WO2015133644A1 - Medium-/high-carbon steel sheet and method for manufacturing same - Google Patents

Medium-/high-carbon steel sheet and method for manufacturing same Download PDF

Info

Publication number
WO2015133644A1
WO2015133644A1 PCT/JP2015/056825 JP2015056825W WO2015133644A1 WO 2015133644 A1 WO2015133644 A1 WO 2015133644A1 JP 2015056825 W JP2015056825 W JP 2015056825W WO 2015133644 A1 WO2015133644 A1 WO 2015133644A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
content
annealing
carbide
cold
Prior art date
Application number
PCT/JP2015/056825
Other languages
French (fr)
Japanese (ja)
Inventor
健悟 竹田
友清 寿雅
保嗣 塚野
荒牧 高志
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2016506209A priority Critical patent/JP6274304B2/en
Priority to CN201580011954.5A priority patent/CN106062231B/en
Priority to US15/123,119 priority patent/US20170067132A1/en
Priority to KR1020167024903A priority patent/KR101875298B1/en
Priority to MX2016011437A priority patent/MX2016011437A/en
Priority to ES15758268T priority patent/ES2750615T3/en
Priority to PL15758268T priority patent/PL3115475T3/en
Priority to EP15758268.5A priority patent/EP3115475B1/en
Publication of WO2015133644A1 publication Critical patent/WO2015133644A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a medium / high carbon steel sheet having an excellent drawing in forming at a high strain rate and a method for producing the same.
  • Medium and high carbon steel plates are used as materials for drive system parts such as automobile chains, gears, and clutches, as well as saws and blades.
  • a material formed into a specified shape from a steel strip cut from a medium or high carbon steel or from a steel strip is formed into a part shape by plastic processing such as deep drawing, hole expansion, thickening, and thinning. Is done. In cold forging, in which each processing is performed individually or several of them simultaneously, the material is partially formed at a high strain rate of about 10 / sec, and the steel plate used as the material is excellent in deformation at a high strain rate. It is required to have excellent moldability, that is, excellent drawing.
  • Patent Documents 1 to 6 So far, many proposals have been made on techniques for improving the drawing of medium and high carbon steel sheets (see, for example, Patent Documents 1 to 6).
  • Patent Document 1 as a method for producing a medium / high carbon steel sheet excellent in deep drawability, C: 0.20 to 0.90 mass% hot rolled steel sheet or annealed steel sheet, at least in the final rolling pass surface
  • An invention is disclosed in which finish rolling is performed using a work roll having a roughness Ra of 0.20 to 1.50 ⁇ m and a total rolling ratio of 20 to 70%, and then finish annealing.
  • the technique disclosed in Patent Document 1 is a technique for increasing the diaphragm by improving the roughness of the steel sheet surface, and is not a technique for increasing the diaphragm by improving the material quality by controlling the structure of the steel material. There is no effect.
  • Patent Document 2 as a high toughness high carbon steel plate excellent in workability, C: 0.6 to 1.3% by mass, Si: 0.5% by mass or less, Mn: 0.2 to 1.0% by mass %, P: 0.02% by mass or less, S: 0.01% by mass or less, with the balance being substantially Fe, and by adjusting the hot rolling conditions, cold rolling conditions and annealing conditions, The maximum length is 5.0 ⁇ m or less, the carbide spheroidization rate is 90% or more, and the volume of the spherical carbide having a particle size of 1.0 ⁇ m or more is 20% or more of the total spherical carbide volume, etc.
  • An invention of a high carbon steel plate made of axial ferrite is disclosed.
  • Patent Document 3 as a medium and high carbon steel excellent in deep drawability, the C content is 0.10 to 0.90 mass%, and the ferrite grain boundary existence rate (F value) of carbide is 30% or more.
  • F value ferrite grain boundary existence rate
  • Patent Document 4 as a high-carbon cold-rolled steel strip having a small deep-drawing in-plane anisotropy, the steel composition has C: 0.25 to 0.75%, and the average grain size of carbides in the steel is 0.5 ⁇ m.
  • the invention in which the spheroidization rate is 90% or more and the texture satisfies the formula “(222) / (200) ⁇ 6-8.0 ⁇ C (%)” is disclosed.
  • Patent Document 5 discloses that the carbon content is 0.20 to 0.70% by mass as a high carbon steel strip that has good deep drawability and can impart high hardness and excellent wear resistance.
  • An invention is disclosed in which 50% by area or more of the cementite is graphitized.
  • Patent Document 6 as a method for producing a high carbon cold-rolled steel sheet having excellent formability, C: 0.1 to 0.65%, Si: 0.01 to 0.3%, Mn: 0.4 to 2 %, Sol. Al: 0.01 to 0.1%, N: 0.002 to 0.008%, B: 0.0005 to 0.005%, Cr: 0 to 0.5, Mo: 0 to 0.1 Hot-rolled high carbon steel, wound at 300-520 ° C., box annealed at 650- (Ac1-10) ° C., cold-rolled at a rolling reduction of 40-80%, 650- (Ac1-10 ) A technique for box annealing at ° C is disclosed.
  • Japanese Laid-Open Patent Publication No. 2003-293042 Japanese Unexamined Patent Publication No. 2003-147485 Japanese Unexamined Patent Publication No. 2002-155339 Japanese Unexamined Patent Publication No. 2000-328172 Japanese Unexamined Patent Publication No. 6-108158 Japanese Patent Laid-Open No. 11-61272
  • an object of the present invention is to provide a medium / high carbon steel sheet having an excellent drawing in forming at a high strain rate and a manufacturing method thereof.
  • the present inventors have intensively studied a method for solving the above problems. As a result, the present inventors have found that, when cracks (voids) generated in carbides grow at the time of deformation and are connected to each other, the reduction in deformation at a high strain rate is reduced. Furthermore, the present inventors have found that the cracks generated in the carbide are generated from the crystal interface existing in the carbide particles that have been conventionally recognized as one particle.
  • the present inventors found that the steel plate having the above-mentioned characteristics is difficult to manufacture when the hot rolling conditions and annealing conditions are individually devised, and is optimized in so-called integrated processes such as hot rolling and annealing processes. The fact that it can be produced only by achieving the above has been found by accumulating various studies, and the present invention has been completed.
  • the gist of the present invention is as follows.
  • the medium / high carbon steel sheet according to one embodiment of the present invention is, in mass%, C: 0.10 to 1.50%, Si: 0.01 to 1.00%, Mn: 0.01 to 3 0.000%, P: 0.0001 to 0.1000%, S: 0.0001 to 0.1000%, the balance being Fe and impurities, and the steel plate is martensite.
  • Bainite, pearlite, and retained austenite have a volume ratio of 5.0% or less
  • the balance is a structure of ferrite and carbide
  • the spheroidization rate of the carbide particles is 70% or more and 99% or less.
  • the number ratio of the carbide particles including a crystal interface having an orientation difference of 5 ° or more in the carbide particles is 20% or less with respect to the total number of the carbide particles.
  • the component of the steel sheet is mass%, and Al: 0.001 to 0.500%, N: 0.0001 to 0.0500 %, O: 0.0001 to 0.0500% Cr: 0.001 to 2.000%, Mo: 0.001 to 2.000%, Ni: 0.001 to 2.000%, Cu: 0.001 To 1.000%, Nb: 0.001 to 1.000%, V: 0.001 to 1.000%, Ti: 0.001 to 1.000%, B: 0.0001 to 0.0500%, W: 0.001-1.000%, Ta: 0.001-1.000%, Sn: 0.001-0.020%, Sb: 0.001-0.020%, As: 0.001- 0.020%, Mg: 0.0001 to 0.0200%, Ca: 0.001 to 0.020%, Y One or two of 0.001 to 0.020%, Zr: 0.001 to 0.020%, La: 0.001 to 0.020%, Ce: 0.001 to 0.020% You
  • a method for producing a medium / high carbon steel sheet according to another aspect of the present invention is to heat a steel slab having the component described in (1) or (2) directly or once after cooling.
  • finish hot rolling is completed in a temperature range of 600 ° C. or higher and 1000 ° C. or lower, and the hot rolled steel sheet picked up at 350 ° C. or higher and 700 ° C. or lower is box-annealed and cold rolled at 10% or higher and 80% or lower.
  • Rolling is performed, and subsequent cold-rolled sheet annealing is performed in a continuous annealing line at an annealing temperature of 650 ° C. or more and 780 ° C. or less and a holding time of 30 seconds or more and 1800 seconds or less.
  • % for a component means mass%.
  • C is an element that increases the strength of the steel by heat treatment during quenching.
  • Medium and high carbon steel sheets are processed as parts after being molded and subjected to heat treatment of quenching and quenching and tempering before being used as materials for drive systems parts such as automobile chains, gears, clutches and saws, blades, etc. Ensure necessary strength or toughness. If the C content is less than 0.10%, an increase in strength due to quenching cannot be obtained, so 0.10% is made the lower limit of the C content.
  • the C content of The upper limit is 1.50%. More preferably, the C content is 0.15 to 1.30%.
  • Si acts as a deoxidizer and is an element that suppresses coarsening and connection of carbide particles in hot-rolled sheet annealing and cold-rolled sheet annealing.
  • a crystal interface is introduced into the carbide particles when two or more particles in the vicinity of each other come into contact with each other.
  • the crystal interface in the carbide particles becomes the starting point of cracking.
  • One typical element that reduces the growth rate of carbide is Si.
  • the Si content is less than 0.01%, the above effect cannot be obtained, so the lower limit of the Si content is set to 0.01%.
  • the Si content exceeds 1.00%, the ferrite is liable to cleave fracture and the drawing at a high strain rate decreases, so the upper limit of the Si content is set to 1.00%.
  • the Si content is more preferably 0.05% or more and 0.80% or less, and further preferably 0.08% or more and 0.50% or less.
  • Mn is an element that suppresses coarsening and connection of carbide particles in hot-rolled sheet annealing and cold-rolled sheet annealing, as in Si. If the Mn content is less than 0.01%, the above effect cannot be obtained, so the lower limit of the Mn content is set to 0.01%. On the other hand, if the Mn content exceeds 3.00%, the carbides are less likely to be spheroidized during hot-rolled sheet annealing and cold-rolled sheet annealing, and cracks start from acicular carbides in deformation at a high strain rate. Occurs and the aperture is reduced. Therefore, the upper limit of the Mn content is 3.00%.
  • the Mn content is more preferably 0.30% or more and 2.50% or less, further preferably 0.50% or more and 1.50% or less.
  • P is an impurity element that embrittles ferrite grain boundaries.
  • the lower limit of the P content is 0.0001%.
  • the upper limit of the P content is 0.1000%. To do.
  • the P content is more preferably 0.0010% or more and 0.0500% or less, and still more preferably 0.0020% or more and 0.0300% or less.
  • S is an impurity element that forms non-metallic inclusions such as MnS, and non-metallic inclusions are the starting point of cracking in deformation at a high strain rate, so the smaller the S content, the better.
  • the lower limit of the S content is set to 0.0001%.
  • the upper limit of the S content is made 0.1000% or less.
  • the S content is more preferably 0.0003% or more and 0.0300% or less.
  • the said component is made into the basic component of a steel plate
  • 1 type, or 2 or more types of the element described below can be selectively contained in order to improve the mechanical characteristic of a steel plate.
  • the lower limit value of the elements described below is 0%.
  • Al preferably 0.001 to 0.500%
  • Al is an element that acts as a deoxidizer for steel. If the Al content is less than 0.001%, the content effect cannot be obtained sufficiently, so the lower limit of the Al content may be 0.001%. On the other hand, if the Al content exceeds 0.500%, the grain boundaries of ferrite are embrittled, causing a reduction in the drawing during deformation at a high strain rate. For this reason, it is good also considering the upper limit of Al content as 0.500%.
  • the Al content is more preferably 0.005% or more and 0.300% or less, and further preferably 0.010% or more and 0.100% or less.
  • N is an element that promotes the bainite transformation of steel and causes embrittlement of ferrite when contained in a large amount.
  • the lower limit of the N content may be 0.0001%.
  • the upper limit of the N content may be 0.0500%.
  • the N content is more preferably 0.0010% or more and 0.0250% or less, and further preferably 0.0020% or more and 0.0100% or less.
  • O preferably 0.0001 to 0.0500% Since O is an element that promotes the formation of coarse oxides in the steel when contained in a large amount, it is preferable that the O content be small. However, since reducing the O content to less than 0.0001% increases the refining cost, 0.0001% may be set as the lower limit of the O content. On the other hand, when the O content exceeds 0.0500%, a coarse oxide is formed in the steel, and cracks originating from the coarse oxide occur during deformation at a high strain rate. The upper limit may be 0.0500%. The O content is more preferably 0.0005% or more and 0.0250% or less, and further preferably 0.0010% or more and 0.0100% or less.
  • Cr preferably 0.001 to 2.000%
  • Cr is an element that suppresses the coarsening and connection of carbide particles in hot-rolled sheet annealing and cold-rolled sheet annealing as in Si and Mn.
  • the lower limit of the Cr content may be 0.001%.
  • the upper limit of the Cr content may be 2.000%.
  • the Cr content is more preferably 0.005% or more and 1.500% or less, further preferably 0.010% or more and 1.300% or less.
  • Mo preferably 0.001 to 2.000%
  • Mo is an element that suppresses coarsening and connection of carbide particles in hot-rolled sheet annealing and cold-rolled sheet annealing. If the Mo content is less than 0.001%, the above effect cannot be obtained, so the lower limit of the Mo content may be 0.001%. On the other hand, if the Mo content exceeds 2.00%, the carbide is less likely to be spheroidized by hot-rolled sheet annealing and cold-rolled sheet annealing, and cracks are generated starting from acicular carbide in deformation at a high strain rate, Since the aperture is reduced, the upper limit of the Mo content may be 2.00%.
  • the Mo content is more preferably 0.005% or more and 1.900% or less, and further preferably 0.008% or more and 0.800% or less.
  • Ni is an effective element for improving the toughness of parts and improving the hardenability. In order to exhibit the effect effectively, it is preferable to contain 0.001% or more of Ni. On the other hand, if the Ni content exceeds 2.000%, carbides are less likely to be spheroidized during hot-rolled sheet annealing and cold-rolled sheet annealing, and cracks are generated starting from needle-like carbides during deformation at a high strain rate. In addition, since the aperture is reduced, the upper limit of the Ni content may be 2.000%. The Ni content is more preferably 0.005% or more and 1.500% or less, further preferably 0.005% or more and 0.700% or less.
  • Cu is an element that increases the strength of the steel material by forming fine precipitates. In order to effectively exhibit the effect of increasing the strength, it is preferable to contain 0.001% or more of Cu. On the other hand, if the Cu content exceeds 1.00%, carbides are less likely to be spheroidized during hot-rolled sheet annealing and cold-rolled sheet annealing, and cracks occur starting from needle-like carbides during deformation at a high strain rate. In addition, since the aperture is reduced, the upper limit of Cu content may be 1.00%. The Cu content is more preferably 0.003% or more and 0.500% or less, and further preferably 0.005% or more and 0.200% or less.
  • Nb is an element that forms carbonitrides and suppresses coarsening and connection of carbide particles in hot-rolled sheet annealing and cold-rolled sheet annealing. If the Nb content is less than 0.001%, the above-described effects cannot be obtained, so the lower limit of the Nb content may be 0.001%. On the other hand, if the Nb content exceeds 1.000%, carbides are less likely to be spheroidized during hot-rolled sheet annealing and cold-rolled sheet annealing, and cracks are generated starting from acicular carbides in deformation at a high strain rate. In addition, since the aperture is reduced, the upper limit of the Nb content may be 1.000%.
  • the Nb content is more preferably 0.005% or more and 0.600% or less, further preferably 0.008% or more and 0.200% or less.
  • V preferably 0.001 to 1.000%
  • Nb is an element that forms carbonitrides and suppresses coarsening and connection of carbide particles in hot-rolled sheet annealing and cold-rolled sheet annealing. If the V content is less than 0.001%, the above effect cannot be obtained, so the lower limit of the V content may be 0.001%. On the other hand, if the V content exceeds 1.000%, carbides are less likely to be spheroidized during hot-rolled sheet annealing and cold-rolled sheet annealing, and cracks occur starting from needle-like carbides during deformation at a high strain rate. In addition, since the aperture is reduced, the upper limit of the V content may be 1.000%.
  • the V content is more preferably 0.001% or more and 0.750% or less, and further preferably 0.001% or more and 0.250% or less.
  • Ti is an element that forms carbonitrides and suppresses coarsening and connection of carbide particles during hot-rolled sheet annealing and cold-rolled sheet annealing. If the Ti content is less than 0.001%, the above-described effects cannot be obtained, so the lower limit of the Ti content may be 0.001% or more. On the other hand, if the Ti content exceeds 1.000%, the carbides are less likely to be spheroidized during hot-rolled sheet annealing and cold-rolled sheet annealing, and cracks are generated starting from needle-like carbides during deformation at a high strain rate. In addition, since the aperture is reduced, the upper limit of the Ti content may be 1.000%. The Ti content is more preferably 0.001% or more and 0.500% or less, and further preferably 0.003% or more and 0.150% or less.
  • B is an element that improves the hardenability during heat treatment of the part. If the B content is less than 0.0001%, the above-described effects cannot be obtained, so the lower limit of the B content may be 0.0001%. If the B content exceeds 0.0500%, a coarse Fe—B—C compound is formed, which becomes a starting point of cracking at the time of deformation at a high strain rate and lowers the squeezing. It may be 0500%.
  • the B content is more preferably 0.0005% or more and 0.0300% or less, and further preferably 0.0010% or more and 0.0100% or less.
  • W preferably 0.001 to 1.000%)
  • W is an element that forms carbonitrides and suppresses coarsening and connection of carbide particles during hot-rolled sheet annealing and cold-rolled sheet annealing. If the W content is less than 0.001%, the above effect cannot be obtained, so the lower limit of the W content may be 0.001%. On the other hand, if the W content exceeds 1.000%, carbides are less likely to be spheroidized during hot-rolled sheet annealing and cold-rolled sheet annealing, and cracks occur starting from needle-like carbides during deformation at a high strain rate. In addition, since the aperture is reduced, the upper limit of the W content may be 1.000%.
  • the W content is more preferably 0.001% or more and 0.450% or less, and further preferably 0.001% or more and 0.160% or less.
  • Ta preferably 0.001 to 1.000%
  • Nb, V, Ti, and W is an element that forms carbonitrides and suppresses coarsening and connection of carbide particles during hot-rolled sheet annealing and cold-rolled sheet annealing.
  • the lower limit of the Ta content may be 0.001%.
  • the Ta content exceeds 1.000%, the carbides are less likely to be spheroidized during hot-rolled sheet annealing and cold-rolled sheet annealing, and cracks occur starting from needle-like carbides during deformation at a high strain rate.
  • the upper limit of the Ta content may be 1.000% or less.
  • the Ta content is more preferably 0.001% or more and 0.750% or less, and further preferably 0.001% or more and 0.150% or less.
  • Sn is an element contained in steel when scrap is used as a steel raw material, and the smaller the Sn content, the better.
  • the lower limit of the Sn content may be 0.001%.
  • the upper limit of the Sn content may be 0.020%.
  • the Sn content is more preferably 0.001% or more and 0.015% or less, and further preferably 0.001% or more and 0.010% or less.
  • Sb is an element contained in steel when scrap is used as a steel raw material, and the smaller the Sb content, the better.
  • the lower limit of the Sb content may be 0.001%.
  • the upper limit of the Sb content may be 0.020% or less.
  • the Sb content is more preferably 0.001% or more and 0.015% or less, and further preferably 0.001% or more and 0.011% or less.
  • As is an element contained when scrap is used as a steel raw material in the same manner as Sn and Sb, and the smaller the As content, the more preferable.
  • the As content is reduced to less than 0.001%, the refining cost is increased, so the lower limit of the As content may be 0.001%.
  • the As content exceeds 0.020%, the ferrite becomes brittle, and the drawing is reduced in deformation at a high strain rate. Therefore, the upper limit of the As content may be 0.020% or less.
  • the As content is more preferably 0.001% or more and 0.015% or less, and further preferably 0.001% or more and 0.007% or less.
  • Mg is an element that can control the form of the sulfide even if the content is very small, and can be contained if necessary. Since the effect cannot be obtained when the Mg content is less than 0.0001%, the lower limit of the Mg content may be 0.0001%. On the other hand, when Mg is excessively contained, the ferrite grain boundary becomes brittle, and the deformation is reduced at a high strain rate, so that the upper limit of the Mg content may be 0.0200%.
  • the Mg content is more preferably 0.0001% or more and 0.0150% or less, and further preferably 0.0001% or more and 0.0075% or less.
  • Ca preferably 0.001 to 0.020%
  • Ca is an element that can control the form of the sulfide even if the content is very small, and can be contained if necessary. Since the effect cannot be obtained when the Ca content is less than 0.001%, the lower limit of the Ca content may be 0.001%. On the other hand, when Ca is excessively contained, the ferrite grain boundary becomes brittle, and the deformation is reduced at a high strain rate, so that the upper limit of the Ca content may be 0.020%.
  • the Ca content is more preferably 0.001% or more and 0.015% or less, and further preferably 0.001% or more and 0.010% or less.
  • Y preferably 0.001 to 0.020%
  • Y is an element that can control the form of sulfide even if the content is very small, and can be contained as required. Since the effect cannot be obtained if the Y content is less than 0.001%, the lower limit of the Y content may be 0.001%. On the other hand, when Y is excessively contained, the ferrite grain boundary becomes brittle, and the deformation is reduced at a high strain rate. Therefore, the upper limit of the Y content may be 0.020%.
  • the Y content is more preferably 0.001% or more and 0.015% or less, and further preferably 0.001% or more and 0.009% or less.
  • Zr preferably 0.001 to 0.020%
  • Zr is an element that can control the form of sulfide even if the content is very small, like Mg, Ca, and Y, and can be contained as needed. Since the effect cannot be obtained if the Zr content is less than 0.001%, the lower limit of the Zr content may be 0.001%. On the other hand, when Zr is excessively contained, the ferrite grain boundaries become brittle, and the deformation is reduced at a high strain rate, so that the drawing is reduced. Therefore, the upper limit of the Zr content may be 0.020%.
  • the Zr content is more preferably 0.015% or less, still more preferably 0.010% or less.
  • La like Mg, Ca, Y, and Zr, is an element effective for controlling the form of sulfides even if the content is very small, and may be contained as necessary. Since the effect cannot be obtained if the La content is less than 0.001%, the lower limit of the La content may be 0.001%. On the other hand, when La is contained excessively, the ferrite grain boundary becomes brittle, and the deformation is reduced at a high strain rate. Therefore, the upper limit of the La content may be 0.020%.
  • the La content is more preferably 0.001% or more and 0.015% or less, and further preferably 0.001% or more and 0.010% or less.
  • Ce preferably 0.001 to 0.020%
  • Ce is an element that can control the form of sulfide even if the content is very small, and may be contained as necessary. Since the effect cannot be obtained if the Ce content is less than 0.001%, the lower limit of the Ce content may be 0.001%. On the other hand, when Ce is excessively contained, the grain boundary of ferrite becomes brittle, and the deformation is reduced at a high strain rate, so that the upper limit of the Ce content may be 0.020%.
  • the Ce content is more preferably 0.001% or more and 0.015% or less, and further preferably 0.001% or more and 0.010% or less.
  • the balance of the components described above is Fe and impurities.
  • the steel sheet according to the present embodiment has been subjected to optimum hot rolling and annealing, so that it has a structure mainly composed of ferrite and carbide, martensite, bainite, pearlite,
  • the ratio is 20% or less with respect to the total number of carbide particles.
  • the steel according to the present embodiment substantially has a structure of ferrite and carbide.
  • the carbide is a compound in which Fe atoms in the cementite are substituted with an alloy element such as Mn and Cr, and an alloy carbide (M 23 C 6 , M 6 C, MC, where M is Fe and other alloying elements). It is preferable that martensite, bainite, pearlite, and retained austenite are not included in the structure. If included, the total volume ratio is 5.0% or less. The lower limit of the total amount of martensite, bainite, pearlite, and retained austenite is not specified.
  • the total amount of martensite, bainite, pearlite, and residual austenite is considered to be 0.0% by volume.
  • the lower limit of the total amount of martensite, bainite, pearlite, and retained austenite may be 0.0%.
  • the martensite, bainite, pearlite, and retained austenite to be specified in the present embodiment are the processes in which the steel sheet is heated to the two-phase region of ferrite and austenite in cold-rolled sheet annealing, and then cooled to room temperature. It is the generated organization. For this reason, martensite, bainite, and pearlite are located at the grain boundaries of ferrite, and retained austenite exists at the lath interface or block boundary of martensite and bainite.
  • the transformation from austenite to martensite, bainite, or pearlite the volume expands, so that stress remains at the ferrite grain boundaries.
  • the steel sheet Since stress remains locally at the ferrite grain boundaries, void formation is promoted in the vicinity of the grain boundaries when the steel sheet is deformed due to stress loading, so the stress remaining at the ferrite grain boundaries is at a high strain rate. Deformation causes a reduction in aperture. In addition, the retained austenite causes a work-induced transformation in the middle of deformation of the steel sheet to become martensite, so that the increase in stress to the ferrite grain boundary is further increased and the reduction of the drawing is promoted. For the above reasons, in order to improve the drawing in deformation at a high strain rate, it is preferable that the steel sheet has a substantially ferrite and carbide structure and does not contain martensite, bainite, pearlite, and retained austenite.
  • the total volume ratio of martensite, bainite, pearlite, and retained austenite is required to be 5.0% or less. Further, when pearlite transformation occurs, the proportion of acicular carbides also increases. The influence of acicular carbide will be described later. In addition, since the carbide does not undergo phase transformation and stress is not concentrated between the carbide and the base material, it is possible to suppress a reduction in the drawing.
  • the spheroidization rate of carbide should be 70% or more and 99% or less. If the spheroidization rate of the carbide is less than 70%, stress concentrates on the needle-like carbide, the carbide is cracked and voids are formed, and the fracture surface is formed by connecting the voids, so deformation at a high strain rate The aperture at is reduced. For this reason, the lower limit of the spheroidization rate of the carbide is set to 70%. Although the higher the spheroidization rate, the better. However, in order to control the spheroidization rate to 100%, it is necessary to perform annealing for a very long time, resulting in an increase in manufacturing cost. % Is desirable and is 99% or less.
  • the cracking of carbides in deformation mainly occurs from a crystal interface having a crystal orientation difference of 5 ° or more, which exists in carbides regarded as one particle in the prior art.
  • voids are generated due to cracks at the crystal interface of the carbide, and these voids are connected to form a fracture surface, thereby reducing the drawing.
  • the proportion of carbides having a crystal interface with a crystal orientation difference of 5 ° or more is better, the number ratio of carbides having a crystal interface with a crystal orientation difference of 5 ° or more is less than 0.1% with respect to the total number of carbide particles. Therefore, consistent quality design control in continuous casting, hot rolling, hot-rolled sheet annealing, cold-rolling, and cold-rolled sheet annealing is indispensable and causes a decrease in yield.
  • the lower limit of the number ratio of carbides having a crystal interface with a crystal orientation difference of 5 ° or more is preferably 0.1%, and more preferably 0.2%.
  • the number ratio of carbides having a crystal interface with a crystal orientation difference of 5 ° or more with respect to the total number of carbide particles exceeds 20%, the restriction in deformation at a high strain rate.
  • the upper limit of the number ratio is 20%, more preferably 15%, and even more preferably 10%.
  • Observation of ferrite, carbide, martensite, bainite and pearlite is performed using a scanning electron microscope. Prior to observation, a sample for tissue observation is wet-polished with emery paper and polished with diamond abrasive grains having an average particle size of 1 ⁇ m, thereby finishing the observation surface into a mirror surface. Next, the observation surface is etched using a 3% nitric acid-alcohol solution.
  • a magnification capable of discriminating each structure of ferrite, carbide, martensite, bainite, and pearlite is selected from 1000 to 10,000 times. In this embodiment, 3000 times is selected.
  • 16 images of a 30 ⁇ m ⁇ 40 ⁇ m field of view in a 1/4 layer thickness are randomly photographed.
  • the volume ratio of each tissue is obtained using a point count method.
  • grid lines with intervals of 2 ⁇ m are drawn in the horizontal and vertical directions, the number of tissues at the intersection of the grid lines is counted, and the ratio of each tissue per photographed photograph from the number ratio of each tissue. Measure. Then, the value which averaged the measurement result of the ratio of each structure
  • martensite and bainite are distinguished based on the presence or absence of fine carbides in the structure.
  • a structure that is mainly located on the grain boundary of ferrite and does not contain carbide is martensite, and a structure containing carbide is bainite.
  • the martensite is tempered martensite, the tempered martensite contains carbide inside, and thus may be mistaken for bainite.
  • a good drawing can be obtained by setting the volume ratio of martensite, bainite, pearlite, and residual austenite to 5%.
  • the influence of misidentification of martensite and bainite on the form of steel according to the embodiment is very small.
  • the ferrite preferably has a volume ratio of 70% or more.
  • the volume fraction of retained austenite is measured by X-ray diffraction.
  • a sample for measurement of residual austenite is prepared by removing the strained layer on the surface of the sample having a mirror-finished observation surface by the above-described procedure using electropolishing. Electropolishing is performed using a 5% perchloric acid-acetic acid solution and applying a voltage of 10V.
  • Cu is selected, and the volume fraction of retained austenite is determined based on the strength of each surface of (200), (220), (311) of austenite and (200), (211) of ferrite. Ask.
  • Carbide is observed with a scanning electron microscope.
  • a sample for observing the structure is prepared by applying wet polishing with emery paper and polishing with diamond abrasive grains having a particle size of 1 ⁇ m to a mirror-finished observation surface and then etching with a saturated picric acid alcohol solution. .
  • the magnification of observation is 1000 to 10000 times.
  • 16 fields of view containing 500 or more carbides on the tissue observation surface are selected at a magnification of 3000 and tissue images are acquired.
  • the area of each carbide contained in the region is measured in detail by image analysis software represented by Mitani Corporation (Win ROOF).
  • carbides having an area of 0.01 ⁇ m 2 or less are excluded from the evaluation target.
  • the preferable range of the carbide particle diameter is 0.30 ⁇ m or more and 1.50 ⁇ m or less.
  • the carbide particle diameter is less than 0.30 ⁇ m, the ferrite particle diameter becomes fine, so the lower limit of the carbide particle diameter is 0.30 ⁇ m. If the carbide particle diameter exceeds 1.50 ⁇ m, voids are likely to be generated in the vicinity of the carbide during deformation of the steel sheet, leading to a decrease in deformability. Therefore, the upper limit of the carbide particle diameter is set to 1.50 ⁇ m.
  • a carbide having a major axis length / minor axis length ratio of 3 or more is discriminated as an acicular carbide, and a carbide having a major axis length / minor axis length ratio of less than 3 is discriminated as a spherical carbide.
  • a value obtained by dividing the number of spherical carbides by the total number of carbides is defined as the spheroidization rate of the carbides (cementite, etc.).
  • the presence or absence of crystal interfaces with a crystal orientation difference of 5 ° or more in the carbide particles is investigated using EBSD.
  • Samples for evaluation were cut with a discharge wire processing machine from an unstrained portion of a steel strip and a cut plate cut from the steel strip or a blank plate punched out, and a surface perpendicular to the steel plate surface was observed. A surface. Since the measurement accuracy of EBSD is affected by the flatness of the observation surface and the strain given by the polishing, the observation surface is finished to a mirror surface by wet polishing and diamond abrasive polishing, and then the observation surface is polished for distortion removal. .
  • the strain relief polishing is performed using a vibration polishing apparatus (Bueller Vibromet 2) under conditions of an output of 40% and a polishing time of 60 minutes. If SEM-EBSD is used, the device types of the SEM and the Kikuchi line detector are not particularly limited. In the 1/4 layer thickness, 100 ⁇ m in the plate thickness direction and 100 ⁇ m in the plate width direction are measured in 4 fields at a measurement step interval of 0.2 ⁇ m and exists in each cementite from the obtained crystal orientation map information. The difference in orientation of the crystal interface and the number of particles having a crystal interface of 5 ° or more are counted. Analysis of measurement data is preferably performed using TSL's OIM analysis software. To eliminate the influence of measurement error data due to noise, the cleanup is not performed and the reliability index (COINCIDENCE INDEX: CI value) is 0. Analyze except data below 1.
  • the ferrite grain size of the structure after cold-rolled sheet annealing 5 ⁇ m or more and 60 ⁇ m or less, it is possible to suppress the reduction of the drawing due to deformation at a high strain rate. If the ferrite particle size is less than 5 ⁇ m, the deformability is lowered, so the lower limit of the ferrite particle size is set to 5 ⁇ m. Further, if the ferrite grain size exceeds 60 ⁇ m, a satin finish is generated on the surface in the initial stage of deformation, and breakage is promoted starting from the surface irregularities generated there, leading to a reduction in drawing, so the upper limit of the ferrite grain size is 60 ⁇ m or less.
  • the ferrite grain size is measured by polishing the observation surface according to the above procedure to a mirror surface, etching with 3% nitric acid-alcohol solution, and observing the structure with a light microscope or scanning electron microscope, and taking the image. The measurement is performed by applying the line segment method.
  • the ferrite particle size is preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • constriction deformation occurs from two directions, ie, a thickness direction and a width direction.
  • the constriction deformation in the thickness direction is the dominant factor of the fracture, and the influence of the constriction deformation in the width direction is very small. Therefore, in the evaluation using the tensile test piece, it is necessary to remove the influence of the constriction deformation in the width direction. Therefore, the ratio of the width of the parallel part / the thickness of the parallel part needs to be 2 or more.
  • the width / thickness ratio is preferably as large as possible, more preferably 4 or more, and even more preferably 6 or more.
  • the drawing is calculated using the formula (1) from the change in thickness before and after the tensile fracture.
  • “Drawing (%)” ((“Plate thickness before test” ⁇ “Plate thickness after fracture”) / “Plate thickness before test”) ⁇ 100 (1)
  • the thickness before the test was measured with a micrometer by measuring the central part of the width of the parallel part and the thicknesses of two points 1 mm away from the central part in a direction perpendicular to the tensile direction and parallel to the width direction. Obtained by averaging the measured values at points.
  • the measurement of the thickness of the sample after the breakage was performed using, for example, a microscope (VHX-1000) manufactured by Keyence, and, as before the test, the center of the width at each fractured surface of the sample divided into two by breakage, And the thickness in the position 1 mm away in the width direction is measured, respectively, and the average of the measurement values at 6 points is the thickness after the test. Samples having a high aperture of 10% or more in the above test were evaluated as samples having “excellent aperture”.
  • the technical idea of the steel sheet manufacturing method according to the present embodiment is characterized by consistently managing the conditions of hot rolling and annealing using the materials in the component ranges described above.
  • the characteristics of the specific manufacturing method of the steel sheet according to this embodiment are as follows.
  • Hot rolling is a method in which a slab having a predetermined component is continuously cast and then heated as it is or after being cooled and then hot-rolled and then heated to 600 ° C. or more and less than 1000 ° C.
  • the finish hot rolling is finished in a temperature range of.
  • the steel strip after finish rolling is cooled on a run-out table (ROT) at a cooling rate of 10 ° C./second or more and 100 ° C./second or less, and then rolled in a temperature range of 350 ° C. or more and less than 700 ° C. Get.
  • ROT run-out table
  • Hot-rolled coil is subjected to hot-rolled sheet box annealing, then cold-rolled at a cold rolling rate of 10% or more and 80% or less, and further subjected to cold-rolled sheet annealing, which is excellent in deformation at a high strain rate.
  • a medium- and high-carbon steel sheet with a reduced drawing is obtained.
  • the heating temperature of the slab is 950 ° C. or more and 1250 ° C. or less, and the heating time is 0.5 hours or more and 3 hours or less. If the heating temperature exceeds 1250 ° C or the heating time exceeds 3 hours, decarburization from the surface of the slab becomes prominent, and the hardness of the surface layer decreases even if heat treatment for quenching is performed, so parts are required It becomes impossible to obtain wear resistance. For this reason, the upper limit of heating temperature shall be 1250 degrees C or less, and the upper limit of heating time shall be 3 hours or less. Further, when the heating temperature is less than 950 ° C.
  • the heating time is less than 0.5 hours, the microsegregation and macrosegregation formed during casting cannot be resolved, and an alloy such as Si and Mn is formed inside the steel material. A region where the element is locally concentrated remains, and this region causes a reduction in the diaphragm during deformation at a high strain rate. For this reason, the minimum of heating temperature shall be 950 degreeC or more, and the minimum of heating time shall be 0.5 hours or more.
  • Finishing hot rolling is preferably finished at 600 ° C. or more and 1000 ° C. or less.
  • the finish hot rolling temperature is set to 600 ° C. or higher.
  • the finish hot rolling temperature exceeds 1000 ° C, the steel plate is run through the RunOutTable, and a thick scale is formed on the steel plate. This scale becomes an oxygen source, and after ironing, the ferrite or pearlite grain boundaries are oxidized. Fine irregularities are generated on the surface.
  • the steel sheet breaks early when deforming at a high strain rate, so the fine irregularities cause a reduction in the aperture.
  • finish hot rolling temperature exceeds 1000 ° C.
  • segregation of alloy elements such as Si and Mn to the austenite grain boundary is promoted after finish hot rolling, and the concentration of the alloy element in the austenite grain is reduced.
  • the agglomeration of carbides proceeds during hot-rolled sheet annealing and cold-rolled sheet annealing, and the number ratio of carbides having a crystal interface increases. For this reason, finishing hot rolling temperature shall be 1000 degrees C or less.
  • the cooling rate of the steel strip in the ROT after finish hot rolling is 10 ° C / second or more and 100 ° C / second or less.
  • the cooling rate is less than 10 ° C./second, since the cooling rate is slow, the growth of ferrite is promoted, and a structure in which ferrite, pearlite, and bainite are laminated in the thickness direction of the steel strip is formed on the hot-rolled sheet. .
  • Such a structure remains even after cold rolling annealing and causes a reduction in drawing of the steel sheet, so the cooling rate is set to 10 ° C./second or more.
  • a cooling rate shall be 100 degrees C / sec or less.
  • the cooling rate determined above is from the time when the steel strip after finish hot rolling passes through the non-water-injection section to receive water cooling in the water-injection section to the time when it is cooled on the ROT to the target temperature of the towing. It refers to the cooling capacity received from the cooling equipment in the water injection section, and does not indicate the average cooling rate from the start of water injection until it is taken up by the take-up machine.
  • the scraping temperature is 350 ° C or higher and 700 ° C or lower.
  • austenite that has not been transformed during finish rolling is transformed into martensite, and fine ferrite and cementite are maintained even after cold-rolled sheet annealing, leading to a reduction in drawing.
  • the scraping temperature is 350 ° C. or higher.
  • the scraping temperature exceeds 700 ° C., untransformed austenite is transformed into pearlite having coarse lamellar, and thick needle-like cementite remains even after cold-rolled sheet annealing, thereby causing a reduction in drawing. For this reason, the scraping temperature is set to 700 ° C. or lower.
  • ⁇ Box annealing is performed on the hot-rolled coil manufactured under the above conditions as it is or after pickling.
  • the annealing temperature is 670 ° C. or higher and 770 ° C. or lower, and the holding time is 1 hour or longer and 100 hours or shorter.
  • the box annealing temperature is preferably 670 ° C. or higher and 770 ° C. or lower. If the annealing temperature is less than 670 ° C., the ferrite particles and carbide particles are insufficiently coarsened, which causes a reduction in drawing during deformation at a high strain rate. For this reason, an annealing temperature shall be 670 degreeC or more. Also, if the annealing temperature exceeds 770 ° C., the structure ratio of ferrite in the two-phase annealing of ferrite and austenite becomes too small, so even if cooling to room temperature at a very slow cooling rate of 1 ° C./hr by box annealing.
  • an annealing temperature shall be 770 degrees C or less.
  • the annealing temperature is preferably 685 ° C. or higher and 760 ° C. or lower.
  • the holding time for box annealing is preferably 1 hour or more and 100 hours or less. If the holding time is less than 1 hour, carbide spheroidization is not sufficient in hot-rolled sheet annealing, and the spheroidization rate is low even after cold-rolled sheet annealing, thereby causing a reduction in drawing. For this reason, the holding time of box annealing shall be 1 hour or more. Under conditions where the holding time exceeds 100 hours, the productivity is lowered and the formation of an interface due to coalescence or contact of carbides is caused, so the holding time for box annealing is set to 100 hours or less.
  • the lower limit of the holding time for box annealing is preferably 2 hours, more preferably 5 hours, and the upper limit is preferably 70 hours, more preferably 38 hours.
  • the atmosphere of the box annealing is not particularly limited, and may be any atmosphere of 95% or more nitrogen, 95% or more hydrogen, or air atmosphere.
  • the hot-rolled sheet annealed coil that has been pickled before or after hot-rolled sheet annealing is cold-rolled at a cold rolling rate of 10% or more and 80% or less.
  • the cold rolling rate is less than 10%, the number of recrystallized nuclei of ferrite is small in the cold-rolled sheet annealing, the ferrite grain size becomes coarse, and it starts from the satin texture that occurs on the steel sheet surface during deformation at a high strain rate. As a result, the aperture is reduced. For this reason, the lower limit of the cold rolling rate is set to 10%.
  • the upper limit of the cold rolling rate is set to 80%.
  • cold rolled sheet annealing In cold rolled sheet annealing, the presence of lattice defects such as dislocations introduced by cold rolling increases the diffusion frequency of each element in the steel. Thereby, in cold-rolled sheet annealing, the carbide particles grow Ostwald, the coarse carbide particles come into contact with each other to form one particle, and a change that forms a crystal interface inside the carbide particles is likely to occur. Since the change of the carbide particles becomes more noticeable when annealing is performed for a long time, it is desirable that the cold-rolled sheet annealing is performed in a continuous annealing furnace.
  • the continuous annealing is desirably performed at an annealing temperature of 650 ° C. or higher and 780 ° C. or lower and a holding time of 30 seconds or longer and 1800 seconds or shorter.
  • the annealing temperature is less than 650 ° C., the size of the ferrite obtained after the cold-rolled sheet annealing is fine, and the deformability is low, so that the aperture is reduced during deformation at a high strain rate.
  • the minimum of annealing temperature shall be 650 degreeC.
  • the annealing temperature exceeds 780 ° C.
  • the ratio of austenite generated during annealing increases too much, so the formation of martensite, bainite, pearlite, and retained austenite cannot be suppressed after cooling, and the reduction of the drawing is reduced.
  • the upper limit of annealing temperature shall be 780 degreeC.
  • the holding time is less than 30 seconds, the size of the ferrite obtained after the cold-rolled sheet annealing becomes fine, so that the drawing is reduced. For this reason, the lower limit of the holding time is set to 30 seconds.
  • the holding time exceeds 1800 seconds, the carbide particles come into contact with each other in the process of growing the carbide particles during the cold-rolled sheet annealing, so that the particles have a crystal interface, and the drawing is reduced.
  • the upper limit of annealing time shall be 1800 seconds or less.
  • the heating rate, cooling rate, and temperature of the OA zone (overaging zone) in cold-rolled sheet annealing are not particularly limited, in the test study according to this embodiment, the heating rate is 3.5 ° C./second or more, 35 ° C. / Sec or less, the cooling rate is 1 ° C./sec or more, 30 ° C./sec or less, and the temperature of the OA band is 250 ° C. or more and 450 ° C. or less. It should be noted that it is confirmed that it is obtained.
  • the structure mainly composed of ferrite and carbide, the total volume ratio of martensite, bainite, pearlite, and retained austenite is 5% or less, and the spherical shape of the carbide particles
  • the conversion ratio 70% or more and 99% or less and the number ratio of the carbide particles including the crystal interface having an orientation difference of 5 ° or more in the carbide particles to 20% or less with respect to the total number of the carbide particles. It is possible to obtain a medium and high carbon steel plate that exhibits excellent formability when performing plastic working such as hole expansion, thickening and thinning, or cold forging combining them at a high strain rate.
  • the level of the example is an example of the execution condition adopted to confirm the feasibility and effect of the present invention, and the present invention is not limited to this one condition example.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • a continuous cast slab (steel ingot) having the composition shown in Table 1 is hot-rolled after heating for 1.6 hours at 1140 ° C., and a slab having a thickness of 250 mm obtained is roughly hot-rolled to a thickness of 40 mm. Then, the hot bar of the finished hot-rolled material is heated to 36 ° C., finishing hot rolling is started, and after finishing hot rolling at 880 ° C., it is cooled to 520 ° C. at a cooling rate of 45 ° C./second on ROT, and at 510 ° C. A hot rolled coil having a thickness of 4.6 mm was manufactured by scraping.
  • the hot-rolled coil is pickled, charged in a box-type annealing furnace, and the atmosphere is controlled to 95% hydrogen-5% nitrogen, and then heated from room temperature to 500 ° C at a heating rate of 100 ° C / hour. After maintaining the temperature distribution at 500 ° C. for 3 hours to make the temperature distribution in the coil uniform, the coil was heated to 705 ° C. at a heating rate of 30 ° C./hour, and further maintained at 705 ° C. for 24 hours and then cooled to room temperature.
  • the coil subjected to hot-rolled sheet annealing is cold-rolled at a reduction ratio of 50%, subjected to cold-rolled sheet annealing held at 720 ° C. for 900 seconds, subjected to temper rolling at a reduction ratio of 1.2%,
  • a sample for characteristic evaluation was prepared. The drawing in the sample structure and deformation at a high strain rate was measured by the method described above.
  • Tables 2-1 and 2-2 show the evaluation results of the diaphragm in the deformation of the manufactured samples at a high strain rate.
  • Tables 2-1 and 2-2 No. B-1, C-1, D-1, E-1, F-1, G-1, H-1, I-1, J-1, M-1, N-1, P-1, Q- 1, R-1, S-1, U-1, X-1, Y-1, Z-1, AA-1, AB-1, AC-1 are all martensite, bainite, pearlite, and residual
  • the volume ratio of the total austenite is 5% or less
  • the spheroidization rate of the carbide particles is 70% or more and 99% or less
  • the number ratio of the carbide particles including a crystal interface having an orientation difference of 5 ° or more in the carbide particles is It was 20% or less with respect to the total number of carbide particles, and an excellent aperture was shown in deformation at a high strain rate.
  • Comparative Example A-1 has a small proportion of carbide having a crystal interface and exhibits excellent drawing in deformation at a high strain rate, but has a low C content and is used in a quenching process for componentization. Since the strength could not be increased, it was rejected.
  • Comparative Example K-1 had a low Mn content, promoted Ostwald growth of carbides during cold-rolled sheet annealing, and increased the proportion of carbides having a crystal interface, leading to a reduction in drawing.
  • Comparative Example L-1 the content of P was large, the ferrite grain boundaries became brittle, and cracks were generated and propagated from the ferrite grain boundaries when deformed at a high strain rate, resulting in a reduction in drawing.
  • Comparative Example O-1 has a high Mn content, spheroidization of carbides during hot-rolled sheet annealing and cold-rolled sheet annealing is suppressed, and cracks are generated from the needle-shaped carbides and propagated during deformation at a high strain rate. So the aperture was reduced. Since Comparative Example T-1 had a low Si content, Ostwald growth of carbides was promoted during cold-rolled sheet annealing, and the proportion of carbides having a crystal interface increased, leading to a reduction in drawing. Comparative Example V-1 had a high S content, and there were many inclusions such as coarse MnS in the steel, and cracks were generated and propagated starting from the inclusions, resulting in a reduction in drawing.
  • Comparative Example W-1 has a high Si content, austenite formed during cold-rolled sheet annealing is less likely to undergo ferrite transformation during cooling, and promotes bainite and pearlite transformation, resulting in an increase in the proportion of structure other than ferrite and carbide. As a result, stress was concentrated on the ferrite grain boundary, and the drawing was reduced. In Comparative Example AD-1, since the C content and the volume fraction of carbides were large, the number ratio of carbides having a crystal interface could not be controlled to 20% or less, and the drawing was reduced.
  • Tables 3-1, 3-2, and 3-3, and Tables 4-1, 4-2, and 4-3 are used.
  • a continuous cast slab (steel ingot) having the indicated composition is hot-rolled after heating at 1180 ° C.
  • a hot rolled coil having a plate thickness of 2.6 mm was manufactured. After pickling the hot-rolled coil, inserting the coil into a box-type annealing furnace, and controlling the atmosphere to 95% hydrogen-5% nitrogen, the heating temperature from room temperature to 500 ° C. was heated at 100 ° C./hour.
  • the coil was heated to 705 ° C. at a heating rate of 30 ° C./hour, and further maintained at 705 ° C. for 24 hours and then cooled to room temperature.
  • the coil subjected to hot-rolled sheet annealing is cold-rolled at a reduction rate of 50%, subjected to cold-rolled sheet annealing held at 700 ° C. for 900 seconds, subjected to temper rolling at a reduction rate of 1.0%, A sample for characteristic evaluation was prepared.
  • Tables 5-1 to 5-6 show the evaluation results of the diaphragm when the samples manufactured were deformed at a high strain rate. As shown in Tables 5-1 to 5-6, No. AE-1, AF-1, AL-1, AM-1, AN-1, AR-1, AS-1, AV-1, AW-1, AX-1, BC-1, BD-1, BF- 1, BH-1, BI-1, BJ-1, BK-1, BM-1, BN-1, and BT-1 all have a volume ratio of 5 in total of martensite, bainite, pearlite, and retained austenite.
  • the spheroidization rate of the carbide particles is 70% or more and 99% or less, and the number ratio of carbide particles including a crystal interface having an orientation difference of 5 ° or more in the carbide particles is It was 20% or less with respect to the total number of carbide particles, and an excellent aperture was shown in deformation at a high strain rate.
  • Comparative Examples AG-1, AH-1, AO-1, AT-1, AU-1, AZ-1, BA-1, BB-1, BO-1, and BS-1 are Ce, Since the contents of Ca, Y, Al, Mg, As, Zr, Sn, Sb, and La are large, the ferrite grain boundaries become brittle, and the squeezing is reduced during deformation at a high strain rate.
  • Comparative Examples AI-1, AJ-1, AK-1, AQ-1, BE-1, BG-1, BL-1, BQ-1, and BR-1 are Nb, W, Ti, Ni, Cr, Mo, Since the content of V, Cu, Ta is large, spheroidization of carbides during hot-rolled sheet annealing and cold-rolled sheet annealing is suppressed, and cracks are generated and propagated from needle-shaped carbides during deformation at a high strain rate. Aperture decreased.
  • Comparative Example AP-1 has a high N content, and austenite formed during cold-rolled sheet annealing is less likely to undergo ferrite transformation during cooling, and promotes bainite and pearlite transformation, thus increasing the proportion of the structure other than ferrite and carbide.
  • Comparative Example AY-1 has a large content of O, forms a coarse oxide in the steel, and cracks are generated and propagated starting from the coarse oxide in deformation at a high strain rate, resulting in a reduction in the drawing. It was. Comparative Example BP-1 had a high B content, and coarse Fe—B—Carbide was produced in the steel. Therefore, cracks were generated and propagated starting from Fe—B—Carbide, leading to a reduction in drawing.
  • Table 9-2-3 hereinafter simply referred to as Tables 6, 7, 8, and 9
  • Tables 6, 7, 8, and 9 also show the evaluation results of the diaphragm in the deformation at the high strain rate of the manufactured samples.
  • the rate of spheroidization of the carbide particles is 70% or more and 99% or less, and the number ratio of the carbide particles
  • Comparative Examples AA-2, BK-2, C-3, and BJ-3 had higher finishing hot rolling temperatures and increased the number ratio of carbides having crystal interfaces as shown in Tables 6 and 7.
  • the thick scale generated during cooling until winding serves as an oxygen supply source, which oxidizes the grain boundary after winding and creates fine cracks on the surface, thereby cracking the surface layer in deformation at a high strain rate.
  • the crack propagated from the starting point, leading to a reduction in drawing.
  • Comparative Examples R-2, BM-2, X-3, and BC-3 have a low finish hot rolling temperature. When rolling by rolling a scale during hot rolling, irregularities are formed on the surface of the steel sheet, and deformation at a high strain rate is performed. In FIG.
  • Comparative Examples U-2, AR-2, Y-3, and AL-3 have high coiling temperatures, and a needle-like carbide having a large thickness is produced in the hot-rolled sheet, and the needle-like carbide is present even after cold-rolled sheet annealing. Since spheroidization did not progress, cracks were generated and propagated starting from needle-like carbides, and the aperture was reduced.
  • Comparative Examples H-2, AM-2, Q-3, and BI-3 the coiling temperature is low, the structure of the hot-rolled sheet is fine, and the structure after cold-rolled sheet annealing is also fine, so the deformability is reduced. The diaphragm in deformation at high strain rate was reduced.
  • Comparative Examples G-2, AE-2, J-3, and BD-3 have a high cold rolling rate, so that the structure after annealing of the cold rolled sheet becomes fine, and the deformability decreases. , Caused a decrease in aperture. Since Comparative Examples S-2, AW-2, AC-3, and BH-3 have a low cold rolling rate, the grain size of ferrite after annealing of the cold rolled sheet becomes coarse, and a satin finish is generated on the surface layer in deformation at a high strain rate. However, since cracks occurred and propagated based on the formed surface irregularities, the aperture was reduced.
  • Comparative Examples M-2, BT-2, Z-3, and AS-3 have a high temperature for cold-rolled sheet annealing, the phase ratio of austenite generated during annealing increases, and martensite, bainite, and pearlite are produced during the cooling process. Since the transformation could not be suppressed, the diaphragm was lowered during deformation at a high strain rate.
  • Comparative Examples P-2, BF-2, E-3, and BN-3 the temperature of cold-rolled sheet annealing was low and the ferrite grain size was fine, so the deformability was reduced, and the drawing in deformation at a high strain rate was reduced. .
  • Comparative Examples I-2, AX-2, D-3, and AN-3 have a long cold-rolled sheet annealing time, the carbide particles come into contact with each other in the course of coarsening, and have a crystal interface inside the particles. , Caused a decrease in aperture.
  • Comparative Examples F-2, AF-2, B-3, and AV-3 the cold-rolled sheet annealing time was short, and the ferrite was fine, so that the deformability was reduced, and the diaphragm for deformation at a high strain rate was lowered.
  • Fig. 1 shows the shape of a test piece for evaluating the drawing of a steel plate in deformation at a high strain rate.
  • the parallel part of the test piece was 1.5 mm, the test piece was pulled at a stroke speed of 900 mm / min, the test piece was broken, and the drawing of the steel sheet was determined from the change in the plate thickness at the center of the parallel part before and after the test.
  • FIG. 2 shows an example in which ferrite and carbide were revealed by etching a sample after stopping deformation at a high strain rate at an elongation of 13.4% using a 3% nitric acid-alcohol solution.
  • the organization of U-1 is shown. It is clear that carbide cracking occurs from the crystal interface present in the carbide particles.
  • FIG. 3 shows invention examples and comparative examples in Table 2-1 and Table 2-2, and invention examples and comparative examples in Tables 5-1 to 5-6, Table 6, Table 7, Table 8, and Table 9.
  • the relationship between the drawing in deformation at a high strain rate and the ratio of the number of carbides having a crystal interface in the carbide particles to the total number of carbides is shown. It can be seen that the drawing is remarkably improved by adjusting the components within the range of the invention and setting the number ratio of carbides having a crystal interface to 20% or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

 The medium-/high-carbon steel sheet according to one aspect of the present invention is a steel sheet containing, in mass%, C: 0.10-1.50%, Si: 0.01-1.00%, Mn: 0.01-3.00 mass%, P: 0.0001-0.1000%, and S: 0.001-0.1000%, with the remainder having components comprising Fe and impurities, wherein the total volume fraction of martensite, bainite, pearlite, and residual austenite is 5% or less, the remainder being a composition of ferrite and carbide; the spheroidizing ratio of the carbide particles is 70 to 99%, inclusive; and the number of carbide particles that include crystal interface misorientation of 5° or greater, expressed as a proportion of the carbide particles, is 20% or less with respect to the total number of carbide particles.

Description

中・高炭素鋼板及びその製造方法Medium and high carbon steel sheet and manufacturing method thereof
 本発明は、高い歪速度での成形において優れた絞りを有する中・高炭素鋼板及びその製造方法に関するものである。
 本願は、2014年3月7日に、日本に出願された特願2014-045689号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a medium / high carbon steel sheet having an excellent drawing in forming at a high strain rate and a method for producing the same.
This application claims priority on March 7, 2014 based on Japanese Patent Application No. 2014-045689 for which it applied to Japan, and uses the content for it here.
 中・高炭素鋼板は、自動車のチェーン、ギヤー、クラッチ等の駆動系部品及び鋸、刃物等の素材として用いられる。中・高炭素鋼の鋼帯あるいは鋼帯から切り出した鋼板から所定の形状に成形された素材は深絞り加工、穴拡げ加工、増肉加工、減肉加工等の塑性加工により部品形状へと成形される。各加工を単独あるいはそのうちの数種を同時に施す冷間鍛造では部分的に10/sec程度の高い歪速度で素材を成形しており、素材となる鋼板には高い歪速度での変形においても優れた成形性、つまりは優れた絞りを有することが要求される。 Medium and high carbon steel plates are used as materials for drive system parts such as automobile chains, gears, and clutches, as well as saws and blades. A material formed into a specified shape from a steel strip cut from a medium or high carbon steel or from a steel strip is formed into a part shape by plastic processing such as deep drawing, hole expansion, thickening, and thinning. Is done. In cold forging, in which each processing is performed individually or several of them simultaneously, the material is partially formed at a high strain rate of about 10 / sec, and the steel plate used as the material is excellent in deformation at a high strain rate. It is required to have excellent moldability, that is, excellent drawing.
 これまで、中・高炭素鋼板の絞りを改善する技術について多くの提案がなされてきた(例えば、特許文献1~6、参照)。 So far, many proposals have been made on techniques for improving the drawing of medium and high carbon steel sheets (see, for example, Patent Documents 1 to 6).
 例えば、特許文献1には、深絞り性に優れた中・高炭素鋼板の製造方法として、C:0.20~0.90質量%の熱延鋼板または焼鈍鋼板に、少なくとも圧延最終パスに表面粗さRaが0.20~1.50μmのワークロールを用い、トータル圧延率を20~70%とする条件で仕上げ圧延を行い、その後、仕上げ焼鈍を施す発明が開示されている。しかし、特許文献1に開示された技術は、鋼板表面の粗度を改善することで絞りを高める技術であり、鋼材の組織形態の制御による材質改善により絞りを高める技術ではなく、必ずしも所望の発明効果を得られるものではない。 For example, in Patent Document 1, as a method for producing a medium / high carbon steel sheet excellent in deep drawability, C: 0.20 to 0.90 mass% hot rolled steel sheet or annealed steel sheet, at least in the final rolling pass surface An invention is disclosed in which finish rolling is performed using a work roll having a roughness Ra of 0.20 to 1.50 μm and a total rolling ratio of 20 to 70%, and then finish annealing. However, the technique disclosed in Patent Document 1 is a technique for increasing the diaphragm by improving the roughness of the steel sheet surface, and is not a technique for increasing the diaphragm by improving the material quality by controlling the structure of the steel material. There is no effect.
 さらに特許文献2には、加工性に優れた高靭性高炭素鋼板として、C:0.6~1.3質量%、Si:0.5質量%以下、Mn:0.2~1.0質量%、P:0.02質量%以下、S:0.01質量%以下を含み、残部が実質的にFeの組成を有し、熱延条件、冷延条件および焼鈍条件の調整により、炭化物の最大長さが5.0μm以下であり、炭化物球状化率が90%以上であり、かつ粒径が1.0μm以上の球状炭化物の体積が全球状炭化物体積の20%以上である、炭化物と等軸状フェライトとからなる高炭素鋼板の発明が開示されている。 Further, in Patent Document 2, as a high toughness high carbon steel plate excellent in workability, C: 0.6 to 1.3% by mass, Si: 0.5% by mass or less, Mn: 0.2 to 1.0% by mass %, P: 0.02% by mass or less, S: 0.01% by mass or less, with the balance being substantially Fe, and by adjusting the hot rolling conditions, cold rolling conditions and annealing conditions, The maximum length is 5.0 μm or less, the carbide spheroidization rate is 90% or more, and the volume of the spherical carbide having a particle size of 1.0 μm or more is 20% or more of the total spherical carbide volume, etc. An invention of a high carbon steel plate made of axial ferrite is disclosed.
 特許文献3には、深絞り性に優れた中・高炭素鋼として、C含有量が0.10~0.90質量%であり、炭化物のフェライト粒界存在率(F値)が30%以上になるように、炭化物をフェライト中に分散させた組織とする発明が開示されている。 In Patent Document 3, as a medium and high carbon steel excellent in deep drawability, the C content is 0.10 to 0.90 mass%, and the ferrite grain boundary existence rate (F value) of carbide is 30% or more. Thus, an invention in which a structure in which carbide is dispersed in ferrite is disclosed.
 特許文献4には、深絞り面内異方性の小さい高炭素冷延鋼帯として、C:0.25~0.75%の鋼組成をもち、鋼中炭化物の平均粒径が0.5μm以上であり、球状化率が90%以上であり、集合組織が数式「(222)/(200)≧6-8.0×C(%)」を満たす発明が開示されている。 In Patent Document 4, as a high-carbon cold-rolled steel strip having a small deep-drawing in-plane anisotropy, the steel composition has C: 0.25 to 0.75%, and the average grain size of carbides in the steel is 0.5 μm. The invention in which the spheroidization rate is 90% or more and the texture satisfies the formula “(222) / (200) ≧ 6-8.0 × C (%)” is disclosed.
 特許文献5には、深絞り性が良好で、しかも高い硬度や優れた耐摩耗性を付与し得る高炭素鋼帯として、C含有量が0.20~0.70質量%であり、鋼中のセメンタイトの50面積%以上が黒鉛化されていることを特徴とする発明が開示されている。 Patent Document 5 discloses that the carbon content is 0.20 to 0.70% by mass as a high carbon steel strip that has good deep drawability and can impart high hardness and excellent wear resistance. An invention is disclosed in which 50% by area or more of the cementite is graphitized.
 特許文献6には、成形性に優れた高炭素冷延鋼板の製造方法として、C:0.1~0.65%、Si:0.01~0.3%、Mn:0.4~2%、sol.Al:0.01~0.1%、N:0.002~0.008%、B:0.0005~0.005%、Cr:0~0.5、Mo:0~0.1を含有する高炭素鋼を熱間圧延し、300~520℃で巻取り、650~(Ac1―10)℃で箱焼鈍し、40~80%の圧下率で冷間圧延し、650~(Ac1―10)℃で箱焼鈍する技術が開示されている。 In Patent Document 6, as a method for producing a high carbon cold-rolled steel sheet having excellent formability, C: 0.1 to 0.65%, Si: 0.01 to 0.3%, Mn: 0.4 to 2 %, Sol. Al: 0.01 to 0.1%, N: 0.002 to 0.008%, B: 0.0005 to 0.005%, Cr: 0 to 0.5, Mo: 0 to 0.1 Hot-rolled high carbon steel, wound at 300-520 ° C., box annealed at 650- (Ac1-10) ° C., cold-rolled at a rolling reduction of 40-80%, 650- (Ac1-10 ) A technique for box annealing at ° C is disclosed.
 しかし、これらのいずれの特許文献にも、高い歪速度で成形する際に発生する鋼材内部のセメンタイトそのものの割れ、及び割れの発生にて生じたボイドの成長・連結による絞りの低下を抑制する知見および技術については何らの開示もされていない。 However, in any of these patent documents, knowledge that suppresses the reduction of the drawing due to the cracking of cementite itself inside the steel material that occurs when forming at a high strain rate and the growth and connection of voids generated by the occurrence of the cracking. There is no disclosure about the technology.
日本国特開2003-293042号公報Japanese Laid-Open Patent Publication No. 2003-293042 日本国特開2003-147485号公報Japanese Unexamined Patent Publication No. 2003-147485 日本国特開2002-155339号公報Japanese Unexamined Patent Publication No. 2002-155339 日本国特開2000-328172号公報Japanese Unexamined Patent Publication No. 2000-328172 日本国特開平6-108158号公報Japanese Unexamined Patent Publication No. 6-108158 日本国特開平11-61272号公報Japanese Patent Laid-Open No. 11-61272
 本発明は、上記実情に鑑み、高い歪速度での成形において優れた絞りを有する中・高炭素鋼板とその製造方法とを提供することを課題とするものである。 In view of the above circumstances, an object of the present invention is to provide a medium / high carbon steel sheet having an excellent drawing in forming at a high strain rate and a manufacturing method thereof.
 本発明者らは、上記課題を解決する手法について鋭意研究した。その結果、本発明者らは、変形時に炭化物で生じる割れ(ボイド)が成長し、互いに連結することにより、高い歪速度での変形における絞りが低下することを知見した。更に、本発明者らは、炭化物にて発生する割れが、従来は一つの粒子として認められていた炭化物粒子の中に存在する結晶界面から発生していることを知見した。本発明者らは、炭化物粒子の中の結晶界面の量を低減させることにより、高い歪速度での変形においても優れた絞りを示し、さらには深絞り加工、穴拡げ加工、増肉加工、減肉加工等の塑性加工やそれらの加工のうちの数種を同時に施す冷間鍛造において優れた成形性を示す中・高炭素鋼板が得られることを知見した。 The present inventors have intensively studied a method for solving the above problems. As a result, the present inventors have found that, when cracks (voids) generated in carbides grow at the time of deformation and are connected to each other, the reduction in deformation at a high strain rate is reduced. Furthermore, the present inventors have found that the cracks generated in the carbide are generated from the crystal interface existing in the carbide particles that have been conventionally recognized as one particle. By reducing the amount of crystal interface in the carbide particles, the inventors have shown excellent drawing even in deformation at a high strain rate, and further, deep drawing processing, hole expanding processing, thickening processing, reduction It has been found that medium- and high-carbon steel sheets exhibiting excellent formability can be obtained in plastic working such as meat processing and cold forging in which several types of processing are simultaneously performed.
 また、本発明者らは、上述の特徴を有する鋼板は、熱延条件及び焼鈍条件などを個別に工夫した場合には製造困難であり、熱延・焼鈍工程などのいわゆる一貫工程にて最適化を達成することでしか製造できないことも、種々の研究を積み重ねることで知見し、本発明を完成した。 In addition, the present inventors found that the steel plate having the above-mentioned characteristics is difficult to manufacture when the hot rolling conditions and annealing conditions are individually devised, and is optimized in so-called integrated processes such as hot rolling and annealing processes. The fact that it can be produced only by achieving the above has been found by accumulating various studies, and the present invention has been completed.
 本発明の要旨は、次の通りである。 The gist of the present invention is as follows.
 (1)本発明の一態様に係る中・高炭素鋼板は、質量%で、C:0.10~1.50%、Si:0.01~1.00%、Mn:0.01~3.00%、P:0.0001~0.1000%、S:0.0001~0.1000%、を含有し、残部がFeおよび不純物からなる成分を有する鋼板であり、前記鋼板が、マルテンサイト、ベイナイト、パーライト、および残留オーステナイトを合計した体積率が5.0%以下であり、残部がフェライトと炭化物とである組織を有し、炭化物粒子の球状化率が70%以上99%以下であり、前記炭化物粒子の中に方位差5°以上の結晶界面を含む前記炭化物粒子の個数割合が、前記炭化物粒子の総個数に対して20%以下である。 (1) The medium / high carbon steel sheet according to one embodiment of the present invention is, in mass%, C: 0.10 to 1.50%, Si: 0.01 to 1.00%, Mn: 0.01 to 3 0.000%, P: 0.0001 to 0.1000%, S: 0.0001 to 0.1000%, the balance being Fe and impurities, and the steel plate is martensite. , Bainite, pearlite, and retained austenite have a volume ratio of 5.0% or less, the balance is a structure of ferrite and carbide, and the spheroidization rate of the carbide particles is 70% or more and 99% or less. The number ratio of the carbide particles including a crystal interface having an orientation difference of 5 ° or more in the carbide particles is 20% or less with respect to the total number of the carbide particles.
 (2)前記(1)に記載の中・高炭素後半は、前記鋼板の前記成分が、質量%で、さらに、Al:0.001~0.500%、N:0.0001~0.0500%、O:0.0001~0.0500%Cr:0.001~2.000%、Mo:0.001~2.000%、Ni:0.001~2.000%、Cu:0.001~1.000%、Nb:0.001~1.000%、V:0.001~1.000%、Ti:0.001~1.000%、B:0.0001~0.0500%、W:0.001~1.000%、Ta:0.001~1.000%、Sn:0.001~0.020%、Sb:0.001~0.020%、As:0.001~0.020%、Mg:0.0001~0.0200%、Ca:0.001~0.020%、Y:0.001~0.020%、Zr:0.001~0.020%、La:0.001~0.020%、Ce:0.001~0.020%、の内の1種または2種以上を含有してもよい。 (2) In the middle- and high-carbon second half described in (1), the component of the steel sheet is mass%, and Al: 0.001 to 0.500%, N: 0.0001 to 0.0500 %, O: 0.0001 to 0.0500% Cr: 0.001 to 2.000%, Mo: 0.001 to 2.000%, Ni: 0.001 to 2.000%, Cu: 0.001 To 1.000%, Nb: 0.001 to 1.000%, V: 0.001 to 1.000%, Ti: 0.001 to 1.000%, B: 0.0001 to 0.0500%, W: 0.001-1.000%, Ta: 0.001-1.000%, Sn: 0.001-0.020%, Sb: 0.001-0.020%, As: 0.001- 0.020%, Mg: 0.0001 to 0.0200%, Ca: 0.001 to 0.020%, Y One or two of 0.001 to 0.020%, Zr: 0.001 to 0.020%, La: 0.001 to 0.020%, Ce: 0.001 to 0.020% You may contain the above.
 (3)本発明の別の態様に係る中・高炭素鋼板の製造方法は、前記(1)または(2)に記載の前記成分を有する鋼片を、直接、または一旦冷却後、加熱し熱間圧延する際に、600℃以上1000℃以下の温度域で仕上げ熱延を完了し、350℃以上700℃以下で捲取った熱延鋼板を箱焼鈍し、10%以上80%以下の冷間圧延を施し、その後の冷延板焼鈍を、連続焼鈍ラインにおいて焼鈍温度を650℃以上780℃以下、保持時間を30秒以上1800秒以下で実施する。 (3) A method for producing a medium / high carbon steel sheet according to another aspect of the present invention is to heat a steel slab having the component described in (1) or (2) directly or once after cooling. When hot rolling, finish hot rolling is completed in a temperature range of 600 ° C. or higher and 1000 ° C. or lower, and the hot rolled steel sheet picked up at 350 ° C. or higher and 700 ° C. or lower is box-annealed and cold rolled at 10% or higher and 80% or lower. Rolling is performed, and subsequent cold-rolled sheet annealing is performed in a continuous annealing line at an annealing temperature of 650 ° C. or more and 780 ° C. or less and a holding time of 30 seconds or more and 1800 seconds or less.
 本発明によれば、高い歪速度での成形において優れた絞りを有する中・高炭素鋼板及びその製造方法を提供できる。 According to the present invention, it is possible to provide a medium / high carbon steel sheet having an excellent drawing in forming at a high strain rate and a manufacturing method thereof.
高い歪速度での絞りを測定するための試験片の形状を示す図である。It is a figure which shows the shape of the test piece for measuring the aperture_diaphragm | restriction at a high strain rate. 変形時に炭化物粒子の中にある結晶界面から割れが発生する様子を示す図である。It is a figure which shows a mode that a crack generate | occur | produces from the crystal | crystallization interface in a carbide particle at the time of a deformation | transformation. 結晶界面を含む炭化物粒子の個数割合と、高い歪速度での引張試験時における絞りとの関係を示す図である。It is a figure which shows the relationship between the number ratio of the carbide particle containing a crystal interface, and the aperture | diaphragm | restriction at the time of the tensile test at a high strain rate.
 以下、本実施形態を詳細に説明する。 Hereinafter, this embodiment will be described in detail.
 まず、本実施形態に係る鋼板の化学成分を限定した理由について説明する。ここで成分についての「%」は質量%を意味する。 First, the reason why the chemical components of the steel sheet according to this embodiment are limited will be described. Here, “%” for a component means mass%.
 (C:0.10~1.50%)
 Cは、焼入れの熱処理により鋼の強度を高める元素である。中・高炭素鋼板は、成形後、自動車のチェーン、ギヤー、クラッチ等の駆動系部品及び鋸、刃物等の素材として用いられる前に、焼入れ及び焼入れ焼戻しの熱処理が施されることにより、部品として必要な強度あるいは靭性を確保する。C含有量が0.10%未満では、焼入れによる強度の増加を得られないので、0.10%をC含有量の下限とする。一方、C含有量が1.50%を超えると、冷延焼鈍後において、粒子内部に結晶界面を持つ炭化物の個数割合が増加し、高い歪速度での絞りが低下するので、C含有量の上限を1.50%とする。より好ましくは、C含有量は0.15~1.30%である。
(C: 0.10 to 1.50%)
C is an element that increases the strength of the steel by heat treatment during quenching. Medium and high carbon steel sheets are processed as parts after being molded and subjected to heat treatment of quenching and quenching and tempering before being used as materials for drive systems parts such as automobile chains, gears, clutches and saws, blades, etc. Ensure necessary strength or toughness. If the C content is less than 0.10%, an increase in strength due to quenching cannot be obtained, so 0.10% is made the lower limit of the C content. On the other hand, if the C content exceeds 1.50%, after cold rolling annealing, the number ratio of carbides having a crystal interface inside the particles increases, and the drawing at a high strain rate decreases, so the C content of The upper limit is 1.50%. More preferably, the C content is 0.15 to 1.30%.
 (Si:0.01~1.00%)
 Siは、脱酸剤として作用し、また、熱延板焼鈍および冷延板焼鈍における炭化物粒子の粗大化及び連結を抑制する元素である。冷延板焼鈍中に炭化物粒子がオストワルド成長する過程で、互いに近傍にある2つ以上の粒子が接触する際に、炭化物粒子の中に結晶界面が導入される。鋼板の変形時に、炭化物粒子中の結晶界面が割れの起点となる。この現象の抑制のためには、熱延板焼鈍及び冷延板焼鈍における炭化物の成長速度を低下させる必要がある。その代表的な、炭化物の成長速度を低下させる元素の一つがSiである。Siの含有量が0.01%未満では、上述の効果が得られないので、Si含有量の下限を0.01%とする。一方、Si含有量が1.00%を超えると、フェライトがヘキ開破壊しやすくなり、高い歪速度での絞りが低下するので、Si含有量の上限を1.00%とする。Si含有量は、より好ましくは0.05%以上、0.80%以下であり、さらに好ましくは0.08%以上、0.50%以下である。
(Si: 0.01-1.00%)
Si acts as a deoxidizer and is an element that suppresses coarsening and connection of carbide particles in hot-rolled sheet annealing and cold-rolled sheet annealing. In the process of Ostwald growth of carbide particles during cold rolled sheet annealing, a crystal interface is introduced into the carbide particles when two or more particles in the vicinity of each other come into contact with each other. During deformation of the steel sheet, the crystal interface in the carbide particles becomes the starting point of cracking. In order to suppress this phenomenon, it is necessary to reduce the growth rate of carbides in hot-rolled sheet annealing and cold-rolled sheet annealing. One typical element that reduces the growth rate of carbide is Si. If the Si content is less than 0.01%, the above effect cannot be obtained, so the lower limit of the Si content is set to 0.01%. On the other hand, if the Si content exceeds 1.00%, the ferrite is liable to cleave fracture and the drawing at a high strain rate decreases, so the upper limit of the Si content is set to 1.00%. The Si content is more preferably 0.05% or more and 0.80% or less, and further preferably 0.08% or more and 0.50% or less.
 (Mn:0.01~3.00%)
 Mnは、Siと同様に熱延板焼鈍及び冷延板焼鈍での炭化物粒子の粗大化及び連結を抑制する元素である。Mn含有量が0.01%未満では、上述の効果が得られないので、Mn含有量の下限を0.01%とする。一方、Mn含有量が3.00%を超えると、熱延板焼鈍及び冷延板焼鈍の際に炭化物が球状化しにくくなり、高い歪速度での変形において、針状の炭化物を起点として割れが発生し、絞りが低下する。従って、Mn含有量の上限を3.00%とする。Mn含有量は、より好ましくは0.30%以上、2.50%以下、さらに好ましくは0.50%以上、1.50%以下である。
(Mn: 0.01 to 3.00%)
Mn is an element that suppresses coarsening and connection of carbide particles in hot-rolled sheet annealing and cold-rolled sheet annealing, as in Si. If the Mn content is less than 0.01%, the above effect cannot be obtained, so the lower limit of the Mn content is set to 0.01%. On the other hand, if the Mn content exceeds 3.00%, the carbides are less likely to be spheroidized during hot-rolled sheet annealing and cold-rolled sheet annealing, and cracks start from acicular carbides in deformation at a high strain rate. Occurs and the aperture is reduced. Therefore, the upper limit of the Mn content is 3.00%. The Mn content is more preferably 0.30% or more and 2.50% or less, further preferably 0.50% or more and 1.50% or less.
 (P:0.0001~0.1000%)
 Pは、フェライト粒界を脆化させる不純物元素である。P含有量は少ないほど好ましいが、精錬工程においてP含有量0.0001%未満にして鋼を高純度化する場合、精錬のために要する時間が多くなり、製造コストの大幅な増加を招くので、P含有量の下限を0.0001%とする。一方、P含有量が0.1000%を超えると、高い歪速度での変形時にフェライト粒界から割れが顕著に発生し、絞りが著しく低下するので、P含有量の上限を0.1000%とする。P含有量は、より好ましくは0.0010%以上、0.0500%以下、更に好ましくは0.0020%以上0.0300%以下である。
(P: 0.0001 to 0.1000%)
P is an impurity element that embrittles ferrite grain boundaries. The smaller the P content, the better. However, when purifying steel with a P content of less than 0.0001% in the refining process, the time required for refining increases, which leads to a significant increase in production costs. The lower limit of the P content is 0.0001%. On the other hand, if the P content exceeds 0.1000%, cracks are prominently generated from the ferrite grain boundaries during deformation at a high strain rate, and the drawing is significantly reduced. Therefore, the upper limit of the P content is 0.1000%. To do. The P content is more preferably 0.0010% or more and 0.0500% or less, and still more preferably 0.0020% or more and 0.0300% or less.
 (S:0.0001~0.1000%)
 Sは、MnSなどの非金属介在物を形成する不純物元素であり、非金属介在物は高い歪速度での変形において割れ発生の起点となるので、S含有量は少ないほど好ましい。しかし、S含有量を0.0001%未満に低減することは、精錬コストの大幅な増加を招くので、S含有量の下限を0.0001%とする。一方、0.1000%を超えてSを含有すると、絞りの低下が著しくなるので、S含有量の上限を0.1000%以下とする。S含有量は、より好ましくは0.0003%以上、0.0300%以下である。
(S: 0.0001 to 0.1000%)
S is an impurity element that forms non-metallic inclusions such as MnS, and non-metallic inclusions are the starting point of cracking in deformation at a high strain rate, so the smaller the S content, the better. However, reducing the S content to less than 0.0001% causes a significant increase in refining costs, so the lower limit of the S content is set to 0.0001%. On the other hand, if the S content exceeds 0.1000%, the reduction of the drawing becomes remarkable, so the upper limit of the S content is made 0.1000% or less. The S content is more preferably 0.0003% or more and 0.0300% or less.
 本実施形態では、上記成分を鋼板の基本成分とするが、さらに、鋼板の機械的特性を向上させる目的で、以下に述べる元素の1種または2種以上を選択的に含有させることができる。ただし、以下に述べる元素の含有は必須ではないので、以下に述べる元素の下限値は0%である。 In this embodiment, although the said component is made into the basic component of a steel plate, Furthermore, 1 type, or 2 or more types of the element described below can be selectively contained in order to improve the mechanical characteristic of a steel plate. However, since inclusion of the elements described below is not essential, the lower limit value of the elements described below is 0%.
 (Al:好ましくは0.001~0.500%)
 Alは、鋼の脱酸剤として作用する元素である。Al含有量が0.001%未満では、含有効果が十分に得られないので、Al含有量の下限を0.001%としてもよい。一方、Al含有量が0.500%を超えるとフェライトの粒界を脆化させ、高い歪速度での変形における絞りの低下を引き起こす。このため、Al含有量の上限を0.500%としてもよい。Al含有量はより好ましくは0.005%以上0.300%以下であり、さらに好ましくは0.010%以上0.100%以下である。
(Al: preferably 0.001 to 0.500%)
Al is an element that acts as a deoxidizer for steel. If the Al content is less than 0.001%, the content effect cannot be obtained sufficiently, so the lower limit of the Al content may be 0.001%. On the other hand, if the Al content exceeds 0.500%, the grain boundaries of ferrite are embrittled, causing a reduction in the drawing during deformation at a high strain rate. For this reason, it is good also considering the upper limit of Al content as 0.500%. The Al content is more preferably 0.005% or more and 0.300% or less, and further preferably 0.010% or more and 0.100% or less.
 (N:好ましくは0.0001~0.0500%)
 Nは、鋼のベイナイト変態を促進させるとともに、多量の含有によりフェライトの脆化を引き起こす元素である。N含有量は少ないほど好ましいが、N含有量を0.0001%未満に低減することは精錬コストの増加を招くので、N含有量の下限を0.0001%としてもよい。一方、N含有量が0.0500%を超える場合、高い歪速度での変形時にフェライトの割れを引き起こすので、N含有量の上限を0.0500%としてもよい。N含有量は、より好ましくは0.0010%以上、0.0250%以下であり、さらに好ましくは0.0020%以上、0.0100%以下である。
(N: preferably 0.0001 to 0.0500%)
N is an element that promotes the bainite transformation of steel and causes embrittlement of ferrite when contained in a large amount. The smaller the N content, the better. However, reducing the N content to less than 0.0001% increases the refining cost, so the lower limit of the N content may be 0.0001%. On the other hand, if the N content exceeds 0.0500%, ferrite cracks are caused during deformation at a high strain rate, so the upper limit of the N content may be 0.0500%. The N content is more preferably 0.0010% or more and 0.0250% or less, and further preferably 0.0020% or more and 0.0100% or less.
 (O:好ましくは0.0001~0.0500%)
 Oは、多量の含有により鋼中に粗大な酸化物の形成を促す元素であるので、O含有量は少ないほうが好ましい。しかし、O含有量を0.0001%未満に低減することは、精錬コストの増加を招くので、0.0001%をO含有量の下限としてもよい。一方、O含有量が0.0500%を超える場合、鋼中に粗大な酸化物が形成し、高い歪速度での変形時に粗大な酸化物を起点とした割れが発生するので、O含有量の上限を0.0500%としてもよい。O含有量は、より好ましくは0.0005%以上、0.0250%以下であり、さらに好ましくは0.0010%以上、0.0100%以下である。
(O: preferably 0.0001 to 0.0500%)
Since O is an element that promotes the formation of coarse oxides in the steel when contained in a large amount, it is preferable that the O content be small. However, since reducing the O content to less than 0.0001% increases the refining cost, 0.0001% may be set as the lower limit of the O content. On the other hand, when the O content exceeds 0.0500%, a coarse oxide is formed in the steel, and cracks originating from the coarse oxide occur during deformation at a high strain rate. The upper limit may be 0.0500%. The O content is more preferably 0.0005% or more and 0.0250% or less, and further preferably 0.0010% or more and 0.0100% or less.
 (Cr:好ましくは0.001~2.000%)
 Crは、Si、Mnと同様に熱延板焼鈍及び冷延板焼鈍での炭化物粒子の粗大化及び連結を抑制する元素であると。しかしCr含有量が0.001%未満では、上述の効果が得られないので、Cr含有量の下限を0.001%としてもよい。一方、Cr含有量が2.000%を超えると、熱延板焼鈍及び冷延板焼鈍で炭化物が球状化しにくくなり、高い歪速度での変形において針状の炭化物を起点として割れが発生し、絞りが低下するので、Cr含有量の上限を2.000%としてもよい。Cr含有量は、より好ましくは0.005%以上、1.500%以下、さらに好ましくは0.010%以上、1.300%以下である。
(Cr: preferably 0.001 to 2.000%)
Cr is an element that suppresses the coarsening and connection of carbide particles in hot-rolled sheet annealing and cold-rolled sheet annealing as in Si and Mn. However, if the Cr content is less than 0.001%, the above effect cannot be obtained, so the lower limit of the Cr content may be 0.001%. On the other hand, if the Cr content exceeds 2.000%, it becomes difficult for the carbide to be spheroidized by hot-rolled sheet annealing and cold-rolled sheet annealing, and cracks occur starting from acicular carbide in deformation at a high strain rate, Since the aperture is reduced, the upper limit of the Cr content may be 2.000%. The Cr content is more preferably 0.005% or more and 1.500% or less, further preferably 0.010% or more and 1.300% or less.
 (Mo:好ましくは0.001~2.000%)
 Moは、Si、Mn、Crと同様に熱延板焼鈍及び冷延板焼鈍での炭化物粒子の粗大化及び連結を抑制する元素である。Mo含有量が0.001%未満では、上述の効果が得られないので、Mo含有量の下限を0.001%としてもよい。一方、Mo含有量が2.00%を超えると、熱延板焼鈍及び冷延板焼鈍で炭化物が球状化しにくくなり、高い歪速度での変形において針状の炭化物を起点として割れが発生し、絞りが低下するので、Mo含有量の上限を2.00%としてもよい。Mo含有量は、より好ましくは0.005%以上、1.900%以下、さらに好ましくは0.008%以上、0.800%以下である。
(Mo: preferably 0.001 to 2.000%)
Mo, like Si, Mn, and Cr, is an element that suppresses coarsening and connection of carbide particles in hot-rolled sheet annealing and cold-rolled sheet annealing. If the Mo content is less than 0.001%, the above effect cannot be obtained, so the lower limit of the Mo content may be 0.001%. On the other hand, if the Mo content exceeds 2.00%, the carbide is less likely to be spheroidized by hot-rolled sheet annealing and cold-rolled sheet annealing, and cracks are generated starting from acicular carbide in deformation at a high strain rate, Since the aperture is reduced, the upper limit of the Mo content may be 2.00%. The Mo content is more preferably 0.005% or more and 1.900% or less, and further preferably 0.008% or more and 0.800% or less.
 (Ni:好ましくは0.001~2.000%)
 Niは、部品の靭性の向上、および焼入れ性の向上のために有効な元素である。その効果を有効に発揮させるためには、0.001%以上のNiを含有させることが好ましい。一方、Ni含有量が2.000%を超えると、熱延板焼鈍及び冷延板焼鈍の際に炭化物が球状化しにくくなり、高い歪速度での変形において針状の炭化物を起点として割れが発生し、絞りが低下するので、Ni含有量の上限を2.000%としてもよい。Ni含有量は、より好ましくは0.005%以上、1.500%以下、さらに好ましくは0.005%以上、0.700%以下である。
(Ni: preferably 0.001 to 2.000%)
Ni is an effective element for improving the toughness of parts and improving the hardenability. In order to exhibit the effect effectively, it is preferable to contain 0.001% or more of Ni. On the other hand, if the Ni content exceeds 2.000%, carbides are less likely to be spheroidized during hot-rolled sheet annealing and cold-rolled sheet annealing, and cracks are generated starting from needle-like carbides during deformation at a high strain rate. In addition, since the aperture is reduced, the upper limit of the Ni content may be 2.000%. The Ni content is more preferably 0.005% or more and 1.500% or less, further preferably 0.005% or more and 0.700% or less.
 (Cu:好ましくは0.001~1.000%)
 Cuは、微細な析出物の形成により鋼材の強度を増加させる元素である。強度増加の効果を有効に発揮するためには、0.001%以上のCuの含有が好ましい。一方、Cu含有量が1.00%を超えると、熱延板焼鈍及び冷延板焼鈍の際に炭化物が球状化しにくくなり、高い歪速度での変形において針状の炭化物を起点として割れが発生し、絞りが低下するので、Cu含有量上限を1.00%としてもよい。Cu含有量は、より好ましくは0.003%以上、0.500%以下、さらに好ましくは0.005%以上、0.200%以下である。
(Cu: preferably 0.001 to 1.000%)
Cu is an element that increases the strength of the steel material by forming fine precipitates. In order to effectively exhibit the effect of increasing the strength, it is preferable to contain 0.001% or more of Cu. On the other hand, if the Cu content exceeds 1.00%, carbides are less likely to be spheroidized during hot-rolled sheet annealing and cold-rolled sheet annealing, and cracks occur starting from needle-like carbides during deformation at a high strain rate. In addition, since the aperture is reduced, the upper limit of Cu content may be 1.00%. The Cu content is more preferably 0.003% or more and 0.500% or less, and further preferably 0.005% or more and 0.200% or less.
 (Nb:好ましくは0.001~1.000%)
 Nbは、炭窒化物を形成し、熱延板焼鈍及び冷延板焼鈍での炭化物粒子の粗大化及び連結を抑制する元素である。Nb含有量が0.001%未満では、上述の効果が得られないので、Nb含有量の下限を0.001%としてもよい。一方、Nb含有量が1.000%を超えると、熱延板焼鈍及び冷延板焼鈍の際に炭化物が球状化しにくくなり、高い歪速度での変形において針状の炭化物を起点として割れが発生し、絞りが低下するので、Nb含有量の上限を1.000%としてもよい。Nb含有量は、より好ましくは0.005%以上、0.600%以下、さらに好ましくは0.008%以上、0.200%以下である。
(Nb: preferably 0.001 to 1.000%)
Nb is an element that forms carbonitrides and suppresses coarsening and connection of carbide particles in hot-rolled sheet annealing and cold-rolled sheet annealing. If the Nb content is less than 0.001%, the above-described effects cannot be obtained, so the lower limit of the Nb content may be 0.001%. On the other hand, if the Nb content exceeds 1.000%, carbides are less likely to be spheroidized during hot-rolled sheet annealing and cold-rolled sheet annealing, and cracks are generated starting from acicular carbides in deformation at a high strain rate. In addition, since the aperture is reduced, the upper limit of the Nb content may be 1.000%. The Nb content is more preferably 0.005% or more and 0.600% or less, further preferably 0.008% or more and 0.200% or less.
 (V:好ましくは0.001~1.000%)
 Vも、Nbと同様に、炭窒化物を形成し、熱延板焼鈍及び冷延板焼鈍での炭化物粒子の粗大化及び連結を抑制する元素である。V含有量が0.001%未満では、上述の効果が得られないので、V含有量の下限を0.001%としてもよい。一方、V含有量が1.000%を超えると、熱延板焼鈍及び冷延板焼鈍の際に炭化物が球状化しにくくなり、高い歪速度での変形において針状の炭化物を起点として割れが発生し、絞りが低下するので、V含有量の上限を1.000%としてもよい。V含有量は、より好ましくは0.001%以上、0.750%以下、さらに好ましくは0.001%以上、0.250%以下である。
(V: preferably 0.001 to 1.000%)
V, like Nb, is an element that forms carbonitrides and suppresses coarsening and connection of carbide particles in hot-rolled sheet annealing and cold-rolled sheet annealing. If the V content is less than 0.001%, the above effect cannot be obtained, so the lower limit of the V content may be 0.001%. On the other hand, if the V content exceeds 1.000%, carbides are less likely to be spheroidized during hot-rolled sheet annealing and cold-rolled sheet annealing, and cracks occur starting from needle-like carbides during deformation at a high strain rate. In addition, since the aperture is reduced, the upper limit of the V content may be 1.000%. The V content is more preferably 0.001% or more and 0.750% or less, and further preferably 0.001% or more and 0.250% or less.
 (Ti:好ましくは0.001~1.000%)
 Tiも、Nb、およびVと同様に、炭窒化物を形成し、熱延板焼鈍及び冷延板焼鈍での炭化物粒子の粗大化及び連結を抑制する元素である。Ti含有量が0.001%未満では、上述の効果が得られないので、Ti含有量の下限を0.001%以上としてもよい。一方、Ti含有量が1.000%を超えると、熱延板焼鈍及び冷延板焼鈍の際に炭化物が球状化しにくくなり、高い歪速度での変形において針状の炭化物を起点として割れが発生し、絞りが低下するので、Ti含有量の上限を1.000%としてもよい。Ti含有量は、より好ましくは0.001%以上、0.500%以下、さらに好ましくは0.003%以上、0.150%以下である。
(Ti: preferably 0.001 to 1.000%)
Ti, like Nb and V, is an element that forms carbonitrides and suppresses coarsening and connection of carbide particles during hot-rolled sheet annealing and cold-rolled sheet annealing. If the Ti content is less than 0.001%, the above-described effects cannot be obtained, so the lower limit of the Ti content may be 0.001% or more. On the other hand, if the Ti content exceeds 1.000%, the carbides are less likely to be spheroidized during hot-rolled sheet annealing and cold-rolled sheet annealing, and cracks are generated starting from needle-like carbides during deformation at a high strain rate. In addition, since the aperture is reduced, the upper limit of the Ti content may be 1.000%. The Ti content is more preferably 0.001% or more and 0.500% or less, and further preferably 0.003% or more and 0.150% or less.
 (B:好ましくは0.0001~0.0500%)
 Bは、部品の熱処理時の焼入れ性を改善する元素である。B含有量が0.0001%未満では、上述の効果が得られないので、B含有量の下限を0.0001%としてもよい。B含有量が0.0500%を超えると、粗大なFe-B-C化合物を生成し、高い歪速度での変形時に割れの起点となり、絞りを低下させるので、B含有量の上限を0.0500%としてもよい。B含有量は、より好ましくは0.0005%以上、0.0300%以下、さらに好ましくは0.0010%以上、0.0100%以下である。
(B: preferably 0.0001 to 0.0500%)
B is an element that improves the hardenability during heat treatment of the part. If the B content is less than 0.0001%, the above-described effects cannot be obtained, so the lower limit of the B content may be 0.0001%. If the B content exceeds 0.0500%, a coarse Fe—B—C compound is formed, which becomes a starting point of cracking at the time of deformation at a high strain rate and lowers the squeezing. It may be 0500%. The B content is more preferably 0.0005% or more and 0.0300% or less, and further preferably 0.0010% or more and 0.0100% or less.
 (W:好ましくは0.001~1.000%)
 Wも、Nb、V、およびTiと同様に、炭窒化物を形成し、熱延板焼鈍及び冷延板焼鈍での炭化物粒子の粗大化及び連結を抑制する元素である。W含有量が0.001%未満では、上述の効果が得られないので、W含有量の下限を0.001%としてもよい。一方、W含有量が1.000%を超えると、熱延板焼鈍及び冷延板焼鈍の際に炭化物が球状化しにくくなり、高い歪速度での変形において針状の炭化物を起点として割れが発生し、絞りが低下するので、W含有量の上限を1.000%としてもよい。W含有量は、より好ましくは0.001%以上、0.450%以下、さらに好ましくは0.001%以上、0.160%以下である。
(W: preferably 0.001 to 1.000%)
W, like Nb, V, and Ti, is an element that forms carbonitrides and suppresses coarsening and connection of carbide particles during hot-rolled sheet annealing and cold-rolled sheet annealing. If the W content is less than 0.001%, the above effect cannot be obtained, so the lower limit of the W content may be 0.001%. On the other hand, if the W content exceeds 1.000%, carbides are less likely to be spheroidized during hot-rolled sheet annealing and cold-rolled sheet annealing, and cracks occur starting from needle-like carbides during deformation at a high strain rate. In addition, since the aperture is reduced, the upper limit of the W content may be 1.000%. The W content is more preferably 0.001% or more and 0.450% or less, and further preferably 0.001% or more and 0.160% or less.
 (Ta:好ましくは0.001~1.000%)
 Taも、Nb、V、Ti、およびWと同様に、炭窒化物を形成し、熱延板焼鈍及び冷延板焼鈍での炭化物粒子の粗大化及び連結を抑制する元素である。Ta含有量が0.001%未満では、上述の効果が得られないので、Ta含有量の下限を0.001%としてもよい。一方、Ta含有量が1.000%を超えると、熱延板焼鈍及び冷延板焼鈍の際に炭化物が球状化しにくくなり、高い歪速度での変形において針状の炭化物を起点として割れが発生し、絞りが低下するので、Ta含有量の上限を1.000%以下としてもよい。Ta含有量は、より好ましくは0.001%以上、0.750%以下、さらに好ましくは0.001%以上、0.150%以下である。
(Ta: preferably 0.001 to 1.000%)
Ta, like Nb, V, Ti, and W, is an element that forms carbonitrides and suppresses coarsening and connection of carbide particles during hot-rolled sheet annealing and cold-rolled sheet annealing. If the Ta content is less than 0.001%, the above effect cannot be obtained, so the lower limit of the Ta content may be 0.001%. On the other hand, if the Ta content exceeds 1.000%, the carbides are less likely to be spheroidized during hot-rolled sheet annealing and cold-rolled sheet annealing, and cracks occur starting from needle-like carbides during deformation at a high strain rate. In addition, since the aperture is reduced, the upper limit of the Ta content may be 1.000% or less. The Ta content is more preferably 0.001% or more and 0.750% or less, and further preferably 0.001% or more and 0.150% or less.
 (Sn:好ましくは0.001~0.020%)
 Snは、鋼原料としてスクラップを用いた場合に鋼中に含有される元素であり、Sn含有量は少ないほど好ましい。Sn含有量を0.001%未満に低減する場合、精錬コストの増加を招くので、Sn含有量の下限を0.001%としてもよい。また、Sn含有量が0.020%を超える場合、フェライトが脆化し、高い歪速度での変形において絞りが低下するので、Sn含有量の上限を0.020%としてもよい。Sn含有量は、より好ましくは0.001%以上、0.015%以下、さらに好ましくは0.001%以上、0.010%以下である。
(Sn: preferably 0.001 to 0.020%)
Sn is an element contained in steel when scrap is used as a steel raw material, and the smaller the Sn content, the better. When the Sn content is reduced to less than 0.001%, the refining cost is increased, so the lower limit of the Sn content may be 0.001%. Further, when the Sn content exceeds 0.020%, the ferrite becomes brittle, and the diaphragm is lowered during deformation at a high strain rate. Therefore, the upper limit of the Sn content may be 0.020%. The Sn content is more preferably 0.001% or more and 0.015% or less, and further preferably 0.001% or more and 0.010% or less.
 (Sb:好ましくは0.001~0.020%)
 Sbは、Snと同様に鋼原料としてスクラップを用いた場合に鋼中に含有される元素であり、Sb含有量は少ないほど好ましい。Sb含有量を0.001%未満に低減する場合、精錬コストの増加を招くので、Sb含有量の下限を0.001%としてもよい。また、Sb含有量が0.020%を超える場合、フェライトが脆化し、高い歪速度での変形において絞りが低下するので、Sb含有量の上限を0.020%以下としてもよい。Sb含有量は、より好ましくは0.001%以上、0.015%以下、さらに好ましくは0.001%以上、0.011%以下である。
(Sb: preferably 0.001 to 0.020%)
Similar to Sn, Sb is an element contained in steel when scrap is used as a steel raw material, and the smaller the Sb content, the better. When the Sb content is reduced to less than 0.001%, the refining cost is increased, so the lower limit of the Sb content may be 0.001%. Further, when the Sb content exceeds 0.020%, the ferrite becomes brittle, and the diaphragm is lowered in deformation at a high strain rate. Therefore, the upper limit of the Sb content may be 0.020% or less. The Sb content is more preferably 0.001% or more and 0.015% or less, and further preferably 0.001% or more and 0.011% or less.
 (As:好ましくは0.001~0.020%)
 Asは、Sn、及びSbと同様に鋼原料としてスクラップを用いた場合に含有される元素であり、As含有量は少ないほど好ましい。As含有量を0.001%未満に低減する場合、精錬コストの増加を招くので、As含有量の下限を0.001%としてもよい。また、As含有量が0.020%を超える場合、フェライトが脆化し、高い歪速度での変形において絞りが低下するので、As含有量の上限を0.020%以下としてもよい。As含有量は、より好ましくは0.001%以上、0.015%以下、さらに好ましくは0.001%以上、0.007%以下である。
(As: preferably 0.001 to 0.020%)
As is an element contained when scrap is used as a steel raw material in the same manner as Sn and Sb, and the smaller the As content, the more preferable. When the As content is reduced to less than 0.001%, the refining cost is increased, so the lower limit of the As content may be 0.001%. Further, when the As content exceeds 0.020%, the ferrite becomes brittle, and the drawing is reduced in deformation at a high strain rate. Therefore, the upper limit of the As content may be 0.020% or less. The As content is more preferably 0.001% or more and 0.015% or less, and further preferably 0.001% or more and 0.007% or less.
 (Mg:好ましくは0.0001~0.0200%)
 Mgは、含有量が微量であっても硫化物の形態を制御できる元素であり、必要に応じて含有できる。Mg含有量が0.0001%未満ではその効果は得られないので、Mg含有量の下限を0.0001%としてもよい。一方、Mgを過剰に含有した場合、フェライトの粒界が脆化し、高い歪速度での変形において絞りの低下を招くので、Mg含有量の上限を0.0200%としてもよい。Mg含有量は、より好ましくは0.0001%以上、0.0150%以下、さらに好ましくは0.0001%以上、0.0075%以下である。
(Mg: preferably 0.0001 to 0.0200%)
Mg is an element that can control the form of the sulfide even if the content is very small, and can be contained if necessary. Since the effect cannot be obtained when the Mg content is less than 0.0001%, the lower limit of the Mg content may be 0.0001%. On the other hand, when Mg is excessively contained, the ferrite grain boundary becomes brittle, and the deformation is reduced at a high strain rate, so that the upper limit of the Mg content may be 0.0200%. The Mg content is more preferably 0.0001% or more and 0.0150% or less, and further preferably 0.0001% or more and 0.0075% or less.
 (Ca:好ましくは0.001~0.020%)
 Caは、Mgと同様に含有量が微量であっても硫化物の形態を制御できる元素であり、必要に応じて含有できる。Ca含有量が0.001%未満ではその効果は得られないので、Ca含有量の下限を0.001%としてもよい。一方、Caを過剰に含有した場合、フェライトの粒界が脆化し、高い歪速度での変形において絞りの低下を招くので、Ca含有量の上限を0.020%としてもよい。Ca含有量は、より好ましくは0.001%以上、0.015%以下、さらに好ましくは0.001%以上、0.010%以下である。
(Ca: preferably 0.001 to 0.020%)
Ca, like Mg, is an element that can control the form of the sulfide even if the content is very small, and can be contained if necessary. Since the effect cannot be obtained when the Ca content is less than 0.001%, the lower limit of the Ca content may be 0.001%. On the other hand, when Ca is excessively contained, the ferrite grain boundary becomes brittle, and the deformation is reduced at a high strain rate, so that the upper limit of the Ca content may be 0.020%. The Ca content is more preferably 0.001% or more and 0.015% or less, and further preferably 0.001% or more and 0.010% or less.
 (Y:好ましくは0.001~0.020%)
 Yは、Mg、およびCaと同様に、含有量が微量であっても硫化物の形態を制御できる元素であり、必要に応じて含有できる。Y含有量が0.001%未満ではその効果は得られないので、Y含有量の下限を0.001%としてもよい。一方、Yを過剰に含有する場合、フェライトの粒界が脆化し、高い歪速度での変形において絞りの低下を招くので、Y含有量の上限を0.020%としてもよい。Y含有量は、より好ましくは0.001%以上、0.015%以下、さらに好ましくは0.001%以上、0.009%以下である。
(Y: preferably 0.001 to 0.020%)
Y, like Mg and Ca, is an element that can control the form of sulfide even if the content is very small, and can be contained as required. Since the effect cannot be obtained if the Y content is less than 0.001%, the lower limit of the Y content may be 0.001%. On the other hand, when Y is excessively contained, the ferrite grain boundary becomes brittle, and the deformation is reduced at a high strain rate. Therefore, the upper limit of the Y content may be 0.020%. The Y content is more preferably 0.001% or more and 0.015% or less, and further preferably 0.001% or more and 0.009% or less.
 (Zr:好ましくは0.001~0.020%)
 Zrは、Mg、Ca、Yと同様に含有量が微量であっても硫化物の形態を制御できる元素であり、必要に応じて含有できる。Zr含有量が0.001%未満ではその効果は得られないので、Zr含有量の下限を0.001%としてもよい。一方、Zrを過剰に含有する場合、フェライトの粒界が脆化し、高い歪速度での変形において絞りの低下を招くので、Zr含有量の上限を0.020%としてもよい。Zr含有量は、より好ましくは0.015%以下、さらに好ましくは0.010%以下である。
(Zr: preferably 0.001 to 0.020%)
Zr is an element that can control the form of sulfide even if the content is very small, like Mg, Ca, and Y, and can be contained as needed. Since the effect cannot be obtained if the Zr content is less than 0.001%, the lower limit of the Zr content may be 0.001%. On the other hand, when Zr is excessively contained, the ferrite grain boundaries become brittle, and the deformation is reduced at a high strain rate, so that the drawing is reduced. Therefore, the upper limit of the Zr content may be 0.020%. The Zr content is more preferably 0.015% or less, still more preferably 0.010% or less.
 (La:好ましくは0.001~0.020%)
 Laは、Mg、Ca、Y、およびZrと同様に含有量が微量であっても硫化物の形態制御に有効な元素であり、必要に応じて含有しても良い。La含有量が0.001%未満ではその効果は得られないので、La含有量の下限を0.001%としてもよい。一方、Laを過剰に含有する場合、フェライトの粒界が脆化し、高い歪速度での変形において絞りの低下を招くので、La含有量の上限を0.020%としてもよい。La含有量は、より好ましくは0.001%以上、0.015%以下、さらに好ましくは0.001%以上、0.010%以下である。
(La: preferably 0.001 to 0.020%)
La, like Mg, Ca, Y, and Zr, is an element effective for controlling the form of sulfides even if the content is very small, and may be contained as necessary. Since the effect cannot be obtained if the La content is less than 0.001%, the lower limit of the La content may be 0.001%. On the other hand, when La is contained excessively, the ferrite grain boundary becomes brittle, and the deformation is reduced at a high strain rate. Therefore, the upper limit of the La content may be 0.020%. The La content is more preferably 0.001% or more and 0.015% or less, and further preferably 0.001% or more and 0.010% or less.
 (Ce:好ましくは0.001~0.020%)
 Ceは、Mg、Ca、Y、Zr、Laと同様に含有量が微量であっても硫化物の形態を制御できる元素であり、必要に応じて含有しても良い。Ce含有量が0.001%未満ではその効果は得られないので、Ce含有量の下限を0.001%としてもよい。一方、Ceを過剰に含有する場合、フェライトの粒界が脆化し、高い歪速度での変形において絞りの低下を招くので、Ce含有量の上限を0.020%としてもよい。Ce含有量は、より好ましくは0.001%以上、0.015%以下、さらに好ましくは0.001%以上、0.010%以下である。
(Ce: preferably 0.001 to 0.020%)
Ce, like Mg, Ca, Y, Zr, and La, is an element that can control the form of sulfide even if the content is very small, and may be contained as necessary. Since the effect cannot be obtained if the Ce content is less than 0.001%, the lower limit of the Ce content may be 0.001%. On the other hand, when Ce is excessively contained, the grain boundary of ferrite becomes brittle, and the deformation is reduced at a high strain rate, so that the upper limit of the Ce content may be 0.020%. The Ce content is more preferably 0.001% or more and 0.015% or less, and further preferably 0.001% or more and 0.010% or less.
 なお、本実施形態に係る鋼板では、上記に述べた成分の残部はFeおよび不純物である。 In the steel sheet according to this embodiment, the balance of the components described above is Fe and impurities.
 本実施形態に係る鋼板は、前述した成分組成を有することに加え、最適な熱延及び焼鈍を施されているので、フェライトと炭化物とが主体の組織を有し、マルテンサイト、ベイナイト、パーライト、および残留オーステナイトを合計した体積率が5%以下であり、炭化物粒子の球状化率が70%以上99%以下であり、炭化物粒子の中に方位差5°以上の結晶界面を含む炭化物粒子の個数割合が炭化物粒子の総個数に対して20%以下である。この特徴により、絞り、穴拡げ、増肉、減肉等の塑性加工、あるいはそれらを組み合わせた冷間鍛造を高い歪速度で施す際に、優れた成形性を有する鋼板が得られる。これは、本発明者らが見いだした新規な知見である。 In addition to having the above-described component composition, the steel sheet according to the present embodiment has been subjected to optimum hot rolling and annealing, so that it has a structure mainly composed of ferrite and carbide, martensite, bainite, pearlite, The number of carbide particles including a crystal interface having a volume ratio of 5 ° or less, a spheroidization rate of carbide particles of 70% or more and 99% or less, and an orientation difference of 5 ° or more. The ratio is 20% or less with respect to the total number of carbide particles. With this feature, a steel sheet having excellent formability can be obtained when plastic working such as drawing, hole expansion, thickening and thinning, or cold forging combining them is performed at a high strain rate. This is a new finding found by the present inventors.
 本実施形態に係る鋼は、実質的にフェライトと炭化物との組織を有する。なお、炭化物とは、鉄と炭素との化合物であるセメンタイト(FeC)に加え、セメンタイト中のFe原子をMn、Cr等の合金元素で置換した化合物と、合金炭化物(M23、MC、MC。なお、MはFe及びその他の合金元素)とである。マルテンサイト、ベイナイト、パーライト、残留オーステナイトは、組織中に含まない方が好ましく、含む場合は合計した体積率が5.0%以下とする。マルテンサイト、ベイナイト、パーライト、および残留オーステナイトの合計量の下限は規定されない。後述する、走査型電子顕微鏡を用いた3000倍の組織観察で、いずれの組織も全く検出されない場合は、マルテンサイト、ベイナイト、パーライト、および残留オーステナイトの合計量は0.0体積%とみなされるので、マルテンサイト、ベイナイト、パーライト、および残留オーステナイトの合計量の下限を0.0%としてもよい。 The steel according to the present embodiment substantially has a structure of ferrite and carbide. In addition to the cementite (Fe 3 C) which is a compound of iron and carbon, the carbide is a compound in which Fe atoms in the cementite are substituted with an alloy element such as Mn and Cr, and an alloy carbide (M 23 C 6 , M 6 C, MC, where M is Fe and other alloying elements). It is preferable that martensite, bainite, pearlite, and retained austenite are not included in the structure. If included, the total volume ratio is 5.0% or less. The lower limit of the total amount of martensite, bainite, pearlite, and retained austenite is not specified. If any structure is not detected at 3000 times using a scanning electron microscope, which will be described later, the total amount of martensite, bainite, pearlite, and residual austenite is considered to be 0.0% by volume. The lower limit of the total amount of martensite, bainite, pearlite, and retained austenite may be 0.0%.
 マルテンサイト、ベイナイト、パーライト、および残留オーステナイトの合計量の規定理由を説明する。本実施形態で規定の対象とするマルテンサイト、ベイナイト、パーライト、残留オーステナイトは、鋼板が冷延板焼鈍においてフェライト及びオーステナイトの2相域まで加熱された後、室温まで冷却される過程で、オーステナイトから生成した組織である。このため、マルテンサイト、ベイナイト、及びパーライトはフェライトの粒界に位置し、残留オーステナイトはマルテンサイト及びベイナイトのラス界面またはブロック境界に存在する。まず、オーステナイトからマルテンサイト、ベイナイト、またはパーライトへと変態する際には、体積が膨張するので、フェライトの粒界に応力が残留する。フェライトの粒界に局所的に応力が残留することにより、鋼板の応力負荷による変形時に、粒界近傍においてボイドの生成が促されるので、フェライトの粒界に残留する応力は、高い歪速度での変形では絞りの低下を招く。また、残留オーステナイトは、鋼板の変形途中で加工誘起変態を起こしてマルテンサイトになるので、フェライト粒界への応力増加を一層高め、絞りの低下を助長する。以上の理由から、高い歪速度での変形における絞りを向上するためには、鋼板の組織を実質的にフェライトと炭化物の組織とし、マルテンサイト、ベイナイト、パーライト、および残留オーステナイトは含まない方が好ましく、含む場合は、マルテンサイト、ベイナイト、パーライト、および残留オーステナイトの合計の体積率を5.0%以下とすることが必須となる。さらに、パーライト変態が生じた場合は、針状の炭化物の割合も増加する。針状炭化物の影響は後述する。なお、炭化物は、相変態せず、母材との間に応力は集中しないので、絞りの低下を抑えることができる。 Explain why the total amount of martensite, bainite, perlite, and retained austenite is specified. The martensite, bainite, pearlite, and retained austenite to be specified in the present embodiment are the processes in which the steel sheet is heated to the two-phase region of ferrite and austenite in cold-rolled sheet annealing, and then cooled to room temperature. It is the generated organization. For this reason, martensite, bainite, and pearlite are located at the grain boundaries of ferrite, and retained austenite exists at the lath interface or block boundary of martensite and bainite. First, when the transformation from austenite to martensite, bainite, or pearlite, the volume expands, so that stress remains at the ferrite grain boundaries. Since stress remains locally at the ferrite grain boundaries, void formation is promoted in the vicinity of the grain boundaries when the steel sheet is deformed due to stress loading, so the stress remaining at the ferrite grain boundaries is at a high strain rate. Deformation causes a reduction in aperture. In addition, the retained austenite causes a work-induced transformation in the middle of deformation of the steel sheet to become martensite, so that the increase in stress to the ferrite grain boundary is further increased and the reduction of the drawing is promoted. For the above reasons, in order to improve the drawing in deformation at a high strain rate, it is preferable that the steel sheet has a substantially ferrite and carbide structure and does not contain martensite, bainite, pearlite, and retained austenite. If included, the total volume ratio of martensite, bainite, pearlite, and retained austenite is required to be 5.0% or less. Further, when pearlite transformation occurs, the proportion of acicular carbides also increases. The influence of acicular carbide will be described later. In addition, since the carbide does not undergo phase transformation and stress is not concentrated between the carbide and the base material, it is possible to suppress a reduction in the drawing.
 次に、炭化物の球状化率を70%以上、99%以下とするべき理由を述べる。炭化物の球状化率が70%未満であると、針状の炭化物に応力が集中し、炭化物が割れてボイドが生成し、ボイドの連結により破断面が形成されるので、高い歪速度での変形における絞りは低下する。このため、炭化物の球状化率の下限を70%とする。なお、球状化率は高いほど望ましいものの、球状化率を100%に制御するためには非常に長時間の焼鈍を施す必要があり、製造コストの増加を招くので、球状化率の上限は100%未満が望ましく、99%以下とする。 Next, the reason why the spheroidization rate of carbide should be 70% or more and 99% or less will be described. If the spheroidization rate of the carbide is less than 70%, stress concentrates on the needle-like carbide, the carbide is cracked and voids are formed, and the fracture surface is formed by connecting the voids, so deformation at a high strain rate The aperture at is reduced. For this reason, the lower limit of the spheroidization rate of the carbide is set to 70%. Although the higher the spheroidization rate, the better. However, in order to control the spheroidization rate to 100%, it is necessary to perform annealing for a very long time, resulting in an increase in manufacturing cost. % Is desirable and is 99% or less.
 さらに、炭化物粒子の中に結晶方位差5°以上の結晶界面を含む炭化物粒子の個数割合を、炭化物粒子の総個数に対して20%以下とするべき理由を述べる。変形における炭化物の割れは、従来技術では一つの粒子として見なされてきた炭化物の中に存在する、結晶方位差5°以上の結晶界面から主に発生する。高い歪速度での変形において、炭化物の結晶界面での割れによりボイドが生じ、それらのボイドが連結し、破断面を形成することにより、絞りの低下が生じる。結晶方位差5°以上の結晶界面を有する炭化物の割合は少ない方が良いものの、結晶方位差5°以上の結晶界面を有する炭化物の個数割合を炭化物粒子の総個数に対して0.1%未満に制御するためには、連続鋳造、熱延、熱延板焼鈍、冷延、および冷延板焼鈍での一貫した品質設計管理が必須となり、歩留まりの低下を引き起こすので、炭化物粒子の総個数に対する結晶方位差5°以上の結晶界面を有する炭化物の個数割合の下限を0.1%とすることが好ましく、さらに好ましくは0.2%である。また、炭化物粒子の総個数に対する結晶方位差5°以上の結晶界面を有する炭化物の個数割合(以下、個数割合と略す場合がある)が20%を超える場合は、高い歪速度での変形における絞りの低下が顕著となるので、個数割合の上限を20%とし、より好ましくは15%、さらに好ましくは10%である。 Furthermore, the reason why the number ratio of carbide particles including a crystal interface having a crystal orientation difference of 5 ° or more in the carbide particles should be 20% or less with respect to the total number of carbide particles will be described. The cracking of carbides in deformation mainly occurs from a crystal interface having a crystal orientation difference of 5 ° or more, which exists in carbides regarded as one particle in the prior art. In deformation at a high strain rate, voids are generated due to cracks at the crystal interface of the carbide, and these voids are connected to form a fracture surface, thereby reducing the drawing. Although the proportion of carbides having a crystal interface with a crystal orientation difference of 5 ° or more is better, the number ratio of carbides having a crystal interface with a crystal orientation difference of 5 ° or more is less than 0.1% with respect to the total number of carbide particles. Therefore, consistent quality design control in continuous casting, hot rolling, hot-rolled sheet annealing, cold-rolling, and cold-rolled sheet annealing is indispensable and causes a decrease in yield. The lower limit of the number ratio of carbides having a crystal interface with a crystal orientation difference of 5 ° or more is preferably 0.1%, and more preferably 0.2%. Further, when the number ratio of carbides having a crystal interface with a crystal orientation difference of 5 ° or more with respect to the total number of carbide particles (hereinafter sometimes referred to as the number ratio) exceeds 20%, the restriction in deformation at a high strain rate. The upper limit of the number ratio is 20%, more preferably 15%, and even more preferably 10%.
 続いて、上記で規定する組織の観察及び測定方法を述べる。 Subsequently, the tissue observation and measurement methods specified above will be described.
 フェライト、炭化物、マルテンサイト、ベイナイト、パーライトの観察は、走査型電子顕微鏡を用いて行なう。観察に先立ち、組織観察用のサンプルを、エメリー紙による湿式研磨、及び1μmの平均粒子サイズをもつダイヤモンド砥粒による研磨を行い、これにより観察面を鏡面に仕上げる。次に、3%硝酸-アルコール溶液を用いて観察面をエッチングしておく。観察倍率は、1000~10000倍の中で、フェライト、炭化物、マルテンサイト、ベイナイト、およびパーライトの各組織を判別できる倍率を選択する。本実施形態では3000倍を選択した。選択した倍率で、板厚1/4層における30μm×40μmの視野をランダムに16枚撮影する。各組織の体積率は、ポイントカウント法を用いて求める。撮影した組織写真上に、間隔2μmのグリッド線を水平および垂直方向に引き、グリッド線の交点における組織の個数をそれぞれカウントし、各組織の個数割合から、撮影写真1枚あたりの各組織の割合を測定する。その後、16枚の組織写真全てに係る各組織の割合の測定結果を平均した値を、各サンプルにおける組織の体積率として得る。 Observation of ferrite, carbide, martensite, bainite and pearlite is performed using a scanning electron microscope. Prior to observation, a sample for tissue observation is wet-polished with emery paper and polished with diamond abrasive grains having an average particle size of 1 μm, thereby finishing the observation surface into a mirror surface. Next, the observation surface is etched using a 3% nitric acid-alcohol solution. As the observation magnification, a magnification capable of discriminating each structure of ferrite, carbide, martensite, bainite, and pearlite is selected from 1000 to 10,000 times. In this embodiment, 3000 times is selected. At a selected magnification, 16 images of a 30 μm × 40 μm field of view in a 1/4 layer thickness are randomly photographed. The volume ratio of each tissue is obtained using a point count method. On the photographed tissue photograph, grid lines with intervals of 2 μm are drawn in the horizontal and vertical directions, the number of tissues at the intersection of the grid lines is counted, and the ratio of each tissue per photographed photograph from the number ratio of each tissue. Measure. Then, the value which averaged the measurement result of the ratio of each structure | tissue which concerns on all the 16 structure | tissue photographs is obtained as a volume ratio of the structure | tissue in each sample.
 なお、マルテンサイトとベイナイトとは、組織内における微細な炭化物の有無に基づいて区別する。主にフェライトの粒界上に位置し、炭化物を含まない組織がマルテンサイトであり、炭化物を含む組織がベイナイトである。また、マルテンサイトが焼戻しマルテンサイトである場合、焼戻しマルテンサイトは内部に炭化物を含むので、ベイナイトと誤認される可能性がある。しかし、本実施形態に係る鋼では、マルテンサイト、ベイナイト、パーライト、および残留オーステナイトを合計した体積率を5%とすることにより良好な絞りが得られることを明らかにしているので、最終的な本実施形態に係る鋼の形態に及ぼすマルテンサイトとベイナイトの誤認の影響は非常に小さい。なお、フェライトは体積率70%以上とすることが望ましい。 Note that martensite and bainite are distinguished based on the presence or absence of fine carbides in the structure. A structure that is mainly located on the grain boundary of ferrite and does not contain carbide is martensite, and a structure containing carbide is bainite. Further, when the martensite is tempered martensite, the tempered martensite contains carbide inside, and thus may be mistaken for bainite. However, in the steel according to the present embodiment, it has been clarified that a good drawing can be obtained by setting the volume ratio of martensite, bainite, pearlite, and residual austenite to 5%. The influence of misidentification of martensite and bainite on the form of steel according to the embodiment is very small. Note that the ferrite preferably has a volume ratio of 70% or more.
 残留オーステナイトの体積率は、X線回折により測定する。上述の手順で観察面を鏡面に仕上げたサンプルの表面の歪層を、電界研磨を用いて除去することにより、残留オーステナイトの測定のためのサンプルを準備する。電界研磨は、5%過塩素酸-酢酸溶液を用い、10Vの電圧を印加して実施する。X線の管球はCuを選択し、オーステナイトの(200)、(220)、(311)およびフェライトの(200)、(211)の各面における強度をもとに、残留オーステナイトの体積率を求める。 The volume fraction of retained austenite is measured by X-ray diffraction. A sample for measurement of residual austenite is prepared by removing the strained layer on the surface of the sample having a mirror-finished observation surface by the above-described procedure using electropolishing. Electropolishing is performed using a 5% perchloric acid-acetic acid solution and applying a voltage of 10V. For the X-ray tube, Cu is selected, and the volume fraction of retained austenite is determined based on the strength of each surface of (200), (220), (311) of austenite and (200), (211) of ferrite. Ask.
 炭化物の観察は、走査型電子顕微鏡で行なう。組織観察用のサンプルは、エメリー紙による湿式研磨及び粒子サイズが1μmのダイヤモンド砥粒による研磨を用いて観察面を鏡面に仕上げた後、飽和ピクリン酸アルコール溶液を用いてエッチングを施すことにより準備する。観察の倍率は1000~10000倍であり、本実施形態では、3000倍の倍率で、組織観察面上に炭化物が500個以上含まれる視野を16個所選択し、組織画像を取得する。得られた組織画像に対して、三谷商事株式会社製(Win ROOF)に代表される画像解析ソフトにより、その領域中に含まれる各炭化物の面積を詳細に測定する。各炭化物の面積から、各炭化物の円相当直径(“円相当直径”=2×(“面積”/3.14)1/2)を求め、その平均値を炭化物粒子径とする。なお、ノイズによる測定誤差の影響を抑えるために、面積が0.01μm以下の炭化物は評価の対象から除外する。 Carbide is observed with a scanning electron microscope. A sample for observing the structure is prepared by applying wet polishing with emery paper and polishing with diamond abrasive grains having a particle size of 1 μm to a mirror-finished observation surface and then etching with a saturated picric acid alcohol solution. . The magnification of observation is 1000 to 10000 times. In this embodiment, 16 fields of view containing 500 or more carbides on the tissue observation surface are selected at a magnification of 3000 and tissue images are acquired. For the obtained tissue image, the area of each carbide contained in the region is measured in detail by image analysis software represented by Mitani Corporation (Win ROOF). From the area of each carbide, the equivalent circle diameter (“equivalent circle diameter” = 2 × (“area” /3.14) 1/2 ) of each carbide is obtained, and the average value is defined as the carbide particle diameter. In order to suppress the influence of measurement error due to noise, carbides having an area of 0.01 μm 2 or less are excluded from the evaluation target.
 炭化物粒子径の好ましい範囲は0.30μm以上、1.50μm以下である。炭化物粒子径が0.30μm未満である場合、フェライト粒径が微細になるので、炭化物粒子径の下限を0.30μmとする。炭化物粒子径が1.50μmを越えると、鋼板の変形中に炭化物の近傍でボイドが生成しやすくなり変形能の低下を招くので、炭化物粒子径の上限を1.50μmとする。また、長軸長と短軸長との比が3以上の炭化物を針状炭化物と判別し、長軸長と短軸長との比が3未満の炭化物を球状炭化物と判別する。球状炭化物の個数を全炭化物の個数で除した値を、炭化物(セメンタイト等)の球状化率とする。 The preferable range of the carbide particle diameter is 0.30 μm or more and 1.50 μm or less. When the carbide particle diameter is less than 0.30 μm, the ferrite particle diameter becomes fine, so the lower limit of the carbide particle diameter is 0.30 μm. If the carbide particle diameter exceeds 1.50 μm, voids are likely to be generated in the vicinity of the carbide during deformation of the steel sheet, leading to a decrease in deformability. Therefore, the upper limit of the carbide particle diameter is set to 1.50 μm. Further, a carbide having a major axis length / minor axis length ratio of 3 or more is discriminated as an acicular carbide, and a carbide having a major axis length / minor axis length ratio of less than 3 is discriminated as a spherical carbide. A value obtained by dividing the number of spherical carbides by the total number of carbides is defined as the spheroidization rate of the carbides (cementite, etc.).
 炭化物粒子の中の、結晶方位差5°以上の結晶界面の有無は、EBSDを用いて調査する。評価用のサンプルは、鋼帯及び鋼帯から切り出した切板または打ち抜かれたブランク板の、歪が与えられていない箇所から放電ワイヤ加工機で切り出され、鋼板表面に対して垂直な面を観察面とする。EBSDの測定精度は、観察面の平坦度および研磨により与えられた歪の影響を受けるので、観察面を湿式研磨およびダイヤモンド砥粒研磨により鏡面に仕上げた後に、観察面に歪取りの研磨を施す。歪取り研磨は、振動研磨装置(ビューラー製のバイブロメット2)を用いて、出力40%、および研磨時間60minの条件にて実施する。SEM-EBSDが用いられるのであれば、SEMおよび菊池線検出器の装置種は特に限定しない。板厚1/4層において、板厚方向に100μmおよび板幅方向に100μmの領域を0.2μmの測定ステップ間隔で4視野測定し、得られた結晶方位のマップ情報から各セメンタイトの中に存在する結晶界面の方位差と、5°以上の結晶界面を有する粒子の個数とをカウントする。測定データの解析は、TSL社のOIM解析ソフトを用いて行うことが良く、ノイズによる測定誤差のデータ影響を除くため、クリーンアップは施さずに、信頼性指数(COINCIDENCE INDEX:CI値)が0.1以下のデータを除き、解析する。 The presence or absence of crystal interfaces with a crystal orientation difference of 5 ° or more in the carbide particles is investigated using EBSD. Samples for evaluation were cut with a discharge wire processing machine from an unstrained portion of a steel strip and a cut plate cut from the steel strip or a blank plate punched out, and a surface perpendicular to the steel plate surface was observed. A surface. Since the measurement accuracy of EBSD is affected by the flatness of the observation surface and the strain given by the polishing, the observation surface is finished to a mirror surface by wet polishing and diamond abrasive polishing, and then the observation surface is polished for distortion removal. . The strain relief polishing is performed using a vibration polishing apparatus (Bueller Vibromet 2) under conditions of an output of 40% and a polishing time of 60 minutes. If SEM-EBSD is used, the device types of the SEM and the Kikuchi line detector are not particularly limited. In the 1/4 layer thickness, 100 μm in the plate thickness direction and 100 μm in the plate width direction are measured in 4 fields at a measurement step interval of 0.2 μm and exists in each cementite from the obtained crystal orientation map information. The difference in orientation of the crystal interface and the number of particles having a crystal interface of 5 ° or more are counted. Analysis of measurement data is preferably performed using TSL's OIM analysis software. To eliminate the influence of measurement error data due to noise, the cleanup is not performed and the reliability index (COINCIDENCE INDEX: CI value) is 0. Analyze except data below 1.
 冷延板焼鈍後の組織のフェライト粒径を5μm以上、60μm以下とすることで、高い歪速度での変形における絞りの低下を抑制することができる。フェライト粒径が5μm未満であると、変形能が低下するので、フェライト粒径の下限を5μmとする。また、フェライト粒径が60μmを超えると、変形初期段階に表面に梨地が発生し、そこで生じた表面凹凸を起点として破断が促進して絞りの低下を招くので、フェライト粒径の上限を60μm以下とする。フェライト粒径の測定は、上述の手順で観察面を研磨して鏡面に仕上げた後、3%硝酸-アルコール溶液でエッチングし、組織を光顕、もしくは走査型電子顕微鏡にて観察し、撮影した画像に対して線分法を適用して測定することにより行う。フェライト粒径は、好ましくは10μm以上、50μm以下である。 By making the ferrite grain size of the structure after cold-rolled sheet annealing 5 μm or more and 60 μm or less, it is possible to suppress the reduction of the drawing due to deformation at a high strain rate. If the ferrite particle size is less than 5 μm, the deformability is lowered, so the lower limit of the ferrite particle size is set to 5 μm. Further, if the ferrite grain size exceeds 60 μm, a satin finish is generated on the surface in the initial stage of deformation, and breakage is promoted starting from the surface irregularities generated there, leading to a reduction in drawing, so the upper limit of the ferrite grain size is 60 μm or less. And The ferrite grain size is measured by polishing the observation surface according to the above procedure to a mirror surface, etching with 3% nitric acid-alcohol solution, and observing the structure with a light microscope or scanning electron microscope, and taking the image. The measurement is performed by applying the line segment method. The ferrite particle size is preferably 10 μm or more and 50 μm or less.
 続いて、高い歪速度での変形における絞りの測定方法を述べる。 Next, we will describe the method for measuring the aperture in deformation at a high strain rate.
 鋼板を10mm/secの歪速度で変形させ破断時の絞りを測定するためには、図1に示す平行部が1.5mmの特殊試験片を用いる必要がある。1.5mmの平行部を有する特殊試験片に900mm/分のストローク速度で引張試験を実施することにより、10mm/secに非常に近い歪速度を試験片の平行部に与えることが初めて可能となる。また、実部品への成形で起こるような鋼板の破壊の挙動を正確に評価するためには、引張試験片の平行部の厚みと幅との比も厳格に管理する必要がある。引張試験片の絞り変形時には、くびれ変形が厚み方向と幅方向との2方向から発生する。当然ながら、実部品の成形時に破断が生じる際は、厚み方向のくびれ変形が破断の支配要因であり、幅方向のくびれ変形の影響はごく小さい。そのため、引張試験片を用いた評価では、幅方向のくびれ変形の影響を除去する必要があるので、平行部の幅/平行部の厚みの比を2以上とする必要がある。幅/厚みの比は、大きいほど好ましく、より好ましくは4以上、さらに好ましくは6以上である。また、絞りは、引張破断前後における厚みの変化から、(1)式を用いて算出する。
 “絞り(%)”=((“試験前の板厚”-“破断後の板厚”)/“試験前の板厚”)×100 ・・・(1)
 なお、試験前における厚みは、平行部の幅の中央部と、中央部から引張方向に垂直かつ幅方向に平行な向きにそれぞれ1mm離れた2つのポイントの厚みとをマイクロメーターで測定し、3点での測定値を平均することにより求める。破断後のサンプルの厚みの測定は、例えばキーエンス製のマイクロスコープ(VHX-1000)を用いて実施し、試験前と同様に、破断によって2つに分かれたサンプルの各破断面における幅中央部、および幅方向に1mm離れた位置における厚みをそれぞれ測定し、6点での測定値の平均を試験後の厚みとする。上記の試験にて10%以上の高い絞りを示すサンプルを「優れた絞り」を有するサンプルとして評価した。
In order to deform a steel plate at a strain rate of 10 mm / sec and measure the drawing at the time of breakage, it is necessary to use a special test piece having a parallel portion of 1.5 mm shown in FIG. By conducting a tensile test on a special test piece having a parallel part of 1.5 mm at a stroke speed of 900 mm / min, it becomes possible for the first time to give a strain rate very close to 10 mm / sec to the parallel part of the test piece. . In addition, in order to accurately evaluate the behavior of the destruction of a steel sheet as occurs in forming into an actual part, it is necessary to strictly manage the ratio between the thickness and width of the parallel part of the tensile test piece. At the time of drawing deformation of a tensile test piece, constriction deformation occurs from two directions, ie, a thickness direction and a width direction. Naturally, when a fracture occurs during the molding of an actual part, the constriction deformation in the thickness direction is the dominant factor of the fracture, and the influence of the constriction deformation in the width direction is very small. Therefore, in the evaluation using the tensile test piece, it is necessary to remove the influence of the constriction deformation in the width direction. Therefore, the ratio of the width of the parallel part / the thickness of the parallel part needs to be 2 or more. The width / thickness ratio is preferably as large as possible, more preferably 4 or more, and even more preferably 6 or more. In addition, the drawing is calculated using the formula (1) from the change in thickness before and after the tensile fracture.
“Drawing (%)” = ((“Plate thickness before test” − “Plate thickness after fracture”) / “Plate thickness before test”) × 100 (1)
The thickness before the test was measured with a micrometer by measuring the central part of the width of the parallel part and the thicknesses of two points 1 mm away from the central part in a direction perpendicular to the tensile direction and parallel to the width direction. Obtained by averaging the measured values at points. The measurement of the thickness of the sample after the breakage was performed using, for example, a microscope (VHX-1000) manufactured by Keyence, and, as before the test, the center of the width at each fractured surface of the sample divided into two by breakage, And the thickness in the position 1 mm away in the width direction is measured, respectively, and the average of the measurement values at 6 points is the thickness after the test. Samples having a high aperture of 10% or more in the above test were evaluated as samples having “excellent aperture”.
 次に、本実施形態に係る鋼板の製造方法について説明する。 Next, a method for manufacturing a steel sheet according to this embodiment will be described.
 本実施形態に係る鋼板の製造方法の技術的思想は、上述した成分範囲の材料を用いて、熱間圧延と焼鈍との条件の一貫して管理することを特徴としている。 The technical idea of the steel sheet manufacturing method according to the present embodiment is characterized by consistently managing the conditions of hot rolling and annealing using the materials in the component ranges described above.
 本実施形態に係る鋼板の具体的な製造方法の特徴は以下の通りである。 The characteristics of the specific manufacturing method of the steel sheet according to this embodiment are as follows.
 熱間圧延(熱延)は、所定の成分を有するスラブを連続鋳造後、常法通りそのまま、または一旦冷却した後に加熱してから、熱間で圧延する際に、600℃以上、1000℃未満の温度域にて仕上げ熱間圧延を終了することを特徴とする。仕上げ圧延後の鋼帯を、ランアウトテーブル(ROT)上で10℃/秒以上、100℃/秒以下の冷却速度で冷却後に350℃以上、700℃未満の温度範囲で捲き取ることにより熱延コイルを得る。熱延コイルに熱延板箱焼鈍を施し、次いで10%以上、80%以下の冷延率で冷間圧延を施して、さらに冷延板焼鈍を施すことにより、高い歪速度での変形において優れた絞りを有する中・高炭素鋼板を得る。 Hot rolling (hot rolling) is a method in which a slab having a predetermined component is continuously cast and then heated as it is or after being cooled and then hot-rolled and then heated to 600 ° C. or more and less than 1000 ° C. The finish hot rolling is finished in a temperature range of. The steel strip after finish rolling is cooled on a run-out table (ROT) at a cooling rate of 10 ° C./second or more and 100 ° C./second or less, and then rolled in a temperature range of 350 ° C. or more and less than 700 ° C. Get. Hot-rolled coil is subjected to hot-rolled sheet box annealing, then cold-rolled at a cold rolling rate of 10% or more and 80% or less, and further subjected to cold-rolled sheet annealing, which is excellent in deformation at a high strain rate. A medium- and high-carbon steel sheet with a reduced drawing is obtained.
 以下に、本実施形態に係る鋼板の製造方法について具体的に説明してゆく。 Hereinafter, the manufacturing method of the steel sheet according to the present embodiment will be specifically described.
 (熱間圧延)
 所定の成分を有するスラブ(鋼片)を連続鋳造後、直接、または一旦冷却後に加熱してから、熱間で圧延する際に、600℃以上、1000℃未満の温度域にて仕上げ熱延を完了し、得られた鋼帯を、350℃以上、700℃未満の温度範囲で捲き取る。
(Hot rolling)
When a slab (steel piece) having a predetermined component is continuously cast, heated directly after being cooled or once cooled, and then rolled hot, finish hot rolling is performed at a temperature range of 600 ° C. or more and less than 1000 ° C. When completed, the obtained steel strip is scraped off in a temperature range of 350 ° C. or higher and lower than 700 ° C.
 スラブの加熱温度は950℃以上、1250℃以下とし、加熱時間は0.5時間以上、3時間以下とする。加熱温度が1250℃を超え、あるいは加熱時間が3時間を超える場合は、スラブ表層からの脱炭が顕著になり、焼入れの熱処理を施したとしても表層の硬さが低下するので、部品が必要とする耐摩耗性などを得られなくなる。このため、加熱温度の上限は1250℃以下、加熱時間の上限は3時間以下とする。また、加熱温度が950℃未満であり、あるいは加熱時間が0.5時間未満の場合は、鋳造の際に形成されたミクロ偏析やマクロ偏析が解消せず、鋼材内部にSiおよびMn等の合金元素が局所的に濃化する領域が残存し、この領域が高い歪速度での変形における絞りの低下を招く。このため、加熱温度の下限を950℃以上とし、加熱時間の下限を0.5時間以上とする。 The heating temperature of the slab is 950 ° C. or more and 1250 ° C. or less, and the heating time is 0.5 hours or more and 3 hours or less. If the heating temperature exceeds 1250 ° C or the heating time exceeds 3 hours, decarburization from the surface of the slab becomes prominent, and the hardness of the surface layer decreases even if heat treatment for quenching is performed, so parts are required It becomes impossible to obtain wear resistance. For this reason, the upper limit of heating temperature shall be 1250 degrees C or less, and the upper limit of heating time shall be 3 hours or less. Further, when the heating temperature is less than 950 ° C. or the heating time is less than 0.5 hours, the microsegregation and macrosegregation formed during casting cannot be resolved, and an alloy such as Si and Mn is formed inside the steel material. A region where the element is locally concentrated remains, and this region causes a reduction in the diaphragm during deformation at a high strain rate. For this reason, the minimum of heating temperature shall be 950 degreeC or more, and the minimum of heating time shall be 0.5 hours or more.
 仕上げ熱延は600℃以上、1000℃以下で終了させることが好ましい。仕上げ熱延温度が600℃未満であると、鋼材の変形抵抗の増加により、圧延負荷が顕著に高まり、更にロール磨耗量の増大を招くので、生産性の低下を引き起こす。このため仕上げ熱延温度を600℃以上とする。また、仕上げ熱延温度が1000℃を越えると、鋼板がRunOutTableを通板中に、厚いスケールが鋼板に生成し、このスケールが酸素源となり捲取後にフェライトもしくはパーライトの粒界を酸化させることにより、微細な凹凸が表面に生じる。微細な凹凸を起点として、高い歪速度での変形時に鋼板が早期に破断するので、微細な凹凸は絞りの低下を引き起こす。さらに、仕上げ熱延温度が1000℃を越えると、仕上げ熱延後にオーステナイト粒界へのSi、およびMn等の合金元素の偏析が促進し、オーステナイト粒内における合金元素の濃度が低下するので、合金元素の濃度の希薄な部位で、熱延板焼鈍及び冷延板焼鈍時に炭化物の凝集が進み、結晶界面を有する炭化物の個数割合が増加する。このため、仕上げ熱延温度を1000℃以下とする。 Finishing hot rolling is preferably finished at 600 ° C. or more and 1000 ° C. or less. When the finish hot rolling temperature is less than 600 ° C., the rolling load is remarkably increased due to an increase in the deformation resistance of the steel material, and the roll wear amount is further increased, resulting in a decrease in productivity. Therefore, the finishing hot rolling temperature is set to 600 ° C. or higher. In addition, when the finish hot rolling temperature exceeds 1000 ° C, the steel plate is run through the RunOutTable, and a thick scale is formed on the steel plate. This scale becomes an oxygen source, and after ironing, the ferrite or pearlite grain boundaries are oxidized. Fine irregularities are generated on the surface. Starting from fine irregularities, the steel sheet breaks early when deforming at a high strain rate, so the fine irregularities cause a reduction in the aperture. Further, when the finish hot rolling temperature exceeds 1000 ° C., segregation of alloy elements such as Si and Mn to the austenite grain boundary is promoted after finish hot rolling, and the concentration of the alloy element in the austenite grain is reduced. In the region where the element concentration is low, the agglomeration of carbides proceeds during hot-rolled sheet annealing and cold-rolled sheet annealing, and the number ratio of carbides having a crystal interface increases. For this reason, finishing hot rolling temperature shall be 1000 degrees C or less.
 仕上げ熱延後のROTでの鋼帯の冷却速度は10℃/秒以上、100℃/秒以下とする。冷却速度が10℃/秒未満である場合、冷却速度が緩やかなので、フェライトの成長が促され、フェライト、パーライト、及びベイナイトが鋼帯の板厚方向に積層した組織が熱延板に形成される。このような組織は、冷延焼鈍後にも残り、鋼板の絞りの低下を招くので、冷却速度を10℃/秒以上とする。また、全板厚にわたり100℃/秒を超える冷却速度で鋼帯を冷却すると、最表層部が過剰に冷却され、ベイナイトおよびマルテンサイトなどの低温変態組織を生じる。捲き取り後に100℃~室温まで冷却されたコイルを払い出す際には、前述の低温変態組織に微小クラックが発生する。続く酸洗及び冷延工程においてクラックを取り除くことは難しく、クラックは冷延板焼鈍後の鋼板の絞り低下を招く。このため、冷却速度を100℃/秒以下とする。なお、上記で定める冷却速度は、仕上げ熱延後の鋼帯が無注水区間を通過後に注水区間で水冷却を受ける時点から、捲取の目標温度までROT上で冷却される時点までに、各注水区間の冷却設備から受ける冷却能を指しており、注水開始点から捲取機により捲取られるまでの平均冷却速度を示すものではない。 The cooling rate of the steel strip in the ROT after finish hot rolling is 10 ° C / second or more and 100 ° C / second or less. When the cooling rate is less than 10 ° C./second, since the cooling rate is slow, the growth of ferrite is promoted, and a structure in which ferrite, pearlite, and bainite are laminated in the thickness direction of the steel strip is formed on the hot-rolled sheet. . Such a structure remains even after cold rolling annealing and causes a reduction in drawing of the steel sheet, so the cooling rate is set to 10 ° C./second or more. Further, when the steel strip is cooled at a cooling rate exceeding 100 ° C./second over the entire thickness, the outermost layer is excessively cooled, and low temperature transformation structures such as bainite and martensite are generated. When the coil cooled to 100 ° C. to room temperature after being scraped off, microcracks are generated in the low-temperature transformation structure. It is difficult to remove cracks in the subsequent pickling and cold rolling processes, and the cracks cause a reduction in the drawing of the steel sheet after cold-rolled sheet annealing. For this reason, a cooling rate shall be 100 degrees C / sec or less. The cooling rate determined above is from the time when the steel strip after finish hot rolling passes through the non-water-injection section to receive water cooling in the water-injection section to the time when it is cooled on the ROT to the target temperature of the towing. It refers to the cooling capacity received from the cooling equipment in the water injection section, and does not indicate the average cooling rate from the start of water injection until it is taken up by the take-up machine.
 捲き取り温度は350℃以上、700℃以下とする。捲き取り温度が350℃未満であると、仕上げ圧延中に未変態であったオーステナイトがマルテンサイトに変態し、冷延板焼鈍後においても微細なフェライトとセメンタイトが維持され、絞りの低下を招くので、捲き取り温度を350℃以上とする。また、捲き取り温度が700℃を越えると、未変態のオーステナイトが粗大なラメラーをもつパーライトに変態し、冷延板焼鈍後にも分厚い針状のセメンタイトが残留するので、絞りの低下を引き起こす。このため捲き取り温度を700℃以下とする。 The scraping temperature is 350 ° C or higher and 700 ° C or lower. When the scraping temperature is less than 350 ° C., austenite that has not been transformed during finish rolling is transformed into martensite, and fine ferrite and cementite are maintained even after cold-rolled sheet annealing, leading to a reduction in drawing. The scraping temperature is 350 ° C. or higher. On the other hand, when the scraping temperature exceeds 700 ° C., untransformed austenite is transformed into pearlite having coarse lamellar, and thick needle-like cementite remains even after cold-rolled sheet annealing, thereby causing a reduction in drawing. For this reason, the scraping temperature is set to 700 ° C. or lower.
 前述の条件で製造した熱延コイルに、そのまま、あるいは酸洗後に、箱焼鈍を施す。焼鈍温度は670℃以上770℃以下とし、保持時間は1時間以上、100時間以下とする。 ¡Box annealing is performed on the hot-rolled coil manufactured under the above conditions as it is or after pickling. The annealing temperature is 670 ° C. or higher and 770 ° C. or lower, and the holding time is 1 hour or longer and 100 hours or shorter.
 箱焼鈍温度は670℃以上770℃以下とすることが好ましい。焼鈍温度が670℃未満であると、フェライト粒および炭化物粒子の粗大化が不十分であり、高い歪速度での変形における絞りの低下を引き起こす。このため焼鈍温度を670℃以上とする。また、焼鈍温度が770℃を超えると、フェライトとオーステナイトとの2相域焼鈍におけるフェライトの組織比率が少なくなりすぎるので、箱焼鈍で1℃/hrの極めて遅い冷却速度で室温まで冷却しても、ラメラー間隔の粗大なパーライトの生成を避けることはできず、冷延板焼鈍後の球状化率を低下させるので、高い歪速度での変形における絞りを低下させる。このため、焼鈍温度を770℃以下とする。焼鈍温度は好ましくは685℃以上、760℃以下である。 The box annealing temperature is preferably 670 ° C. or higher and 770 ° C. or lower. If the annealing temperature is less than 670 ° C., the ferrite particles and carbide particles are insufficiently coarsened, which causes a reduction in drawing during deformation at a high strain rate. For this reason, an annealing temperature shall be 670 degreeC or more. Also, if the annealing temperature exceeds 770 ° C., the structure ratio of ferrite in the two-phase annealing of ferrite and austenite becomes too small, so even if cooling to room temperature at a very slow cooling rate of 1 ° C./hr by box annealing. The formation of pearlite with coarse lamellar spacing cannot be avoided and the spheroidization rate after cold-rolled sheet annealing is reduced, so that the diaphragm in deformation at a high strain rate is reduced. For this reason, an annealing temperature shall be 770 degrees C or less. The annealing temperature is preferably 685 ° C. or higher and 760 ° C. or lower.
 箱焼鈍の保持時間は1時間以上、100時間以下とすることが好ましい。保持時間が1時間未満であると、熱延板焼鈍での炭化物の球状化が十分ではなく、冷延板焼鈍後も球状化率が低いので、絞りの低下を引き起こす。このため、箱焼鈍の保持時間を1時間以上とする。保持時間が100時間を超えるような条件では、生産性の低下、および炭化物の合体あるいは接触による界面の形成を招くので、箱焼鈍の保持時間を100時間以下とする。箱焼鈍の保持時間の下限は、好ましくは2時間、さらに好ましくは5時間であり、上限は、好ましくは70時間であり、さらに好ましくは38時間である。 The holding time for box annealing is preferably 1 hour or more and 100 hours or less. If the holding time is less than 1 hour, carbide spheroidization is not sufficient in hot-rolled sheet annealing, and the spheroidization rate is low even after cold-rolled sheet annealing, thereby causing a reduction in drawing. For this reason, the holding time of box annealing shall be 1 hour or more. Under conditions where the holding time exceeds 100 hours, the productivity is lowered and the formation of an interface due to coalescence or contact of carbides is caused, so the holding time for box annealing is set to 100 hours or less. The lower limit of the holding time for box annealing is preferably 2 hours, more preferably 5 hours, and the upper limit is preferably 70 hours, more preferably 38 hours.
 なお、箱焼鈍の雰囲気は特に限定せず、95%以上窒素の雰囲気、95%以上水素の雰囲気、または大気雰囲気のいずれでも良い。 The atmosphere of the box annealing is not particularly limited, and may be any atmosphere of 95% or more nitrogen, 95% or more hydrogen, or air atmosphere.
 次に冷間圧延を10%以上、80%以下の冷延率で実施する理由を述べる。前述の熱延-熱延板焼鈍の工程において、熱延板焼鈍の前後のいずれかで酸洗を施した熱延板焼鈍コイルを10%以上、80%以下の冷延率で冷延する。冷延率が10%未満の場合は、冷延板焼鈍において、フェライトの再結晶の核の数が少なく、フェライト粒径が粗大化し、高い歪速度での変形において鋼板表面に発生する梨地を起点として破断するので絞りが低下する。このため、冷延率の下限を10%とする。また、冷延率が80%を超えると、フェライトの再結晶の核の数が多いので、冷延板焼鈍後に得られるフェライトの粒径が微細になりすぎ、変形能が低下するので高い歪速度での変形における絞りの低下を引き起こす。このため、冷延率の上限を80%とする。 Next, the reason why cold rolling is performed at a cold rolling rate of 10% to 80% will be described. In the above-described hot-rolling-hot-rolled sheet annealing step, the hot-rolled sheet annealed coil that has been pickled before or after hot-rolled sheet annealing is cold-rolled at a cold rolling rate of 10% or more and 80% or less. When the cold rolling rate is less than 10%, the number of recrystallized nuclei of ferrite is small in the cold-rolled sheet annealing, the ferrite grain size becomes coarse, and it starts from the satin texture that occurs on the steel sheet surface during deformation at a high strain rate. As a result, the aperture is reduced. For this reason, the lower limit of the cold rolling rate is set to 10%. Also, if the cold rolling rate exceeds 80%, the number of recrystallized nuclei of the ferrite is large, so the ferrite grain size obtained after cold rolling annealing becomes too fine and the deformability is lowered, so the high strain rate. This causes a reduction in the aperture during deformation. For this reason, the upper limit of the cold rolling rate is set to 80%.
 前述の冷延率で冷延した鋼帯に冷延板焼鈍を施すことにより、高い歪速度での変形において優れた絞りを有する中・高炭素鋼板を得ることができる。 By subjecting the steel strip cold-rolled at the above-mentioned cold rolling rate to cold-rolled sheet annealing, it is possible to obtain a medium-high carbon steel sheet having an excellent drawing in deformation at a high strain rate.
 なお、冷延板焼鈍では、冷延により導入された転位などの格子欠陥が存在することにより、鋼中の各元素の拡散頻度が高まる。これにより、冷延板焼鈍では、炭化物粒子がオストワルド成長し、粗大化した炭化物粒子が互いに接触して一つの粒子を形成し、炭化物粒子の内部に結晶界面を形成する変化が起こりやすくなる。長時間の焼鈍では上記の炭化物粒子の変化が一層顕著になるので、冷延板焼鈍は連続焼鈍炉で行うことが望ましい。 In cold rolled sheet annealing, the presence of lattice defects such as dislocations introduced by cold rolling increases the diffusion frequency of each element in the steel. Thereby, in cold-rolled sheet annealing, the carbide particles grow Ostwald, the coarse carbide particles come into contact with each other to form one particle, and a change that forms a crystal interface inside the carbide particles is likely to occur. Since the change of the carbide particles becomes more noticeable when annealing is performed for a long time, it is desirable that the cold-rolled sheet annealing is performed in a continuous annealing furnace.
 続いて連続焼鈍による冷延板焼鈍の条件を述べる。連続焼鈍は焼鈍温度650℃以上、780℃以下、保持時間は30秒以上、1800秒以下で実施することが望ましい。焼鈍温度が650℃未満であると、冷延板焼鈍後に得られるフェライトのサイズが微細であり、変形能が低いので、高い歪速度での変形における絞りの低下を招く。このため焼鈍温度の下限を650℃とする。また焼鈍温度が780℃を越えると、焼鈍中に生成するオーステナイトの比率が増加しすぎるので、冷却後にマルテンサイト、ベイナイト、パーライト、及び残留オーステナイトの生成を抑制することができず、絞りの低下を招く。このため焼鈍温度の上限を780℃とする。さらに保持時間が30秒未満であると、冷延板焼鈍後に得られるフェライトのサイズが微細となるので、絞りが低下する。このため保持時間の下限を30秒とする。また、保持時間が1800秒を超えると、冷延板焼鈍中に炭化物粒子が成長する過程で、互いの炭化物粒子が接触し、粒子の中に結晶界面を有するようになり、絞りは低下する。このため、焼鈍時間の上限を1800秒以下とする。なお、冷延板焼鈍における加熱速度、冷却速度、OA帯(過時効帯)の温度は特に限定しないものの、本実施形態にかかる試験検討では、加熱速度は3.5℃/秒以上、35℃/秒以下、冷却速度は1℃/秒以上、30℃/秒以下、OA帯の温度は250℃以上、450℃以下の条件においては、狙いとする本実施形態に係る鋼板の形態が十分に得られることを確認していることを付記しておく。 Next, the conditions for cold-rolled sheet annealing by continuous annealing will be described. The continuous annealing is desirably performed at an annealing temperature of 650 ° C. or higher and 780 ° C. or lower and a holding time of 30 seconds or longer and 1800 seconds or shorter. When the annealing temperature is less than 650 ° C., the size of the ferrite obtained after the cold-rolled sheet annealing is fine, and the deformability is low, so that the aperture is reduced during deformation at a high strain rate. For this reason, the minimum of annealing temperature shall be 650 degreeC. Also, if the annealing temperature exceeds 780 ° C., the ratio of austenite generated during annealing increases too much, so the formation of martensite, bainite, pearlite, and retained austenite cannot be suppressed after cooling, and the reduction of the drawing is reduced. Invite. For this reason, the upper limit of annealing temperature shall be 780 degreeC. Further, if the holding time is less than 30 seconds, the size of the ferrite obtained after the cold-rolled sheet annealing becomes fine, so that the drawing is reduced. For this reason, the lower limit of the holding time is set to 30 seconds. On the other hand, if the holding time exceeds 1800 seconds, the carbide particles come into contact with each other in the process of growing the carbide particles during the cold-rolled sheet annealing, so that the particles have a crystal interface, and the drawing is reduced. For this reason, the upper limit of annealing time shall be 1800 seconds or less. In addition, although the heating rate, cooling rate, and temperature of the OA zone (overaging zone) in cold-rolled sheet annealing are not particularly limited, in the test study according to this embodiment, the heating rate is 3.5 ° C./second or more, 35 ° C. / Sec or less, the cooling rate is 1 ° C./sec or more, 30 ° C./sec or less, and the temperature of the OA band is 250 ° C. or more and 450 ° C. or less. It should be noted that it is confirmed that it is obtained.
 以上の本実施形態に係る鋼板の製造方法によれば、フェライトと炭化物とが主体の組織とし、マルテンサイト、ベイナイト、パーライト、および残留オーステナイトを合計した体積率を5%以下とし、炭化物粒子の球状化率を70%以上99%以下とし、炭化物粒子の中に方位差5°以上の結晶界面を含む炭化物粒子の個数割合を炭化物粒子の総個数に対して20%以下とすることにより、絞り、穴拡げ、増肉、減肉等の塑性加工、あるいはそれらを組み合わせた冷間鍛造を高い歪速度で施す際に優れた成形性を発揮する中・高炭素鋼板を得ることができる。 According to the method for manufacturing a steel sheet according to the present embodiment described above, the structure mainly composed of ferrite and carbide, the total volume ratio of martensite, bainite, pearlite, and retained austenite is 5% or less, and the spherical shape of the carbide particles By making the conversion ratio 70% or more and 99% or less, and the number ratio of the carbide particles including the crystal interface having an orientation difference of 5 ° or more in the carbide particles to 20% or less with respect to the total number of the carbide particles, It is possible to obtain a medium and high carbon steel plate that exhibits excellent formability when performing plastic working such as hole expansion, thickening and thinning, or cold forging combining them at a high strain rate.
 次に実施例により本発明の効果を説明する。 Next, the effect of the present invention will be described with reference to examples.
 実施例の水準は、本発明の実施可能性ならびに効果を確認するために採用した実行条件の一例であり、本発明はこの一条件例に限定されるものではない。本発明は、本発明要旨を逸脱せず、本発明目的を達する限りにおいては、種々の条件を採用可能とするものである。 The level of the example is an example of the execution condition adopted to confirm the feasibility and effect of the present invention, and the present invention is not limited to this one condition example. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
 表1に示す成分組成を有する連続鋳造鋳片(鋼塊)を、1140℃で1.6hr加熱後に熱間圧延し、これにより得られた厚さ250mmのスラブを厚さ40mmまで粗熱延後、仕上げ熱延素材の粗バーを36℃昇温させ、仕上げ熱延を開始し、880℃で仕上げ熱延後、ROT上で45℃/秒の冷却速度で520℃まで冷却し、510℃で捲き取り、これにより板厚4.6mmの熱延コイルを製造した。熱延コイルを酸洗し、箱型焼鈍炉内にコイルを装入し、雰囲気を95%水素-5%窒素に制御した後に、室温から500℃までの加熱速度を100℃/時間として加熱し、500℃で3時間保持してコイル内の温度分布を均一化した後に、30℃/時間の加熱速度で705℃まで加熱し、さらに705℃で24時間保持後に室温まで炉冷した。熱延板焼鈍を施したコイルを50%の圧下率にて冷延し、720℃で900秒保持する冷延板焼鈍を施し、1.2%の圧下率にて調質圧延を施して、特性評価用のサンプルを作製した。サンプルの組織および高い歪速度での変形における絞りは、上述した方法にて測定した。 A continuous cast slab (steel ingot) having the composition shown in Table 1 is hot-rolled after heating for 1.6 hours at 1140 ° C., and a slab having a thickness of 250 mm obtained is roughly hot-rolled to a thickness of 40 mm. Then, the hot bar of the finished hot-rolled material is heated to 36 ° C., finishing hot rolling is started, and after finishing hot rolling at 880 ° C., it is cooled to 520 ° C. at a cooling rate of 45 ° C./second on ROT, and at 510 ° C. A hot rolled coil having a thickness of 4.6 mm was manufactured by scraping. The hot-rolled coil is pickled, charged in a box-type annealing furnace, and the atmosphere is controlled to 95% hydrogen-5% nitrogen, and then heated from room temperature to 500 ° C at a heating rate of 100 ° C / hour. After maintaining the temperature distribution at 500 ° C. for 3 hours to make the temperature distribution in the coil uniform, the coil was heated to 705 ° C. at a heating rate of 30 ° C./hour, and further maintained at 705 ° C. for 24 hours and then cooled to room temperature. The coil subjected to hot-rolled sheet annealing is cold-rolled at a reduction ratio of 50%, subjected to cold-rolled sheet annealing held at 720 ° C. for 900 seconds, subjected to temper rolling at a reduction ratio of 1.2%, A sample for characteristic evaluation was prepared. The drawing in the sample structure and deformation at a high strain rate was measured by the method described above.
 表2-1および表2-2に製造したサンプルの高い歪速度での変形における絞りの評価結果を示す。表2-1および表2-2に示すように、発明例のNo.B-1、C-1、D-1、E-1、F-1、G-1、H-1、I-1、J-1、M-1、N-1、P-1、Q-1、R-1、S-1、U-1、X-1、Y-1、Z-1、AA-1、AB-1、AC-1は、いずれもマルテンサイト、ベイナイト、パーライト、及び残留オーステナイトを合計した体積率が5%以下であり、炭化物粒子の球状化率が70%以上99%以下であり、炭化物粒子の中に方位差5°以上の結晶界面を含む炭化物粒子の個数割合が炭化物粒子の総個数に対して20%以下であり、高い歪速度での変形において優れた絞りを示した。 Tables 2-1 and 2-2 show the evaluation results of the diaphragm in the deformation of the manufactured samples at a high strain rate. As shown in Tables 2-1 and 2-2, No. B-1, C-1, D-1, E-1, F-1, G-1, H-1, I-1, J-1, M-1, N-1, P-1, Q- 1, R-1, S-1, U-1, X-1, Y-1, Z-1, AA-1, AB-1, AC-1 are all martensite, bainite, pearlite, and residual The volume ratio of the total austenite is 5% or less, the spheroidization rate of the carbide particles is 70% or more and 99% or less, and the number ratio of the carbide particles including a crystal interface having an orientation difference of 5 ° or more in the carbide particles is It was 20% or less with respect to the total number of carbide particles, and an excellent aperture was shown in deformation at a high strain rate.
 これに対して、比較例A-1は結晶界面を有する炭化物の割合は少なく、高い歪速度での変形において優れた絞りを示すものの、C含有量が少なく、部品化のための焼入れ工程にて高強度化できないので不合格とした。比較例K-1はMn含有量が少なく、冷延板焼鈍において炭化物のオストワルド成長が促進され、結晶界面を有する炭化物の割合が増加したので、絞りの低下を招いた。比較例L-1はPの含有量が多く、フェライト粒界が脆化し、高い歪速度での変形時にフェライト粒界から亀裂が発生及び伝播したので、絞りの低下を招いた。比較例O-1はMn含有量が多く、熱延板焼鈍及び冷延板焼鈍での炭化物の球状化が抑制され、高い歪速度での変形時に針状の炭化物から亀裂が発生し、伝播したので絞りが低下した。比較例T-1はSi含有量が少ないので、冷延板焼鈍において炭化物のオストワルド成長が促進され、結晶界面を有する炭化物の割合が増加し、絞りの低下を招いた。比較例V-1はS含有量が多く、鋼中に粗大なMnSなどの介在物が多く存在し、介在物を起点として亀裂が発生及び進展したので、絞りの低下を招いた。比較例W-1はSi含有量が多く、冷延板焼鈍中に生成したオーステナイトが冷却中にフェライト変態しにくくなり、ベイナイト及びパーライト変態を促したので、フェライトと炭化物以外の組織割合が増加することによりフェライト粒界への応力集中を招き、絞りが低下した。比較例AD-1はCの含有量および炭化物の体積率が多いので、結晶界面を有する炭化物の個数割合を20%以下に制御することができず、絞りが低下した。 On the other hand, Comparative Example A-1 has a small proportion of carbide having a crystal interface and exhibits excellent drawing in deformation at a high strain rate, but has a low C content and is used in a quenching process for componentization. Since the strength could not be increased, it was rejected. Comparative Example K-1 had a low Mn content, promoted Ostwald growth of carbides during cold-rolled sheet annealing, and increased the proportion of carbides having a crystal interface, leading to a reduction in drawing. In Comparative Example L-1, the content of P was large, the ferrite grain boundaries became brittle, and cracks were generated and propagated from the ferrite grain boundaries when deformed at a high strain rate, resulting in a reduction in drawing. Comparative Example O-1 has a high Mn content, spheroidization of carbides during hot-rolled sheet annealing and cold-rolled sheet annealing is suppressed, and cracks are generated from the needle-shaped carbides and propagated during deformation at a high strain rate. So the aperture was reduced. Since Comparative Example T-1 had a low Si content, Ostwald growth of carbides was promoted during cold-rolled sheet annealing, and the proportion of carbides having a crystal interface increased, leading to a reduction in drawing. Comparative Example V-1 had a high S content, and there were many inclusions such as coarse MnS in the steel, and cracks were generated and propagated starting from the inclusions, resulting in a reduction in drawing. Since Comparative Example W-1 has a high Si content, austenite formed during cold-rolled sheet annealing is less likely to undergo ferrite transformation during cooling, and promotes bainite and pearlite transformation, resulting in an increase in the proportion of structure other than ferrite and carbide. As a result, stress was concentrated on the ferrite grain boundary, and the drawing was reduced. In Comparative Example AD-1, since the C content and the volume fraction of carbides were large, the number ratio of carbides having a crystal interface could not be controlled to 20% or less, and the drawing was reduced.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 次に、その他元素の許容される含有量の範囲を調べるために、表3-1、表3-2、および表3-3ならびに表4-1、表4-2、および表4-3に示す成分組成を有する連続鋳造鋳片(鋼塊)を、1180℃で0.7hr加熱後に熱間圧延し、これにより得られた厚さ250mmのスラブを厚さ45mmまで粗熱延後、仕上げ熱延素材の粗バーを48℃昇温させ、仕上げ熱延を開始し、870℃で仕上げ熱延後、ROT上で45℃/秒の冷却速度で510℃まで冷却し、500℃で捲き取り、これにより板厚2.6mmの熱延コイルを製造した。熱延コイルを酸洗し、箱型焼鈍炉内にコイルを装入し、雰囲気を95%水素-5%窒素に制御した後に、室温から500℃までの加熱温度を100℃/時間として加熱し、500℃で3時間保持してコイル内の温度分布を均一化した後に、30℃/時間の加熱速度で705℃まで加熱し、さらに705℃で24時間保持後に室温まで炉冷した。熱延板焼鈍を施したコイルを50%の圧下率にて冷延し、700℃で900秒保持する冷延板焼鈍を施し、1.0%の圧下率にて調質圧延を施して、特性評価用のサンプルを作製した。 Next, in order to investigate the range of allowable contents of other elements, Tables 3-1, 3-2, and 3-3, and Tables 4-1, 4-2, and 4-3 are used. A continuous cast slab (steel ingot) having the indicated composition is hot-rolled after heating at 1180 ° C. for 0.7 hr, and the resulting slab having a thickness of 250 mm is roughly hot-rolled to a thickness of 45 mm, followed by finishing heat Raise the rough bar of the rolled material to 48 ° C, start finishing hot rolling, finish hot rolling at 870 ° C, cool to 510 ° C at a cooling rate of 45 ° C / second on the ROT, scrape at 500 ° C, Thus, a hot rolled coil having a plate thickness of 2.6 mm was manufactured. After pickling the hot-rolled coil, inserting the coil into a box-type annealing furnace, and controlling the atmosphere to 95% hydrogen-5% nitrogen, the heating temperature from room temperature to 500 ° C. was heated at 100 ° C./hour. After maintaining the temperature distribution at 500 ° C. for 3 hours to make the temperature distribution in the coil uniform, the coil was heated to 705 ° C. at a heating rate of 30 ° C./hour, and further maintained at 705 ° C. for 24 hours and then cooled to room temperature. The coil subjected to hot-rolled sheet annealing is cold-rolled at a reduction rate of 50%, subjected to cold-rolled sheet annealing held at 700 ° C. for 900 seconds, subjected to temper rolling at a reduction rate of 1.0%, A sample for characteristic evaluation was prepared.
 表5-1~表5-6に製造したサンプルの高い歪速度での変形での絞りの評価結果を示す。表5-1~表5-6に示すように、発明例のNo.AE-1、AF-1、AL-1、AM-1、AN-1、AR-1、AS-1、AV-1、AW-1、AX-1、BC-1、BD-1、BF-1、BH-1、BI-1、BJ-1、BK-1、BM-1、BN-1、BT-1は、いずれもマルテンサイト、ベイナイト、パーライト、及び残留オーステナイトを合計した体積率が5%以下(0.0%を含む)であり、炭化物粒子の球状化率が70%以上99%以下であり、炭化物粒子の中に方位差5°以上の結晶界面を含む炭化物粒子の個数割合が炭化物粒子の総個数に対して20%以下であり、高い歪速度での変形において優れた絞りを示した。 Tables 5-1 to 5-6 show the evaluation results of the diaphragm when the samples manufactured were deformed at a high strain rate. As shown in Tables 5-1 to 5-6, No. AE-1, AF-1, AL-1, AM-1, AN-1, AR-1, AS-1, AV-1, AW-1, AX-1, BC-1, BD-1, BF- 1, BH-1, BI-1, BJ-1, BK-1, BM-1, BN-1, and BT-1 all have a volume ratio of 5 in total of martensite, bainite, pearlite, and retained austenite. % Or less (including 0.0%), the spheroidization rate of the carbide particles is 70% or more and 99% or less, and the number ratio of carbide particles including a crystal interface having an orientation difference of 5 ° or more in the carbide particles is It was 20% or less with respect to the total number of carbide particles, and an excellent aperture was shown in deformation at a high strain rate.
 これに対して、比較例AG-1、AH-1、AO-1,AT-1,AU-1、AZ-1、BA-1、BB-1、BO-1、BS-1はそれぞれCe、Ca、Y、Al、Mg、As、Zr、Sn、Sb、Laの含有量が多いのでフェライトの粒界の脆化を招き、高い歪速度での変形時に絞りが低下した。比較例AI-1、AJ-1、AK-1、AQ-1、BE-1、BG-1、BL-1、BQ-1、BR-1はNb、W、Ti、Ni、Cr、Mo、V、Cu、Taの含有量が多く、熱延板焼鈍及び冷延板焼鈍での炭化物の球状化が抑制され、高い歪速度での変形時に針状の炭化物から亀裂が発生し、伝播したので絞りが低下した。比較例AP-1はNの含有量が多く、冷延板焼鈍中に生成したオーステナイトが冷却中にフェライト変態しにくくなり、ベイナイト及びパーライト変態を促したので、フェライトと炭化物以外の組織割合が増加することによりフェライト粒界への応力集中を招き、絞りが低下した。比較例AY-1はOの含有量が多く、鋼中に粗大な酸化物を形成し、高い歪速度での変形において粗大な酸化物を起点として亀裂が発生及び伝播し、絞りの低下を招いた。比較例BP-1はBの含有量が多く、鋼中に粗大なFe-B-Carbideが生成したので、Fe-B-Carbideを起点として亀裂が発生及び伝播し、絞りの低下を招いた。 In contrast, Comparative Examples AG-1, AH-1, AO-1, AT-1, AU-1, AZ-1, BA-1, BB-1, BO-1, and BS-1 are Ce, Since the contents of Ca, Y, Al, Mg, As, Zr, Sn, Sb, and La are large, the ferrite grain boundaries become brittle, and the squeezing is reduced during deformation at a high strain rate. Comparative Examples AI-1, AJ-1, AK-1, AQ-1, BE-1, BG-1, BL-1, BQ-1, and BR-1 are Nb, W, Ti, Ni, Cr, Mo, Since the content of V, Cu, Ta is large, spheroidization of carbides during hot-rolled sheet annealing and cold-rolled sheet annealing is suppressed, and cracks are generated and propagated from needle-shaped carbides during deformation at a high strain rate. Aperture decreased. Comparative Example AP-1 has a high N content, and austenite formed during cold-rolled sheet annealing is less likely to undergo ferrite transformation during cooling, and promotes bainite and pearlite transformation, thus increasing the proportion of the structure other than ferrite and carbide. As a result, stress concentration on the ferrite grain boundary was caused, and the aperture was lowered. Comparative Example AY-1 has a large content of O, forms a coarse oxide in the steel, and cracks are generated and propagated starting from the coarse oxide in deformation at a high strain rate, resulting in a reduction in the drawing. It was. Comparative Example BP-1 had a high B content, and coarse Fe—B—Carbide was produced in the steel. Therefore, cracks were generated and propagated starting from Fe—B—Carbide, leading to a reduction in drawing.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 続いて製造条件の影響を調べるために、表1、表3-1~表3-3及び表4-1~表4-3に示すNo.B、C、D、E、F、G、H、I、J、M、N、P、Q、R、S、U、X、Y、Z、AA、AB、AC、AE、AF、AL、AM、AN、AR、AS、AV、AW、AX、BC、BD、BF、BH、BI、BJ、BK、BM、BN、BTの成分をもつスラブを鋳造し、一旦冷却後に表6-1-1、表6-1-2、表6-2-1、表6-2-2、表7-1-1、表7-1-2、表7-2-1、表7-2-2、表8-1-1~表8-1-3、表8-2-1~表8-2-3、表9-1-1~表9-1-3、および表9-2-1~表9-2-3(以下単に表6、7、8、9と称す)に示すスラブ加熱条件及び熱延条件にて板厚3.5mmの熱延鋼帯を製造し、熱延板焼鈍、酸洗、冷延、冷延板焼鈍を施して特性評価のためのサンプルを作製した。 Subsequently, in order to examine the influence of the manufacturing conditions, Nos. Shown in Table 1, Table 3-1 to Table 3-3, and Table 4-1 to Table 4-3 are used. B, C, D, E, F, G, H, I, J, M, N, P, Q, R, S, U, X, Y, Z, AA, AB, AC, AE, AF, AL, Cast slabs with components of AM, AN, AR, AS, AV, AW, AX, BC, BD, BF, BH, BI, BJ, BK, BM, BN, and BT. 1, Table 6-1-2, Table 6-2-1, Table 6-2-2, Table 7-1-1, Table 7-1-2, Table 7-2-1, Table 7-2-2 Table 8-1-1 to Table 8-1-3, Table 8-2-1 to Table 8-2-2, Table 9-1-1 to Table 9-1-3, and Table 9-2-1 ~ Manufacturing a hot-rolled steel strip with a thickness of 3.5 mm under the slab heating conditions and hot-rolling conditions shown in Table 9-2-3 (hereinafter simply referred to as Tables 6, 7, 8, and 9) and hot-rolled sheet annealing Then, pickling, cold rolling, and cold rolling annealing were performed to prepare samples for property evaluation.
 表6、7、8、9に製造したサンプルの高い歪速度での変形における絞りの評価結果も示す。発明例のNo.B-2、C-2、D-2、E-2、J-2、N-2、Q-2、X-2、Y-2、Z-2、AB-2、AC-2、AL-2、AN-2、AS-2、AV-2、BC-2、BD-2、BH-2、BI-2、BJ-2、BN-2、F-3、G-3、H-3、I-3、M-3、N-3、P-3、R-3、S-3、U-3、AA-3、AB-3、AE-3、AF-3、AM-3、AR-3、AW-3、AX-3、BF-3、BK-3、BM-3、BT-3は、表8に示すように、いずれもマルテンサイト、ベイナイト、パーライト、および残留オーステナイトを合計した体積率が5%以下であり、炭化物粒子の球状化率が70%以上99%以下であり、炭化物粒子の中に方位差5°以上の結晶界面を含む炭化物粒子の個数割合が炭化物粒子の総個数に対して20%以下であり、高い歪速度での変形において優れた絞りを示した。 Tables 6, 7, 8, and 9 also show the evaluation results of the diaphragm in the deformation at the high strain rate of the manufactured samples. Invention Example No. B-2, C-2, D-2, E-2, J-2, N-2, Q-2, X-2, Y-2, Z-2, AB-2, AC-2, AL- 2, AN-2, AS-2, AV-2, BC-2, BD-2, BH-2, BI-2, BJ-2, BN-2, F-3, G-3, H-3, I-3, M-3, N-3, P-3, R-3, S-3, U-3, AA-3, AB-3, AE-3, AF-3, AM-3, AR- 3, AW-3, AX-3, BF-3, BK-3, BM-3, BT-3, as shown in Table 8, all are the total volume of martensite, bainite, pearlite, and residual austenite The rate of spheroidization of the carbide particles is 70% or more and 99% or less, and the number ratio of the carbide particles including a crystal interface having an orientation difference of 5 ° or more in the carbide particles is the total number of the carbide particles. Vs. Te 20% or less showed excellent aperture in deformation at high strain rates.
 これに対して比較例AA-2、BK-2、C-3、BJ-3は、表6、7に示すように、仕上げ熱延温度が高く、結晶界面を有する炭化物の個数割合が増加したとともに、巻取りまでの冷却の間に生成した分厚いスケールが酸素供給源となり、巻取り後に粒界を酸化し、表面に微細なクラックを生むことで、高い歪速度での変形において表層のクラックを起点とし亀裂が伝播するので、絞りの低下を招いた。比較例R-2、BM-2、X-3、BC-3は仕上げ熱延温度が低く、熱延時にスケールを巻き込んで圧延する際、鋼板表面に凹凸を形成し、高い歪速度での変形においては表面凹凸を起点として亀裂が発生及び進展したので、絞りが低下した。比較例U-2、AR-2、Y-3、AL-3は巻き取り温度が高く、針状で大きな厚みをもつ炭化物が熱延板で生成し、冷延板焼鈍後においても針状炭化物の球状化が進まないので、針状の炭化物を起点として亀裂が発生及び伝播し、絞りが低下した。比較例H-2、AM-2、Q-3、BI-3は巻き取り温度が低く、熱延板の組織が微細であり、冷延板焼鈍後の組織も微細なため変形能が低下し、高い歪速度での変形における絞りは低下した。 On the other hand, Comparative Examples AA-2, BK-2, C-3, and BJ-3 had higher finishing hot rolling temperatures and increased the number ratio of carbides having crystal interfaces as shown in Tables 6 and 7. At the same time, the thick scale generated during cooling until winding serves as an oxygen supply source, which oxidizes the grain boundary after winding and creates fine cracks on the surface, thereby cracking the surface layer in deformation at a high strain rate. The crack propagated from the starting point, leading to a reduction in drawing. Comparative Examples R-2, BM-2, X-3, and BC-3 have a low finish hot rolling temperature. When rolling by rolling a scale during hot rolling, irregularities are formed on the surface of the steel sheet, and deformation at a high strain rate is performed. In FIG. 3, since the crack was generated and propagated starting from the surface unevenness, the aperture was lowered. Comparative Examples U-2, AR-2, Y-3, and AL-3 have high coiling temperatures, and a needle-like carbide having a large thickness is produced in the hot-rolled sheet, and the needle-like carbide is present even after cold-rolled sheet annealing. Since spheroidization did not progress, cracks were generated and propagated starting from needle-like carbides, and the aperture was reduced. In Comparative Examples H-2, AM-2, Q-3, and BI-3, the coiling temperature is low, the structure of the hot-rolled sheet is fine, and the structure after cold-rolled sheet annealing is also fine, so the deformability is reduced. The diaphragm in deformation at high strain rate was reduced.
 比較例G-2、AE-2、J-3、BD-3は、表6、7に示すように、冷延率が高いので冷延板焼鈍後の組織が微細となり、変形能が低下し、絞りの低下を招いた。比較例S-2、AW-2、AC-3、BH-3は冷延率が低いので、冷延板焼鈍後のフェライト粒径が粗大となり、高い歪速度での変形において表層に梨地が発生し、形成された表面凹凸をもとに亀裂が発生及び進展したので、絞りの低下を招いた。比較例M-2、BT-2、Z-3、AS-3は冷延板焼鈍の温度が高いので、焼鈍中に生成するオーステナイトの相比が多くなり、冷却過程でマルテンサイト、ベイナイト、パーライト変態を抑制できないので、高い歪速度での変形において絞りが低下した。比較例P-2、BF-2、E-3、BN-3は冷延板焼鈍の温度が低く、フェライト粒径が微細なので変形能が低下し、高い歪速度での変形における絞りは低下した。比較例I-2、AX-2、D-3、AN-3は冷延板焼鈍時間が長く、炭化物粒子が粗大化する過程でお互いに接触し、粒子内部に結晶界面を有するようになるので、絞りの低下を招いた。比較例F-2、AF-2、B-3、AV-3は冷延板焼鈍時間が短く、フェライトが微細なので変形能が低下し、高い歪速度での変形における絞りは低下した。 As shown in Tables 6 and 7, Comparative Examples G-2, AE-2, J-3, and BD-3 have a high cold rolling rate, so that the structure after annealing of the cold rolled sheet becomes fine, and the deformability decreases. , Caused a decrease in aperture. Since Comparative Examples S-2, AW-2, AC-3, and BH-3 have a low cold rolling rate, the grain size of ferrite after annealing of the cold rolled sheet becomes coarse, and a satin finish is generated on the surface layer in deformation at a high strain rate. However, since cracks occurred and propagated based on the formed surface irregularities, the aperture was reduced. Since Comparative Examples M-2, BT-2, Z-3, and AS-3 have a high temperature for cold-rolled sheet annealing, the phase ratio of austenite generated during annealing increases, and martensite, bainite, and pearlite are produced during the cooling process. Since the transformation could not be suppressed, the diaphragm was lowered during deformation at a high strain rate. In Comparative Examples P-2, BF-2, E-3, and BN-3, the temperature of cold-rolled sheet annealing was low and the ferrite grain size was fine, so the deformability was reduced, and the drawing in deformation at a high strain rate was reduced. . Since Comparative Examples I-2, AX-2, D-3, and AN-3 have a long cold-rolled sheet annealing time, the carbide particles come into contact with each other in the course of coarsening, and have a crystal interface inside the particles. , Caused a decrease in aperture. In Comparative Examples F-2, AF-2, B-3, and AV-3, the cold-rolled sheet annealing time was short, and the ferrite was fine, so that the deformability was reduced, and the diaphragm for deformation at a high strain rate was lowered.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 図1に、高い歪速度での変形における鋼板の絞りを評価するための試験片形状を示す。試験片の平行部は1.5mmであり、当該試験片を900mm/分のストローク速度で引張り、試験片を破断させ、試験前後における平行部中央の板厚変化から鋼板の絞りを求めた。 Fig. 1 shows the shape of a test piece for evaluating the drawing of a steel plate in deformation at a high strain rate. The parallel part of the test piece was 1.5 mm, the test piece was pulled at a stroke speed of 900 mm / min, the test piece was broken, and the drawing of the steel sheet was determined from the change in the plate thickness at the center of the parallel part before and after the test.
 図2に、高い歪速度での変形を伸び率13.4%で停止させた後のサンプルを3%硝酸-アルコール溶液を用いてエッチングすることによりフェライトと炭化物とを現出させた、実施例U-1の組織を示す。炭化物の割れが炭化物粒子の中に存在する結晶界面から発生することは明らかである。 FIG. 2 shows an example in which ferrite and carbide were revealed by etching a sample after stopping deformation at a high strain rate at an elongation of 13.4% using a 3% nitric acid-alcohol solution. The organization of U-1 is shown. It is clear that carbide cracking occurs from the crystal interface present in the carbide particles.
 図3に、表2-1および表2-2の発明例および比較例、並びに表5-1~表5-6、表6、表7、表8、及び表9の発明例および比較例に関する、高い歪速度での変形における絞りと、全炭化物の個数に対する炭化物粒子の中に結晶界面を有する炭化物の個数割合との関係を示す。成分を発明の範囲に調整し、かつ結晶界面を有する炭化物の個数割合を20%以下とすることで、絞りが著しく改善することがわかる。 FIG. 3 shows invention examples and comparative examples in Table 2-1 and Table 2-2, and invention examples and comparative examples in Tables 5-1 to 5-6, Table 6, Table 7, Table 8, and Table 9. The relationship between the drawing in deformation at a high strain rate and the ratio of the number of carbides having a crystal interface in the carbide particles to the total number of carbides is shown. It can be seen that the drawing is remarkably improved by adjusting the components within the range of the invention and setting the number ratio of carbides having a crystal interface to 20% or less.

Claims (3)

  1.  質量%で、
    C:0.10~1.50%、
    Si:0.01~1.00%、
    Mn:0.01~3.00%、
    P:0.0001~0.1000%、
    S:0.0001~0.1000%、
    を含有し、残部がFeおよび不純物からなる成分を有する鋼板であり、
     前記鋼板が、マルテンサイト、ベイナイト、パーライト、および残留オーステナイトを合計した体積率が5.0%以下であり、残部がフェライトと炭化物とである組織を有し、
     炭化物粒子の球状化率が70%以上99%以下であり、
     前記炭化物粒子の中に方位差5°以上の結晶界面を含む前記炭化物粒子の個数割合が、前記炭化物粒子の総個数に対して20%以下である
    ことを特徴とする中・高炭素鋼板。
    % By mass
    C: 0.10 to 1.50%,
    Si: 0.01 to 1.00%,
    Mn: 0.01 to 3.00%,
    P: 0.0001 to 0.1000%,
    S: 0.0001 to 0.1000%,
    And the balance is a steel sheet having a component consisting of Fe and impurities,
    The steel sheet has a structure in which the volume ratio of martensite, bainite, pearlite, and residual austenite is 5.0% or less, and the balance is ferrite and carbide,
    The spheroidization rate of the carbide particles is 70% or more and 99% or less,
    A medium / high carbon steel sheet, wherein the number ratio of the carbide particles including a crystal interface having an orientation difference of 5 ° or more in the carbide particles is 20% or less with respect to the total number of the carbide particles.
  2.  前記鋼板の前記成分が、質量%で、さらに、
    Al:0.001~0.500%、
    N:0.0001~0.0500%、
    O:0.0001~0.0500%
    Cr:0.001~2.000%、
    Mo:0.001~2.000%、
    Ni:0.001~2.000%、
    Cu:0.001~1.000%、
    Nb:0.001~1.000%、
    V:0.001~1.000%、
    Ti:0.001~1.000%、
    B:0.0001~0.0500%、
    W:0.001~1.000%、
    Ta:0.001~1.000%、
    Sn:0.001~0.020%、
    Sb:0.001~0.020%、
    As:0.001~0.020%、
    Mg:0.0001~0.0200%、
    Ca:0.001~0.020%、
    Y:0.001~0.020%、
    Zr:0.001~0.020%、
    La:0.001~0.020%、
    Ce:0.001~0.020%、
    の内の1種または2種以上を含有する
    ことを特徴とする請求項1に記載の中・高炭素鋼板。
    The component of the steel sheet is mass%, and
    Al: 0.001 to 0.500%,
    N: 0.0001 to 0.0500%,
    O: 0.0001 to 0.0500%
    Cr: 0.001 to 2.000%,
    Mo: 0.001 to 2.000%,
    Ni: 0.001 to 2.000%,
    Cu: 0.001 to 1.000%,
    Nb: 0.001 to 1.000%,
    V: 0.001 to 1.000%,
    Ti: 0.001-1.000%,
    B: 0.0001 to 0.0500%
    W: 0.001-1.000%
    Ta: 0.001 to 1.000%,
    Sn: 0.001 to 0.020%,
    Sb: 0.001 to 0.020%,
    As: 0.001 to 0.020%,
    Mg: 0.0001 to 0.0200%,
    Ca: 0.001 to 0.020%,
    Y: 0.001 to 0.020%,
    Zr: 0.001 to 0.020%,
    La: 0.001 to 0.020%,
    Ce: 0.001 to 0.020%,
    The medium-high carbon steel sheet according to claim 1, comprising one or more of the above.
  3.  請求項1または2に記載の前記成分を有する鋼片を、直接、または一旦冷却後、加熱し熱間圧延する際に、600℃以上1000℃以下の温度域で仕上げ熱延を完了し、
     350℃以上700℃以下で捲取った熱延鋼板を箱焼鈍し、
     10%以上80%以下の冷間圧延を施し、
     その後の冷延板焼鈍を、連続焼鈍ラインにおいて焼鈍温度を650℃以上780℃以下、保持時間を30秒以上1800秒以下で実施する
    ことを特徴とする中・高炭素鋼板及びその製造方法。
    When the steel slab having the component according to claim 1 or 2 is directly or once cooled and then heated and hot-rolled, finish hot rolling is completed in a temperature range of 600 ° C to 1000 ° C,
    Box-annealing hot-rolled steel sheet that has been milled at 350 ° C or higher and 700 ° C or lower,
    Apply cold rolling of 10% or more and 80% or less,
    A medium-high carbon steel sheet and a method for producing the same, wherein the subsequent cold-rolled sheet annealing is performed in a continuous annealing line at an annealing temperature of 650 ° C. to 780 ° C. and a holding time of 30 seconds to 1800 seconds.
PCT/JP2015/056825 2014-03-07 2015-03-09 Medium-/high-carbon steel sheet and method for manufacturing same WO2015133644A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2016506209A JP6274304B2 (en) 2014-03-07 2015-03-09 Medium and high carbon steel sheet and manufacturing method thereof
CN201580011954.5A CN106062231B (en) 2014-03-07 2015-03-09 Medium/high carbon steel sheet and its manufacturing method
US15/123,119 US20170067132A1 (en) 2014-03-07 2015-03-09 Middle/high carbon steel sheet and method for manufacturing same
KR1020167024903A KR101875298B1 (en) 2014-03-07 2015-03-09 Medium-/high-carbon steel sheet and method for manufacturing same
MX2016011437A MX2016011437A (en) 2014-03-07 2015-03-09 Medium-/high-carbon steel sheet and method for manufacturing same.
ES15758268T ES2750615T3 (en) 2014-03-07 2015-03-09 Medium / high carbon steel sheet and method for manufacturing it
PL15758268T PL3115475T3 (en) 2014-03-07 2015-03-09 Medium-/high-carbon steel sheet and method for manufacturing same
EP15758268.5A EP3115475B1 (en) 2014-03-07 2015-03-09 Medium-/high-carbon steel sheet and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014045689 2014-03-07
JP2014-045689 2014-03-07

Publications (1)

Publication Number Publication Date
WO2015133644A1 true WO2015133644A1 (en) 2015-09-11

Family

ID=54055438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056825 WO2015133644A1 (en) 2014-03-07 2015-03-09 Medium-/high-carbon steel sheet and method for manufacturing same

Country Status (10)

Country Link
US (1) US20170067132A1 (en)
EP (1) EP3115475B1 (en)
JP (1) JP6274304B2 (en)
KR (1) KR101875298B1 (en)
CN (1) CN106062231B (en)
ES (1) ES2750615T3 (en)
MX (1) MX2016011437A (en)
PL (1) PL3115475T3 (en)
TW (1) TWI608106B (en)
WO (1) WO2015133644A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105256229A (en) * 2015-10-29 2016-01-20 中北大学 High-nitrogen nanometer bainite steel and preparing method thereof
CN105441808A (en) * 2016-01-30 2016-03-30 山东旋金机械有限公司 Material for preparing pressing roller of raw wood rotary cutter
CN107868905A (en) * 2016-09-28 2018-04-03 Posco公司 High carbon steel sheet and its manufacture method
JPWO2020100973A1 (en) * 2018-11-15 2020-05-22
US11639536B2 (en) * 2017-08-31 2023-05-02 Nippon Steel Corporation Steel sheet for carburizing, and method for manufacturing steel sheet for carburizing
JP2023124892A (en) * 2022-02-26 2023-09-07 株式会社シザーストリート Dermatitis treatment tool and use method thereof

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106854735A (en) * 2016-11-23 2017-06-16 安徽瑞鑫自动化仪表有限公司 A kind of temperature sensor corrosion-resisting alloy steel and preparation method thereof
CN106854734A (en) * 2016-11-23 2017-06-16 安徽瑞鑫自动化仪表有限公司 A kind of temperature sensor corrosion-and high-temp-resistant steel alloy and preparation method thereof
CN107400833A (en) * 2017-08-30 2017-11-28 王延敏 A kind of steel construction jacking system manufacturing process
KR102010053B1 (en) * 2017-11-07 2019-08-12 주식회사 포스코 High strength and low toughness cold-rolled steel sheet having good fracture characteristics, method for manufacturing same
CN108193017B (en) * 2017-12-08 2020-08-11 安泰科技股份有限公司 Zirconium-added high-carbon microalloyed high-strength carbon pure steel and preparation method thereof
CN108160739B (en) * 2017-12-28 2019-06-07 四川新路桥机械有限公司 A kind of deformed steel processing method
CN109112405B (en) * 2018-09-13 2020-05-01 营口中车型钢新材料有限公司 Flat steel for railway train and preparation method thereof
MX2021005983A (en) * 2018-11-21 2021-07-06 Jfe Steel Corp Steel sheet for cans and method for manufacturing same.
TWI683906B (en) * 2019-04-26 2020-02-01 中國鋼鐵股份有限公司 Method of manufacturing medium carbon steel
TWI711708B (en) * 2019-11-27 2020-12-01 中國鋼鐵股份有限公司 Method for increasing spheroidization rate of chrome molybdenum steel material
KR102498137B1 (en) * 2020-02-18 2023-02-09 주식회사 포스코 A high carbon steel sheet having good surface quality, and its manufacturing method
TWI744991B (en) * 2020-07-20 2021-11-01 中國鋼鐵股份有限公司 Method for evaluating roughening macroscopic defect of surface of formed steel material
KR102417413B1 (en) * 2020-10-26 2022-07-06 한국생산기술연구원 Heat Treatment Method For Alloy Steel Of Gears Using Addjusting Phase Transformation Of Normalizing Period
CN112301269A (en) * 2020-10-30 2021-02-02 江苏华龙铸铁型材有限公司 Strip gray cast iron material and horizontal continuous casting process thereof
CN112375991A (en) * 2020-11-11 2021-02-19 安徽金亿新材料股份有限公司 High-thermal-conductivity wear-resistant valve guide pipe material and preparation method thereof
KR102485008B1 (en) * 2020-12-21 2023-01-04 주식회사 포스코 High carbon cold rolled steel sheet having high toughness and method of manufacturing the same
KR102502011B1 (en) * 2020-12-21 2023-02-21 주식회사 포스코 Qt heat treated high carbon hot rolled steel sheet, high carbon cold rolled steel sheet, qt heat treated high carbon cold rolled steel shhet and method of manufacturing thereof
CN116121644A (en) * 2022-12-23 2023-05-16 江阴兴澄特种钢铁有限公司 High-toughness mine disc saw blade steel plate and manufacturing method thereof
CN116875909B (en) * 2023-07-25 2024-09-13 鞍钢股份有限公司 High-carbon cutting tool steel hot continuous rolling coiled plate and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183775A (en) * 2001-10-05 2003-07-03 Jfe Steel Kk Mother plate for manufacturing cold-rolled steel sheet, cold-rolled steel sheet with high strength and high ductility, and manufacturing methods therefor
JP2007031762A (en) * 2005-07-26 2007-02-08 Jfe Steel Kk High-carbon cold-rolled steel sheet superior in workability, and manufacturing method therefor
JP2007119883A (en) * 2005-10-31 2007-05-17 Jfe Steel Kk Method for manufacturing high-carbon cold-rolled steel sheet superior in workability, and high-carbon cold-rolled steel sheet
JP2007270331A (en) * 2006-03-31 2007-10-18 Jfe Steel Kk Steel sheet superior in fine blanking workability, and manufacturing method therefor
JP2008291304A (en) * 2007-05-24 2008-12-04 Jfe Steel Kk High-strength cold-rolled steel sheet and high strength hot-dip galvanized steel sheet both excellent in deep-drawability and strength-ductility balance, and producing method of the both
JP2012062496A (en) * 2010-09-14 2012-03-29 Nippon Steel Corp Soft medium carbon steel plate excellent in high frequency quenchability

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2718332B2 (en) * 1992-09-29 1998-02-25 住友金属工業株式会社 Method for producing high carbon steel strip with good formability
JP3468048B2 (en) 1997-08-26 2003-11-17 住友金属工業株式会社 Manufacturing method of high carbon cold rolled steel sheet with excellent formability
JP3848444B2 (en) * 1997-09-08 2006-11-22 日新製鋼株式会社 Medium and high carbon steel plates with excellent local ductility and hardenability
JP2000328172A (en) 1999-05-13 2000-11-28 Sumitomo Metal Ind Ltd High carbon cold rolled steel strip small in deep drawing plane anisotropy and its production
JP4471486B2 (en) 2000-11-17 2010-06-02 日新製鋼株式会社 Medium and high carbon steel plates with excellent deep drawability
JP2003147485A (en) 2001-11-14 2003-05-21 Nisshin Steel Co Ltd High toughness high carbon steel sheet having excellent workability, and production method therefor
JP3913088B2 (en) 2002-03-29 2007-05-09 日新製鋼株式会社 Manufacturing method for medium and high carbon steel sheets with excellent deep drawability
JP5320990B2 (en) * 2008-02-29 2013-10-23 Jfeスチール株式会社 Cold rolled steel sheet and method for producing the same
WO2013035848A1 (en) 2011-09-09 2013-03-14 新日鐵住金株式会社 Medium carbon steel sheet, quenched member, and method for manufacturing medium carbon steel sheet and quenched member
JP5048168B1 (en) * 2011-09-22 2012-10-17 新日本製鐵株式会社 Medium carbon steel sheet for cold working and manufacturing method thereof
CN105745348B (en) * 2013-11-22 2018-01-09 新日铁住金株式会社 High carbon steel sheet and its manufacture method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183775A (en) * 2001-10-05 2003-07-03 Jfe Steel Kk Mother plate for manufacturing cold-rolled steel sheet, cold-rolled steel sheet with high strength and high ductility, and manufacturing methods therefor
JP2007031762A (en) * 2005-07-26 2007-02-08 Jfe Steel Kk High-carbon cold-rolled steel sheet superior in workability, and manufacturing method therefor
JP2007119883A (en) * 2005-10-31 2007-05-17 Jfe Steel Kk Method for manufacturing high-carbon cold-rolled steel sheet superior in workability, and high-carbon cold-rolled steel sheet
JP2007270331A (en) * 2006-03-31 2007-10-18 Jfe Steel Kk Steel sheet superior in fine blanking workability, and manufacturing method therefor
JP2008291304A (en) * 2007-05-24 2008-12-04 Jfe Steel Kk High-strength cold-rolled steel sheet and high strength hot-dip galvanized steel sheet both excellent in deep-drawability and strength-ductility balance, and producing method of the both
JP2012062496A (en) * 2010-09-14 2012-03-29 Nippon Steel Corp Soft medium carbon steel plate excellent in high frequency quenchability

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105256229A (en) * 2015-10-29 2016-01-20 中北大学 High-nitrogen nanometer bainite steel and preparing method thereof
CN105441808A (en) * 2016-01-30 2016-03-30 山东旋金机械有限公司 Material for preparing pressing roller of raw wood rotary cutter
CN105441808B (en) * 2016-01-30 2017-08-29 山东旋金机械有限公司 A kind of material for being used to prepare crude wood rotary cutter pressure roller
CN107868905A (en) * 2016-09-28 2018-04-03 Posco公司 High carbon steel sheet and its manufacture method
CN107868905B (en) * 2016-09-28 2020-02-21 Posco公司 High carbon steel sheet and method for producing same
US11639536B2 (en) * 2017-08-31 2023-05-02 Nippon Steel Corporation Steel sheet for carburizing, and method for manufacturing steel sheet for carburizing
JPWO2020100973A1 (en) * 2018-11-15 2020-05-22
WO2020100973A1 (en) * 2018-11-15 2020-05-22 株式会社シザーストリート Hair-finishing comb and combing method
JP7343738B2 (en) 2018-11-15 2023-09-13 株式会社シザーストリート Hair finishing comb and combing method
JP2023124892A (en) * 2022-02-26 2023-09-07 株式会社シザーストリート Dermatitis treatment tool and use method thereof

Also Published As

Publication number Publication date
US20170067132A1 (en) 2017-03-09
TWI608106B (en) 2017-12-11
TW201542835A (en) 2015-11-16
EP3115475A4 (en) 2017-09-13
CN106062231B (en) 2018-09-11
PL3115475T3 (en) 2020-03-31
KR20160119220A (en) 2016-10-12
CN106062231A (en) 2016-10-26
JP6274304B2 (en) 2018-02-07
EP3115475B1 (en) 2019-08-28
ES2750615T3 (en) 2020-03-26
KR101875298B1 (en) 2018-07-05
JPWO2015133644A1 (en) 2017-04-06
EP3115475A1 (en) 2017-01-11
MX2016011437A (en) 2016-11-16

Similar Documents

Publication Publication Date Title
JP6274304B2 (en) Medium and high carbon steel sheet and manufacturing method thereof
JP6206601B2 (en) Steel plate and manufacturing method
JP6119923B1 (en) Steel sheet and manufacturing method thereof
EP3305931B1 (en) Steel sheet and manufacturing method therefor
JP5376089B2 (en) Bainite-containing high-strength hot-rolled steel sheet excellent in isotropic workability and manufacturing method thereof
JP6600996B2 (en) High carbon steel sheet and method for producing the same
JP6070912B1 (en) Steel sheet excellent in cold workability during forming and method for producing the same
JP2016216810A (en) Low carbon steel sheet excellent in machinability and friction resistance after hardening and tempering and manufacturing method therefor
JP7164071B1 (en) Non-oriented electrical steel sheet
JP6519012B2 (en) Low carbon steel sheet excellent in cold formability and toughness after heat treatment and manufacturing method
JP6728929B2 (en) High carbon steel sheet excellent in workability and wear resistance after quenching and tempering and method for producing the same
JP2023058067A (en) Non-oriented electrical steel sheet
KR102669809B1 (en) Non-oriented electrical steel sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758268

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015758268

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15123119

Country of ref document: US

Ref document number: 2015758268

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016506209

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/011437

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167024903

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016019947

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016019947

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160829