JPS6136595B2 - - Google Patents

Info

Publication number
JPS6136595B2
JPS6136595B2 JP57208601A JP20860182A JPS6136595B2 JP S6136595 B2 JPS6136595 B2 JP S6136595B2 JP 57208601 A JP57208601 A JP 57208601A JP 20860182 A JP20860182 A JP 20860182A JP S6136595 B2 JPS6136595 B2 JP S6136595B2
Authority
JP
Japan
Prior art keywords
tin
plated
corrosion
alloy
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57208601A
Other languages
Japanese (ja)
Other versions
JPS59100285A (en
Inventor
Tomihiro Hara
Yoshinori Yomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP20860182A priority Critical patent/JPS59100285A/en
Publication of JPS59100285A publication Critical patent/JPS59100285A/en
Publication of JPS6136595B2 publication Critical patent/JPS6136595B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は溶接缶用表面処理鋼板の創案に係り、
無研磨で溶接することができ、しかも塗装後の耐
食性はクロムタイプのテインフリースチール
(TFS)と同等以上であり、塗料密着性に優れた
鋼板を提供しようとするものである。 内面塗装缶が普及するに伴い、これらの缶体を
得るための缶用鋼板としてのぶりきの錫量は低下
せしめられ、又ぶりきに代つて塗料密着性に優れ
たクロムタイプのTFSが普及されている。一方
製缶技術として新たに溶接法が開発され、この溶
接に適した缶素材が再検討されている。即ちこの
溶接缶素材として要求される特性の1つとして無
研磨で溶接可能なことが挙げられるが、現行の銅
ワイヤ電極を用いた溶接製缶法においては、クロ
ムタイプのTFSを無研磨で溶接することは非常
に困難である。そこでこの欠点を除く素材とし
て、ニツケルめつき鋼板、極薄錫めつき鋼板に金
属クロムを含むクロメート処理を施した素材など
が開発されているが、溶接性と塗装後耐食性の両
者を有効に兼備した#25ぶりきに代る素材として
はその性能がなお不充分である。しかもこの#25
ぶりきは塗料密着性において相当に劣つている。 本発明は上記したような実情に鑑み検討を重ね
て創案されたものであつて、鋼板上にSn量とし
て片面当り0.15〜1.2g/m2の鉄−錫合金層を有
し、しかも該合金層上に被覆率2〜90%の錫を非
連続的且つ粒子状に鍍金した溶接缶用処理鋼板を
提案するものである。 即ちこのような本発明について更に説明する
と、本発明者等は先ず人体に対する安全性を考慮
し、めつきする金属を錫に限定して研究を行つた
が、めつきする錫量を少くした場合には次の
のような性質が生ずる。 錫が優先溶解した場合、錫量が少いため下地
の鋼或いは合金層が露出し易く、長期間に亘る
錫の犠性溶解により鉄溶出を抑えることは構造
的に困難である。 純錫量が0.1〜0.6g/m2程度の少量残つてい
る材料は純錫の優先溶解により素材と塗膜との
接触が充分でなくなり、塗装後耐食性に悪影響
を及ぼす。 従つてめつきする錫量が少い場合、純錫量の極
めて少いか、或いはない材料であることが必要で
あり、又鋼地に対する被覆状態が良好であること
が不可欠である。そこで本発明ではこれらの関係
を考慮してめつき後加熱により錫をすべて鉄−錫
合金化することを材料の基本とした。 上記した鉄−錫合金層は合金化温度によりその
〓〓〓〓〓
組成が異る。即ち400℃以下の場合、Fen2である
ことがX線回折法によつて確められるが500℃以
上ではFeSnとなる。然して400〜500℃では両者
が共に存在する場合が多く、これらの関係につい
て合金錫量が0.66g/m2のときの各種合金化温度
と、その保持時間により形成される合金組成状態
は次の第1表に示す通りである。
The present invention relates to the invention of a surface-treated steel sheet for welded cans,
The aim is to provide a steel plate that can be welded without polishing, has corrosion resistance after painting that is equal to or better than chrome-type stain-free steel (TFS), and has excellent paint adhesion. With the spread of cans with internal coatings, the amount of tin used in the tin plate used to obtain these can bodies was reduced, and TFS, a chrome type with excellent paint adhesion, became popular in place of tin plate. has been done. On the other hand, a new welding method has been developed as a can manufacturing technology, and can materials suitable for this welding are being reconsidered. In other words, one of the characteristics required for this welding can material is that it can be welded without polishing, but in the current welding can making method using copper wire electrodes, chrome type TFS can be welded without polishing. It is very difficult to do so. Therefore, materials such as nickel-plated steel sheets and ultra-thin tin-plated steel sheets treated with chromate containing metallic chromium have been developed as materials that eliminate this drawback, but these materials effectively combine both weldability and post-painting corrosion resistance. Its performance is still insufficient as a material to replace #25 tin. And this #25
Tinplate has considerably poor paint adhesion. The present invention has been devised after repeated studies in view of the above-mentioned circumstances . We propose a treated steel sheet for welded cans in which the layer is plated discontinuously and in particulate form with tin at a coverage of 2 to 90%. That is, to further explain the present invention, the present inventors first considered safety for the human body and conducted research by limiting the metal to be plated to tin, but when the amount of tin to be plated was reduced. The following properties arise. When tin preferentially dissolves, the underlying steel or alloy layer is likely to be exposed due to the small amount of tin, and it is structurally difficult to suppress iron elution due to sacrificial dissolution of tin over a long period of time. If a small amount of pure tin remains in the material, such as 0.1 to 0.6 g/m 2 , preferential dissolution of pure tin will result in insufficient contact between the material and the coating film, which will have an adverse effect on the corrosion resistance after coating. Therefore, when the amount of tin to be plated is small, it is necessary to use a material with an extremely small amount of pure tin or no pure tin, and it is essential that the coating state on the steel substrate is good. Therefore, in the present invention, taking these relationships into consideration, the material is based on the fact that all tin is made into an iron-tin alloy by heating after plating. The above-mentioned iron-tin alloy layer changes depending on the alloying temperature.
The composition is different. That is, when the temperature is below 400°C, it is confirmed by X-ray diffraction that it is Fen 2 , but when it is above 500°C, it becomes FeSn. However, at 400-500℃, both often exist together, and regarding these relationships, the alloy composition state formed by various alloying temperatures and holding times when the alloy tin amount is 0.66 g/ m2 is as follows. As shown in Table 1.

【表】 然して本発明者等は、錫を片面当り、0.15〜
1.2g/m2、好ましくは0.2〜0.9g/m2めつきし、こ
のめつきされた錫を加熱することによつて総べて
合金化させ、その上層を不連続に被覆するように
錫を電着させ、その後に従来から知られているよ
うな化成処理を行うことにより内面塗装を前提と
した溶接缶に要求される溶接性および塗装後耐食
性を満足し、しかも塗料密着性に優れた表面処理
鋼板を得たものであるが、前記合金化層における
錫量が0.15g/m2未満では下地の鉄の露出が多く
なり、合金の被覆効果が得られないことから有効
なFe溶出抑制が得られない。又1.2g/m2以上と
なると経済的でないと共に折曲げその他の加工に
当つて合金層にクラツクが発生し易いこととなつ
てやはり好ましい被覆効果が得られない。なお合
金組成については、FeSn2でも充分な効果を有す
るが、FeSnとすることにより塗料密着性が向上
し、耐食性はより優れたものとなるものであつ
て、このとは後述する製造例についての試験結果
に示す通りである。 又本発明では上記のような合金層上に錫を不連
続且つ粒子状として電着させるもので、それによ
つて塗膜下腐食を大幅に抑制し、しかも塗料密着
性を向上する。この合金層上の錫被覆率について
は2〜90%であつて、2%未満では塗膜下腐食性
能が不充分であり、一方90%を超えると塗料密着
性が劣化する。形成された少量の電着錫について
はその1例を添付図面に倍率20000倍の走査型電
子顕微鏡写真を以て示す通りであつて、この写真
で白い粒子状に点在しているものが錫粒子であ
り、何れにしても不連続的粒子状として形成され
る。上記のような錫被覆率で粒子状に形成された
ものはスードロニツク溶接機などを用いて溶接缶
を製造する場合に実操業上無研磨で好ましい溶接
が可能であることが確認されている。前記した錫
粒子の大きさについては夫々のめつき条件によつ
てそれなりに変動する。 前記した合金層上の錫被覆率と塗膜下腐食およ
び塗料密着性(Tピール強度)の関係は第2図に
要約して示す通りであつて、被覆率が2〜90%と
することにより塗膜下腐食を良好に保持せしめ、
Tピール強度も1.0Kg/5mm以上を確保し得る。 本発明のよるものの具体的な製造例について適
宜その比較例と共に説明すると以下の如くであ
る。 製造例 1 常法によつて連続焼鈍し且つ調質圧延された板
厚0.21mmの焼鈍材を電解脱脂、電解酸洗したの
ち、錫を片面当り0.51〜0.55g/m2の範囲内にお
いてめつきし、このものを最高温度350〜400℃の
還元雰囲気で加熱し、錫のすべてを鉄−錫合金化
した。又このものに対し錫を電流密度が1A/dm2
で、0.5秒間めつきし、次いで重クロム酸ナトリ
ウム20g/の水溶液中で5A/dm2の電流密度に
よる1秒間の陰極処理をなし、クロム水和酸化物
を電析させた。 なお比較例として上記同様に鉄−錫合金化をな
し、しかもその後の錫めつき工程を行わないもの
を準備した。 即ちこのような製造例およびその比較例として
具体的に得られた表面処理板の錫めつき量および
合金化温度と錫めつきの如何を要約して示すと、
次の第2表の如くである。 〓〓〓〓〓
[Table] However, the inventors of the present invention added tin to 0.15 to 0.15 per side.
1.2 g/m 2 , preferably 0.2 to 0.9 g/m 2 , and the plated tin is alloyed by heating, and the upper layer is coated discontinuously with tin. By electrodepositing and then performing a conventional chemical conversion treatment, it satisfies the weldability and post-painting corrosion resistance required for welded cans intended for internal painting, and also has excellent paint adhesion. A surface-treated steel sheet is obtained, but if the amount of tin in the alloyed layer is less than 0.15 g/m 2 , the underlying iron will be exposed more and the alloy coating effect will not be obtained, so it is difficult to effectively suppress Fe elution. is not obtained. Moreover, if it exceeds 1.2 g/m 2 , it is not economical and cracks are likely to occur in the alloy layer during bending or other processing, so that a desirable coating effect cannot be obtained. Regarding the alloy composition, although FeSn 2 has a sufficient effect, using FeSn improves paint adhesion and provides better corrosion resistance. As shown in the test results. Furthermore, in the present invention, tin is electrodeposited discontinuously and in the form of particles on the alloy layer as described above, thereby significantly suppressing corrosion under the paint film and improving paint adhesion. The tin coverage on this alloy layer is from 2 to 90%; if it is less than 2%, the under-coating corrosion performance will be insufficient, while if it exceeds 90%, the paint adhesion will deteriorate. An example of the small amount of electrodeposited tin that is formed is shown in the accompanying drawing, which is a scanning electron micrograph at a magnification of 20,000 times. In this photograph, the scattered white particles are tin particles. In any case, it is formed as discontinuous particles. It has been confirmed that particles formed in the form of tin with the above-mentioned tin coverage can be welded favorably without polishing in actual operation when manufacturing welded cans using a Sudronik welding machine or the like. The size of the tin particles described above varies depending on the respective plating conditions. The relationship between the tin coverage on the alloy layer mentioned above, corrosion under the paint film, and paint adhesion (T-peel strength) is summarized in Figure 2. Good retention of under-paint corrosion,
T-peel strength of 1.0Kg/5mm or more can also be ensured. Specific manufacturing examples according to the present invention will be described below along with comparative examples thereof as appropriate. Production Example 1 An annealed material with a thickness of 0.21 mm that was continuously annealed and temper rolled by a conventional method was electrolytically degreased and electrolytically pickled, and then tin was added within the range of 0.51 to 0.55 g/m 2 per side. This material was then heated in a reducing atmosphere at a maximum temperature of 350 to 400°C to form all the tin into an iron-tin alloy. Also, for this case, the current density of tin is 1A/dm 2
The plate was plated for 0.5 seconds, and then cathodically treated for 1 second at a current density of 5 A/dm 2 in an aqueous solution of 20 g of sodium dichromate to deposit hydrated chromium oxide. As a comparative example, a sample was prepared in which iron-tin alloying was performed in the same manner as above, but the subsequent tin plating process was not performed. That is, the tin plating amount, alloying temperature, and tin plating of the surface-treated plates specifically obtained as such production examples and comparative examples are summarized as follows:
As shown in Table 2 below. 〓〓〓〓〓

【表】 製造例 2 製造例1におけると同じ焼鈍材に電解脱脂、電
解酸洗してから錫を片面当り0.50〜0.57g/m2
つきし、次いで最高温度500〜600℃の還元雰囲気
で加熱し、錫の全量を鉄−錫合金化させた。この
ものはその後伸長2.0%で調質圧延をなしてから
錫を電流密度1A/dm2で0.5秒間めつきし、次に
クロム酸ナトリウム20g/の水溶液中で5A/d
m2で1秒間の陰極処理をなし、クロム水和酸化物
を電析させた。一方比較例として、上記合金化さ
せた後の錫めつき工程を除いたものを準備した。 具体的に得られた鋼板の若干例を製造例1の場
合と同じに示すと次の第3表の通りである。
[Table] Production Example 2 The same annealed material as in Production Example 1 was electrolytically degreased and electrolytically pickled, then plated with tin at 0.50 to 0.57 g/ m2 per side, and then plated in a reducing atmosphere at a maximum temperature of 500 to 600℃. The entire amount of tin was heated to form an iron-tin alloy. This material was then temper-rolled with an elongation of 2.0%, plated with tin for 0.5 seconds at a current density of 1 A/ dm2 , and then plated with tin at a current density of 1 A/dm2 for 0.5 seconds, and then in an aqueous solution of 20 g/d of sodium chromate at 5 A/d.
A cathodic treatment was performed at m 2 for 1 second to electrodeposit the hydrated chromium oxide. On the other hand, as a comparative example, one was prepared in which the tin plating step after alloying was removed. Some examples of concretely obtained steel plates are shown in Table 3 below, as in Production Example 1.

【表】 比較製造例 1 製造例1、2におけると同じに焼鈍材を電解脱
脂、電解酸洗したのち、錫を0.54g/m2(片面当
り)めつきし、その後重クロム酸ナトリウム20
g/水溶液中で5A/dm2、1秒間の陰極処理を
なし、クロム水和酸化物を電析させ、製造No.11
の鋼板を得た。 比較製造例 2 製造例1、2におけると同じに焼鈍材を電解脱
脂、電解酸洗したのち、錫を片面当り0.30〜0.55
g/m2めつきし(錫めつき)このものを最高温
度350〜600℃の還元雰囲気で加熱し、錫のすべて
を鉄−錫合金化した。又、このものに対し錫を
0.15〜0.40g/m2再めつきし(錫めつき)次い
で重クロム酸ナトリウム20g/の水溶液中で5
A/dm2の電流密度による1秒間の陰極処理をな
し、クロム水和酸化物を電析させて精造No.12〜
15を得た。 錫めつき量と合金化温度は次の第4表の如くで
ある。
[Table] Comparative manufacturing example 1 After electrolytically degreasing and electrolytically pickling the annealed material in the same manner as in manufacturing examples 1 and 2, it was plated with tin at 0.54 g/m 2 (per side), and then sodium dichromate 20
Manufactured No. 11 by cathodic treatment at 5 A/dm 2 for 1 second in an aqueous solution to electrodeposit chromium hydrated oxide.
steel plate was obtained. Comparative Production Example 2 After electrolytically degreasing and electrolytically pickling the annealed material in the same manner as in Production Examples 1 and 2, tin was added at a concentration of 0.30 to 0.55 per side.
g/m 2 Plating (Tin plating) This product was heated in a reducing atmosphere at a maximum temperature of 350 to 600°C to convert all of the tin into an iron-tin alloy. Also, tin for this thing.
0.15-0.40g/ m2 Re-plated (tinning) and then 5% in an aqueous solution of 20g/m of sodium dichromate
Refined No. 12~ by cathodic treatment with a current density of A/dm 2 for 1 second to electrodeposit chromium hydrated oxide.
Got 15. The tin plating amount and alloying temperature are as shown in Table 4 below.

【表】 製造例 3 板厚0.22mmの未焼鈍材を電解脱脂後、錫を片面
当り0.55g/m2めつきし、このものを最高温度600
℃の還元雰囲気で加熱し、錫のすべてを鉄−錫合
金化した。(焼鈍を兼用)又、このものを調質圧
延し、電解脱脂、電解酸洗したのち、錫を電流密
度が0.5A/dm2で0.5秒間めつきし、次いで重クロ
ム酸ナトリウム20g/の水溶液中で4A/dm2
電流密度による1秒間の陰極処理をなし、クロム
水和酸化物を電析させて製造No.16を得た。 なお、比較例として上記同様に鉄−錫合金化を
なし、しかもその後の錫めつき工程を行なわない
ものを製造No.17として準備した。これらのもの
を錫めつき量、合金化温度と共に示すと次の第5
表の通りである。 〓〓〓〓〓
[Table] Manufacturing example 3 After electrolytically degreasing an unannealed material with a thickness of 0.22 mm, it was plated with tin at a rate of 0.55 g/ m2 per side, and this material was heated to a maximum temperature of 600
It was heated in a reducing atmosphere at 0.degree. C. to convert all the tin into an iron-tin alloy. (Also used for annealing) After temper rolling, electrolytic degreasing and electrolytic pickling, tin was plated at a current density of 0.5 A/dm 2 for 0.5 seconds, and then an aqueous solution of 20 g of sodium dichromate was applied. A cathodic treatment was carried out for 1 second at a current density of 4 A/dm 2 to electrodeposit chromium hydrated oxide to obtain Production No. 16. In addition, as a comparative example, a product was prepared as Production No. 17, which was made into an iron-tin alloy in the same manner as above, but without the subsequent tin plating step. If these are shown along with the amount of tin plating and the alloying temperature, the following 5th
As shown in the table. 〓〓〓〓〓

【表】 比較製造例 3 製造例3におけると同じに調質圧延まで行なつ
たものに、電解脱脂、電解酸洗を行なつたのち、
錫を片面当り0.40g/m2再めつきし、(錫めつき
)次いで重クロム酸ナトリウム20g/の水溶
液中で4A/dm2の電流密度による1秒間の陰極処
理をなし、クロム水和酸化物を電析させて製造
No.18の鋼板を得た。(比較材) 製造例 4 製造例3において重クロム酸ナトリウムの代わ
りに無水クロム酸30g/とフツ化アンモニウム
2g/の混合液を用い、15A/dm2の電流密度に
よる1秒間の陰極処理をなし、金属クロムとクロ
ム水和酸化物を電析させ、製造No.19の鋼板を得
た。(発明材) 比較製造例 4 比較製造例3において重クロム酸ナトリウムの
代わりに無水クロム酸30g/とフツ化アンモニ
ウム2g/の混合液を用い、15A/dm2の電流密
度による1秒間の陰極処理をなし、金属クロムと
クロム水和酸化物を電析させ、製造No.20の鋼板
を比較材として得た。 上記したような各製造例ないし比較製造例によ
つて得られた各鋼板および#25ぶりきとTFS
(テインフリースチール)について、そのTピー
ル強度(試験A)および塗膜下腐食(クロスカツ
トをほどこしていない個所)、クロスカツト部腐
食幅と孔食(試験B)を試験し、更に無研磨溶接
性について検討した結果を要約して示すと次の第
6表の通りである。
[Table] Comparative Production Example 3 After performing electrolytic degreasing and electrolytic pickling on a product that had been subjected to temper rolling in the same manner as in Production Example 3,
The tin was replated at 0.40 g/m 2 per side (tinning) and then cathodized in an aqueous solution of 20 g/m of sodium dichromate for 1 second at a current density of 4 A/dm 2 to produce chromium hydrate oxidation. Manufactured by electrodeposition of materials
Steel plate No. 18 was obtained. (Comparative material) Production example 4 In Production example 3, a mixed solution of 30 g of chromic anhydride and 2 g of ammonium fluoride was used instead of sodium dichromate, and cathodic treatment was performed for 1 second at a current density of 15 A/dm 2 . , metal chromium and chromium hydrated oxide were electrodeposited, and steel plate No. 19 was obtained. (Inventive material) Comparative production example 4 In comparative production example 3, a mixed solution of 30 g of chromic anhydride and 2 g of ammonium fluoride was used instead of sodium dichromate, and cathodic treatment was performed for 1 second at a current density of 15 A/dm 2. Metallic chromium and hydrated chromium oxide were electrodeposited, and a steel plate of production No. 20 was obtained as a comparison material. Each steel plate and #25 tin plate and TFS obtained by each production example or comparative production example as described above
(Tein-free steel) was tested for its T-peel strength (Test A), corrosion under the coating (where no crosscuts were applied), corrosion width of the crosscut and pitting corrosion (Test B), and also tested for non-abrasive weldability. The results of the study are summarized in Table 6 below.

【表】 〓〓〓〓〓
[Table] 〓〓〓〓〓

【表】 前記第6表における各試験の条件は以下の如く
である。 試験A: エポキシフエノール塗料を50mg/dm2塗布し、
205℃で10分間の焼付けをなし、5×100mmに切断
したサンプルを2枚1組として塗装面相互をナイ
ロンフイルムで熱圧着した後、20mm/minで引き
剥がす際の強度を測定した(単位はKg/5mm)。 試験B: 各素材にエポキシフエノール塗料を50mg/dm2
塗布し、205℃で10分間の焼付けをしてからクエ
ン酸0.55%と食塩1.5%で35℃の混合液に96時間
浸漬させた後に目視観察し、◎は良好、〇はやゝ
良好、△はやゝ難がある、×は難あり、によつて
判定し、又腐食幅は最大腐食幅を測定した。 無研磨溶接性: 目視観察によつて上記同様に、◎は良好、〇は
やゝ良好、△はやゝ難がある、×は難あり、によ
つて判定した。 即ち本発明による製造No.1、2および5、
6、7と16、19のものは何れの試験結果において
も好ましい結果を示すものであつて、例えばクロ
スカツト部孔食と無研磨溶接性において#25ぶり
きに若干劣るとしてもクロスカツト部腐食幅にお
いては遥かに優れており、塗料密着性に関するT
ピニール強度においても10倍〜20倍の高さを示
す。又TFSよりもクロスカツト部孔食および無
研磨溶接性において甚だしく優れ、その他の比較
材に対しては何れの面においても優れたものであ
ることが確認された。 以上説明したような本発明によるときは溶接缶
用表面処理鋼板として必要な特性を共に満足させ
卓越した性能を有する製品を適切に提供し得るも
のであつて、工業的にその効果の大きい発明であ
る。
[Table] The conditions for each test in Table 6 above are as follows. Test A: Apply epoxy phenol paint at 50mg/ dm2 ,
After baking at 205℃ for 10 minutes and cutting the samples into 5 x 100 mm pieces, the coated surfaces were thermocompressed with nylon film and the strength was measured when peeled off at 20 mm/min (unit: kg/5mm). Test B: 50mg/dm 2 of epoxy phenol paint on each material
It was coated, baked at 205℃ for 10 minutes, and then immersed in a mixture of 0.55% citric acid and 1.5% salt at 35℃ for 96 hours, and then visually observed. ◎ is good, 〇 is very good, △ Judgment was made based on whether there was a problem or "x" means a problem, and the maximum corrosion width was measured as the corrosion width. Non-polishing weldability: Judgment was made by visual observation in the same way as above, ◎ as good, 〇 as very good, △ as having some difficulties, and × as having some difficulties. namely production Nos. 1, 2 and 5 according to the invention,
Items 6, 7, 16, and 19 show favorable results in all test results.For example, even though they are slightly inferior to #25 tin in terms of cross-cut pitting corrosion and non-polishing weldability, they are superior in cross-cut corrosion width. is much better, T
The pineal strength is also 10 to 20 times higher. It was also confirmed that it was significantly superior to TFS in terms of cross-cut pitting corrosion and non-abrasive weldability, and was superior in all respects to other comparative materials. According to the present invention as explained above, it is possible to appropriately provide a product that satisfies all the necessary characteristics as a surface-treated steel sheet for welded cans and has excellent performance, and is an invention that has great industrial effects. be.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施態様を示すものであつて、
第1図は本発明の実施例による錫めつき粒子の状
態を倍率20000倍の走査型電子顕微鏡写真、第2
図は不連続粒子状錫被覆率と塗料密着性および塗
膜下腐食性の関係を要約して示した図表である。 〓〓〓〓〓
The drawings illustrate embodiments of the invention,
FIG. 1 is a scanning electron micrograph showing the state of tin-plated particles according to an example of the present invention at a magnification of 20,000 times.
The figure is a diagram summarizing the relationship between discontinuous particulate tin coverage, paint adhesion, and under-paint corrosion. 〓〓〓〓〓

Claims (1)

【特許請求の範囲】[Claims] 1 鋼板上にSn量として0.15〜1.2g/m2(片面当
り)の鉄−錫合金層を有し、該合金層上に被覆率
2〜90%の不連続且つ粒子状の錫鍍金を形成した
溶接缶用表面処理鋼板。
1 An iron-tin alloy layer with an Sn content of 0.15 to 1.2 g/m 2 (per side) is formed on the steel plate, and discontinuous and particulate tin plating with a coverage of 2 to 90% is formed on the alloy layer. Surface-treated steel sheet for welded cans.
JP20860182A 1982-11-30 1982-11-30 Surface treated steel sheet for welded can Granted JPS59100285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20860182A JPS59100285A (en) 1982-11-30 1982-11-30 Surface treated steel sheet for welded can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20860182A JPS59100285A (en) 1982-11-30 1982-11-30 Surface treated steel sheet for welded can

Publications (2)

Publication Number Publication Date
JPS59100285A JPS59100285A (en) 1984-06-09
JPS6136595B2 true JPS6136595B2 (en) 1986-08-19

Family

ID=16558903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20860182A Granted JPS59100285A (en) 1982-11-30 1982-11-30 Surface treated steel sheet for welded can

Country Status (1)

Country Link
JP (1) JPS59100285A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60208494A (en) * 1984-03-31 1985-10-21 Kawasaki Steel Corp Surface-treated steel sheet for seam welding can having excellent weldability
JPS61232148A (en) * 1985-03-29 1986-10-16 北海製罐株式会社 Welded can body
JPS62124296A (en) * 1985-11-25 1987-06-05 Toyo Kohan Co Ltd Surface treated steel sheet having excellent seam weldability and paint adhesiveness and its production
JP2606451B2 (en) * 1990-12-28 1997-05-07 東洋製罐株式会社 Deep drawn can and method for producing the same
CA2813499C (en) * 2010-10-06 2015-12-22 Tata Steel Ijmuiden B.V. Process for producing an iron-tin alloy layer on a packaging steel substrate
DK2831294T3 (en) * 2012-03-30 2016-11-14 Tata Steel Ijmuiden Bv PROCEDURE FOR THE PREPARATION OF AN EXHAUSTED AND COATED RECOVERY STEEL SUBSTRATE FOR PACKAGING APPLICATIONS AND A PACKAGING STEEL PRODUCT PREPARED THEREOF
US10000861B2 (en) * 2012-03-30 2018-06-19 Tata Steel Ijmuiden Bv Coated substrate for packaging applications and a method for producing said coated substrate
ES2607114T3 (en) * 2012-04-11 2017-03-29 Tata Steel Ijmuiden Bv Polymer coated substrate for packaging applications and a process for producing said coated substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56294A (en) * 1979-06-18 1981-01-06 Nippon Kokan Kk <Nkk> Tinplate and producing the same
JPS5647269A (en) * 1979-09-26 1981-04-28 Toyota Motor Corp Arc welding method
JPS5675589A (en) * 1979-11-22 1981-06-22 Nippon Kokan Kk <Nkk> Steel plate for welded and painted can

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56294A (en) * 1979-06-18 1981-01-06 Nippon Kokan Kk <Nkk> Tinplate and producing the same
JPS5647269A (en) * 1979-09-26 1981-04-28 Toyota Motor Corp Arc welding method
JPS5675589A (en) * 1979-11-22 1981-06-22 Nippon Kokan Kk <Nkk> Steel plate for welded and painted can

Also Published As

Publication number Publication date
JPS59100285A (en) 1984-06-09

Similar Documents

Publication Publication Date Title
KR101108312B1 (en) Plated steel sheet for can and process for producing the same
JP4818755B2 (en) Steel plate for welding can
JPS6254399B2 (en)
JPH0216397B2 (en)
JPS6136595B2 (en)
JPH0154437B2 (en)
JPH0649933B2 (en) Plated steel plate for cans
JPS6144158B2 (en)
JP4280181B2 (en) Steel plate for welding cans with excellent weldability, adhesion and corrosion resistance
JPH0826477B2 (en) Manufacturing method of Sn-based multi-layered steel sheet with excellent paint adhesion
JPS6240396A (en) Surface treated steel sheet for can having superior weldability and corrosion resistance
JP3720961B2 (en) Steel plate for welding cans with excellent weldability, corrosion resistance, and adhesion
JP3670857B2 (en) Chemical treatment of nickel-plated steel sheet
JPH10317165A (en) Surface-treated steel sheet and polyester resin coated steel sheet excellent for content resistance, and their manufacture
JP3745457B2 (en) Manufacturing method of steel sheet for welding can excellent in weldability, corrosion resistance, appearance and adhesion
JPS6396294A (en) Production of steel sheet having excellent weldability and corrosion resistance
JPH11106954A (en) Surface treated steel sheet for welded can excellent in weldability, corrosion resistance and appearance
JPS6366399B2 (en)
JPH11106953A (en) Steel sheet for welded can excellent in weldability, corrosion resistance and film adhesion
JPS6353288A (en) Low-cost surface treated steel sheet having superior weldability
JPH0428796B2 (en)
JPH0425350B2 (en)
JPH0434630B2 (en)
JPH07166398A (en) Production of steel sheet for welded can excellent in high speed seam weldability, corrosion resistance and coating adhesion
JPS5989784A (en) Manufacture of steel sheet for welded can with superior corrosion resistance after coating