WO2009107856A1 - Cold-rolled steel sheet and process for production thereof - Google Patents

Cold-rolled steel sheet and process for production thereof Download PDF

Info

Publication number
WO2009107856A1
WO2009107856A1 PCT/JP2009/054102 JP2009054102W WO2009107856A1 WO 2009107856 A1 WO2009107856 A1 WO 2009107856A1 JP 2009054102 W JP2009054102 W JP 2009054102W WO 2009107856 A1 WO2009107856 A1 WO 2009107856A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
cold
hardness
rolling
Prior art date
Application number
PCT/JP2009/054102
Other languages
French (fr)
Japanese (ja)
Inventor
妻鹿哲也
中村展之
小林崇
長滝康伸
壁谷隆昌
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN2009801067082A priority Critical patent/CN101960036B/en
Priority to KR1020137003774A priority patent/KR20130032393A/en
Priority to MX2010009448A priority patent/MX2010009448A/en
Priority to US12/919,780 priority patent/US20110048588A1/en
Publication of WO2009107856A1 publication Critical patent/WO2009107856A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races

Definitions

  • the present invention relates to a cold rolled copper plate excellent in strength, punching workability, and heat deformation resistance, which is suitable for use in a clutch plate, a sink port nizer ring, a clutch disk, and the like, which are mechanical parts for automobile transmissions, and a method for producing the same. It is about. Background art
  • Automobile transmissions are composed of clutch plates, synchronizer rings, clutch discs, etc., and transmit driving force and absorb heat generated by friction. Such parts are manufactured by punching steel plates into a ring.
  • the transmission has a structure that transmits torque by stacking many such ring-shaped plates, and its functions require wear resistance and flatness of the plates. Therefore, the required properties of the steel sheet, which is the raw material, are required to be excellent in hardness, properties during punching (perforated surface properties such as flatness and burrs), and small deformation during heating, that is, excellent heat resistance.
  • S 3 5 C cold-rolled steel sheets are mainly used among machine structural steels specified in JISG 3 3 1 1. It was.
  • This S 3 5 C cold-rolled steel sheet is manufactured in the process of “slab ⁇ hot rolling ⁇ pickling ⁇ annealing ⁇ cold rolling”.
  • S 3 5 C cold-rolled steel sheet contains a lot of C (about 0.35% by mass), so the hot-rolled copper sheet has high hardness, so it aims to spheroidize and soften the carbide before cold rolling. Therefore, annealing for a long time of several hours or more is essential. Therefore, it is very disadvantageous in terms of cost for automobile parts that require low prices.
  • Patent Document 1 discloses a technique that omits annealing of a hot-rolled steel sheet before cold rolling.
  • a hot-rolled steel sheet with a softness with C of 0.25 mass% or less Cold rolled steel sheets for AT clutch plates have been proposed that have the desired hardness and surface roughness and are excellent in wear resistance and punchability by cold rolling.
  • the properties of the punched end face of the copper plate deteriorate significantly during the punching process, and when the temperature rises, thermal distortion occurs and the flatness of the ring-shaped product There was a problem that the remarkably decreased.
  • Patent Document 2 as a technique for improving the residual stress after cold rolling described above, a steel sheet after cold rolling is further used with a large roll having a roll diameter of 300 mm or more and a reduction ratio of about 1%.
  • a cold-rolled copper sheet for AT clutch plates has been proposed in which residual stress is reduced by rolling down.
  • the difference in strain introduced between the front and back surfaces of the steel sheet is reduced, which improves the properties of the punched end face during press punching, but does not release the residual stress inside the copper plate. Deformation due to thermal strain was inevitable when the temperature rose, and the flatness of the ring-shaped product was remarkably lowered.
  • Patent Document 3 proposes a steel plate for an AT clutch plate that has been subjected to steel plate surface roughness adjustment processing such as pickling to optimize the surface roughness and is excellent in adhesion to a friction material. After hot rolling and pickling, this sheet is preferably annealed at 500 to 8003 ⁇ 4 for 3 hours or more to spheroidize the carbide, and then after temper rolling or cold rolling at a rolling reduction of 1% or more, the surface roughness of the steel sheet Although the adjustment process is performed, the remarkable decrease in the flatness of the ring-shaped product due to the residual stress after cold rolling has not been solved as in Patent Document 1 and Patent Document 2.
  • Patent Document 1 JP 2003-277883 A
  • Patent Document 2 JP 2005-200712 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-107722 Disclosure of Invention
  • the present invention advantageously solves the above-mentioned problems, has high hardness suitable for use in clutch plates, rings, clutch disks, etc., and also has end face properties during punching and flatness when temperature rises.
  • the object is to provide an excellent cold-rolled steel sheet together with its advantageous manufacturing method.
  • annealing is performed after cold rolling to reduce residual strain.
  • An open cold-rolled annealed plate may be used as the material.
  • the required hardness cannot be obtained.
  • the inventors have intensively studied to solve this problem, and as a result, the steel structure does not become a complete recrystallized structure by annealing after cold rolling, but a part of the unrecrystallized structure remains.
  • problems caused by residual strain that is, deterioration of end face properties during punching and deterioration of flatness due to thermal strain during temperature rise The knowledge that it is reduced is obtained.
  • the present invention was developed after various studies based on the above findings.
  • the gist of the present invention is as follows.
  • the balance is the composition of Fe and inevitable impurities, the ferrite average grain size is 2-10 / m, and the unrecrystallized rate is 25% or more and 90% or less.
  • the slab balance consisting Fe and inevitable impurities, finishing temperature: hot rolling at Ar 3 transformation point or more, ⁇ temperature taken plated at a temperature of at 580-750, followed A method for producing a cold-rolled steel sheet, characterized by cold rolling at a reduction ratio of 65% or more after pickling and then annealing at a temperature of 680 or less by continuous annealing.
  • Average ferrite particle diameter 2 to 10 / z m
  • the average ferrite grain size is in an appropriate range. If the average ferrite grain size exceeds 10 / z m, the desired hardness cannot be obtained. On the other hand, if it is less than 2 / z m, the hardness is excessively increased and the press punchability is reduced.
  • the preferred ferrite average particle size is in the range of 4-8 / zm. ,
  • the average ferrite grain size is obtained in accordance with the cutting method described in JIS G 0551 (Appendix) by observing the thickness cross section in the rolling direction of the copper plate.
  • Non-recrystallization rate 25% or more and 90% or less
  • the greatest feature of the cold-rolled steel sheet of the present invention is that it has a partially recrystallized structure composed of an unrecrystallized structure and a recrystallized structure.
  • a partially recrystallized structure composed of an unrecrystallized structure and a recrystallized structure.
  • the ratio of the unrecrystallized structure to the recrystallized structure is important in order to combine high hardness, punching workability, and heat distortion resistance.
  • the non-recrystallization rate in order to obtain a desired hardness due to the effect of rolling strain, the non-recrystallization rate must be 25% or more. However, when the non-recrystallization rate exceeds 90%, the recrystallized grains are remarkably reduced, punching workability is deteriorated, and the residual stress is excessively increased to deteriorate the flatness. 90% or less. More preferably, it is in the range of 40% to 80%.
  • the non-recrystallization rate can be determined by observing the thickness cross section in the rolling direction of the steel sheet, obtaining the ratio (area ratio) of the non-recrystallized structure in the entire structure, and setting this as the non-recrystallized ratio. .
  • the amount of C is an important element from the viewpoint of the hardness and wear resistance of cold-rolled steel sheets, and both hardness and wear resistance increase as the C content increases. Therefore, the desired hardness and wear resistance can be obtained. Therefore, the amount of C should be 0.01% or more.
  • the C content exceeds 0.15%, the punching workability deteriorates.
  • the deformation strain difference between the front and back during punching increases, and the deformation due to thermal strain increases as the temperature rises, so the flatness of the punched material deteriorates. Therefore, the amount of C is limited to the range of 0.01 to 0.15%.
  • a preferable amount of C is in the range of 0.05 to 0.15%, and more preferably in the range of 0.10 to 0.15%.
  • the Si amount is limited to 0.03% or less. Preferably, it is 0.02% or less, and may be 0%. In the current refinement technology, the lower limit of the Si content is about 0.005% without a significant increase in steelmaking costs.
  • Mn is an element that has the effect of fixing S as an impurity in steel as precipitates (MnS) and reducing the adverse effects caused by S.
  • the Mn content must be 0.10% or more.
  • the amount of Mn exceeds 0.70%, the hardness of the steel sheet excessively increases and the punching processability is lowered. This is because Mn strengthens the steel by solid solution strengthening.
  • the Mn content exceeds 0.70%, defects due to scale are likely to occur on the surface of the hot-rolled steel sheet, and even if pickling is performed after hot rolling, the scale can be completely removed. It becomes difficult.
  • the amount of Mn was limited to the range of 0.10 to 0.70%.
  • the Mn content is preferably 0.50% or less, and a more preferable Mn content is in the range of 0.20 to 0.50%.
  • P is an element that strengthens steel by solid solution strengthening. However, if the P content exceeds 0.025%, it may cause slab cracking and surface defects on the steel sheet. In addition, the hardness of the steel is significantly increased, and punching workability deteriorates. Therefore, the P content is limited to 0.025% or less. The preferred amount of P is 0.023% or less. When the amount of P is less than 0.01%, the effect on strengthening is poor, so 0.01% or more is preferable.
  • S is an element present as an impurity in steel.
  • S when S exceeds 0.025%, coarse inclusions are formed, starting from this, causing work cracks, leading to a significant decrease in punching workability.
  • S also affects the scale peelability of hot-rolled steel sheets. If the amount of S exceeds 0.025%, the surface properties after pickling deteriorate, and as a result, the steel sheet after cold rolling is annealed. The surface roughness is also roughened. Therefore, the S content is limited to 0.025% or less. Preferably, it is 0.020% or less.
  • A1 is an element to be included for deoxidation of steel. If the amount of A1 is less than 0.01%, a sufficient deoxidation effect cannot be obtained. On the other hand, even if the amount of A1 exceeds 0.05%, the deoxidation effect is saturated. Therefore, the amount of A1 was limited to a range of 0.01 to 0.05%. A preferable amount of A1 is in the range of 0.03 to 0.05%. N: 0.008% or less
  • N is an element present in copper as an impurity. If the amount of N exceeds 0.008%, the steel sheet is excessively hardened and the punching workability is lowered. Therefore, the N content is limited to 0.008% or less. Preferably, it is 0.005% or less.
  • elements that greatly affect the hardness of the copper plate are C, Mn, and P, and this C * is an index of hardness in the steel plate of the present invention.
  • C * is an index of hardness in the steel plate of the present invention.
  • HRB hardness
  • the condition of the above formula (1) is satisfied for C *.
  • the components other than the above are Fe and inevitable impurities. However, as long as the effects of the present invention are not impaired, the inclusion of components other than those described above is not rejected. Next, the reason why the hardness and surface roughness of the steel sheet are limited as described above in the present invention will be described.
  • Transmission has a structure that transmits torque by stacking a number of steel plates punched into a ring. Accordingly, the steel sheet used is required to have wear resistance, and a hardness (HRB) that can ensure the wear resistance: 83 or more is required. When the hardness is less than 83 HRB, a decrease in wear resistance becomes a problem, so it is necessary to set it to 83 HRB or more. If the hardness exceeds 95 HRB, defects in the punching shape and cracks and cracks occur in the steel plate during punching.
  • the surface roughness is small.
  • the surface roughness is 0.3 / xm or less in terms of arithmetic average roughness Ra.
  • the lower limit of the surface roughness that can be achieved without significantly increasing the manufacturing cost is about 0.1 l jt m at the current technical level.
  • the slab with the above composition is hot-rolled at a finishing temperature of Ar 3 transformation point or higher, the cutting temperature is 580 to 750 ° C, and the hot-rolled steel sheet is pickled and then reduced.
  • Rate After cold rolling at 65% or more, annealing is performed at a temperature of 6803 ⁇ 4 or less in a continuous annealing furnace.
  • slab melting and forging are preferably performed using a converter and a continuous forging machine.
  • the finishing temperature In hot rolling, the finishing temperature needs to be higher than the Ar 3 transformation point in view of the quality of hot-rolled steel sheet and the efficiency of hot rolling.
  • the finishing temperature When the finishing temperature is lower than the Ar 3 transformation point, the ferrite transformation in the hot-rolled steel sheet is promoted, and coarse grains are formed on the surface layer, resulting in a problem that the hardness is lowered.
  • Subsequent scraping requires the scraping temperature to be in the range of 580 to 7503 ⁇ 4.
  • the temperature is less than 580 ° C, the crystal grains become excessively fine and the hot-rolled steel sheet becomes hard due to cooling strain, resulting in cooling. Impairs hot rolling property.
  • a preferred scraping temperature is in the range of 600-720 ° C.
  • the Ar 3 transformation point can be obtained by thermal expansion measurement using a differential thermal dilatometer or the like.
  • the hot-rolled copper sheet is pickled according to a conventional method, removed from the scale of the steel sheet surface, and then subjected to cold rolling. The rolling reduction of cold rolling needs to be 65% or more.
  • the upper limit of the rolling reduction is not particularly limited. However, when cold rolling is performed at a high rolling reduction exceeding 85%, the shape of the steel sheet after rolling is reduced, the thickness accuracy is lowered, and cold rolling is performed. There is a concern that productivity will decrease due to excessive rolling load on the mill. Therefore, the rolling reduction is preferably 85% or less.
  • Cold-rolled steel sheets are annealed in a continuous annealing furnace.
  • it is particularly important to perform annealing at a temperature lower than the recrystallization completion temperature after cold rolling.
  • the annealing temperature exceeds the recrystallization completion temperature, the yarn after annealing! ; Almost 100% of the weave becomes a recrystallized structure, so the rolling strain introduced during cold rolling disappears. Therefore, the desired high hardness cannot be obtained. Therefore, by setting the annealing temperature below the recrystallization completion temperature, a partially recrystallized structure in which unrecrystallized grains and recrystallized grains are mixed can be obtained.
  • the ratio of the unrecrystallized ratio is determined by the annealing temperature, and the unrecrystallized ratio can be 25% or more by setting the annealing temperature to 680 or less.
  • the lower limit of the annealing temperature is not particularly limited, but is preferably 500 ° C. or more from the viewpoint of the temperature and atmosphere controllability and productivity of the continuous furnace.
  • the cooling rate after annealing is not particularly limited, but is preferably about 5 to 25 ° C / s.
  • the heat treatment is performed in the temperature range of 320 to 420. This means that the shape stability of the steel sheet and the surface roughness adjustment during temper rolling when temper rolling is applied. Is advantageous.
  • the unrecrystallized rate can be adjusted as appropriate according to the annealing temperature.
  • the relationship between the unrecrystallized rate and the annealing temperature is, for example, the apparent unrecrystallized rate determined as follows and the unrecrystallized rate.
  • a relationship with the annealing temperature for obtaining the above is obtained in advance, and based on this relationship, the annealing temperature for obtaining a desired non-recrystallization rate may be adjusted.
  • the hardness of the steel sheet that has been cold-rolled and water-quenched after the cold-rolled steel sheet is measured in order to exclude hardness fluctuations due to the cooling conditions after annealing. Is preferred.
  • the relationship between the apparent non-recrystallization rate and the steel plate hardness obtained as described above is obtained in advance, and based on this relationship, the apparent non-recrystallization rate is obtained from the hardness of the steel plate after annealing. It is also possible to estimate the unrecrystallization rate of the copper plate.
  • the cold-rolled steel sheet after annealing may be lightly rolled by temper rolling. This is to adjust the surface roughness and further improve the hardness.
  • the rolling rate is preferably 2% or more in terms of elongation.
  • the upper limit of the rolling rate is not particularly limited, but if the rolling rate is excessively high, the shape of the copper plate varies. Considering the ability of a rolling mill for temper rolling, the rolling rate is preferably 5% or less in terms of elongation.
  • the copper plate was cooled at a rate of 10 / s, then kept at 320 to 420 for 2.5 minutes, and then cooled to room temperature. Furthermore, in the temper rolling line, rolling was performed under a light reduction at a rolling rate (elongation rate) of 3.0%.
  • Table 1 shows the results of examining the ferrite average grain size, non-recrystallization ratio, surface roughness, hardness, punching workability, and heat deformation resistance of the steel sheet thus obtained.
  • Each survey item was measured by the following method.
  • the non-recrystallized ratio was obtained by observing the sheet thickness cross section in the rolling direction at a magnification of 800 times to obtain the area ratio of the non-recrystallized structure, which was defined as the non-recrystallized ratio.
  • a sample having a size of 20 X 60 imn was cut out from the steel sheet and measured according to the Rockwell hardness test method specified in JIS Z 2245. The measurement was performed at 10 points on the B scale, and the average value was taken as the hardness.
  • the same ring-shaped test piece that was evaluated for punching workability was heated at 300 for 30 minutes and then evaluated by the amount of warpage of the test piece when air-cooled to room temperature. A warp amount of 0.1 or less is good.
  • the amount of warpage was measured as follows. Heat and air-cooled test material is polished on both sides with # 800 or more emery single abrasive paper, then placed on a surface plate and measured using a contact-type height gauge to measure the height of 10 points in the circumferential direction. The difference from the plate thickness at the same location measured with a meter was determined, and the maximum value was taken as the amount of warpage.
  • a slab having the composition shown in Table 2 was heated to 1250 ° C, hot-rolled at the finishing temperature shown in Table 3, cooled on a run-out table, and scraped at 650.
  • the thickness of the hot-rolled steel sheet was 3-10 mm.
  • the scale was removed by pickling, and then cold-rolled at a reduction ratio in the range of 50 to 80% to obtain a cold rolled steel sheet having a thickness of 1.5 thighs.
  • After degreasing the cold-rolled steel sheet it was annealed in a continuous annealing furnace.
  • the annealing temperature was set at various temperatures below 680, and the annealing time was 1 minute.
  • the copper plate was cooled at a rate of 10 / s, then kept at a temperature range of 320 to 420 ° C for 2.5 minutes, and then cooled to room temperature. Furthermore, in the temper rolling line, the rolling rate (stretching rate) is in the range of 0 to 3.5%.
  • the Ar 3 transformation point shown in Table 2 is the differential thermal dilatometer for specimens taken from each copper slab, heated at 1250 for 30 minutes and then cooled at a cooling rate of 1 ° C / second. Measured with
  • Table 3 shows the results of examining the average grain size, non-recrystallization ratio, surface roughness, hardness (HRB), punching workability and heat distortion resistance of the steel plates obtained by strengthening.
  • the finishing temperature during hot rolling As shown in Table 3, in the copper types A, I and J, which are invention steels, the finishing temperature during hot rolling, the rolling reduction during cold rolling, the annealing temperature, and the rolling rate during temper rolling (elongation rate)
  • the rolling rate during temper rolling elongation rate
  • (HRB (H)) ' Rockwell hardness (B scale) of a steel plate that does not contain any recrystallized structure.
  • (HRB (S))' and (HRB (H)) ' are obtained as follows. It was. The pre-annealed cold-rolled steel sheet was heated at 580 and 780 for 100 seconds or less, then water-quenched, and the hardness (HRB) measurement and microstructure observation were performed on each sample. The sample with a heating temperature of 580 was confirmed to contain no recrystallized structure, and the hardness (HRB) was measured to give (HRB (H)) '.
  • the hardness (HR B) was measured after confirming that it had a completely recrystallized structure, and was set as (HRB (S)) '.
  • Industrial applicability in accordance with the present invention, by adjusting the copper component, and by making the steel structure a partially recrystallized structure, it is suitable for use in components of automobile transmissions such as clutch plates, with high strength (high hardness). A cold-rolled sheet having excellent punchability and heat distortion resistance can be obtained. According to the present invention, annealing after cold rolling can be performed in a short time of less than 1 hour, and can be performed in a continuous annealing furnace with extremely high production efficiency. It can be manufactured without incurring uplift, and is therefore suitable for use in auto parts with severe price competition.

Abstract

A cold-rolled steel sheet which has high hardness and exhibits excellent edge properties in blanking and excellent flatness even at enhanced temperatures and which is suitable for use in a clutch plate or ring, a clutch disc, or the like. A cold-rolled steel sheet which has both a composition containing by mass C: 0.01 to 0.15%, Si: 0.03% or less, Mn: 0.10 to 0.70%, P: 0.025% or less, S: 0.025% or less, Al: 0.01 to 0.05% and N: 0.008% or less and satisfying the relationship: (C%) + 0.15×(Mn%) + 0.85×(P%) > 0.21 with the balance consisting of Fe and unavoidable impurities, and a partially recrystallized structure having a mean ferrite grain diameter of 2 to 10μm and a degree of unrecrystallization of 25 to 90% and which exhibits Rockwell hardness (HRB) of 83 or above by virtue of the composition and the structure.

Description

明細書 冷延鋼板およびその製造方法 技術分野  Technical field
本発明は、 自動車用トランスミツションの機械部品であるクラッチプレートゃシンク 口ナイザーリング、 クラッチディスク等に用いて好適な、 強度と打ち抜き加工性および 耐熱変形性に優れた冷延銅板およびその製造方法に関するものである。 背景技術  The present invention relates to a cold rolled copper plate excellent in strength, punching workability, and heat deformation resistance, which is suitable for use in a clutch plate, a sink port nizer ring, a clutch disk, and the like, which are mechanical parts for automobile transmissions, and a method for producing the same. It is about. Background art
自動車用トランスミッションは、 クラッチプレートやシンクロナイザーリング、 クラ ツチディスクなどから構成されており、 駆動力を伝達するとともに、 摩擦によって発生 する熱を吸収する役目を担っている。 このような部品は、 鋼板をリング状に打ち抜くこ とによって製造される。 トランスミッションは、 このようなリング状のプレートを何枚 も重ねて、 トルクを伝達する構造になっており、 その機能として、 耐摩耗性とプレート の平坦度が要求される。 そのため、 素材である鋼板の必要特性として、 硬度、 打ち抜き 加工時の性状 (平坦度およびバリなどの打ち抜き面性状) および加熱時の変形の少なさ、 すなわち耐熱変形性に優れることなどが求められる。  Automobile transmissions are composed of clutch plates, synchronizer rings, clutch discs, etc., and transmit driving force and absorb heat generated by friction. Such parts are manufactured by punching steel plates into a ring. The transmission has a structure that transmits torque by stacking many such ring-shaped plates, and its functions require wear resistance and flatness of the plates. Therefore, the required properties of the steel sheet, which is the raw material, are required to be excellent in hardness, properties during punching (perforated surface properties such as flatness and burrs), and small deformation during heating, that is, excellent heat resistance.
従来から、 オートマチック トランスミッション (以下、 A Tという) のクラッチプレ ート用素材としては、 J I S G 3 3 1 1に規定される機械構造用鋼のうち、 主に S 3 5 C冷延鋼板が使用されていた。 この S 3 5 C冷延鋼板は、 「スラブ→熱間圧延→酸洗→ 焼鈍→冷間圧延」 の工程で製造される。 S 3 5 C冷延鋼板は、 Cを多く含む (0. 35質 量%程度) ことから、 熱延銅板のままでは硬度が高いため、 冷間圧延前に炭化物の球状 化と軟質化を目的とした、 数時間以上の長時間の焼鈍を必須としている。 従って、 低価 格が要求される自動車部品においては、 コスト的に非常に不利になっている。  Conventionally, as a material for clutch plates of automatic transmissions (hereinafter referred to as AT), S 3 5 C cold-rolled steel sheets are mainly used among machine structural steels specified in JISG 3 3 1 1. It was. This S 3 5 C cold-rolled steel sheet is manufactured in the process of “slab → hot rolling → pickling → annealing → cold rolling”. S 3 5 C cold-rolled steel sheet contains a lot of C (about 0.35% by mass), so the hot-rolled copper sheet has high hardness, so it aims to spheroidize and soften the carbide before cold rolling. Therefore, annealing for a long time of several hours or more is essential. Therefore, it is very disadvantageous in terms of cost for automobile parts that require low prices.
特許文献 1には、 冷間圧延前の熱延鋼板の焼鈍を省略する技術が開示されている。 す なわち、 Cを 0. 25質量%以下として軟質性をもたせた熱延鋼板を、 圧下率: 50%以上で 冷間圧延することにより、 所望の硬度と表面粗さを確保した、 耐摩耗性と打ち抜き加工 性に優れる A Tクラッチプレート用の冷延鋼板が提案されている。 し力 し、 このような 銅板は、 冷間圧延時の残留応力により、 打ち抜き加工時に打ち抜き端面の性状が著しく 劣化し、 また、 温度が上昇した場合、 熱歪みが生じ、 リング状製品の平坦度が著しく低 下するという問題があった。 Patent Document 1 discloses a technique that omits annealing of a hot-rolled steel sheet before cold rolling. In other words, a hot-rolled steel sheet with a softness with C of 0.25 mass% or less, Cold rolled steel sheets for AT clutch plates have been proposed that have the desired hardness and surface roughness and are excellent in wear resistance and punchability by cold rolling. However, due to the residual stress during cold rolling, the properties of the punched end face of the copper plate deteriorate significantly during the punching process, and when the temperature rises, thermal distortion occurs and the flatness of the ring-shaped product There was a problem that the remarkably decreased.
特許文献 2には、 上記した冷間圧延後の残留応力を改善する技術として、 冷間圧延後 の鋼板にさらに、 ロール径: 300瞧以上の大ロールを用いて圧下率: 1 %程度の軽圧下圧 延を施すことによって、 残留応力を低減した A Tクラッチプレート用冷延銅板が提案さ れている。 し力 sし、 この方法では、 鋼板表裏に導入された歪みの差が低減されるため、 プレス打ち抜き加工時における打抜き端面の性状は改善されるものの、 銅板内部におけ る残留応力は開放されないため、 温度上昇時に熱歪みによる変形が避けられず、 リング 状製品の平坦度が著しく低下することに変わりはなかった。  In Patent Document 2, as a technique for improving the residual stress after cold rolling described above, a steel sheet after cold rolling is further used with a large roll having a roll diameter of 300 mm or more and a reduction ratio of about 1%. A cold-rolled copper sheet for AT clutch plates has been proposed in which residual stress is reduced by rolling down. In this method, the difference in strain introduced between the front and back surfaces of the steel sheet is reduced, which improves the properties of the punched end face during press punching, but does not release the residual stress inside the copper plate. Deformation due to thermal strain was inevitable when the temperature rose, and the flatness of the ring-shaped product was remarkably lowered.
特許文献 3には、 酸洗等の鋼板表面粗度調整処理を行い、 表面粗さを最適にした、 摩 擦材との接着性に優れた ATクラッチプレート用鋼板が提案されている。 この 板は、 熱間圧延、 酸洗後、 好ましくは炭化物を球状化するため 500〜800¾で 3時間以上焼鈍し、 ついで圧下率 1 %以上で調質圧延もしくは冷間圧延後、 鋼板表面粗度調整処理を行うも のであるが、 冷間圧延後の残留応力に起因したリング状製品の平坦度の著しい低下は、 特許文献 1および特許文献 2と同様に解決されていなかった。  Patent Document 3 proposes a steel plate for an AT clutch plate that has been subjected to steel plate surface roughness adjustment processing such as pickling to optimize the surface roughness and is excellent in adhesion to a friction material. After hot rolling and pickling, this sheet is preferably annealed at 500 to 800¾ for 3 hours or more to spheroidize the carbide, and then after temper rolling or cold rolling at a rolling reduction of 1% or more, the surface roughness of the steel sheet Although the adjustment process is performed, the remarkable decrease in the flatness of the ring-shaped product due to the residual stress after cold rolling has not been solved as in Patent Document 1 and Patent Document 2.
特許文献 1 :特開 2003-277883号公報  Patent Document 1: JP 2003-277883 A
特許文献 2 :特開 2005-200712号公報  Patent Document 2: JP 2005-200712 A
特許文献 3 :特開 2004-107722号公報 発明の開示  Patent Document 3: Japanese Patent Laid-Open No. 2004-107722 Disclosure of Invention
本発明は、 上記の問題を有利に解決するもので、 クラッチプレート、 リング、 クラッ チディスク等に用いて好適な、 高い硬度を備え、 また打ち抜き加工時における端面性状 および温度上昇時における平坦度に優れた冷延鋼板を、 その有利な製造方法と共に提供 することを目的とする。 以下、 本発明の解明経緯について説明する。 The present invention advantageously solves the above-mentioned problems, has high hardness suitable for use in clutch plates, rings, clutch disks, etc., and also has end face properties during punching and flatness when temperature rises. The object is to provide an excellent cold-rolled steel sheet together with its advantageous manufacturing method. Hereinafter, the elucidation process of the present invention will be described.
従来のクラッチプレート用鋼板がもつ残留歪みに起因した弊害を解消するには、 従来の ように冷間圧延のままの鋼板を素材とするのではなく、 冷間圧延後に焼鈍を施して残留 歪みを開放させた冷延焼鈍板を素材とすれば良い。 しかしながら、 焼鈍により完全に再 結晶させた場合には、 必要な硬度を得ることができない。 In order to eliminate the negative effects caused by the residual strain of conventional steel plates for clutch plates, instead of using cold-rolled steel as a raw material as in the past, annealing is performed after cold rolling to reduce residual strain. An open cold-rolled annealed plate may be used as the material. However, when it is completely recrystallized by annealing, the required hardness cannot be obtained.
そこで、 発明者らは、 この問題を解決すべく鋭意検討を重ねた結果、 冷間圧延後の焼 鈍によって鋼組織を完全な再結晶組織とするのではなく、 一部未再結晶組織を残した部 分再結晶組織とすることにより、 所望の硬度を確保した上で、 残留歪みに起因し 問題、 すなわち打ち抜き加工時における端面性状の劣化および温度上昇時の熱歪みに起因した 平坦度の劣化が軽減されることの知見を得た。  Therefore, the inventors have intensively studied to solve this problem, and as a result, the steel structure does not become a complete recrystallized structure by annealing after cold rolling, but a part of the unrecrystallized structure remains. In addition to ensuring a desired hardness by using a partially recrystallized structure, problems caused by residual strain, that is, deterioration of end face properties during punching and deterioration of flatness due to thermal strain during temperature rise The knowledge that it is reduced is obtained.
すなわち、 再結晶組織と未再結晶組織を共存させた場合、 再結晶組織には圧延歪みが 残留していないので、 その分打ち抜き加工時における端面性状の劣化や温度上昇時にお ける平坦度の劣化が軽減され、 また未再結晶組織には圧延歪みが残留しているので、 こ の一部残留歪みと再結晶粒の微細化とが相まつて必要な硬度が確保されることが究明さ れたのである。  In other words, when the recrystallized structure and the non-recrystallized structure coexist, no rolling strain remains in the recrystallized structure. Therefore, the end surface properties deteriorate during punching and the flatness deteriorates when the temperature rises. In addition, since the rolling strain remains in the non-recrystallized structure, it was investigated that this partial residual strain and the refinement of the recrystallized grains together ensure the necessary hardness. It is.
さらに、 鋼板の硬度には、 鋼成分中、 特に C、 Mnおよび Pの寄与が大きく、 これらを 適量含有させることによって、 必要強度が安定して得られることも併せて見出した。  It was also found that the hardness of the steel sheet is greatly influenced by C, Mn and P in the steel components, and that the required strength can be obtained stably by adding appropriate amounts of these.
本発明は、 上記の知見を基に種々研究を重ねた末に開発されたものである。  The present invention was developed after various studies based on the above findings.
本発明の要旨構成は、 次のとおりである。  The gist of the present invention is as follows.
1 . 質量%で、  1. In mass%,
C : 0. 01〜0. 15%、 C: 0.01 to 0.15%,
Si: 0. 03%以下、 Si: 0.03% or less,
Mn: 0. 10〜0. 70%、 Mn: 0.10-10.70%,
P : 0. 025%以下、  P: 0.025% or less,
S : 0. 025%以下、  S: 0.025% or less,
A1: 0. 01〜0. 05%および A1: 0.01-0.05% and
N: 0. 008%以下 を含有し、 かつこれらの成分が、 次式 (1) N: 0.008% or less And these components are represented by the following formula (1)
( C %) + 0.15 X (Mn%) + 0.85 X ( P %)≥ 0.21 ■ · · (1)  (C%) + 0.15 X (Mn%) + 0.85 X (P%) ≥ 0.21
ただし、 (M%)は元素 Mの含有量 (質量%)を示す  However, (M%) indicates the content (mass%) of element M
の関係を満足し、 残部は Feおよび不可避的不純物の組成になり、 フェライト平均粒径が 2〜10/ mで、 未再結晶率が 25%以上 90%以下の部分再結晶組織からなり、 硬度がロッ クゥエル硬さ HRBで 83以上であることを特徴とする冷延銅板。 The balance is the composition of Fe and inevitable impurities, the ferrite average grain size is 2-10 / m, and the unrecrystallized rate is 25% or more and 90% or less. A cold-rolled copper sheet characterized by a Rockwell hardness of at least 83 HRB.
2. 質量%で、 2. Mass%
C: 0.01〜0.15%、 C: 0.01-0.15%,
Si: 0.03%以下、 Si: 0.03% or less,
Mn: 0.10〜0.70%、 Mn: 0.10 to 0.70%,
P: 0.025%以下、 P: 0.025% or less,
S : 0.025%以下、 S: 0.025% or less,
A1: 0.01〜0.05%および A1: 0.01-0.05% and
N: 0.008%以下 N: 0.008% or less
を含有し、 かつこれらの成分が、 次式 (1) . And these components are represented by the following formula (1).
(C%)+0.15X (Mn%)+0.85X (P%)≥0.21 · · · (1)  (C%) + 0.15X (Mn%) + 0.85X (P%) ≥0.21 (1)
ただし、 (M%)は元素 Mの含有量 (質量%)を示す  However, (M%) indicates the content (mass%) of element M
の関係を満足し、 残部は Feおよび不可避的不純物の組成になるスラブを、 仕上げ温度: Ar3変態点以上で熱間圧延し、 卷取温度: 580〜750での温度で卷き取り、 ついで酸洗後、 圧下率: 65%以上で冷間圧延し、 その後、 連続焼鈍により 680 以下の温度で焼鈍するこ とを特徴とする冷延鋼板の製造方法。 図面の簡単な説明 Satisfies the relationship, the slab balance consisting Fe and inevitable impurities, finishing temperature: hot rolling at Ar 3 transformation point or more,卷取temperature taken plated at a temperature of at 580-750, followed A method for producing a cold-rolled steel sheet, characterized by cold rolling at a reduction ratio of 65% or more after pickling and then annealing at a temperature of 680 or less by continuous annealing. Brief Description of Drawings
図 1は、 C* = (C%)+0.15X (Μη%)+0·85Χ (P%)と硬度 (HRB) との関係を示すグ ラフである。 発明を実施するための最良の形態 以下、 本発明を具体的に説明する。 Figure 1 is a graph showing the relationship between C * = (C%) + 0.15X (Μη%) + 0 · 85Χ (P%) and hardness (HRB). BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be specifically described.
まず、 本発明において、 銅板の組織を上記のように限定した理由について述べる。  First, the reason why the structure of the copper plate is limited as described above in the present invention will be described.
フェライト平均粒径: 2 ~10 /z m Average ferrite particle diameter: 2 to 10 / z m
十分な硬度を確保するためにはフェライト平均粒径が適正範囲にあることが必要で、 1 0 /z mを超えるフェライト平均粒径では所望の硬度が得られない。 一方、 2 /z m未満では、 過度に硬度が上昇して、 プレス打抜き性が低下する。 好ましいフェライト平均粒径は、 4〜8 /z mの範囲である。 , ,  In order to ensure sufficient hardness, it is necessary that the average ferrite grain size is in an appropriate range. If the average ferrite grain size exceeds 10 / z m, the desired hardness cannot be obtained. On the other hand, if it is less than 2 / z m, the hardness is excessively increased and the press punchability is reduced. The preferred ferrite average particle size is in the range of 4-8 / zm. ,,
なお、 本発明において、 フェライト平均粒径は、 銅板の圧延方向の板厚断面を観察し、 JIS G 0551 (附属書) に記載の切断法に準拠して求める。  In the present invention, the average ferrite grain size is obtained in accordance with the cutting method described in JIS G 0551 (Appendix) by observing the thickness cross section in the rolling direction of the copper plate.
未再結晶率: 25%以上 90%以下 Non-recrystallization rate: 25% or more and 90% or less
本発明の冷延鋼板は、 未再結晶組織と再結晶組織とからなる部分再結晶組織であるこ とが最大の特徴である。 鋼板の硬度を確保するためには、 冷間圧延時に鋼板に付与され る圧延歪が残存している未再結晶粒を一定量含有させる必要がある。 打ち抜き加工性お ょぴ耐熱変形性を向上させるには再結晶組織も一定量含有させる必要がある。 つまり、 高い硬度と打ち抜き加工性、 耐熱変形性を兼ね備えるためには、 未再結晶組織と再結晶 組織との割合が重要である。  The greatest feature of the cold-rolled steel sheet of the present invention is that it has a partially recrystallized structure composed of an unrecrystallized structure and a recrystallized structure. In order to ensure the hardness of the steel sheet, it is necessary to contain a certain amount of non-recrystallized grains in which the rolling strain applied to the steel sheet during cold rolling remains. In order to improve punching processability and heat deformation resistance, it is necessary to contain a certain amount of recrystallized structure. In other words, the ratio of the unrecrystallized structure to the recrystallized structure is important in order to combine high hardness, punching workability, and heat distortion resistance.
ここで、 圧延歪の効果により所望の硬度を得るためには、 未再結晶率を 25%以上とす る必要がある。 し力 しながら、 未再結晶率が 90%を超えると再結晶粒が著しく減少し、 打ち抜き加工性が劣化するとともに、 残留応力が大きくなりすぎ平坦度も劣化すること から、 未再結晶率は 90%以下とする。 より好ましくは 40%以上 80%以下の範囲である。 なお、 未再結晶率は、 鋼板の圧延方向の板厚断面を観察し、 組織全体に占める未再結 晶組織の占める割合 (面積率) を求めて、 これを未再結晶率とすればよい。  Here, in order to obtain a desired hardness due to the effect of rolling strain, the non-recrystallization rate must be 25% or more. However, when the non-recrystallization rate exceeds 90%, the recrystallized grains are remarkably reduced, punching workability is deteriorated, and the residual stress is excessively increased to deteriorate the flatness. 90% or less. More preferably, it is in the range of 40% to 80%. The non-recrystallization rate can be determined by observing the thickness cross section in the rolling direction of the steel sheet, obtaining the ratio (area ratio) of the non-recrystallized structure in the entire structure, and setting this as the non-recrystallized ratio. .
次に、 本発明において、 鋼板の成分組成を前記のように限定した理由について述べる。 なお、 成分についての 「%」 表示は、 特に断らない限り質量%を意味するものとする。  Next, the reason why the component composition of the steel sheet is limited as described above in the present invention will be described. Unless otherwise specified, the “%” label for ingredients means mass%.
C : 0. 01〜0. 15%  C: 0.01 to 0.15%
Cは、 冷延鋼板の硬度おょぴ耐摩耗性の観点から重要な元素であり、 C量が高くなる と硬度および耐摩耗性がともに上昇する。 従って、 所望の硬度おょぴ耐摩耗性を得るた めに、 C量は 0. 01%以上とする。 一方、 C量が 0. 15%を超えると打ち抜き加工性が劣化 する。 また、 打ち抜き時の表裏の変形歪み差が大きくなり、 さらには、 昇温時に熱歪み による変形が大きくなることから、 打ち抜き材の平坦度が劣化する。 従って、 C量は、 0. 01〜0. 15%の範囲に限定した。 好ましい C量は、 0. 05~0. 15%の範囲であり、 より好ま しくは 0. 10〜0. 15%の範囲である。 C is an important element from the viewpoint of the hardness and wear resistance of cold-rolled steel sheets, and both hardness and wear resistance increase as the C content increases. Therefore, the desired hardness and wear resistance can be obtained. Therefore, the amount of C should be 0.01% or more. On the other hand, when the C content exceeds 0.15%, the punching workability deteriorates. In addition, the deformation strain difference between the front and back during punching increases, and the deformation due to thermal strain increases as the temperature rises, so the flatness of the punched material deteriorates. Therefore, the amount of C is limited to the range of 0.01 to 0.15%. A preferable amount of C is in the range of 0.05 to 0.15%, and more preferably in the range of 0.10 to 0.15%.
Si: 0. 03%以下 Si: 0.03% or less
Si量が 0. 03%を超えると、 熱延銅板の表面にスケール起因の欠陥が発生しやすく、 ま た、 熱間圧延後に酸洗を行っても、 スケールを完全に除去することが困難となる。 この ため、 熱延銅板表面にスケールに起因する欠陥が発生しやすく、 鋼板の表面状態を悪化 させ、 その結果、 冷間圧延後の焼鈍済み鋼板の表面性状にも悪影響を与える。 従って、 S i量は 0. 03%以下に限定した。 好ましくは、 0. 02%以下であり、 0 %であってもよい。 なお、 現状の精鍊技術では著しい製綱コストの上昇を伴わない Si量の下限は 0. 005%程 度である。  If the amount of Si exceeds 0.03%, defects due to scale are likely to occur on the surface of the hot-rolled copper sheet, and it is difficult to completely remove the scale even after pickling after hot rolling. Become. For this reason, defects due to scale are likely to occur on the surface of the hot-rolled copper sheet, deteriorating the surface condition of the steel sheet, and as a result, adversely affecting the surface properties of the annealed steel sheet after cold rolling. Therefore, the Si amount is limited to 0.03% or less. Preferably, it is 0.02% or less, and may be 0%. In the current refinement technology, the lower limit of the Si content is about 0.005% without a significant increase in steelmaking costs.
Mn: 0. 10〜0. 70% Mn: 0.10-10.70%
Mnは、 鋼中に不純物として存在する Sを析出物 (MnS)として固定し、 Sに起因する悪影 響を低減する作用を有する元素である。 この効果を得るためには、 Mn量を 0. 10%以上と する必要がある。 一方、 Mn量が 0. 70%を超えると、 鋼板の硬度が過度に上昇して打ち抜 き加工性の低下を招く。 これは、 Mnが固溶強化により鋼を強化するからである。 また、 M n量が 0. 70%を超えると、 熱延鋼板の表面にスケール起因の欠陥が発生しやすく、 また、 熱間圧延後に酸洗を行っても、 スケールを完全に除去することが困難となる。 その結果、 冷間圧延後の焼鈍済み鋼板の表面性状にも悪影響を与え、 所望の表面粗さが得られない。 従って、 Mn量は、 0. 10〜0. 70%の範囲に限定した。 なお、 Mn量は、 0. 50%以下とするこ とが好ましく、 さらに好ましい Mn量は、 0. 20〜0. 50%の範囲である。  Mn is an element that has the effect of fixing S as an impurity in steel as precipitates (MnS) and reducing the adverse effects caused by S. In order to obtain this effect, the Mn content must be 0.10% or more. On the other hand, if the amount of Mn exceeds 0.70%, the hardness of the steel sheet excessively increases and the punching processability is lowered. This is because Mn strengthens the steel by solid solution strengthening. Also, if the Mn content exceeds 0.70%, defects due to scale are likely to occur on the surface of the hot-rolled steel sheet, and even if pickling is performed after hot rolling, the scale can be completely removed. It becomes difficult. As a result, the surface properties of the annealed steel sheet after cold rolling are also adversely affected, and the desired surface roughness cannot be obtained. Therefore, the amount of Mn was limited to the range of 0.10 to 0.70%. The Mn content is preferably 0.50% or less, and a more preferable Mn content is in the range of 0.20 to 0.50%.
P : 0. 025%以下  P: 0.025% or less
Pは、 固溶強化により鋼を強化する元素である。 し力 し、 P量が 0. 025%を超えると、 スラブ割れや鋼板の表面欠陥の発生原因となる。 また、 鋼の著しい硬度上昇を招き、 打 ち抜き加工性が劣化する。 従って、 P量は、 0. 025%以下に限定した。 好ましい P量は、 0.023%以下である。 なお、 P量が 0.01%未満の場合には、 その強化に及ぼす効果に乏し いので 0.01%以上とすることが好ましい。 P is an element that strengthens steel by solid solution strengthening. However, if the P content exceeds 0.025%, it may cause slab cracking and surface defects on the steel sheet. In addition, the hardness of the steel is significantly increased, and punching workability deteriorates. Therefore, the P content is limited to 0.025% or less. The preferred amount of P is 0.023% or less. When the amount of P is less than 0.01%, the effect on strengthening is poor, so 0.01% or more is preferable.
S : 0.025%以下 S: 0.025% or less
Sは、 鋼中に不純物として存在する元素である。 特に Sが 0.025%を超えて含有される と粗大な介在物を形成し、 それが起点となって加工割れの原因となり、 打ち抜き加工性 の著しい低下を招く。 また、 Sは、 熱延鋼板のスケール剥離性にも影響を及ぼし、 S量 が 0.025%を超えると、 酸洗後の表面性状が劣化して、 その結果、 冷間圧延後の焼鈍済み 鋼板の表面粗さも粗くなる。 従って、 S量は 0.025%以下に制限した。 好ましくは、 0.02 0%以下である。  S is an element present as an impurity in steel. In particular, when S exceeds 0.025%, coarse inclusions are formed, starting from this, causing work cracks, leading to a significant decrease in punching workability. S also affects the scale peelability of hot-rolled steel sheets. If the amount of S exceeds 0.025%, the surface properties after pickling deteriorate, and as a result, the steel sheet after cold rolling is annealed. The surface roughness is also roughened. Therefore, the S content is limited to 0.025% or less. Preferably, it is 0.020% or less.
A1: 0.01〜0.05% A1: 0.01-0.05%
A1は、 鋼の脱酸のために含有させる元素である。 A1量が 0.01%未満では、 十分な脱酸 効果は得られない。 一方、 A1量が 0.05%を超えても脱酸効果は飽和する。 従って、 A1量 は、 0.01〜0.05%の範囲に制限した。 好ましい A1量は、 0.03〜0.05%の範囲である。 N: 0.008%以下  A1 is an element to be included for deoxidation of steel. If the amount of A1 is less than 0.01%, a sufficient deoxidation effect cannot be obtained. On the other hand, even if the amount of A1 exceeds 0.05%, the deoxidation effect is saturated. Therefore, the amount of A1 was limited to a range of 0.01 to 0.05%. A preferable amount of A1 is in the range of 0.03 to 0.05%. N: 0.008% or less
Nは、 銅中に不純物として存在する元素であり、 N量が 0.008%を超えると、 鋼板が過 度に硬化し打ち抜き加工性を低下させる。 従って、 N量は 0.008%以下に制限した。 好ま しくは、 0.005%以下である。  N is an element present in copper as an impurity. If the amount of N exceeds 0.008%, the steel sheet is excessively hardened and the punching workability is lowered. Therefore, the N content is limited to 0.008% or less. Preferably, it is 0.005% or less.
以上、 必須成分について説明したが、 本発明では、 各成分が上記の組成範囲を満足す るだけでは不十分で、 特に (:、 Mn、 Pについては、 次式 (1) を満足させる必要がある。 C * = (C%) +0.15X (Mn%) +0.85X (P %)≥0.21 · · · (1)  As described above, the essential components have been described. However, in the present invention, it is not sufficient that each component satisfies the above-described composition range. In particular, for (:, Mn, and P, it is necessary to satisfy the following formula (1): C * = (C%) + 0.15X (Mn%) + 0.85X (P%) ≥0.21 · · · · (1)
本発明において、 銅板の硬度に大きく影響する元素は C、 Mnおよび Pであり、 この C *は、 本発明の鋼板において、 硬度の指標となるものである。 C*の限定理由について、 後述する実施例 1をもとに作成した図 1を用いて説明する。 C*と硬度 (HRB) には、 図 1に示すような比例関係があり、 C*の値が 0.21以上のとき、 硬度が所望の 83 HRB以 上となる。 従って、 本発明では、 C*について上掲式 (1) の条件を満足させるものと した。 本発明の鋼板において、 上記以外の成分は、 Feおよび不可避的不純物である。 ただし、 本発明の効果を損なわない範囲内であれば、 上記以外の成分の含有を拒むものではない。 次に、 本発明において、 鋼板の硬度および表面粗さを上記の.ように限定した理由につ いて述べる。 In the present invention, elements that greatly affect the hardness of the copper plate are C, Mn, and P, and this C * is an index of hardness in the steel plate of the present invention. The reason for limiting C * will be described with reference to FIG. 1 created based on Example 1 described later. There is a proportional relationship between C * and hardness (HRB) as shown in Fig. 1. When the value of C * is 0.21 or more, the desired hardness is 83 HRB or more. Therefore, in the present invention, the condition of the above formula (1) is satisfied for C *. In the steel sheet of the present invention, the components other than the above are Fe and inevitable impurities. However, as long as the effects of the present invention are not impaired, the inclusion of components other than those described above is not rejected. Next, the reason why the hardness and surface roughness of the steel sheet are limited as described above in the present invention will be described.
硬度 (HRB) : 83以上 Hardness (HRB): 83 or more
トランスミツションは、 鋼板をリング状に打ち抜いたプレートを何枚も重ねてトルク を伝達する構造になっている。 従って、 使用される鋼板には、 耐摩耗性が要求され、 耐 摩耗性を確保することができる硬度 (HRB) : 83以上が必要となる。 硬度が 83 HRB未満 の場合、 耐摩耗性の低下が問題となるため、 83 HRB以上とする必要がある。 なお、 硬度 が 95 HRBを超えると、 打ち抜き形状の不具合や、 打ち抜き時において、 鋼板に割れ、 亀 裂が発生するため、 95 HRB以下とすることが好ましい。  Transmission has a structure that transmits torque by stacking a number of steel plates punched into a ring. Accordingly, the steel sheet used is required to have wear resistance, and a hardness (HRB) that can ensure the wear resistance: 83 or more is required. When the hardness is less than 83 HRB, a decrease in wear resistance becomes a problem, so it is necessary to set it to 83 HRB or more. If the hardness exceeds 95 HRB, defects in the punching shape and cracks and cracks occur in the steel plate during punching.
また、 耐摩耗性の向上には、 表面粗度が小さいことが好ましく、 本発明の鋼板におい ても、 表面粗さを算術平均粗さ: Raで 0. 3 /x m以下とすることが好ましい。 なお、 製造 コストを著しく上昇させない範囲で達成できる表面粗さの下限値としては、 現状の技術 レベルでは 0. l jt m程度である。  In order to improve the wear resistance, it is preferable that the surface roughness is small. In the steel sheet of the present invention, it is preferable that the surface roughness is 0.3 / xm or less in terms of arithmetic average roughness Ra. The lower limit of the surface roughness that can be achieved without significantly increasing the manufacturing cost is about 0.1 l jt m at the current technical level.
次に、 本発明の冷延鋼板の製造方法について説明する。  Next, the manufacturing method of the cold rolled steel sheet of this invention is demonstrated.
上記の成分組成になるスラブを、 仕上げ温度: Ar3変態点以上で熱間圧延し、 卷取温 度: 580~750°Cで卷き取り、 さらにこの熱延鋼板を酸洗し、 ついで圧下率: 65%以上で 冷間圧延した後、 連続焼鈍炉において 680¾以下の温度で焼鈍を施す。 The slab with the above composition is hot-rolled at a finishing temperature of Ar 3 transformation point or higher, the cutting temperature is 580 to 750 ° C, and the hot-rolled steel sheet is pickled and then reduced. Rate: After cold rolling at 65% or more, annealing is performed at a temperature of 680¾ or less in a continuous annealing furnace.
スラブの製造方法については、 特に制限はなく常法に従えば良い。 スラブの溶製およ ぴ铸造は、 生産効率およびスラブ品質の観点から、 転炉および連続铸造機を用いて行う ことが好ましい。  There are no particular restrictions on the method of manufacturing the slab, and any conventional method may be followed. From the viewpoint of production efficiency and slab quality, slab melting and forging are preferably performed using a converter and a continuous forging machine.
熱間圧延は、 熱延鋼板の品質及び熱間圧延の効率などの点から、 仕上げ温度は Ar3変 態点以上とする必要がある。 仕上げ温度が Ar3変態点未満の場合、 熱延鋼板でのフェラ ィト変態が促進されて、 表層で粗大粒が形成され硬度が低下するという問題が生じる。 その後の卷取りは、 卷取温度を 580〜750¾の範囲とする必要がある。 卷¾温度が 580°C 未満では、 結晶粒が過度に微細化すると共に、 冷却歪みにより熱延鋼板が硬質化して冷 間圧延性を阻害する。 一方、 卷取温度が 750 を超える場合には、 巻き取り後にフヱライ ト平均粒径が粗大化すると共に、 鋼板表面のスケール生成が過度に促進されて表面性状 が劣化し、 表面粗さが著しく劣化する。 好ましい卷取温度は、 600〜720°Cの範囲である。 なお、 Ar3変態点は、 示差熱膨張計等を用いた熱膨張測定により求めることができる。 熱延銅板は、 常法に従って酸洗され、 鋼板表面のスケールを除去した後に、 冷間圧延 に供される。 冷間圧延の圧下率は、 65%以上とすることが必要である。 これは、 冷間圧 延後に施される焼鈍において、 フェライト粒を微細にして硬度を高めるとともに、 表面 粗さを小さくするために必要である。 一方、 圧下率の上限は、 特に限定するものではな いが、 85%を超える高い圧下率で冷間圧延した場合には、 圧延後の鋼板の形状不良や板 厚精度の低下、 冷間圧延機の圧延負荷が過大になることによる生産性の低下などが懸念 される。 従って、 圧下率は、 85%以下とすることが好ましい。 In hot rolling, the finishing temperature needs to be higher than the Ar 3 transformation point in view of the quality of hot-rolled steel sheet and the efficiency of hot rolling. When the finishing temperature is lower than the Ar 3 transformation point, the ferrite transformation in the hot-rolled steel sheet is promoted, and coarse grains are formed on the surface layer, resulting in a problem that the hardness is lowered. Subsequent scraping requires the scraping temperature to be in the range of 580 to 750¾. When the temperature is less than 580 ° C, the crystal grains become excessively fine and the hot-rolled steel sheet becomes hard due to cooling strain, resulting in cooling. Impairs hot rolling property. On the other hand, when the coiling temperature exceeds 750, the average particle size of the fly is coarsened after winding, and the surface properties are degraded due to excessive acceleration of scale formation on the surface of the steel sheet, and the surface roughness is significantly degraded. To do. A preferred scraping temperature is in the range of 600-720 ° C. The Ar 3 transformation point can be obtained by thermal expansion measurement using a differential thermal dilatometer or the like. The hot-rolled copper sheet is pickled according to a conventional method, removed from the scale of the steel sheet surface, and then subjected to cold rolling. The rolling reduction of cold rolling needs to be 65% or more. This is necessary in order to reduce the surface roughness as well as to increase the hardness by making the ferrite grains fine in the annealing performed after cold rolling. On the other hand, the upper limit of the rolling reduction is not particularly limited. However, when cold rolling is performed at a high rolling reduction exceeding 85%, the shape of the steel sheet after rolling is reduced, the thickness accuracy is lowered, and cold rolling is performed. There is a concern that productivity will decrease due to excessive rolling load on the mill. Therefore, the rolling reduction is preferably 85% or less.
冷間圧延をした鋼板は、 連続焼鈍炉にて焼鈍が施される。 本発明において、 冷間圧延 後に再結晶完了温度以下で焼鈍することが特に重要である。 焼鈍温度が再結晶完了温度 を超えると、 焼鈍後の糸!;織がほぼ 100%が再結晶組織となるため、 冷間圧延時に導入され た圧延歪は消滅する。 従って、 所望の高い硬度を得ることができない。 そこで、 焼鈍温 度を再結晶完了温度以下とすることによって、 未再結晶粒と再結晶粒が混在する部分再 結晶組織とすることができる。  Cold-rolled steel sheets are annealed in a continuous annealing furnace. In the present invention, it is particularly important to perform annealing at a temperature lower than the recrystallization completion temperature after cold rolling. When the annealing temperature exceeds the recrystallization completion temperature, the yarn after annealing! ; Almost 100% of the weave becomes a recrystallized structure, so the rolling strain introduced during cold rolling disappears. Therefore, the desired high hardness cannot be obtained. Therefore, by setting the annealing temperature below the recrystallization completion temperature, a partially recrystallized structure in which unrecrystallized grains and recrystallized grains are mixed can be obtained.
本発明の方法では、 未再結晶率の比率は焼鈍温度によって決定され、 焼鈍温度を 680で 以下とすることで、 未再結晶率を 25%以上とすることができる。 焼鈍温度の下限は、 特 に限定するものではないが、 連続炉の温度及び雰囲気の制御性と生産性の観点から、 50 0Ό以上とすることが好ましい。 また、 焼鈍後の冷却速度は、 特に限定するものではない が、 5〜25°C/s程度とすることが好ましい。 さらに、 この冷却の途中、 320〜420での温 度範囲で保熱処理を施すことは、 鋼板の形状安定性や、 調質圧延を施す場合には調質圧 延での表面粗度調整の点で有利である。 - なお、 未再結晶率は、 焼鈍温度により適宜調整することが可能である。 未再結晶率と 焼鈍温度との関係は、 例えば、 以下のように求めた見かけの未再結晶率と該未再結晶率 を得る焼鈍温度との関係を予め求めておき、 この関係を基に、 所望の未再結晶率を得る 焼鈍温度に調整すればよい。 In the method of the present invention, the ratio of the unrecrystallized ratio is determined by the annealing temperature, and the unrecrystallized ratio can be 25% or more by setting the annealing temperature to 680 or less. The lower limit of the annealing temperature is not particularly limited, but is preferably 500 ° C. or more from the viewpoint of the temperature and atmosphere controllability and productivity of the continuous furnace. The cooling rate after annealing is not particularly limited, but is preferably about 5 to 25 ° C / s. Furthermore, during this cooling process, the heat treatment is performed in the temperature range of 320 to 420. This means that the shape stability of the steel sheet and the surface roughness adjustment during temper rolling when temper rolling is applied. Is advantageous. -The unrecrystallized rate can be adjusted as appropriate according to the annealing temperature. The relationship between the unrecrystallized rate and the annealing temperature is, for example, the apparent unrecrystallized rate determined as follows and the unrecrystallized rate. A relationship with the annealing temperature for obtaining the above is obtained in advance, and based on this relationship, the annealing temperature for obtaining a desired non-recrystallization rate may be adjusted.
(見かけの未再結晶率) = (HRB (P) _HRB (S) ) / (HRB (H) -HRB(S) ) X 100 (%) ただし、  (Apparent unrecrystallization rate) = (HRB (P) _HRB (S)) / (HRB (H) -HRB (S)) X 100 (%) However,
- HRB (P):所定温度で焼鈍した銅板のロックウェル硬さ (Bスケール)  -HRB (P): Rockwell hardness of copper sheet annealed at a specified temperature (B scale)
- HRB (S) :完全に再結晶組織となる温度で焼鈍した鋼板のロックウェル硬さ ( Bスケー ル)  -HRB (S): Rockwell hardness (B scale) of steel sheet annealed at a temperature at which it completely recrystallizes.
- HRB (H):全く再結晶が起こらない温度で焼鈍した鋼板のロックウェル硬さ (Bスケー ル)  -HRB (H): Rockwell hardness of steel sheet annealed at a temperature at which no recrystallization occurs (B scale)
なお、 上記した見かけの未再結晶率を求めるにあたっては、 焼鈍後の冷却条件による 硬度の変動を除外するため、 冷間圧延後の鋼板を焼鈍後水焼入れした鋼板の硬度を測定 して求めることが好ましい。  In determining the apparent non-recrystallization ratio, the hardness of the steel sheet that has been cold-rolled and water-quenched after the cold-rolled steel sheet is measured in order to exclude hardness fluctuations due to the cooling conditions after annealing. Is preferred.
また、 上記のようにして求めた見かけの未再結晶率と鋼板硬度の関係を予め求めてお き、 この関係をもとに、 焼鈍後の鋼板の硬度から、 見かけの未再結晶率を求め、 銅板の 未再結晶率を推定することも可能である。  In addition, the relationship between the apparent non-recrystallization rate and the steel plate hardness obtained as described above is obtained in advance, and based on this relationship, the apparent non-recrystallization rate is obtained from the hardness of the steel plate after annealing. It is also possible to estimate the unrecrystallization rate of the copper plate.
焼鈍後の冷延鋼板を、 調質圧延にて、 軽圧下圧延しても良い。 これは、 表面粗さを調 整するとともに硬度をさらに改善するためである。 例えば、 好ましい表面粗さ: Ra≤0. 3 mとするには、 圧延率は伸び率で 2 %以上とすることが好ましい。 なお、 圧延率の上限 は特に限定するものではないが、 過度に高い圧延率では、 銅板の形状にばらつきを生じ る。 また、 調質圧延を行う圧延機の能力を考慮すると、 圧延率は伸び率で 5 %以下とす ることが好ましい。  The cold-rolled steel sheet after annealing may be lightly rolled by temper rolling. This is to adjust the surface roughness and further improve the hardness. For example, in order to obtain a preferable surface roughness of Ra≤0.3 m, the rolling rate is preferably 2% or more in terms of elongation. The upper limit of the rolling rate is not particularly limited, but if the rolling rate is excessively high, the shape of the copper plate varies. Considering the ability of a rolling mill for temper rolling, the rolling rate is preferably 5% or less in terms of elongation.
実施例 Example
実施例 1 Example 1
表 1に示す成分組成になるスラブを、 1200Tに加熱したのち、 仕上げ温度を Ar3変態 点以上として熱間圧延し、 次いでランナウトテーブル上で冷却して 600でで卷き取り、 熱 延鋼板の板厚を 5 mmとした。 ついで、 酸洗にてスケール除去した後、 圧下率: 70%で冷 間圧延し、 板厚: 1. 5mmの冷延鋼板とした。 この冷延鋼板を脱脂した後、 連続焼鈍伊にて 650°Cで焼鈍を施した。 焼鈍 間は、 1分とした。 焼鈍後は、 銅板を 10で/ sの速度で冷 却した後、 320〜420でで2. 5分間保熱したのちに室温まで冷却した。 さらに、 調質圧延 ラインにて、 圧延率 (伸び率) : 3. 0%で軽圧下圧延した。 Slabs with the composition shown in Table 1 were heated to 1200T, then hot-rolled with a finishing temperature equal to or higher than the Ar 3 transformation point, then cooled on a run-out table and scraped at 600 to obtain hot rolled steel sheets. The plate thickness was 5 mm. Next, after removing the scale by pickling, it is cooled at a reduction ratio of 70%. Cold rolled to a cold rolled steel sheet with a thickness of 1.5 mm. The cold-rolled steel sheet was degreased and then annealed at 650 ° C by continuous annealing. The annealing time was 1 minute. After annealing, the copper plate was cooled at a rate of 10 / s, then kept at 320 to 420 for 2.5 minutes, and then cooled to room temperature. Furthermore, in the temper rolling line, rolling was performed under a light reduction at a rolling rate (elongation rate) of 3.0%.
かくして得られた鋼板のフェライト平均粒径、 未再結晶率、 表面粗さ、 硬度、 打ち抜 き加工性おょぴ耐熱変形性について調べた結果を表 1に併記する。  Table 1 shows the results of examining the ferrite average grain size, non-recrystallization ratio, surface roughness, hardness, punching workability, and heat deformation resistance of the steel sheet thus obtained.
なお、 各調査項目については次に示す方法で測定した。  Each survey item was measured by the following method.
フェライ ト平均粒径 Ferrite average particle size
鋼板から試料 (圧延方向の板厚断面) を切り出して研磨後、 フェライト結晶粒界を現 出させ、 電子顕微鏡で 800倍の倍率で観察して写真撮影したのち、 JIS G 0551 (附属 書) に記載の切断法による鋼のフェライト粒度試験方法 (JIS G 0552 (1998) ) に準拠し て求めた。  After cutting and grinding a specimen (sheet thickness section in the rolling direction) from a steel plate, the ferrite grain boundaries were revealed, and photographed by observing with an electron microscope at a magnification of 800 times, JIS G 0551 (Appendix) It was determined according to the ferrite grain size test method (JIS G 0552 (1998)) for steel by the described cutting method.
未再結晶率 Unrecrystallized rate
未再結晶率は、 フェライト平均粒径を求めた場合と同様に、 圧延方向の板厚断面を 800 倍で観察し、 未再結晶組織の面積率を求め、 これを未再結晶率とした。  As in the case of obtaining the average ferrite grain size, the non-recrystallized ratio was obtained by observing the sheet thickness cross section in the rolling direction at a magnification of 800 times to obtain the area ratio of the non-recrystallized structure, which was defined as the non-recrystallized ratio.
表面粗さ Surface roughness
JIS B0601に規定される測定方法に準拠し、 算術平均粗さ : Raを求めた。  In accordance with the measurement method stipulated in JIS B0601, arithmetic average roughness Ra was obtained.
硬度 (HRB) Hardness (HRB)
鋼板から 20 X 60imnの大きさの試料を切り出し、 JIS Z 2245に規定されるロックウェル 硬さ試験方法に準拠して測定した。 測定は、 Bスケールで 10点行い、 その平均値を硬度 A sample having a size of 20 X 60 imn was cut out from the steel sheet and measured according to the Rockwell hardness test method specified in JIS Z 2245. The measurement was performed at 10 points on the B scale, and the average value was taken as the hardness.
(HRB) とした。 (HRB).
打ち抜き加工性 Punching workability
プレス式の打ち抜き機により、 打ち抜き寸法:内径 140讓 X外径 160画、 クリアラン ス :板厚の 10% (板厚: 1. 5mm) で打ち抜いたリング状試験片を製作した後、( 鋼板圧延断 面での打ち抜き端面を倍率 10〜20倍の光学顕微鏡にて観察し、 次の基準にて評価した。 •良好 (O) :打ち抜き端面に亀裂やボイドが認められず、 バリや極端なダレの発生が ない。 •不良 (X ) :打ち抜き端面に亀裂やポイドが認められる、 あるいはパリが発生してい る。 With a press punching machine, punching dimensions: inner diameter 140 mm x outer diameter 160 strokes, clearance: ring-shaped specimens punched at 10% of the plate thickness (plate thickness: 1.5 mm), The punched end face was observed with an optical microscope with a magnification of 10 to 20 times and evaluated according to the following criteria: • Good (O): No cracks or voids were found on the punched end face, and burrs and extreme sagging were observed. There is no occurrence. • Defect (X): Cracks or voids are found on the punched end face, or Paris has occurred.
耐熱変形性 Heat-resistant deformation
打ち抜き加工性を評価したものと同一のリング状試験片を 300 で 30分間加熱した後、 室温まで空冷したときの試験片の反り量で評価した。 反り量が 0. 1 以下であれば良好 といえる。  The same ring-shaped test piece that was evaluated for punching workability was heated at 300 for 30 minutes and then evaluated by the amount of warpage of the test piece when air-cooled to room temperature. A warp amount of 0.1 or less is good.
なお、 反り量の測定は次のように行った。 加熱 ·空冷後の試験材を #800以上のェミリ 一研磨紙で両面を研磨した後、 定盤の上に置き、 接触式のハイトゲージを用いて周方向 1 0箇所の高さを測定し、 マイクロメーターで測定した同一箇所の板厚との差を求め、 その 最大値を反り量とした。 The amount of warpage was measured as follows. Heat and air-cooled test material is polished on both sides with # 800 or more emery single abrasive paper, then placed on a surface plate and measured using a contact-type height gauge to measure the height of 10 points in the circumferential direction. The difference from the plate thickness at the same location measured with a meter was determined, and the maximum value was taken as the amount of warpage.
表 1 table 1
Figure imgf000015_0001
Figure imgf000015_0001
注) 下線は適正範囲外を示す。 Note) Underline indicates outside the proper range.
表 1に示したとおり、 発明鋼はいずれも、 所望のフェライト平均粒径、 未再結晶率、 表面粗さが得られ、 硬度 (HRB) 、 打ち抜き加工性および耐熱変形性に優れることが確認 された。 As shown in Table 1, all of the inventive steels have the desired ferrite average grain size, unrecrystallized ratio, and surface roughness, and are confirmed to be excellent in hardness (HRB), punching workability and heat distortion resistance. It was.
実施例 2 Example 2
表 2に示す成分組成になるスラブを、 1250°Cに加熱したのち、 表 3に示す仕上げ温度 で熱間圧延し、 ランナウトテーブル上で冷却して 650 で卷き取つた。 熱延鋼板の板厚は 3〜10匪とした。 ついで、 酸洗にてスケール除去した後、 50〜80%の範囲の圧下率で冷 間圧延し、 板厚: 1. 5腿の冷延鋼板とした。 この冷延鋼板を脱脂した後、 連続焼鈍炉にて 焼鈍を施した。 焼鈍温度は 680 以下の種々の温度とし、 焼鈍時間は、 1分とした。 焼鈍 後は、 銅板を 10で/ sの速度で冷却した後、 320〜420°Cの温度範囲で 2. 5分間保熱したの ちに室温まで冷却した。 さらに、 調質圧延ラインにて、 0 ~3. 5%の範囲の圧延率(伸ぴ 率)で  A slab having the composition shown in Table 2 was heated to 1250 ° C, hot-rolled at the finishing temperature shown in Table 3, cooled on a run-out table, and scraped at 650. The thickness of the hot-rolled steel sheet was 3-10 mm. Next, the scale was removed by pickling, and then cold-rolled at a reduction ratio in the range of 50 to 80% to obtain a cold rolled steel sheet having a thickness of 1.5 thighs. After degreasing the cold-rolled steel sheet, it was annealed in a continuous annealing furnace. The annealing temperature was set at various temperatures below 680, and the annealing time was 1 minute. After annealing, the copper plate was cooled at a rate of 10 / s, then kept at a temperature range of 320 to 420 ° C for 2.5 minutes, and then cooled to room temperature. Furthermore, in the temper rolling line, the rolling rate (stretching rate) is in the range of 0 to 3.5%.
軽圧下圧延した。 Rolled with light reduction.
なお、 表 2に示す Ar3変態点は、 各々の銅スラブより試験片を採取して、 1250でで 30 分加熱保持した後、 冷却速度: 1 °C/秒で冷却し、 示差熱膨張計で測定した。 The Ar 3 transformation point shown in Table 2 is the differential thermal dilatometer for specimens taken from each copper slab, heated at 1250 for 30 minutes and then cooled at a cooling rate of 1 ° C / second. Measured with
力 くして得られた鋼板のフヱライト平均粒径、 未再結晶率、 表面粗さ、 硬度 (HRB) 、 打ち抜き加工性および耐熱変形性について調べた結果を表 3に併記する。 Table 3 shows the results of examining the average grain size, non-recrystallization ratio, surface roughness, hardness (HRB), punching workability and heat distortion resistance of the steel plates obtained by strengthening.
表 2 (質量%) Table 2 (mass%)
Figure imgf000017_0001
Figure imgf000017_0001
注) 下線は適正範囲外を示す。 Note) Underline indicates outside the proper range.
表 3 Table 3
Figure imgf000018_0001
Figure imgf000018_0001
注) 下線は適正範囲外を示す。 Note) Underline indicates outside the proper range.
表 3に示したとおり、 発明鋼である銅種 A、 Iおよび Jにおいて、 熱間圧延時の仕上 げ温度、 冷間圧延時の圧下率、 焼鈍温度および調質圧延時の圧延率 (伸び率) のいずれ もが適正範囲内であるとき、 所望のフェライト平均粒径、 未再結晶率および表面粗さが 得られ、 優れた硬度 (HRB) 、 打ち抜き加工性および耐熱変形性が得られることを確認で きた。 As shown in Table 3, in the copper types A, I and J, which are invention steels, the finishing temperature during hot rolling, the rolling reduction during cold rolling, the annealing temperature, and the rolling rate during temper rolling (elongation rate) When all of the above are within the proper range, the desired average ferrite particle size, unrecrystallized ratio and surface roughness can be obtained, and excellent hardness (HRB), punching workability and heat distortion resistance can be obtained. It could be confirmed.
これに対し、 比較銅である鋼種 B〜Hについては、 熱間圧延時の仕上温度、 冷間圧延 時の圧下率、 焼鈍温度のいずれもが適正範囲内であっても、 フ ライト平均粒径、 未再 結晶率および表面粗さのいずれかが適正範囲外であり、 その結果、 本発明で所期してい たほど良好な硬度 (HRB) 、 打ち抜き加工性および耐熱変形性は得られなかった。  On the other hand, for steel types B to H, which are comparative copper, even if the finishing temperature during hot rolling, the rolling reduction during cold rolling, and the annealing temperature are all within the appropriate ranges, Either the unrecrystallized rate or the surface roughness was outside the proper range, and as a result, the hardness (HRB), punching workability and heat distortion resistance as good as expected in the present invention were not obtained.
なお、 実施例 1、 2については、 次のようにして見かけの未再結晶率を求めたが、 前 記のようにして求めた見かけの未再結晶率と同等の結果を得た。  For Examples 1 and 2, the apparent non-recrystallized rate was determined as follows, but a result equivalent to the apparent non-recrystallized rate determined as described above was obtained.
(見かけの未再結晶率) = ((HRB(P))-(HRB(S))' ) / ( (HRB (H) )—(HRB (S) ) , ) X 100 (%)  (Apparent unrecrystallization rate) = ((HRB (P))-(HRB (S)) ') / ((HRB (H)) — (HRB (S)),) X 100 (%)
、、  ,,
ただし、  However,
(HRB(P))' :部分再結晶組織を有する鋼板のロックウェル硬さ (Bスケール) (HRB(S))' :完全に再結晶組織となっている鋼板のロックウェル硬さ (Bスケー ル)  (HRB (P)) ': Rockwell hardness of steel sheet with partially recrystallized structure (B scale) (HRB (S))': Rockwell hardness of steel sheet with completely recrystallized structure (B scale) Le)
(HRB(H))' :全く再結晶組織を含まない鋼板のロックウェル硬さ (Bスケール) また、 (HRB(S))' と(HRB(H))' は、 次のようにして求めた。 焼鈍前の冷延鋼板を 580 と 780でで 100秒以下の時間で加熱したのち、 水焼入れし、 それぞれの試料について硬度 (HRB) 測定と組織観察を行った。 加熱温度が 580 の試料については、 全く再結晶組織 を含まないことを確認した上で硬度 (HRB) 測定し、 (HRB(H))' とした。 一方、 加熱温度 が 780°Cの試料については、 完全に再結晶組織となっていることを確認した上で硬度 (HR B) 測定し、 (HRB(S))' とした。 産業上の利用可能性 本発明に従い、 銅成分を調整した上で、 鋼組織を部分再結晶組織とすることにより、 クラッチプレートをはじめとする自動車用トランスミッションの構成部品に用いて好適 な、 高強度 (高硬度) で、 打ち抜き加工性および耐熱変形性に優れる冷延銷板を得るこ とができる。 本発明によれば、 冷間圧延後の焼鈍は 1時間未満の短時間で良く、 しかも 極めて生産効率の高い連続焼鈍炉で行うことができるので、 本発明の冷延鋼板は、 さほ どのコストアップを招くことなしに製造することができ、 従って価格競争の厳しい自動 車部品に用いて好適である。 (HRB (H)) ': Rockwell hardness (B scale) of a steel plate that does not contain any recrystallized structure. (HRB (S))' and (HRB (H)) 'are obtained as follows. It was. The pre-annealed cold-rolled steel sheet was heated at 580 and 780 for 100 seconds or less, then water-quenched, and the hardness (HRB) measurement and microstructure observation were performed on each sample. The sample with a heating temperature of 580 was confirmed to contain no recrystallized structure, and the hardness (HRB) was measured to give (HRB (H)) '. On the other hand, for the sample with a heating temperature of 780 ° C, the hardness (HR B) was measured after confirming that it had a completely recrystallized structure, and was set as (HRB (S)) '. Industrial applicability In accordance with the present invention, by adjusting the copper component, and by making the steel structure a partially recrystallized structure, it is suitable for use in components of automobile transmissions such as clutch plates, with high strength (high hardness). A cold-rolled sheet having excellent punchability and heat distortion resistance can be obtained. According to the present invention, annealing after cold rolling can be performed in a short time of less than 1 hour, and can be performed in a continuous annealing furnace with extremely high production efficiency. It can be manufactured without incurring uplift, and is therefore suitable for use in auto parts with severe price competition.

Claims

請求の範囲 The scope of the claims
1. 質量%で、 1. By mass%
C : 0.01〜0.15%、  C: 0.01-0.15%,
Si: 0.03%以下、 Si: 0.03% or less,
Mn: 0.10~0.70%、 Mn: 0.10 ~ 0.70%,
P : 0.025%以下、 P: 0.025% or less,
S : 0.025%以下、 S: 0.025% or less,
A1; 0.01〜0.05%および A1; 0.01-0.05% and
N: 0.008%以下 N: 0.008% or less
を含有し、 かつこれらの成分が、 次式 (1 ) And these components are represented by the following formula (1)
(C%) +0.15X (Mn%) +0.85 X (P%)≥0.21 · · · (1)  (C%) + 0.15X (Mn%) +0.85 X (P%) ≥0.21 (1)
ただし、 (M%)は元素 Mの含有量(質量%)を示す  However, (M%) indicates the content (mass%) of element M
の関係を満足し、 残部は Feおよび不可避的不純物の組成になり、 フェライト平均粒 径が 2〜10/ mで、 未再結晶率が 25%以上 90%以下の部分再結晶組織からなり、 硬 度が口ックウエル硬さ HRBで 83以上であることを特徴とする冷延鋼板。 The balance is composed of Fe and inevitable impurities, the ferrite average grain size is 2 to 10 / m, and the non-recrystallization rate is 25% or more and 90% or less. Cold-rolled steel sheet, characterized in that its mouth has a mouth-well hardness of 83 or more in HRB.
2. 質量%で、 2. Mass%
C : 0.01〜0.15%、  C: 0.01-0.15%,
Si: 0.03%以下、  Si: 0.03% or less,
Mn: 0.10〜 70%、  Mn: 0.10-70%,
P : 0.025%以下、  P: 0.025% or less,
S : 0.025%以下、  S: 0.025% or less,
A1: 0.01〜0.05%および  A1: 0.01-0.05% and
N: 0.008%以下  N: 0.008% or less
を含有し、 かつこれらの成分が、 次式 (1 )  And these components are represented by the following formula (1)
(C%) +0.15X (Mn%) +0.85 X (P%)≥0.21 · · . (1)  (C%) + 0.15X (Mn%) +0.85 X (P%) ≥0.21
ただし'、 (M%)は元素 Mの含有量(質量%)を示す  However, ', (M%) indicates the content (mass%) of element M
の関係を満足し、 残部は Feおよび不可避的不純物の組成になるスラブを、 仕上げ温 度: Ar3変態点以上で熱間圧延し、 卷取温度: 580〜750での温度で卷き取り、 つい で酸洗後、 圧下率: 65 %以上で冷間圧延し、 その後、 連続焼鈍により 680°C以下の温 度で焼鈍すること The remaining slab is composed of Fe and unavoidable impurities in the balance. Finishing temperature: Hot-rolled at the Ar 3 transformation point or higher, Cutting temperature: Scraped at a temperature of 580-750, Just After pickling, cold-roll at a reduction ratio of 65% or more, and then anneal at a temperature of 680 ° C or lower by continuous annealing.
を特徴とする冷延鋼板の製造方法。 A method for producing a cold-rolled steel sheet.
PCT/JP2009/054102 2008-02-29 2009-02-26 Cold-rolled steel sheet and process for production thereof WO2009107856A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801067082A CN101960036B (en) 2008-02-29 2009-02-26 Cold-rolled steel sheet and process for production thereof
KR1020137003774A KR20130032393A (en) 2008-02-29 2009-02-26 Cold-rolled steel sheet and process for production thereof
MX2010009448A MX2010009448A (en) 2008-02-29 2009-02-26 Cold-rolled steel sheet and process for production thereof.
US12/919,780 US20110048588A1 (en) 2008-02-29 2009-02-26 Cold-rolled steel sheet and method for manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-050916 2008-02-29
JP2008050916 2008-02-29
JP2008-287692 2008-11-10
JP2008287692A JP5320990B2 (en) 2008-02-29 2008-11-10 Cold rolled steel sheet and method for producing the same

Publications (1)

Publication Number Publication Date
WO2009107856A1 true WO2009107856A1 (en) 2009-09-03

Family

ID=41016229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054102 WO2009107856A1 (en) 2008-02-29 2009-02-26 Cold-rolled steel sheet and process for production thereof

Country Status (7)

Country Link
US (1) US20110048588A1 (en)
JP (1) JP5320990B2 (en)
KR (2) KR20100102739A (en)
CN (1) CN101960036B (en)
MX (1) MX2010009448A (en)
TW (1) TWI395822B (en)
WO (1) WO2009107856A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103882202A (en) * 2012-12-20 2014-06-25 上海梅山钢铁股份有限公司 Method for making high-strength hot-dip galvanized steel through continuous annealing

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5765080B2 (en) * 2010-06-25 2015-08-19 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof
BR112014001994A2 (en) * 2011-07-29 2017-02-21 Nippon Steel & Sumitomo Metal Corp high strength galvanized steel sheet excellent in flexibility and manufacturing method
CN102796949B (en) * 2012-07-31 2014-09-10 马钢(集团)控股有限公司 Hot galvanizing steel plate with yield strength more than or equal to 550MPa, and manufacturing method thereof
JP5618433B2 (en) 2013-01-31 2014-11-05 日新製鋼株式会社 Clutch plate for wet multi-plate clutch and manufacturing method thereof
CN103614627A (en) * 2013-12-11 2014-03-05 武汉钢铁(集团)公司 Ti-containing high-strength steel produced based on flexible rolling technology and preparation method thereof
WO2015133644A1 (en) * 2014-03-07 2015-09-11 新日鐵住金株式会社 Medium-/high-carbon steel sheet and method for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190024A (en) * 1985-02-19 1986-08-23 Kobe Steel Ltd Manufacture of continuously hot dip galvanized mild steel sheet
JPS62161919A (en) * 1986-01-10 1987-07-17 Kawasaki Steel Corp Manufacture of hard sheet steel for can excellent in drawability and minimized in anisotropy
JP2001107187A (en) * 1999-08-04 2001-04-17 Kawasaki Steel Corp High strength steel sheet for can and its producing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193188A (en) * 2001-12-25 2003-07-09 Jfe Steel Kk High tensile strength galvannealed, cold rolled steel sheet having excellent stretch-flanging property and production method therefor
JP4333356B2 (en) * 2003-12-19 2009-09-16 Jfeスチール株式会社 Cold rolled steel sheet manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190024A (en) * 1985-02-19 1986-08-23 Kobe Steel Ltd Manufacture of continuously hot dip galvanized mild steel sheet
JPS62161919A (en) * 1986-01-10 1987-07-17 Kawasaki Steel Corp Manufacture of hard sheet steel for can excellent in drawability and minimized in anisotropy
JP2001107187A (en) * 1999-08-04 2001-04-17 Kawasaki Steel Corp High strength steel sheet for can and its producing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103882202A (en) * 2012-12-20 2014-06-25 上海梅山钢铁股份有限公司 Method for making high-strength hot-dip galvanized steel through continuous annealing
CN103882202B (en) * 2012-12-20 2016-03-30 上海梅山钢铁股份有限公司 The manufacture method of the high-strength hot-galvanized steel of a kind of continuous annealing

Also Published As

Publication number Publication date
CN101960036B (en) 2012-11-14
TWI395822B (en) 2013-05-11
JP2009228128A (en) 2009-10-08
CN101960036A (en) 2011-01-26
KR20130032393A (en) 2013-04-01
TW200946696A (en) 2009-11-16
KR20100102739A (en) 2010-09-24
JP5320990B2 (en) 2013-10-23
US20110048588A1 (en) 2011-03-03
MX2010009448A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
TWI473887B (en) High strength cold rolled steel sheet having excellent deep drawing property and bake hardening property and a method for manufacturing the same
JP6327410B1 (en) Martensitic stainless steel sheet
JP5320990B2 (en) Cold rolled steel sheet and method for producing the same
JP5725263B2 (en) Hard cold rolled steel sheet and method for producing the same
JP2013010982A (en) Method for manufacturing non-oriented electromagnetic steel sheet
JP4858286B2 (en) Full hard cold rolled steel sheet
JP2008179877A (en) Cold rolled steel sheet with excellent non-earing property, and its manufacturing method
JP5924459B1 (en) Stainless steel for cold rolled steel
WO2014162661A1 (en) Cold-rolled steel sheet and manufacturing method therefor
KR20100076073A (en) Steel sheets and process for manufacturing the same
JP2011202211A (en) Cold rolled steel sheet for nitriding treatment having excellent nitriding property and recrystallization softening resistance, and method for producing the same
JP5046400B2 (en) Method for producing cold-rolled steel sheet with excellent recrystallization softening resistance and cold-rolled steel sheet for automatic transmission
JP5920256B2 (en) Hard cold-rolled steel sheet excellent in hardness thermal stability and method for producing the same
TWI771916B (en) Hot-rolled steel sheet for non-oriented electrical steel sheet
JP5484756B2 (en) Molybdenum plate and method for manufacturing molybdenum plate
WO2016157760A1 (en) Steel sheet for can and method for producing same
JP4604883B2 (en) Steel plate with small anisotropy and method for producing the same
JP2007239035A (en) Cold rolled steel sheet with excellent strain aging resistance, excellent surface roughing resistance and small in-plane anisotropy, and its manufacturing method
JP5282456B2 (en) A material for stainless cold-rolled steel sheet capable of suppressing the occurrence of roping and ear cracking and its manufacturing method
WO2019163828A1 (en) High-carbon cold-rolled steel sheet and production method therefor
JP2003268507A (en) Inner frame for cathode-ray tube, ferritic stainless steel sheet therefor and production method thereof
JP2005200712A (en) Cold-rolled steel sheet for at plate with reduced residual stress
JP5338245B2 (en) Stainless cold-rolled steel sheet with good strength-elongation balance and small ridging and method for producing the same
WO2024080140A1 (en) Nonoriented electromagnetic steel sheet and method for manufacturing same
JP2023071471A (en) Aluminum alloy sheet for magnetic disk, aluminum alloy blank for magnetic disk and aluminum alloy substrate for magnetic disk

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980106708.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09714169

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2882/KOLNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107018850

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/009448

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09714169

Country of ref document: EP

Kind code of ref document: A1