any one or more selected from Nb, Ti, V and B in total 0.1 mass% or less
[0027]
Each of the elements of Group A and Group B has an effect of making the steel structure uniform and fine, and is effective in increasing the strength. These effects are respectively Cu: 0.01 mass% or more, Ni: 0.01 mass% or more, Cr: 0.01 mass% or more, Mo: 0.01 mass% or more, Nb: 0.002 mass% or more, Ti: 0.002 mass% or more, V : 0.01 mass% or more, B: 0.0002 mass% or more are particularly recognized.
However, if both elements of Group A and Group B are contained in large quantities, deformation resistance during hot rolling tends to increase, surface treatment characteristics such as chemical conversion treatment tend to deteriorate, and hardening of the welded portion further occurs. As a result, the decrease in formability becomes significant. Therefore, the added amount of these elements needs to be 1.0 mass% or less in total for each element in the A group, and 0.1 mass% or less in total for each element in the B group.
[0028]
In particular, when stretch flange formability is required, it is also effective to control the form of inclusions by adding Ca and REM. The amount of each added is 0.0010 to 0.010 mass% in total, so that the stretch flange characteristics can be improved without causing surface defects.
[0029]
Next, the reason for limiting the structure of the cold-rolled steel sheet according to the present invention will be described.
Ferrite phase area ratio: 50% or more
The present invention is directed to steel sheets for automobiles and the like that require high workability. In such a steel sheet, if the area ratio of ferrite is less than 50%, it becomes difficult to ensure the required ductility. When better ductility is required, a ferrite fraction of 75% or more is desirable. Here, the ferrite includes not only so-called polygonal ferrite but also bainitic ferrite and acicular ferrite which do not include carbide precipitation. As the second phase structure other than ferrite, pearlite, cementite, bainite, retained austenite, martensite and the like can be included, but from the viewpoint of strain age hardening, it is preferable to include martensite.
In addition, since refinement of the structure, particularly refinement of the ferrite structure as the main phase, is effective in improving the strain age hardening characteristics, the average crystal grain size of ferrite is preferably about 15 μm or less.
[0030]
Next, measurement conditions for strain aging and strain aging characteristics will be described.
5% plastic deformation
The amount of pre-strain is an important factor when defining strain age hardening characteristics. Assuming the deformation mode to which automotive steel plates are applied, we investigated the effect of strain on the subsequent strain age hardening characteristics. Except for extremely deep drawing, it can be organized with strain equivalent to approximately one axis. It was revealed. In actual parts, the amount of strain equivalent to this uniaxial axis is more than 5%, and the strength of the parts is the strength obtained by heat treatment such as paint baking after applying 5% strain. It became clear that it responded well. Therefore, in the present invention, 5% plastic strain was set as the pre-strain condition.
[0031]
Heat treatment temperature and time
In the steel sheet according to the present invention, sufficient hardening can be achieved even at a low temperature and in a short time, in which sufficient hardening cannot be achieved with the conventional steel sheet, but as a heat treatment condition for bake hardening property evaluation, it has been conventionally standard 170. Adopt ℃ x 20 minutes.
In general, the aging temperature has an upper limit, but higher temperatures and longer times are more advantageous for curing.
However, as in the case of the cold-rolled steel sheet according to the present invention, when a large amount of solute N remains and imparts a strain of 5% or more, hardening is achieved even by a more gradual treatment, and heating to 100 ° C. Curing becomes significant. Further, if the temperature exceeds 300 ° C., the effect is saturated, and on the contrary, it tends to soften somewhat, and problems such as thermal distortion and temper color become remarkable, which is not desirable.
The heat treatment time is from 30 seconds to 20 minutes. At an aging temperature of 200 ° C., almost sufficient curing can be obtained by holding for 30 seconds or more. In order to achieve a larger and more stable strain age hardening, holding for 60 seconds or more is desirable. However, a long-time heat treatment of 20 minutes or more is not preferable because practically the change in strength is small.
As a heating method, not only heating in an atmosphere in a furnace as in ordinary paint baking, but also heating by induction heating, non-oxidizing flame, laser, plasma, or the like is naturally effective.
[0032]
Strength increase due to strain aging (BH amount: 80 MPa or more, ΔTS: 40 MPa or more)
In the steel sheet according to the present invention, the increase in yield stress (BH amount) obtained by strain age hardening is 80 MPa or more, and the increase in tensile strength (ΔTS) is 40 MPa or more. Either of these is not sufficient. That is, because parts for automobiles are subjected to complicated external stress, not only strength characteristics in a small strain region but also strength properties in a large strain region are important. These values are more desirably 100 MPa and 50 MPa, respectively. Further, higher strength can be obtained by raising the aging temperature and lengthening the aging time.
The steel sheet of the present invention can be expected to increase in strength simply by leaving it to stand at room temperature after forming, even if it is not heated and subjected to accelerated aging (artificial aging). About 40% of the minimum can be estimated. This is one of the advantages of the steel sheet of the present invention.
However, on the other hand, it is a feature of the steel sheet of the present invention that aging deterioration due to so-called holding at room temperature does not occur in a state where plastic working is not applied. In the steel sheet of the present invention, the decrease in elongation (El) due to room temperature aging is 2% or less.
[0033]
Next, the reason for limiting the manufacturing conditions will be described.
In order to prevent macro segregation of components, the slab manufacturing method is preferably manufactured by a continuous casting method, but can also be performed by an ingot forming method or a thin slab casting method.
When hot-rolling slabs, in addition to the conventional method of cooling to room temperature after manufacturing the slab, and then reheating it, it is charged in a heating furnace without cooling or with little heat retention. Energy saving processes such as direct feed rolling and direct rolling, which are rolled immediately after, can be applied without any problem. In particular, direct feed rolling is one of the useful techniques for effectively securing solid solution N.
[0034]
The hot rolling conditions are defined as follows.
Slab heating temperature: 1000 ℃ or more
The lower limit of the slab heating temperature is defined in terms of securing N in a solid solution state. The upper limit is not particularly limited, but is preferably 1280 ° C. or less because of an increase in oxidation loss.
[0035]
Finishing rolling delivery temperature: 800 ℃ or more
A uniform and fine hot-rolled sheet structure can be obtained by hot rolling at a finish rolling outlet temperature of 800 ° C. or higher. However, if the finish rolling finish temperature is below 800 ° C, the processed structure remains, the structure of the steel sheet becomes uneven, and a uniform structure cannot be obtained even after cold rolling and annealing. The risk of occurring increases. This non-uniformity cannot be eliminated even when high-temperature winding is adopted, and conversely, a problem due to the generation of coarse grains occurs. Moreover, the solid solution N also falls and it becomes difficult to obtain the target amount of the solid solution N. Accordingly, the finish rolling outlet temperature is set to 800 ° C. or higher. Further, in order to improve mechanical properties, 820 ° C. or higher is preferable. Although the upper limit temperature is not particularly restricted, scale wrinkles occur when rolling at an excessively high temperature, so the upper limit is about 1000 ° C.
[0036]
Hot coiling temperature: 650 ° C or less
By lowering the hot rolling coiling temperature, the strength and strain aging characteristics tend to be improved. In order to obtain a sufficiently high tensile strength and strain age hardening amount that contributes to the weight reduction of the vehicle body, it is necessary to set the coiling temperature to 650 ° C. or less. The lower limit temperature is not strictly defined in terms of material, but if it is below 200 ° C., the shape of the steel sheet is disturbed and the possibility of causing problems in use increases. In addition, the uniformity of the material tends to decrease. Therefore, the hot rolling coiling temperature is preferably 200 ° C. or higher. When higher material uniformity is required, a winding temperature of 300 ° C. or higher is more preferable.
[0037]
Pickling, cold rolling
Pickling may be performed according to a conventional method. In addition, if it is in a very thin scale state, it can be cold-rolled without pickling. The cold rolling may be performed according to a conventional method, and the rolling reduction of the cold rolling may be 40 to 90% that is normally performed.
[0038]
Recrystallization annealing
The present invention is characterized in that recrystallization annealing is performed by a box annealing method. Thereby, solid solution C can be 3 mass ppm or less, and room temperature aging deterioration can be prevented. The heating rate during annealing needs to be 30 ° C / h or more. If it is less than 30 ° C / h, the structure becomes coarse and the workability deteriorates. The upper limit does not need to be particularly limited, and is acceptable if it is about 300 ° C./h that can be achieved with ordinary box annealing equipment. The maximum temperature achieved during box annealing is set to 900 ° C. or lower in order to prevent solute N from precipitating and decreasing. Note that the maximum temperature achieved in the box annealing may be equal to or higher than the temperature at which recrystallization is completed, but the strength can be secured below the recrystallization temperature. . Further, if the cooling rate is less than 10 ° C./h, ferrite crystal grains tend to be coarsened and the strain aging characteristics tend to be lowered, so it is necessary to make the cooling rate 10 ° C./h or more. Further, when the cooling rate is 300 ° C./h or more, the amount of dissolved C increases, and aging deterioration at room temperature becomes remarkable, which is not preferable.
In addition, although the effect of the present invention is manifested regardless of the plate thickness, in the present invention, the box annealing method is adopted as the annealing method, so the flexibility with respect to the plate thickness is high compared to the continuous annealing method, and the steel plate There is no need to particularly limit the thickness.
[0039]
Plating treatment
Moreover, in this invention, the plating layer, such as electroplating or hot dipping, is formed on the surface of the cold rolled steel sheet of the present invention to form a plated layer, and there is no problem as a cold rolled steel sheet. These cold-rolled plated steel sheets also exhibit the same TS, BH amount, and ΔTS amount as before plating. As the kind of plating, any of electrogalvanizing, hot dip galvanizing, alloying hot dip galvanizing, electrotin plating, electrochromic plating, electronickel plating, etc. can be preferably applied. In the present invention, the recrystallization annealing is performed to obtain a cold-rolled steel sheet, and then the plating process is performed. However, the plating conditions at this time do not need to be changed from those of the conventional steel sheet, and may be performed according to a conventional method.
[0040]
Temper rolling or leveler processing
The temper rolling is preferably performed not only for the conventional purposes of shape correction and roughness adjustment, but also for stably improving the strain age hardening characteristics of the steel sheet. In the steel sheet of the present invention, the same effect as temper rolling can be obtained by leveler processing. These effects can be evaluated by the rolling reduction and elongation, and if it is approximately 0.5% or more, it is sufficient. However, if it is applied in excess of 5%, the workability deteriorates, which is not preferable.
[0041]
Next, other manufacturing conditions that are desirably applied will be described.
In hot rolling, it is desirable to join the sheet bars on the entry side of the finish rolling mill and perform continuous rolling. By performing continuous rolling, so-called unsteady portions at the front and rear ends of the coil are eliminated, and stable hot rolling is possible over the entire length of the coil. In addition, even when the rolled steel sheet is cooled on a hot run table, tension can always be applied to the steel sheet, so that the shape of the steel sheet can be kept good. Furthermore, in ordinary batch rolling, it is also possible to apply lubrication rolling that could not be applied from the viewpoints of sheet feeding and biting, and at the same time as reducing rolling load, roll surface pressure can be reduced, so roll life Can be extended. In addition, continuous rolling is extremely effective for improving the cross-sectional shape and dimensions of not only hot-rolled steel sheets but also cold-rolled steel sheets. There are no particular restrictions on the method of joining the sheet bars, and the same applies to the pressure welding method, laser welding method, electron beam welding method, and other joining methods.
[0042]
Furthermore, it is desirable to apply an edge heater and a sheet bar heater to the sheet bar at the finishing mill entry side. Heating the edge portion of the sheet bar with an edge heater is desirable to compensate for the difference in rolling temperature in the width direction. It is recommended that the heating amount at this time be such that the temperature difference in the width direction in finish rolling is 20 ° C. or less, but it varies depending on the steel composition and the like. In addition, the application of the sheet bar heater can make the temperature-decreasing portion at the rear end of the coil tip more uniform. The heating amount in this case is recommended to be within a range of + 20 ° C. with respect to the central portion in the longitudinal direction from the viewpoint of uniform material.
[0043]
Further, performing lubrication rolling to reduce the hot rolling load is also effective from the viewpoint of uniform shape and uniform material. Lubrication rolling is preferably performed in the range of a friction coefficient of 0.25 to 0.10, and it is further desirable from the viewpoint of operational stability of hot rolling to apply the above-described continuous rolling process.
Furthermore, in cooling after hot rolling, it is also effective to use a cooling water masking technique for the edge portion in order to prevent overcooling of the edge portion and suppress variation in the material in the width direction.
[0044]
【Example】
Next, examples of the present invention will be described.
Example 1
A steel containing the composition shown in Table 1 and the balance being substantially Fe is melted in a converter, the steel slab is hot-rolled under the conditions shown in Table 2, and pickled, cold-rolled, and boxed. Recrystallization annealing in annealing was performed to produce a cold rolled steel sheet. About these steel plates, the amount of solid solution N was calculated | required by the above-mentioned method, and the amount of solid solution C was measured by the internal friction method. Further, the microstructure, tensile properties and strain age hardening properties were evaluated by the following methods.
Microstructure: Test specimens were collected from each cold-rolled annealed plate, and the microstructure was observed for the cross section (C cross section) perpendicular to the rolling direction, and the area ratio of ferrite and the type of the second phase were investigated. Further, the average crystal grain size of the ferrite as the main phase is obtained from a structural photograph of a cross section (C cross section) orthogonal to the rolling direction by a value calculated by a quadrature method prescribed in ASTM or by a cutting method prescribed by ASTM. The larger of the nominal particle diameters was adopted.
・ Tensile properties: JIS No. 5 test specimens were sampled in the rolling direction from each cold-rolled annealed plate and subjected to a tensile test in accordance with the provisions of JIS Z2241, yield strength (YS), tensile strength (TS), Elongation (El) was determined.
・ Strain age hardening characteristics: JIS No. 5 test specimens were taken from each test material in the rolling direction, subjected to the 5% tensile pre-strain mentioned above and heat treatment at 170 ° C for 20 minutes. BH amount and ΔTS were determined.
・ Aging characteristics at room temperature: After each cold-rolled steel sheet is manufactured and stored at room temperature (room temperature) for one year, the tensile test is performed to determine the elongation in the same manner as the investigation of the tensile characteristics, and the elongation immediately after manufacturing (El1). Evaluation was based on the difference (El1−El2) in elongation (El2) after storage for one year. In addition, if the difference in elongation before and after holding for one year at room temperature (amount of decrease) is 2% or less, it can be said that there is substantially no aging deterioration at room temperature.
[0045]
[Table 1]
Figure 0004622187
[0046]
[Table 2]
Figure 0004622187
[0047]
Table 3 shows the results of the survey. The ones suitable for the conditions of the present invention showed good characteristics in all of the tensile characteristics, strain aging characteristics and room temperature aging characteristics, whereas Nos. 15, 16, and 17 outside the conditions of the present invention Does not meet these characteristics. In particular, No. 16 is not suitable as a steel plate for automobiles because of its high C content and poor spot weldability.
[0048]
[Table 3]
Figure 0004622187
[0049]
(Example 2)
C: 0.015 mass%, Si: 0.005 mass%, Mn: 0.55 mass%, P: 0.009 mass%, S: 0.005 mass%, Al: 0.015 mass%, N: 0.0126 mass%, N (mass%) / Al ( mass%): A steel slab of 0.84 was used as a raw material, and a cold-rolled steel sheet was produced under the production conditions as shown in Table 4. Subsequently, a hot-dip galvanizing process was performed in accordance with a conventional method to produce a hot-dip galvanized steel sheet. Similarly, the mechanical properties were investigated. The results are shown in Table 5.
From Table 5, it can be seen that according to the production method of the present invention, it is possible to produce a hot-dip galvanized steel sheet having excellent strain age hardening characteristics and room temperature aging characteristics and having high workability and high strength.
[0050]
[Table 4]
Figure 0004622187
[0051]
[Table 5]
Figure 0004622187
[0052]
【The invention's effect】
As described above, according to the present invention, the chemical composition, hot rolling conditions, cold rolling, and annealing conditions are optimized, and a sufficient amount of N in the solid solution state in the final product stage is secured, while the solid solution C By limiting the strength, a large strength increase is obtained by strain aging after processing, and a cold-rolled steel plate free from room temperature aging deterioration is obtained while being soft and having high formability. Moreover, using this cold-rolled steel sheet, a plated steel sheet such as a hot-dip galvanized steel sheet having substantially the same mechanical properties can be produced.

Claims (10)

C:0.01〜0.15mass%、
Si:0.1mass%以下、
Mn:3.0mass%以下、
P:0.08mass%以下、
S:0.02mass%以下、
Al:0.02mass%以下、
N:0.0050〜0.0250mass%を含み、
固溶状態としてのNを0.0030mass%以上含み、
固溶状態としてのCの含有量が3massppm以下を満足し、かつ
N(mass%)/Al(mass%)が0.3以上であって、残部がFeおよび不可避的不純物からなる成分組成と、フェライト相が面積率で50%以上の組織を有することを特徴とする歪時効硬化特性に優れるとともに室温時効劣化のない冷延鋼板。
C: 0.01-0.15 mass%,
Si: 0.1 mass% or less,
Mn: 3.0 mass% or less,
P: 0.08 mass% or less,
S: 0.02 mass% or less,
Al: 0.02 mass% or less,
N: 0.0050-0.0250 mass% is included,
N as a solid solution state is included 0.0030 mass% or more,
A component composition in which the content of C as a solid solution satisfies 3 mass ppm or less and N (mass%) / Al (mass%) is 0.3 or more, and the balance is Fe and inevitable impurities; A cold-rolled steel sheet having excellent strain age hardening characteristics and no room temperature aging deterioration, wherein the ferrite phase has a structure with an area ratio of 50% or more.
請求項1に記載の成分組成に加えてさらに、
下記A群および/またはB群を含む成分組成からなることを特徴とする請求項1に記載の冷延鋼板。

A群:Cu、Ni、CrおよびMoのうちから選ばれるいずれか1種または2種以上を合計で1.0mass%以下
B群:Nb、Ti、VおよびBのうちから選ばれるいずれか1種または2種以上を合計で0.1mass%以下
In addition to the component composition of claim 1,
The cold-rolled steel sheet according to claim 1, wherein the cold-rolled steel sheet comprises a component composition including the following group A and / or group B.
Group A: Any one or two or more selected from Cu, Ni, Cr and Mo are 1.0 mass% or less in total. Group B: Any one selected from Nb, Ti, V and B 0.1 mass% or less of seeds or 2 or more
請求項1または2に記載の成分組成に加えてさらに、
Ca,REMの1種または2種を合計で0.0010〜0.010mass%含む成分組成からなることを特徴とする請求項1または2に記載の冷延鋼板。
In addition to the component composition according to claim 1 or 2,
The cold-rolled steel sheet according to claim 1 or 2, comprising a component composition containing 0.0010 to 0.010 mass% of one or two of Ca and REM in total.
請求項1〜3のいずれかに記載の冷延鋼板の表面にめっき層を有することを特徴とする歪時効硬化特性に優れるとともに室温時効劣化のない冷延めっき鋼板。A cold-rolled plated steel sheet having excellent strain age hardening characteristics and no room temperature aging deterioration, comprising a plated layer on the surface of the cold-rolled steel sheet according to any one of claims 1 to 3. C:0.01〜0.15mass%、
Si:0.1mass%以下、
Mn:3.0mass%以下、P:0.08mass%以下、
S:0.02mass%以下、
Al:0.02mass%以下、
N:0.0050〜0.0250mass%を含有し、
かつN(mass%)/Al(mass%)が0.3以上であって、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを、1000℃以上に加熱したのち、仕上圧延出側温度を800℃以上として熱間圧延を行い、650℃以下の温度で巻き取った後、酸洗と冷間圧延を行い、次いで箱焼鈍法により、加熱速度30℃/h以上、最高到達温度900℃以下、冷却速度10℃/h以上とする再結晶焼鈍をおこなうことを特徴とする歪時効硬化特性に優れ室温時効劣化のない冷延鋼板の製造方法。
C: 0.01-0.15 mass%,
Si: 0.1 mass% or less,
Mn: 3.0 mass% or less, P: 0.08 mass% or less,
S: 0.02 mass% or less,
Al: 0.02 mass% or less,
N: 0.0050-0.0250 mass% is contained,
And N (mass%) / Al (mass%) is 0.3 or more , and the steel slab which has the component composition which consists of Fe and an unavoidable impurity in the remainder is heated to 1000 degreeC or more, Then, the finish rolling exit side Hot rolling is performed at a temperature of 800 ° C. or higher, winding is performed at a temperature of 650 ° C. or lower, pickling and cold rolling are performed, and then a heating rate of 30 ° C./h or higher and a maximum temperature of 900 ° C. are obtained by box annealing. A method for producing a cold-rolled steel sheet having excellent strain age hardening characteristics and no room temperature aging deterioration, characterized by performing recrystallization annealing at a cooling temperature of 10 ° C./h or lower.
上記鋼スラブが、上記成分組成に加えてさらに、In addition to the component composition, the steel slab is further
下記A群および/またはB群を含む成分組成からなることを特徴とする請求項5に記載の冷延鋼板の製造方法。It consists of a component composition containing following A group and / or B group, The manufacturing method of the cold-rolled steel plate of Claim 5 characterized by the above-mentioned.
                        Record
A群:Cu、Ni、CrおよびMoのうちから選ばれるいずれか1種または2種以上を合計で1.0mass%以下Group A: Any one or two or more selected from Cu, Ni, Cr and Mo are 1.0 mass% or less in total.
B群:Nb、Ti、VおよびBのうちから選ばれるいずれか1種または2種以上を合計で0.1mass%以下Group B: Any one or more selected from Nb, Ti, V and B in total 0.1 mass% or less
上記鋼スラブが、上記成分組成に加えてさらに、In addition to the component composition, the steel slab is further
Ca,REMの1種または2種を合計で0.0010〜0.010mass%含む成分組成からなることを特徴とする請求項5または6に記載の冷延鋼板の製造方法。The method for producing a cold-rolled steel sheet according to claim 5 or 6, comprising a component composition containing 0.0010 to 0.010 mass% of one or two of Ca and REM in total.
C:0.01〜0.15mass%、
Si:0.1mass%以下、
Mn:3.0mass%以下、
P:0.08mass%以下、
S:0.02mass%以下、
Al:0.02mass%以下、
N:0.0050〜0.0250mass%を含有し、かつ
N(mass%)/Al(mass%)が0.3以上であって、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを、1000℃以上に加熱したのち、仕上圧延出側温度を800℃以上として熱間圧延を行い、650℃以下の温度で巻き取った後、酸洗と冷間圧延を行い、次いで箱焼鈍法により、加熱速度30℃/h以上、最高到達温度900℃以下、冷却速度10℃/h以上とする再結晶焼鈍を行って冷延鋼板とし、次いでめっき処理を施すことを特徴とする歪時効硬化特性に優れ室温時効劣化のない冷延めっき鋼板の製造方法。
C: 0.01-0.15 mass%,
Si: 0.1 mass% or less,
Mn: 3.0 mass% or less,
P: 0.08 mass% or less,
S: 0.02 mass% or less,
Al: 0.02 mass% or less,
N: A steel slab containing 0.0050 to 0.0250 mass%, N (mass%) / Al (mass%) being 0.3 or more , and the balance being a composition composed of Fe and inevitable impurities Is heated to 1000 ° C. or higher, hot rolled at a finish rolling exit temperature of 800 ° C. or higher, wound at a temperature of 650 ° C. or lower, pickled and cold rolled, and then box annealed. Is subjected to recrystallization annealing at a heating rate of 30 ° C./h or higher, a maximum achieved temperature of 900 ° C. or lower, and a cooling rate of 10 ° C./h or higher to form a cold-rolled steel sheet, and then subjected to plating treatment. A method for producing cold-rolled steel sheets with excellent properties and no aging deterioration at room temperature.
上記鋼スラブが、上記成分組成に加えてさらに、下記A群および/またはB群を含む成分組成からなることを特徴とする請求項8に記載の冷延めっき鋼板の製造方法。The said steel slab consists of a component composition containing the following A group and / or B group in addition to the said component composition, The manufacturing method of the cold-rolled plated steel plate of Claim 8 characterized by the above-mentioned.
                        Record
A群:Cu、Ni、CrおよびMoのうちから選ばれるいずれか1種または2種以上を合計で1.0mass%以下Group A: Any one or two or more selected from Cu, Ni, Cr and Mo are 1.0 mass% or less in total.
B群:Nb、Ti、VおよびBのうちから選ばれるいずれか1種または2種以上を合計で0.1mass%以下Group B: Any one or more selected from Nb, Ti, V and B in total 0.1 mass% or less
上記鋼スラブが、上記成分組成に加えてさらに、Ca,REMの1種または2種を合計で0.0010〜0.010mass%含む成分組成からなることを特徴とする請求項8または9に記載の冷延めっき鋼板の製造方法。The said steel slab consists of a component composition which further contains 0.0010-0.010 mass% of 1 type or 2 types of Ca and REM in addition to the said component composition in total. Manufacturing method of cold rolled galvanized steel sheet.
JP2001250101A 2001-08-21 2001-08-21 Cold-rolled steel sheet, cold-rolled steel sheet having excellent strain age hardening characteristics and no room temperature aging deterioration, and methods for producing them Expired - Fee Related JP4622187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001250101A JP4622187B2 (en) 2001-08-21 2001-08-21 Cold-rolled steel sheet, cold-rolled steel sheet having excellent strain age hardening characteristics and no room temperature aging deterioration, and methods for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001250101A JP4622187B2 (en) 2001-08-21 2001-08-21 Cold-rolled steel sheet, cold-rolled steel sheet having excellent strain age hardening characteristics and no room temperature aging deterioration, and methods for producing them

Publications (2)

Publication Number Publication Date
JP2003064446A JP2003064446A (en) 2003-03-05
JP4622187B2 true JP4622187B2 (en) 2011-02-02

Family

ID=19078990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001250101A Expired - Fee Related JP4622187B2 (en) 2001-08-21 2001-08-21 Cold-rolled steel sheet, cold-rolled steel sheet having excellent strain age hardening characteristics and no room temperature aging deterioration, and methods for producing them

Country Status (1)

Country Link
JP (1) JP4622187B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5035268B2 (en) * 2003-04-16 2012-09-26 Jfeスチール株式会社 High tensile cold-rolled steel sheet
DE102004044022A1 (en) * 2004-09-09 2006-03-16 Salzgitter Flachstahl Gmbh Well-tempered, unalloyed or microalloyed bake-hardening rolled steel and process for its preparation
JP4853325B2 (en) * 2007-02-23 2012-01-11 Jfeスチール株式会社 Thin wall cold-rolled steel sheet for drums and method for producing the same
JP5018900B2 (en) * 2010-01-15 2012-09-05 Jfeスチール株式会社 Cold-rolled steel sheet excellent in formability and shape freezing property after aging and method for producing the same
JP5660291B2 (en) * 2010-07-29 2015-01-28 Jfeスチール株式会社 High strength cold-rolled thin steel sheet with excellent formability and method for producing the same
KR101523860B1 (en) * 2010-11-22 2015-05-28 신닛테츠스미킨 카부시키카이샤 Steel sheet of strain aging hardening type with excellent aging resistance after paint baking and process for producing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107186A (en) * 1999-08-05 2001-04-17 Kawasaki Steel Corp High strength steel sheet for can and its producing method
JP2001107187A (en) * 1999-08-04 2001-04-17 Kawasaki Steel Corp High strength steel sheet for can and its producing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107187A (en) * 1999-08-04 2001-04-17 Kawasaki Steel Corp High strength steel sheet for can and its producing method
JP2001107186A (en) * 1999-08-05 2001-04-17 Kawasaki Steel Corp High strength steel sheet for can and its producing method

Also Published As

Publication number Publication date
JP2003064446A (en) 2003-03-05

Similar Documents

Publication Publication Date Title
KR100611541B1 (en) Cold-rolled steel sheet having excellent strain aging hardening properties and method for producing the same
EP2589677B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing same
JP4265545B2 (en) High tensile cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP4730056B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability
JP3846206B2 (en) High tensile cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP5310919B2 (en) Method for producing high-strength cold-rolled steel sheets with excellent aging resistance and seizure curability
CN113348259B (en) High-strength hot-dip galvanized steel sheet and method for producing same
JP3812279B2 (en) High yield ratio type high-tensile hot dip galvanized steel sheet excellent in workability and strain age hardening characteristics and method for producing the same
JP5272412B2 (en) High strength steel plate and manufacturing method thereof
JP4839527B2 (en) Cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP4665302B2 (en) High-tensile cold-rolled steel sheet having high r value, excellent strain age hardening characteristics and non-aging at room temperature, and method for producing the same
JP2003313636A (en) Hot-dipped steel sheet with high ductility and high strength, and manufacturing method therefor
JP4513552B2 (en) High-tensile hot-rolled steel sheet excellent in bake hardenability and room temperature aging resistance and method for producing the same
JP4622187B2 (en) Cold-rolled steel sheet, cold-rolled steel sheet having excellent strain age hardening characteristics and no room temperature aging deterioration, and methods for producing them
JP5035268B2 (en) High tensile cold-rolled steel sheet
JP2018003114A (en) High strength steel sheet and manufacturing method therefor
JP4519373B2 (en) High-tensile cold-rolled steel sheet excellent in formability, strain age hardening characteristics and room temperature aging resistance, and method for producing the same
JP4556348B2 (en) Ultra-high strength hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP5310920B2 (en) High strength cold-rolled steel sheet with excellent aging resistance and seizure hardening
JP6947327B2 (en) High-strength steel sheets, high-strength members and their manufacturing methods
JP4367205B2 (en) Strain aging treatment method for steel sheet and method for producing high-strength structural member
JP4292986B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP2018003115A (en) High strength steel sheet and manufacturing method therefor
JP2004218018A (en) High-strength cold-rolled steel sheet which is excellent in workability and strain age-hardening property, high-strength plated steel sheet and their production methods
JP2003089847A (en) Hot rolled steel sheet having excellent stretch flanging workability, galvanized steel sheet, and their production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees