JP4283574B2 - Steel plate for high age-hardening containers with excellent canability and method for producing the same - Google Patents

Steel plate for high age-hardening containers with excellent canability and method for producing the same Download PDF

Info

Publication number
JP4283574B2
JP4283574B2 JP2003079541A JP2003079541A JP4283574B2 JP 4283574 B2 JP4283574 B2 JP 4283574B2 JP 2003079541 A JP2003079541 A JP 2003079541A JP 2003079541 A JP2003079541 A JP 2003079541A JP 4283574 B2 JP4283574 B2 JP 4283574B2
Authority
JP
Japan
Prior art keywords
less
steel plate
hardening
age
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003079541A
Other languages
Japanese (ja)
Other versions
JP2004285418A (en
Inventor
力 岡本
寿雅 友清
俊樹 野中
聡 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003079541A priority Critical patent/JP4283574B2/en
Publication of JP2004285418A publication Critical patent/JP2004285418A/en
Application granted granted Critical
Publication of JP4283574B2 publication Critical patent/JP4283574B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、缶詰及び飲料缶等に用いられる錫メッキ鋼板、クロムメッキ鋼板、フィルムラミネート鋼板等の容器用鋼板の原板となる製缶性に優れた容器用高強度鋼板及びその製造方法に関するものである。
【0002】
【従来の技術】
【特許文献1】
特開平2−118025号公報
【特許文献2】
特開平9−157757号公報
【0003】
2ピース容器用鋼板は絞り加工を受けるため、r値が大きくならねばならず、箱焼鈍で仕上げたT−1、T−2、T−3の軟質ブリキが使われることが多かった。しかしながら、このような鋼板はΔr値が大きくなるなどの欠点を含んでいるほか、生産効率が低いため鋼板コストも高くなるという課題を持っていた。これに対し、特開平2−118025号公報では、極低炭素鋼板を用いた連続焼鈍を用い、生産効率が高く、かつ、これまでのr値を確保しつつΔrを低くする技術が提案されている。しかしながら、強度確保のために多量のNを添加しているため伸びが低くなること、更に高いr値の要求に対しては高N添加では対応が困難であるという課題がある。一方で、特開平9−157757号公報では、低Nの極低炭素鋼板についての技術が提案されているが、Nの時効硬化を利用できないため、加工性を犠牲にして2次冷延で高圧下を行わない限りDR−9のような高い強度の鋼板を製造することはできない。
【0004】
【発明が解決しようとする課題】
本発明は、低N添加でNの時効硬化を確保し、高い製缶性を確保しつつ、DR−8からDR−10相当の高い強度を持つ鋼板とその製造方法を達成することを目的とする。
【0005】
【課題を解決するための手段】
上記の目的を達成すべく、化学成分、特にNとMnの相互作用について鋭意検討を重ねた結果、Nに与えるMnの作用を見出すことで、NとAl、Mnの関係式にて低N添加でもNの時効硬化による強化を利用し、製缶性に優れた容器用高強度鋼板を開発するに至った。
【0006】
その要旨は、下記の通りである。
(1) 質量%で、
C :0.006%以下、
Si:0.04%以下、
Mn:0.50%超、0.60%以下、
P :0.02%以下
S :0.02%以下
Al:0.005%超、0.1%以下、
N :0.002%超、0.01%以下、
を含有し、更に、
N×exp(−13×Al/Mn)≧0.001 (1)
C+0.02×Mn 2 −0.0048×Mn−0.01×P≦0.0077 (2)
の式を満たし、かつ残部が鉄および不可避的不純物からなり、H R 30T硬度が72.7以上であることを特徴とする製缶性に優れた高時効硬化容器用鋼板。
(2) 前記(1)に記した鋼の成分において、更にCa:0.005%以下を含有している製缶性に優れた高時効硬化容器用鋼板。
(3) 鋼板に表面処理を施した(1)又は(2)に記載の製缶性に優れた高時効硬化容器用鋼板。
(4)表面処理がクロムめっきまたは錫メッキまたはニッケルめっきである(3)に記載の製缶性に優れた高時効硬化容器用鋼板。
(5) (3)又は(4)に記した鋼板に、更にフィルムラミネート処理をする製缶性に優れた高時効硬化容器用鋼板。
(6) (1)又は(2)に記した鋼に、850℃以上の仕上温度で熱間圧延を施し、捲取温度までの平均冷速を15℃/s以上にて冷却し、570℃以下の温度で捲取り、次いで通常の酸洗の後、圧下率を50〜98%として一次冷間圧延後、連続焼鈍工程で600℃以上オーステナイト化温度以下に均熱して再結晶焼鈍を施し、次いで圧下率20〜40%の二次冷間圧延を施した製缶性に優れた高時効硬化容器用鋼板の製造方法
【0007】
【発明の実施の形態】
本発明は0.006%以下のCを含有する鋼にNとAl、Mnを調整し、更にSi、P、Sを若干量添加、必要に応じてCaを添加した容器用鋼板である。そして、製缶性を確保するため低Nとし、AlNの析出を制御することで固溶Nを確保し、この時効硬化を用いて強度を高めたものである。このとき、N、Al、MnはAlNの析出を制御する目的で添加させ、詳細はわからないが、Mnはオーステナイト生成元素であるため、フェライト変態を抑制させることでAlN析出の抑制に寄与するものと考えている。本発明は以上のような骨子に基づくが、以下に本発明の個々の構成要件について詳細に説明する。
【0008】
以下に本発明の成分の限定理由について述べる。
Cは、深絞り性、延性に大きな影響を与える元素であり、0.006%を超えるとr値、延性とも著しく低減するため、0.006%以下とする。好ましくは、0.004超、0.006%以下のCは製鋼での成分調整が困難であり、製造コストの増加につながるため0.004%以下が望ましく、0.001%未満ではリジングの発生が懸念されるためこれ以上の添加が望ましい。
【0009】
Siは、ブリキの耐食性を劣化させるほかに、材質を大きく硬質化する置換型固溶体強化元素であり、延性、加工性を向上させるに好ましくない元素である。そこで、0.04%を上限とする。
【0010】
Mnは、本発明において重要な元素である。固溶強化により母材材質を高めるほか、熱延冷却時の変態を抑制することでAlNの生成を抑制し、低いNにも関わらず固溶Nの確保を可能とする。この効果を得るためには0.5%超の添加が必要である.また、0.6%を越えると加工性が劣化する場合があるため0.6%を上限とすることが望ましい。
【0011】
Pは鋼板の強度を上げる元素であるが、成形性、耐食性を害するため、できるだけ低減する。0.02%以下であれば大きな劣化はないため0.02%以下とする。
【0012】
Sは鋼中に存在しない方が好ましい元素であり、特に加工性を高めるためには低い方が望ましく上限を0.02%とする。
【0013】
Alは、脱酸材として鋼の清浄度を向上させるため添加する。清浄度向上のためには0.005%超の添加が必要である。但し、0.1%を超える添加はAlNを粗大化させ、Nの低減させ、Nの時効硬化が得られなくなるため0.1%以下とする。
【0014】
Nは、時効硬化により材料を強化させるために必須な元素であり、この効果を得るためには0.002%超の添加が必要である。但し、多量の添加は加工性を確保するためには少ない方が良く、0.01%を越えると著しく加工性が劣化してくるので、0.01%を上限とする。
【0015】
Caは、介在物の形態制御に有効であり、薄物鋼板の加工性を良くする事や低温脆性を良くすることが可能である。しかし、過剰に存在すると熱間加工性が悪くなり望ましくないため0.005%以下とする。
【0016】
低Nで固溶Nを確保するためにはAlNの析出制御が重要である。発明者らは鋭意検討した結果、N、Alの関係加え、オーステナイト生成元素でフェライト変態を抑制するMnが析出の抑制に硬化があることを見出し、以下の関係式を導き出すに至った。関係式右辺が0.001未満ではNの時効硬化量が不足するため、所定の硬度の確保のために通常に比べ調質圧延を多く取らなくてはならず成形性の低下につながる。
N×exp(−13×Al/Mn)≧0.001 (1)
【0017】
また、加工性を得るためには一定以上のr値が必要であり、更にイヤリング性を良くするためにはΔr値を0に近づけることが重要だが、これにはC添加量を抑える必要がある。加えて結晶粒径を制御することでも加工性が良くなることに繋がるが、Mn、Pの添加量を最適にすることで効果が表れる。以上をふまえて下式(2)で範囲を指定する。
C+0.02×Mn2 −0.0048×Mn−0.01×P≦0.0077 (2)
【0018】
不可避元素としては、例えば、Cu:0.2%以下、Ni:0.15%以下、Cr:0.1%以下、Mo:0.05%以下、Co:0.02%以下、Zn:0.02%以下、Sn:0.02%以下、Na:0.02%以下、B:0.0005%以下で含有していても、本発明を逸脱するものではない。
【0019】
次に製造方法について説明する。
熱延の仕上温度はフェライト粒にひずみが過度に加わり加工性が低下するのを防ぐには熱間圧延を850℃以上で行う必要がある。また、高温すぎても焼鈍後の再結晶粒径は必要以上に粗大化するため、960℃以下が望ましい。AlNの生成を抑制するためには熱延仕上から、捲取温度までの平均冷却を15℃/s以上とすることが必要である。好ましくは、AlNの抑制を狙うため、700℃までの平均冷速を50℃/s以上とすることが望ましい。巻き取り温度については、高温にすれば再結晶や粒成長が促進され、加工性の向上が望まれるが、AlNの析出を促進するため570℃以下とする。
【0020】
酸洗後の冷間圧延は、圧下率が低いと鋼板の形状矯正が難しくなるため50%以上とする。また、98%を超える圧下率で圧延すると、局部延性の劣化が発生することがあるため望ましくない。さらに、加工性を良くするために高r値にしたいため、好ましくは70%以上95%以下の範囲が良い。
【0021】
連続焼鈍温度は低すぎると未再結晶の状態になり硬質化し、逆に高すぎると粒が粗大化するという問題点があるので、600℃以上オーステナイト温度域以下とする。その後二次冷間圧延を行うが、DR8〜DR10の調質度を得るために、適切な圧下率をとれば良い。ただし、加工性の悪化を防ぐため圧延率は40%以下とする。
なお、本鋼板のめっきは通常のクロムめっき、錫めっき、ニッケルめっき等のいずれにも適用できる。また、鋼板上やめっき鋼板上にフィルムラミネートを行う用途にも適用できる。
【0022】
【実施例】
次に本発明を実施例に基づいて説明する。
表1に示す成分の鋼を溶製し、常法に従い連続鋳造でスラブとした。符号A〜Rが本発明に従った成分の鋼で、A〜Nは式(1)、式(2)とも満たしており、O〜Rは式(1)のみ満たすものである。符号Sの鋼はC添加量、T、U、Vの鋼は式(1)を満たしていない。これらの鋼を加熱炉中で1150℃以上の温度で加熱し、熱間圧延にて板厚2.2〜3.2mmの熱延鋼板を得た。熱延条件については表2に示す。これに続いて酸洗後、85%〜95%の冷間圧延を行い、表2に示す焼鈍温度にて再結晶焼鈍、調質圧延を行った。このとき、B3は捲取温度と調質圧延が高く本発明の範囲外、C3は調質圧延が本発明の範囲外、D3は冷却速度及び調質圧延が本発明の範囲外、F3は焼鈍温度が本発明の範囲外である。
【0023】
このようにして得られた鋼板について、硬度を測定(HR 30T)した。また、r値、Δr値の測定を簡易測定法である" モジュールr”(StolleCorp. 社製、Module-r Drawability Tester 使用)により行った。結果を表2、図1、図2に示す。図から明らかなように本発明鋼は、比較鋼に比べてr値、Δr値とも良い特性を示しており、中でも、式(2)も満たすものは更にr値が高くなっていることがわかる。
【0024】
【表1】

Figure 0004283574
【0025】
【表2】
Figure 0004283574
【0026】
【発明の効果】
本発明によれば、十分な製缶性を有しかつ、十分な強度を確保した容器用鋼板を製造することが出来る。本発明の方法による鋼板は、従来の鋼板と比較してr値が高くかつ面内異方性も低いため、深絞り性や加工性が良く成形時のトラブルが減り歩留も上がるという利点がある。
【図面の簡単な説明】
【図1】 硬さに対するr値に及ぼす本発明鋼の効果を示すグラフである。
【図2】 硬さに対するΔr値に及ぼす本発明鋼の効果を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength steel sheet for containers excellent in canability, which is an original sheet for steel sheets for containers such as tin-plated steel sheets, chrome-plated steel sheets, and film-laminated steel sheets used in cans and beverage cans, and a method for producing the same. is there.
[0002]
[Prior art]
[Patent Document 1]
Japanese Patent Laid-Open No. 2-118025 [Patent Document 2]
Japanese Patent Laid-Open No. 9-157757
Since the steel plate for two-piece containers is subjected to drawing, the r value has to be large, and soft tin plates of T-1, T-2, and T-3 finished by box annealing are often used. However, such a steel sheet has drawbacks such as a large Δr value, and has a problem that the cost of the steel sheet increases due to low production efficiency. On the other hand, Japanese Patent Laid-Open No. 2-11825 proposes a technique that uses continuous annealing using an ultra-low carbon steel plate, has high production efficiency, and lowers Δr while securing the conventional r value. Yes. However, since a large amount of N is added to ensure the strength, there is a problem that elongation is low, and it is difficult to respond to a request for a high r value with high N addition. On the other hand, Japanese Patent Application Laid-Open No. 9-157757 proposes a technique for a low-N ultra-low carbon steel sheet. However, since N age hardening cannot be used, high pressure is applied by secondary cold rolling at the expense of workability. A high strength steel sheet like DR-9 cannot be produced unless the following is performed.
[0004]
[Problems to be solved by the invention]
It is an object of the present invention to achieve a steel sheet having a high strength equivalent to DR-8 to DR-10 and a method for producing the same while ensuring age hardening of N with low N addition and ensuring high canability. To do.
[0005]
[Means for Solving the Problems]
As a result of intensive investigations on the chemical components, especially the interaction between N and Mn, in order to achieve the above-mentioned objective, by finding the action of Mn on N, the addition of low N in the relational expression of N, Al and Mn However, the strengthening by age-hardening of N was utilized to develop a high-strength steel sheet for containers with excellent canability.
[0006]
The summary is as follows.
(1) In mass%,
C: 0.006% or less,
Si: 0.04% or less,
Mn: more than 0.50%, 0.60% or less,
P: 0.02% or less S: 0.02% or less Al: more than 0.005%, 0.1% or less,
N: more than 0.002%, 0.01% or less,
Further,
N × exp (−13 × Al / Mn) ≧ 0.001 (1)
C + 0.02 × Mn 2 −0.0048 × Mn−0.01 × P ≦ 0.0077 (2)
A high age-hardening vessel steel plate excellent in canability, characterized by satisfying the following formula, with the balance being iron and inevitable impurities and having an H R 30T hardness of 72.7 or more .
(2) A steel plate for a high-age-hardening container excellent in canability, further containing Ca: 0.005% or less in the steel component described in (1) .
(3) A steel plate for a high-age hardening container excellent in canability as described in (1) or (2), wherein the steel plate is surface-treated .
(4) The steel plate for high age-hardening containers having excellent canability as described in (3), wherein the surface treatment is chromium plating, tin plating or nickel plating .
(5) A steel plate for a high-age-hardening container excellent in can-making properties, wherein the steel plate described in (3) or (4) is further subjected to film lamination .
(6) The steel described in (1) or (2) is hot-rolled at a finishing temperature of 850 ° C. or higher, and is cooled at an average cooling rate of 15 ° C./s or higher up to the milling temperature. After the usual pickling, and after the normal pickling, after the primary cold rolling with a reduction ratio of 50 to 98%, soaking at a temperature of 600 ° C. or more and austenitizing temperature or less in a continuous annealing step, recrystallization annealing is performed, Subsequently, the manufacturing method of the steel plate for high age hardening containers excellent in the can-making nature which gave the secondary cold rolling of 20-40% of rolling reduction .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is a steel plate for containers in which N, Al, and Mn are adjusted to steel containing 0.006% or less of C, and a small amount of Si, P, and S are added, and Ca is added as necessary. And in order to ensure can-making property, it is made low N, solid solution N is ensured by controlling precipitation of AlN, and strength is increased by using this age hardening. At this time, N, Al, and Mn are added for the purpose of controlling the precipitation of AlN, and details are not known, but since Mn is an austenite-generating element, it contributes to the suppression of AlN precipitation by suppressing ferrite transformation. thinking. Although the present invention is based on the above-mentioned outline, the individual components of the present invention will be described in detail below.
[0008]
The reasons for limiting the components of the present invention are described below.
C is an element having a great influence on deep drawability and ductility. If it exceeds 0.006%, the r value and ductility are significantly reduced. Preferably, C of more than 0.004 and 0.006% or less is difficult to adjust the composition in steelmaking, and leads to an increase in production cost, so 0.004% or less is desirable, and if it is less than 0.001%, ridging is generated. Addition beyond this is desirable.
[0009]
Si is a substitutional solid solution strengthening element that hardens the material in addition to deteriorating the corrosion resistance of the tinplate, and is an undesirable element for improving ductility and workability. Therefore, the upper limit is 0.04%.
[0010]
Mn is an important element in the present invention. In addition to increasing the base material material by solid solution strengthening, the formation of AlN is suppressed by suppressing transformation during hot rolling cooling, and solid solution N can be secured despite low N. To obtain this effect, it is necessary to add more than 0.5%. Further, if it exceeds 0.6%, the workability may be deteriorated, so it is desirable to set the upper limit to 0.6%.
[0011]
P is an element that increases the strength of the steel sheet, but is reduced as much as possible because it impairs formability and corrosion resistance. If it is 0.02% or less, there is no significant deterioration, so 0.02% or less.
[0012]
S is an element that is preferably not present in steel, and in order to improve workability, in particular, a lower value is desirable and the upper limit is set to 0.02%.
[0013]
Al is added as a deoxidizer to improve the cleanliness of the steel. In order to improve the cleanliness, it is necessary to add more than 0.005%. However, addition exceeding 0.1% coarsens AlN, reduces N, and age hardening of N cannot be obtained, so it is made 0.1% or less.
[0014]
N is an essential element for strengthening the material by age hardening, and in order to obtain this effect, addition of over 0.002% is necessary. However, a small amount of addition is better in order to ensure workability, and if it exceeds 0.01%, the workability is significantly deteriorated, so 0.01% is made the upper limit.
[0015]
Ca is effective in controlling the form of inclusions, and can improve the workability of thin steel plates and low-temperature brittleness. However, if it exists excessively, the hot workability deteriorates and is not desirable, so the content is made 0.005% or less.
[0016]
In order to secure solid solution N at low N, it is important to control the precipitation of AlN. As a result of intensive studies, the inventors have found that Mn, which suppresses ferrite transformation with an austenite-generating element, has a hardening in suppressing precipitation in addition to the relationship between N and Al, and has led to the following relational expression. If the right side of the relational expression is less than 0.001, the age hardening amount of N is insufficient, so that a large amount of temper rolling must be performed in order to ensure a predetermined hardness, leading to a decrease in formability.
N × exp (−13 × Al / Mn) ≧ 0.001 (1)
[0017]
Further, in order to obtain processability, an r value of a certain value or more is necessary, and in order to further improve the earring property, it is important to bring the Δr value close to 0, but this requires the amount of C to be suppressed. . In addition, control of the crystal grain size leads to improved workability, but an effect can be obtained by optimizing the addition amount of Mn and P. Based on the above, the range is specified by the following formula (2).
C + 0.02 × Mn 2 −0.0048 × Mn−0.01 × P ≦ 0.0077 (2)
[0018]
Inevitable elements include, for example, Cu: 0.2% or less, Ni: 0.15% or less, Cr: 0.1% or less, Mo: 0.05% or less, Co: 0.02% or less, Zn: 0 0.02% or less, Sn: 0.02% or less, Na: 0.02% or less, and B: 0.0005% or less do not depart from the present invention.
[0019]
Next, a manufacturing method will be described.
As for the hot rolling finishing temperature, it is necessary to carry out hot rolling at 850 ° C. or higher in order to prevent the strain from being excessively applied to the ferrite grains and lowering the workability. Moreover, since the recrystallized grain size after annealing becomes larger than necessary even if the temperature is too high, 960 ° C. or lower is desirable. In order to suppress the formation of AlN, it is necessary to set the average cooling from hot-rolling finish to the scraping temperature to 15 ° C./s or more. Preferably, the average cooling rate up to 700 ° C. is 50 ° C./s or more in order to suppress AlN. The coiling temperature is set to 570 ° C. or lower in order to promote the precipitation of AlN, although recrystallization and grain growth are promoted and workability is improved if the coiling temperature is increased.
[0020]
Cold rolling after pickling is made 50% or more because the shape reduction of the steel sheet becomes difficult if the rolling reduction is low. Further, rolling at a rolling reduction exceeding 98% is not desirable because local ductility may be deteriorated. Further, in order to improve the workability, a high r value is desired, and the range of 70% to 95% is preferable.
[0021]
If the continuous annealing temperature is too low, it becomes a non-recrystallized state and hardens, and conversely if too high, the grains become coarse, so the temperature is set to 600 ° C. or more and the austenite temperature range or less. After that, secondary cold rolling is performed, and an appropriate rolling reduction may be taken in order to obtain a refining degree of DR8 to DR10. However, the rolling rate is 40% or less in order to prevent deterioration of workability.
In addition, the plating of this steel plate can be applied to any of ordinary chromium plating, tin plating, nickel plating and the like. Moreover, it is applicable also to the use which performs film lamination on a steel plate or a plated steel plate.
[0022]
【Example】
Next, this invention is demonstrated based on an Example.
Steels having the components shown in Table 1 were melted and slabs were obtained by continuous casting according to a conventional method. Reference signs A to R are steels of the components according to the present invention, A to N satisfy both formula (1) and formula (2), and O to R satisfy only formula (1). The steel of the code | symbol S does not satisfy | fill Formula (1), the steel of C addition amount, T, U, and V. These steels were heated in a heating furnace at a temperature of 1150 ° C. or higher, and hot rolled steel sheets having a thickness of 2.2 to 3.2 mm were obtained by hot rolling. Table 2 shows the hot rolling conditions. Subsequently, after pickling, cold rolling of 85% to 95% was performed, and recrystallization annealing and temper rolling were performed at the annealing temperatures shown in Table 2. At this time, B3 has a high milling temperature and temper rolling, which is outside the scope of the present invention, C3 is temper rolling outside the scope of the present invention, D3 is a cooling rate and temper rolling is outside the scope of the present invention, and F3 is annealed. The temperature is outside the scope of the present invention.
[0023]
The steel sheet thus obtained was measured for hardness (H R 30T). Further, the r value and Δr value were measured by “Module r” (Stolle Corp., using Module-r Drawability Tester), which is a simple measurement method. The results are shown in Table 2, FIG. 1 and FIG. As is clear from the figure, the steel of the present invention shows good characteristics for both the r value and the Δr value compared to the comparative steel, and among them, those satisfying the formula (2) have a higher r value. .
[0024]
[Table 1]
Figure 0004283574
[0025]
[Table 2]
Figure 0004283574
[0026]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it can manufacture the steel plate for containers which has sufficient can-making property and ensured sufficient intensity | strength. The steel plate according to the method of the present invention has an advantage that the r value is high and the in-plane anisotropy is low as compared with the conventional steel plate, so that deep drawability and workability are good and troubles during forming are reduced and the yield is increased. is there.
[Brief description of the drawings]
FIG. 1 is a graph showing the effect of the steel of the present invention on the r value with respect to hardness.
FIG. 2 is a graph showing the effect of the steel of the present invention on the Δr value with respect to hardness.

Claims (6)

質量%で、
C :0.006%以下、
Si:0.04%以下、
Mn:0.50%超、0.60%以下、
P :0.02%以下
S :0.02%以下
Al:0.005%超、0.1%以下、
N :0.002%超、0.01%以下、
を含有し、更に、
N×exp(−13×Al/Mn)≧0.001 (1)
C+0.02×Mn 2 −0.0048×Mn−0.01×P≦0.0077 (2)
の式を満たし、かつ残部が鉄および不可避的不純物からなり、H R 30T硬度が72.7以上であることを特徴とする製缶性に優れた高時効硬化容器用鋼板。
% By mass
C: 0.006% or less,
Si: 0.04% or less,
Mn: more than 0.50%, 0.60% or less,
P: 0.02% or less S: 0.02% or less Al: more than 0.005%, 0.1% or less,
N: more than 0.002%, 0.01% or less,
Further,
N × exp (−13 × Al / Mn) ≧ 0.001 (1)
C + 0.02 × Mn 2 −0.0048 × Mn−0.01 × P ≦ 0.0077 (2)
A high age-hardening vessel steel plate excellent in canability, characterized by satisfying the following formula, with the balance being iron and inevitable impurities and having an H R 30T hardness of 72.7 or more .
請求項1に記した鋼の成分において、更にCa:0.005%以下を含有している製缶性に優れた高時効硬化容器用鋼板。 A steel plate for a high-age-hardening container excellent in canability, further containing Ca: 0.005% or less in the steel components described in claim 1 . 鋼板に表面処理を施した請求項1又は2に記載の製缶性に優れた高時効硬化容器用鋼板。 The steel plate for high age-hardening containers excellent in can-making property according to claim 1 or 2, wherein the steel plate is surface-treated . 表面処理がクロムめっきまたは錫メッキまたはニッケルめっきである請求項3に記載の製缶性に優れた高時効硬化容器用鋼板。 The steel plate for high age-hardening containers with excellent canability as claimed in claim 3, wherein the surface treatment is chromium plating, tin plating or nickel plating . 請求項3又は4に記した鋼板に、更にフィルムラミネート処理をする製缶性に優れた高時効硬化容器用鋼板。 A steel plate for a high-age-hardening container excellent in can-making properties, wherein the steel plate described in claim 3 or 4 is further subjected to film lamination . 請求項1又は2に記した鋼に、850℃以上の仕上温度で熱間圧延を施し、捲取温度までの平均冷速を15℃/s以上にて冷却し、570℃以下の温度で捲取り、次いで通常の酸洗の後、圧下率を50〜98%として一次冷間圧延後、連続焼鈍工程で600℃以上オーステナイト化温度以下に均熱して再結晶焼鈍を施し、次いで圧下率20〜40%の二次冷間圧延を施すことを特徴とする製缶性に優れた高時効硬化容器用鋼板の製造方法 The steel described in claim 1 or 2 is hot-rolled at a finishing temperature of 850 ° C. or higher, cooled at an average cooling rate of 15 ° C./s or higher up to the cutting temperature, and then heated at a temperature of 570 ° C. or lower. Then, after normal pickling, after the primary cold rolling with a reduction rate of 50 to 98%, soaking in a continuous annealing step to 600 ° C. or more and austenitizing temperature or less, and then performing recrystallization annealing, then a reduction rate of 20 to A method for producing a steel plate for a high-age-hardening container excellent in can-making properties, characterized by subjecting to 40% secondary cold rolling .
JP2003079541A 2003-03-24 2003-03-24 Steel plate for high age-hardening containers with excellent canability and method for producing the same Expired - Fee Related JP4283574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003079541A JP4283574B2 (en) 2003-03-24 2003-03-24 Steel plate for high age-hardening containers with excellent canability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003079541A JP4283574B2 (en) 2003-03-24 2003-03-24 Steel plate for high age-hardening containers with excellent canability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004285418A JP2004285418A (en) 2004-10-14
JP4283574B2 true JP4283574B2 (en) 2009-06-24

Family

ID=33293629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003079541A Expired - Fee Related JP4283574B2 (en) 2003-03-24 2003-03-24 Steel plate for high age-hardening containers with excellent canability and method for producing the same

Country Status (1)

Country Link
JP (1) JP4283574B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5076544B2 (en) * 2007-02-21 2012-11-21 Jfeスチール株式会社 Manufacturing method of steel sheet for cans

Also Published As

Publication number Publication date
JP2004285418A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
EP3372703B1 (en) Ultra-high strength steel plate having excellent formability and hole-expandability, and method for manufacturing same
US7959747B2 (en) Method of making cold rolled dual phase steel sheet
TWI473887B (en) High strength cold rolled steel sheet having excellent deep drawing property and bake hardening property and a method for manufacturing the same
JP5043248B1 (en) High-strength bake-hardening cold-rolled steel sheet and manufacturing method thereof
JP3424619B2 (en) High tensile cold rolled steel sheet and method for producing the same
JP5569657B2 (en) Steel sheet with excellent aging resistance and method for producing the same
US20070181232A1 (en) Cold rolled steel sheet and hot dipped steel sheet with superior strength and bake hardenability and method for manufacturing the steel sheets
WO2021143661A1 (en) High corrosion-resistance strip steel and manufacturing method therefor
JP2010133028A (en) Method for manufacturing high-strength low-specific gravity steel sheet excellent in ductility
JP2521553B2 (en) Method for producing cold-rolled steel sheet for deep drawing having bake hardenability
JP4471688B2 (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
JP6198011B2 (en) Manufacturing method of steel plate for hard container
JP4779737B2 (en) Manufacturing method of steel sheet for ultra thin can and steel sheet for ultra thin can
TWI429757B (en) Cold rolled steel sheet and method for manufacturing the same
JPWO2011004554A1 (en) Cold-rolled steel sheet manufacturing method and cold-rolled steel sheet excellent in press formability
JP2009174055A (en) Mother sheet for high strength extra-thin cold rolled steel sheet, and method for producing the same
JP4677914B2 (en) Steel plate for soft can and method for producing the same
JP2009102673A (en) High-tension cold-rolled steel sheet, high tension galvanized steel sheet, and producing method therefor
JP4283574B2 (en) Steel plate for high age-hardening containers with excellent canability and method for producing the same
JPH06102810B2 (en) Method for producing galvannealed steel sheet for deep drawing with excellent secondary workability
JP2009179832A (en) High-strength cold-rolled steel sheet having excellent square tube drawability and shape fixability, method for producing the same, and automobile component having excellent product shape
JP4094498B2 (en) Deep drawing high strength cold-rolled steel sheet and method for producing the same
JPH08155565A (en) Production of light weight can excellent in bottom pressure withstanding strength
JPH08143969A (en) Production of cold rolled steel sheet excellent in workability
JPH073395A (en) Thin steel sheet excellent in deep drawability and weldability and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090319

R151 Written notification of patent or utility model registration

Ref document number: 4283574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees