JP4280181B2 - Steel plate for welding cans with excellent weldability, adhesion and corrosion resistance - Google Patents

Steel plate for welding cans with excellent weldability, adhesion and corrosion resistance Download PDF

Info

Publication number
JP4280181B2
JP4280181B2 JP2004064995A JP2004064995A JP4280181B2 JP 4280181 B2 JP4280181 B2 JP 4280181B2 JP 2004064995 A JP2004064995 A JP 2004064995A JP 2004064995 A JP2004064995 A JP 2004064995A JP 4280181 B2 JP4280181 B2 JP 4280181B2
Authority
JP
Japan
Prior art keywords
layer
plating
corrosion resistance
adhesion
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004064995A
Other languages
Japanese (ja)
Other versions
JP2005256014A (en
Inventor
茂 平野
英邦 村上
明弘 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004064995A priority Critical patent/JP4280181B2/en
Publication of JP2005256014A publication Critical patent/JP2005256014A/en
Application granted granted Critical
Publication of JP4280181B2 publication Critical patent/JP4280181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

本発明は、製缶素材として、特に溶接性、塗料密着性、フィルム密着性、耐食性に優れた溶接缶用鋼板に関するものである。   The present invention relates to a steel sheet for a welding can that is particularly excellent in weldability, paint adhesion, film adhesion, and corrosion resistance as a can-making material.

近年、ワイヤーシーム抵抗溶接法による溶接缶の製缶技術が急速に進展し、飲料缶分野での実用化が急速に進展してきた。この種の溶接缶に使用される缶用鋼板は、例えば特開昭60−208494号公報(特許文献1)に開示されているように、電気めっきによりFe−Ni合金めっきを行った後、Snめっきを行い、更に溶錫処理し、クロメート処理を行うシーム溶接性に優れた製缶用表面処理鋼板の製造方法が提案されている。   In recent years, welding can manufacturing technology using wire seam resistance welding has been rapidly advanced, and practical application in the beverage can field has been rapidly progressing. The steel plate for cans used in this type of welding can is, for example, disclosed in Japanese Patent Application Laid-Open No. 60-208494 (Patent Document 1), after performing Fe—Ni alloy plating by electroplating, Sn. There has been proposed a method for producing a surface-treated steel sheet for can making, which is excellent in seam weldability, in which plating, further tin treatment, and chromate treatment are performed.

また、特開昭60−13098号公報(特許文献2)に開示されているように、Fe−Ni合金を施した後、Snめっき、クロメート処理することにより塗料密着性、溶接性に優れたシーム溶接缶用表面処理鋼板の製造方法が提案されている。確かに、このような製造方法は、溶接性、耐食性、塗料密着性を備えた溶接缶用表面処理鋼板を提供するものである。更に、これらの容器用表面処理鋼板を用いて、缶内面には耐食性を確保するための塗装焼き付けが行われ、缶外面には多色刷り印刷が行われる。この後、ワイヤーシーム溶接法により製缶が行われて、実用に供されている。   Further, as disclosed in Japanese Patent Laid-Open No. 60-13098 (Patent Document 2), a seam excellent in paint adhesion and weldability is obtained by applying an Fe—Ni alloy, followed by Sn plating and chromate treatment. A method for producing a surface-treated steel sheet for a welding can has been proposed. Certainly, such a manufacturing method provides a surface-treated steel sheet for a welding can having weldability, corrosion resistance, and paint adhesion. Furthermore, using these surface-treated steel sheets for containers, paint baking is performed on the inner surface of the can to ensure corrosion resistance, and multicolor printing is performed on the outer surface of the can. Thereafter, the can is made by a wire seam welding method and put into practical use.

特開昭60−208494号公報JP 60-208494 A 特開昭60−13098号公報JP-A-60-13098

近年では、より一層の製缶技術の進歩と製缶コストダウンが相俟って、製缶工程の大幅な生産性向上を狙って、塗装・印刷の代わりに、缶内面かつ/または外面に有機フィルムをラミネートした材料が使用されるようになった。ところが、缶内面かつ/または外面に有機フィルムをラミネートする対象として、上記に述べた容器用表面処理鋼板を用いた場合、溶接部近傍で塗料やフィルム密着性不良が発生する。   In recent years, combined with further advancement in can manufacturing technology and reduction in can manufacturing costs, aiming at significant productivity improvement in the can manufacturing process, instead of painting and printing, organic can inner and / or outer surface Film laminated materials have been used. However, when the above-described surface-treated steel sheet for containers is used as an object for laminating an organic film on the inner surface and / or outer surface of the can, paint and film adhesion defects occur in the vicinity of the weld.

これは、上記の容器用表面処理鋼板は、めっき層に合金化していない金属Snを含有しており、溶接余熱によりSn融点以上に温度上昇される溶接部近傍は、めっき層が溶融する。この時、めっき層上の塗料やフィルムは溶融した液体金属Sn上にいわば浮かんでいる様な状態になるため、塗料やフィルム密着性が極めて低くなり、冷却風による塗料やフィルム剥離および塗料やフィルムの内部応力による塗料やフィルム収縮が起こり易くなる。この結果として塗料やフィルムの剥離が生じるのである。   This is because the above-mentioned surface-treated steel sheet for containers contains metal Sn that is not alloyed in the plating layer, and the plating layer melts in the vicinity of the weld where the temperature rises to the Sn melting point or higher due to the residual heat of welding. At this time, since the paint or film on the plating layer is in a state of floating on the molten liquid metal Sn, the adhesion of the paint or film becomes extremely low, and the paint or film is peeled off by the cooling air or the paint or film. The coating and film shrinkage easily occur due to the internal stress. As a result, the paint or film is peeled off.

塗料及びフィルム密着不良を回避するべく、金属Snのめっき量を少なくし、金属Snの被覆率を低下させれば、確かに塗料及びフィルム密着性は向上する。しかし、Snめっき量が減少すれば、溶接缶用鋼板として具備すべき特性である溶接性や耐食性が劣化するため、溶接性、塗料及びフィルム密着性、耐食性を全て満足する溶接缶用材料の製造は困難であった。   If the coating amount of metal Sn is reduced and the coverage of metal Sn is reduced in order to avoid poor coating and film adhesion, the coating and film adhesion will surely improve. However, if the amount of Sn plating decreases, weldability and corrosion resistance, which are characteristics that should be provided as a steel sheet for welded cans, will deteriorate, so the production of welded can materials that satisfy all of weldability, paint and film adhesion, and corrosion resistance. Was difficult.

これらの問題点に対して、本発明者等は、Snを島状化し、金属Snの存在しない塗料及びフィルム密着性の優れたFe−NiまたはFe−Ni−Sn合金めっき層が露出するめっき構造を有する鋼板が、溶接熱影響部のようなSnの融点を超える個所でも、優れた密着性を確保することが出来ることを知見した。ところが、Snを島状化することにより、塗料及びフィルム密着性は向上するものの、Snの無い個所は、耐食性が弱くなり、腐食の起点になる事も明らかになった。また、Snを工業的に安定して島状化する方法も必要になった。   In order to solve these problems, the present inventors have formed a plating structure in which Sn is formed into an island, and a coating layer in which metal Sn is not present and a Fe—Ni or Fe—Ni—Sn alloy plating layer having excellent film adhesion are exposed. It has been found that excellent adhesion can be ensured even at locations where the steel plate having a temperature exceeding the melting point of Sn, such as the weld heat affected zone. However, it became clear that, although the paint and film adhesion is improved by forming Sn into an island shape, the corrosion resistance is weakened at the portion where Sn is not present, and this becomes a starting point of corrosion. In addition, a method for industrially forming islands of Sn stably is also required.

そこで、本発明者らは、Snを島状化する事により明らかになった上記の問題に対して鋭意検討した結果、めっきを行う鋼板(原板)の表層に窒化層があれば、合金層の耐食性を向上出来るとともに、島状Snを安定して製造できることを知見するに到った。この現象の詳細な機構については定かではないが、窒化処理により形成された窒化層に含まれる固溶窒素や窒化物が耐食性を向上させるとともに溶融溶錫時の加熱により窒化層の窒素が合金層に拡散し合金層の耐食性が向上しているものと推定されている。また、この窒化層は溶融溶錫処理時に溶融したSnの濡れ性を下げ、Snが弾き易くなり、その結果、島状Snを工業的に安定製造可能になったものと推定されている。   Therefore, as a result of intensive investigations on the above-mentioned problems that have been clarified by making Sn into islands, the present inventors have found that if there is a nitride layer on the surface of the steel plate (original plate) to be plated, The inventors have come to know that the corrosion resistance can be improved and the island-shaped Sn can be stably manufactured. Although the detailed mechanism of this phenomenon is not clear, the solid solution nitrogen and nitride contained in the nitride layer formed by nitriding treatment improve the corrosion resistance, and the nitrogen of the nitride layer is alloyed by heating during molten molten tin. It is presumed that the corrosion resistance of the alloy layer is improved. In addition, it is estimated that this nitride layer reduces the wettability of Sn melted during the molten tin treatment and makes it easier to play Sn, and as a result, it has become possible to industrially produce island-like Sn.

すなわち、本発明の要旨とするところは、
(1)鋼板の表層1/8厚み領域に窒素量100〜6000ppmを含有する窒化層を形成し、該鋼板に、Niを5〜150mg/m2 含むNiめっき層またはFe−Ni合金めっきを施して窒化された下地Ni層とし、その上に300〜3000mg/m2 のSnめっきが施され、溶融溶錫処理により、一部または全部の下地Ni層とSnめっき層の一部が合金化せしめられて島状のSnめっき層が形成され、最表層に金属Cr換算量で、2〜30mg/m2 のクロメート皮膜を付与されたことを特徴とする溶接性、塗料密着性、フィルム密着性、耐食性に優れた溶接缶用鋼板。
That is, the gist of the present invention is that
(1) a nitride layer containing nitrogen amounts 100~6000ppm formed in the surface 1/8 thickness region of the steel sheet, in the steel sheet, subjected to Ni plating layer or Fe-Ni alloy plating contains 5 to 150 mg / m 2 of Ni Then, an Ni layer is formed by nitriding and 300-3000 mg / m 2 of Sn plating is applied, and a part or all of the underlying Ni layer and a part of the Sn plating layer are alloyed by molten tin treatment. An island-like Sn plating layer is formed, and the outermost layer is provided with a chromate film of 2 to 30 mg / m 2 in terms of metallic Cr, weldability, paint adhesion, film adhesion, Steel plate for welding cans with excellent corrosion resistance.

)溶融溶錫処理を施された鋼板の、Snめっき層中に含まれる合金化していない金属Sn(フリーSn)が100mg/m2 以上であることを特徴とする前記(1)に記載の溶接性、塗料密着性、フィルム密着性、耐食性に優れた溶接缶用鋼板。
)クロメート皮膜が、水和酸化クロムまたは水和酸化クロムと金属クロムから構成されていることを特徴とする前記(1)または2に記載の溶接性、塗料密着性、フィルム密着性、耐食性に優れた溶接缶用鋼板にある。
(2) according to the melting溶錫processing performed steel sheet, a metal not alloyed contained in Sn plating layer Sn wherein the (free Sn) is characterized in that it is 100 mg / m 2 or more (1) Steel plate for welding cans with excellent weldability, paint adhesion, film adhesion, and corrosion resistance.
( 3 ) The chromate film is composed of hydrated chromium oxide or hydrated chromium oxide and metal chromium. The weldability, paint adhesion, film adhesion, and corrosion resistance described in (1) or 2 above Excellent steel plate for welding cans.

以上述べたように、本発明により優れた溶接性、耐食性、塗料及びフィルム密着性を有する溶接缶用鋼板が製造できる。   As described above, a steel plate for a welding can having excellent weldability, corrosion resistance, paint and film adhesion can be produced by the present invention.

以下に本発明の作用である、溶接性、耐食性、塗料及びフィルム密着性の優れた溶接缶用鋼板について詳細に説明する。
本発明において窒化処理される前の鋼板は、通常の容器材料として使用される鋼板を用いる。その成分も特に規制するものではなく、通常の低炭素鋼や極低炭素鋼を使用すれば良い。この鋼板の製造法、材質なども特に規制されるものではなく、通常の鋼片製造工程から熱間圧延、酸洗、冷間圧延等の工程を経て製造される。
The steel sheet for a welding can excellent in weldability, corrosion resistance, paint and film adhesion, which is an action of the present invention, will be described in detail below.
In the present invention, the steel plate before nitriding is a steel plate used as a normal container material. The components are not particularly restricted, and ordinary low carbon steel or extremely low carbon steel may be used. The manufacturing method and material of the steel plate are not particularly restricted, and the steel plate is manufactured through a normal slab manufacturing process through processes such as hot rolling, pickling and cold rolling.

上記の鋼板に窒化処理が行われるが、窒化処理は、耐食性と島状Snの生成のために行われることから、表層のみ行えば良い。鋼板の板厚全域に窒化処理を行うと、窒素は固溶強化であることから、必要以上に材質的に硬くなり、製缶加工性が劣化する。従って、鋼板の表層を窒化処理する必要がある。この表層の窒化による耐食性向上と島状Sn形成効果は、表層1/8厚み領域のN量として100ppm以上から顕著に発揮され始め、窒素量が多くなる程、その効果は向上する。しかし、表層1/8厚み領域のN量が6000ppmを超えると、向上効果が飽和するため経済的に不利である。従って、表層の窒化量は、表層1/8厚み領域のN量として100〜6000ppmにするのが望ましい。   Nitriding treatment is performed on the steel sheet, but the nitriding treatment is performed for corrosion resistance and generation of island-like Sn, and therefore, only the surface layer may be performed. When the nitriding treatment is performed on the entire thickness of the steel sheet, nitrogen is solid solution strengthened, so that the material becomes harder than necessary and the can manufacturing process is deteriorated. Therefore, it is necessary to nitride the surface layer of the steel sheet. The corrosion resistance improvement and island-like Sn formation effect due to the nitridation of the surface layer starts to be exerted remarkably from 100 ppm or more as the N content of the surface layer 1/8 thickness region, and the effect increases as the nitrogen content increases. However, if the N content in the surface layer 1/8 thickness region exceeds 6000 ppm, the improvement effect is saturated, which is economically disadvantageous. Therefore, the nitridation amount of the surface layer is desirably 100 to 6000 ppm as the N amount in the surface layer 1/8 thickness region.

窒化は、鋼板の表層のみとしても良いし、下地Ni層と鋼板の両方に施してもよい。(この場合下地Ni層形成後に窒化する)前者の場合、表層1/8領域とは鋼板の表面から缶鋼板厚みの1/8の深さまでの領域を指し、後者の場合は、Niめっき層表層から下地Ni層と鋼板の両方の厚みの合計の1/8の深さまでの領域をいうものとする。   Nitriding may be performed only on the surface layer of the steel plate, or may be performed on both the base Ni layer and the steel plate. (In this case, nitriding after forming the underlying Ni layer) In the former case, the surface layer 1/8 region refers to a region from the surface of the steel plate to a depth of 1/8 the thickness of the can steel plate, and in the latter case, the surface of the Ni plating layer To a depth of 1/8 of the total thickness of both the base Ni layer and the steel plate.

窒化処理の方法としては特に規制しない。例えば、600〜700℃の温度雰囲気中に必要量の窒素ガスやアンモニアを導入すれば良い。また、処理時間に応じて窒化量は増加するので、使用する装置に応じて、温度、ガス濃度、処理時間を調整すれば良い。また、処理装置については特に規制しないが、工業生産的には連続焼鈍炉あるいはバッチ焼鈍炉を利用することが経済的に有利である。   There are no particular restrictions on the nitriding method. For example, a necessary amount of nitrogen gas or ammonia may be introduced into a temperature atmosphere of 600 to 700 ° C. Further, since the amount of nitriding increases with the processing time, the temperature, gas concentration, and processing time may be adjusted according to the apparatus to be used. Moreover, although it does not regulate in particular about a processing apparatus, it is economically advantageous to utilize a continuous annealing furnace or a batch annealing furnace from industrial production.

窒化処理が行われた鋼板にNiまたはFe−Ni合金めっきのNi系めっきが行われる。Ni系めっき層を付与する目的は、耐食性の確保である。Niは高耐食金属のため、Niをめっきすることにより、溶融溶錫処理時に形成される合金層の耐食性を向上させることが出来る。Niによる合金層の耐食性向上効果は、めっきされるNi量が5mg/m2 以上から発現し始めることから、Ni量は5mg/m2 以上必要である。Ni量が多くなる程、合金層の耐食性向上効果は増加するが、150mg/m2 を超えると、その向上効果は飽和する上、Niは高価な金属であることから、それ以上のNiをめっきすることは経済的にも不利である。従って、Ni量は5〜150mg/m2 にする必要がある。 Ni-based plating of Ni or Fe—Ni alloy plating is performed on the steel plate subjected to nitriding treatment. The purpose of providing the Ni-based plating layer is to ensure corrosion resistance. Since Ni is a highly corrosion-resistant metal, the corrosion resistance of the alloy layer formed during the molten tin treatment can be improved by plating Ni. The effect of improving the corrosion resistance of the alloy layer by Ni starts to appear when the amount of Ni to be plated starts from 5 mg / m 2 or more, so the Ni amount needs to be 5 mg / m 2 or more. As the amount of Ni increases, the corrosion resistance improvement effect of the alloy layer increases. However, if it exceeds 150 mg / m 2 , the improvement effect is saturated, and Ni is an expensive metal, so more Ni is plated. Doing so is also economically disadvantageous. Therefore, the amount of Ni needs to be 5 to 150 mg / m2.

また、Ni拡散めっきを行う場合は、Niめっきをした後に、焼鈍炉で拡散処理が行われ、Ni拡散層が形成されるが、Ni拡散処理の前後或いは同時に窒化処理を行っても、本発明における、Ni系めっき層としてのNiの効果及び窒化処理層の効果を奏することができる。Niめっき及びFe−Ni合金めっきの方法については、一般的に電気めっき法によって行われている公知の方法を用いれば良い。   In addition, when Ni diffusion plating is performed, after Ni plating, diffusion treatment is performed in an annealing furnace to form a Ni diffusion layer. However, the present invention can be performed even before or after or simultaneously with the Ni diffusion treatment. The effect of Ni as the Ni-based plating layer and the effect of the nitriding layer can be obtained. About the method of Ni plating and Fe-Ni alloy plating, the well-known method generally performed by the electroplating method should just be used.

Ni系めっきの後にSnめっきが行われる。ここで言うSnめっきとは、金属Snであるが、不可避的不純物が混入する場合があり、微量元素が添加される場合もある。Snめっきの方法については、特に規制しない。公知の電気めっき法や溶融したSnに浸漬してめっきする方法等を用いれば良い。Snめっきの目的は、耐食性と溶接性の確保である。Snはそれ自体が高い耐食性を有していることから、金属Snとしても、また、次に述べるリフロー処理によって形成される合金Snとしても、優れた耐食性を発揮する。このSnの優れた耐食性は、300mg/m2 以上から顕著に向上し、Snめっき量が多くなる程、耐食性は向上するが、3000mg/m2 以上になるとその効果は飽和する。従って、経済的な観点からSnのめっき量は3000mg/m2 以下にすることが望ましい。 Sn plating is performed after the Ni-based plating. Sn plating mentioned here is metal Sn, but inevitable impurities may be mixed, and trace elements may be added. There is no particular restriction on the Sn plating method. A known electroplating method or a method of plating by immersing in molten Sn may be used. The purpose of Sn plating is to ensure corrosion resistance and weldability. Since Sn itself has high corrosion resistance, it exhibits excellent corrosion resistance both as metal Sn and as alloy Sn formed by the reflow treatment described below. The excellent corrosion resistance of Sn is remarkably improved from 300 mg / m 2 or more, and the corrosion resistance is improved as the Sn plating amount is increased, but the effect is saturated at 3000 mg / m 2 or more. Therefore, the Sn plating amount is desirably 3000 mg / m 2 or less from an economical viewpoint.

また、電気抵抗の低いSnは軟らかく、溶接時に電極間でSnが加圧されることにより、広がり、安定した通電域を確保できることから、特に優れた溶接性を発揮する。この優れた溶接性は、金属Sn量として100mg/m2 以上あれば発揮される。また、本発明のSnめっき量の範囲であれば、金属Sn量の上限量を規定する必要はない。 In addition, Sn having a low electric resistance is soft, and when Sn is pressed between the electrodes during welding, it spreads and a stable energization area can be secured, so that particularly excellent weldability is exhibited. This excellent weldability is exhibited if the amount of metal Sn is 100 mg / m 2 or more. Moreover, if it is the range of Sn plating amount of this invention, it is not necessary to prescribe | regulate the upper limit of metal Sn amount.

Snめっきの後、溶融溶錫処理が行われる。溶融溶錫処理を行う目的は、Snを溶融し窒化層や下地金属と合金化させ、窒素を含んだSn−FeまたはSn−Fe−Ni合金層を形成させ、合金層の耐食性を向上せしめるとともに、窒化層の効果により、島状Snを工業的に安定に形成させることにある。溶融溶錫処理においては、Snの融点を超える加熱処理を行えれば良く、例えば、通電加熱、誘導加熱、炉内加熱などの方法を使用すればよい。   After Sn plating, molten tin treatment is performed. The purpose of the molten tin treatment is to melt Sn and alloy it with a nitride layer or a base metal to form a Sn—Fe or Sn—Fe—Ni alloy layer containing nitrogen, thereby improving the corrosion resistance of the alloy layer. The island-shaped Sn is formed industrially stably by the effect of the nitride layer. In the molten tin treatment, it is only necessary to perform a heat treatment exceeding the melting point of Sn. For example, a method such as energization heating, induction heating, or furnace heating may be used.

引き続き、溶融溶錫処理の後、塗装及びフィルム密着性、耐食性を目的としてクロメート皮膜が付与される。ここで言うクロメート皮膜とは、水和酸化クロム単一の皮膜、即ち本来のクロメート皮膜と、下層が金属クロム層で上層が水和酸化クロム層の二層よりなる皮膜の二つの場合を指している。水和酸化クロム層には、後述するめっき助剤である硫酸イオンやフッ素イオンなどを含む場合がある。塗料及びフィルム密着性や耐食性は、この水和酸化クロムの官能基と塗料或いはフィルムの官能基が強固な化学的な結合を行うことによって確保される。   Subsequently, after the molten tin treatment, a chromate film is applied for the purpose of coating, film adhesion, and corrosion resistance. The chromate film mentioned here refers to two cases: a hydrated chromium oxide single film, that is, an original chromate film, and a film composed of two layers of a lower layer of metal chromium and an upper layer of hydrated chromium oxide layer. Yes. The hydrated chromium oxide layer may contain sulfate ions or fluorine ions which are plating aids described later. The paint and film adhesion and corrosion resistance are ensured by a strong chemical bond between the functional group of the hydrated chromium oxide and the functional group of the paint or film.

従って、クロメート皮膜付着量が金属Cr換算量で2mg/m2 未満では、塗料及びフィルム密着性の向上効果が得られないので、2mg/m2 以上付着する必要がある。一方、クロメート皮膜付着量が多くなる程、塗料及びフィルム密着性の向上効果は増加するが、水和酸化クロム皮膜は電気的に絶縁体のため電気抵抗が非常に高く、金属クロムもFeより融点が高いことから、過量のクロメート皮膜は溶接性を劣化させる。従って、クロメート付着量は30mg/m2 以下にする必要がある。 Accordingly, if the chromate film adhesion amount is less than 2 mg / m 2 in terms of metal Cr, the effect of improving the adhesion between the paint and the film cannot be obtained, so it is necessary to adhere 2 mg / m 2 or more. On the other hand, as the amount of chromate coating increases, the effect of improving paint and film adhesion increases, but the hydrated chromium oxide coating is an electrical insulator and therefore has a very high electrical resistance. Therefore, an excessive amount of chromate film deteriorates weldability. Therefore, the chromate adhesion amount needs to be 30 mg / m 2 or less.

クロメート処理方法は、各種のクロム酸のナトリウム塩、カリウム塩、アンモニウム塩の水溶液による浸漬処理、スプレー処理、電解処理などいずれの方法で行っても良いが、特に陰極電解処理が優れている。とりわけ、クロム酸にめっき助剤として硫酸イオン、フッ化物イオン(醋イオンを含む)あるいはそれらの混合物を添加した水溶液中での陰極電解処理が最も優れている。   The chromate treatment method may be performed by any method such as immersion treatment with various sodium salts, potassium salts, and ammonium salts of chromic acid, spray treatment, electrolytic treatment, etc., but cathodic electrolytic treatment is particularly excellent. In particular, cathodic electrolysis in an aqueous solution in which sulfate ions, fluoride ions (including soot ions) or a mixture thereof is added to chromic acid as a plating aid is most excellent.

次に本発明の実施例及び比較例について述べ、その結果を表1に示す。以下の(1)〜(3)に示す方法で試料を作製し、(A)〜(E)の各項目について性能評価を行った。(1)試料作製方法1
冷間圧延後に、5%アンモニア雰囲気で連続焼鈍を行うと共に表層を窒化した。その後、0.7%の調質圧延により、表層を窒化した0.20mm厚のめっき原板を作製した。このめっき原板を5%苛性ソーダ中で電解脱脂し、水洗後10%硫酸中で電解酸洗し、表面活性後表面処理を行った後、硫酸浴を用いて電流密度10A/dm2 で電解し、Ni含有率20%のFe−Ni合金めっきを行い、フェロスタン浴から電流密度20A/dm2 で電解してSnめっきを行った。その後、誘導加熱により溶融溶錫処理を行い、引き続きクロム酸−硫酸浴を用いて電流密度40A/dm2 で電解してクロメート皮膜を付与して試料を作製した。
Next, examples and comparative examples of the present invention will be described, and the results are shown in Table 1. Samples were prepared by the methods shown in the following (1) to (3), and performance evaluation was performed for each item (A) to (E). (1) Sample preparation method 1
After cold rolling, continuous annealing was performed in a 5% ammonia atmosphere and the surface layer was nitrided. Thereafter, a 0.20 mm-thick plating original plate in which the surface layer was nitrided was produced by temper rolling at 0.7%. This plating base plate is electrolytically degreased in 5% caustic soda, washed with water, electrolytically pickled in 10% sulfuric acid, surface-treated after surface activation, electrolyzed at a current density of 10 A / dm 2 using a sulfuric acid bath, perform Ni content of 20% Fe-Ni alloy plating was carried out Sn plating by electrolyzing at a current density of 20A / dm 2 from Ferrostan bath. Thereafter, the molten tin treatment was carried out by induction heating, and subsequently a chromate film was applied by electrolysis at a current density of 40 A / dm 2 using a chromic acid-sulfuric acid bath to prepare a sample.

(2)試料作製方法2
冷間圧延後に、ワット浴からNiめっきを行い、10%アンモニア雰囲気で連続焼鈍を行い、表層にNi拡散層と窒化層を形成させた。その後、2%の調質圧延により、表層を窒化した0.19mm厚のめっき原板を作製した。このめっき原板を5%苛性ソーダ中で電解脱脂し、水洗後10%硫酸中で電解酸洗し、表面活性後表面処理を行った後、フェロスタン浴から電流密度20A/dm2 で電解してSnめっきを行った。その後、通電加熱と誘導加熱により溶融溶錫処理を行い、引き続きクロム酸−フッ化浴を用いて電流密度40A/dm2 で電解してクロメート皮膜を付与して試料を作製した。
(2) Sample preparation method 2
After cold rolling, Ni plating was performed from a watt bath, and continuous annealing was performed in a 10% ammonia atmosphere to form a Ni diffusion layer and a nitride layer on the surface layer. Thereafter, a 0.19 mm thick plating original plate having a nitrided surface layer was produced by temper rolling at 2%. This plating base plate is electrolytically degreased in 5% caustic soda, washed with water, electrolytically pickled in 10% sulfuric acid, surface-treated after surface activation, electrolyzed at a current density of 20 A / dm 2 from a ferrostan bath, and Sn plated. Went. Thereafter, the molten tin treatment was performed by energization heating and induction heating, and subsequently a chromate film was applied by electrolysis at a current density of 40 A / dm 2 using a chromic acid-fluorination bath to prepare a sample.

(3)試料作製方法3
冷間圧延後に、2%アンモニア雰囲気で連続焼鈍を行うと共に表層を窒化した。その後、1.2%の調質圧延により、表層を窒化した0.20mm厚のめっき原板を作製した。このめっき原板を5%苛性ソーダ中で電解脱脂し、水洗後10%硫酸中で電解酸洗し、表面活性後表面処理を行った後、ワット浴を用いて電流密度8A/dm2 で電解し、Niめっきを行い、フェロスタン浴から電流密度20A/dm2 で電解してSnめっきを行った。その後、通電加熱により溶融溶錫処理を行い、引き続きクロム酸−硫酸浴を用いて電流密度40A/dm2 で電解してクロメート皮膜を付与して試料を作製した。
(3) Sample preparation method 3
After cold rolling, continuous annealing was performed in a 2% ammonia atmosphere and the surface layer was nitrided. Thereafter, a 0.20 mm-thick plating original plate in which the surface layer was nitrided was produced by temper rolling at 1.2%. This plating base plate was electrolytically degreased in 5% caustic soda, washed with water, electrolytically pickled in 10% sulfuric acid, surface-treated after surface activation, electrolyzed at a current density of 8 A / dm 2 using a Watt bath, Ni plating was performed, and Sn plating was performed by electrolysis from a ferrostan bath at a current density of 20 A / dm 2 . Thereafter, molten tin treatment was carried out by energization heating, and subsequently, a chromate film was applied by electrolysis at a current density of 40 A / dm 2 using a chromic acid-sulfuric acid bath to prepare a sample.

(A)溶接試験
試験片は高温短時間での塗装焼付け条件を想定して320℃まで23secで昇温する条件で焼付けを行い、以下の溶接条件でシーム溶接性を評価した。ラップ代0.5mm、加圧力45kgf、溶接ワイヤースピード80m/minの条件で、電流を変更して溶接を実施し、十分な溶接強度が得られる最小電流値と散りなどの溶接欠陥が目立ち始める最大電流値からなる適正電流範囲の広さから総合的に判断し、4段階(◎:非常に広い、○:広い、△:実用上問題なし、×:狭い)で評価した。
(A) Welding test The test piece was baked under the condition that the temperature was raised to 320 ° C. in 23 seconds assuming the coating baking condition in a short time at high temperature, and the seam weldability was evaluated under the following welding conditions. Welding is performed by changing the current under the conditions of a lapping margin of 0.5 mm, a pressing force of 45 kgf, and a welding wire speed of 80 m / min, and the maximum current value at which sufficient welding strength can be obtained and welding defects such as scattering start to stand out. Judging comprehensively from the width of the appropriate current range consisting of current values, evaluation was made in four stages (◎: very wide, ○: wide, Δ: no practical problem, ×: narrow).

(B)塗料密着試験
試験片の缶内面側に相当する面にエポキシフェノール系塗料を55mg/dm2 塗布し、更に缶外面に相当する面にクリヤーラッカーを40mg/dm2 塗布し、290℃まで15secの焼き付け条件で乾燥硬化した。引き続き、各々の面に1mm間隔でスクラッチを入れ、約100個の碁盤目を作製し、速やかにテープ剥離し、その剥離状況を観察し、4段階(◎:全く剥離無し、○:極僅かな剥離有り、△:僅かな剥離あり、×:大部分で剥離)で塗料密着性を評価した。
(B) Paint adhesion test 55 mg / dm 2 of epoxy phenolic paint is applied to the surface corresponding to the inner surface of the test piece, and 40 mg / dm 2 of clear lacquer is applied to the surface corresponding to the outer surface of the can. It was dried and cured under baking conditions of 15 sec. Subsequently, scratches were placed on each surface at intervals of 1 mm, and approximately 100 grids were prepared. The tape was peeled off quickly, and the peeling situation was observed. Four steps (◎: no peeling, ○: very slight) Paint adhesion was evaluated by peeling, Δ: slight peeling, x: peeling in most cases.

(C)フィルム密着試験
試験片に厚さ15umのPET(ポリエチレンテレフタレート)系フィルムをラミネートした後、地鉄に達するまでクロスカットを入れ、速やかに240℃に加熱し、クロスカット中央部に5kg/cm2 の空気ガスを垂直に吹きつけ、4段階(◎:全く剥離無し、○:極僅かな剥離有り、△:僅かな剥離有り、×:大部分で剥離)でフィルムの剥離状況を評価した。
(C) Film adhesion test After laminating a PET (polyethylene terephthalate) film having a thickness of 15 um on the test piece, a crosscut was made until it reached the ground iron, quickly heated to 240 ° C, and 5 kg / The air gas of cm 2 was blown vertically, and the film peeling state was evaluated in four stages (◎: no peeling, ○: slight peeling, Δ: slight peeling, x: most peeling) .

(D)耐食性試験1
試験片の缶内面に相当する面の耐食性を評価するため、缶内面側に相当する面に厚さ15umのPET(ポリエチレンテレフタレート)系フィルムをラミネートした。その後、地鉄に達するまでクロスカットを入れ、1.5%クエン酸−1.5%食塩混合液からなる試験液中に大気開放下55℃×4日間浸漬した。試験終了後、速やかにスクラッチ部および平面部をテープで剥離して、スクラッチ部近傍の腐食状況、スクラッチ部のピッティング状況および平面部のフィルム剥離状況を4段階(◎:剥離が無く腐食も認められない、○:極僅かな剥離が有るが腐食は認められない、△:僅かな剥離があり微小な腐食が認められる、×:大部分で剥離し激しい腐食が認められる)で判断して総合的に評価した。
(D) Corrosion resistance test 1
In order to evaluate the corrosion resistance of the surface corresponding to the inner surface of the can of the test piece, a PET (polyethylene terephthalate) film having a thickness of 15 μm was laminated on the surface corresponding to the inner surface of the can. Then, the crosscut was put in until it reached the ground iron, and it was immersed in the test liquid which consists of a 1.5% citric acid-1.5% sodium chloride mixed solution at 55 degreeC x 4 days in open air. After the test is completed, the scratch part and the flat part are peeled off with tape immediately, and the corrosion situation near the scratch part, the pitting situation of the scratch part, and the film peeling situation of the flat part are evaluated in four stages (◎: no peeling and corrosion is recognized) No, ○: There is very little peeling but no corrosion is observed, △: There is slight peeling and minute corrosion is observed, ×: Most peeling and severe corrosion are recognized) Evaluated.

(E)耐食性試験2
試験片の缶内面に相当する面の耐食性を評価するため、缶内面側に相当する面に厚さ15umのPET(ポリエチレンテレフタレート)系フィルムをラミネートし、溶接缶を作製した。その缶に、市販コーヒーを充填し、40℃、3ヶ月静置した後、開封し、内面側の腐食状況を4段階(◎:点状の腐食が認められない、○:極僅かな点状の腐食が認められる、△:点状の腐食が認められ、やや深い物も認められる、×:多くの点状腐食が認められ、板厚の半分以上の孔食が認められる。)で評価した。
(E) Corrosion resistance test 2
In order to evaluate the corrosion resistance of the surface corresponding to the inner surface of the can of the test piece, a PET (polyethylene terephthalate) film having a thickness of 15 μm was laminated on the surface corresponding to the inner surface of the can to prepare a welded can. The can was filled with commercial coffee, left to stand at 40 ° C. for 3 months, then opened, and the inner surface side was corroded in 4 stages (◎: no spot-like corrosion was observed, ○: very few dots) △: Spot-like corrosion is observed, and a slightly deeper object is recognized, ×: Many point-like corrosion is recognized, and pitting corrosion more than half of the plate thickness is recognized). .

Figure 0004280181
特許出願人 新日本製鐡株式会社
代理人 弁理士 椎 名 彊 他1
Figure 0004280181
Patent applicant: Nippon Steel Corporation
Attorney Attorney Shiina and others 1

Claims (3)

鋼板の表層1/8厚み領域に窒素量100〜6000ppmを含有する窒化層を形成し、該鋼板に、Niを5〜150mg/m2 含むNiめっき層またはFe−Ni合金めっきを施して窒化された下地Ni層とし、その上に300〜3000mg/m2 のSnめっきが施され、溶融溶錫処理により、一部または全部の下地Ni層とSnめっき層の一部が合金化せしめられて島状のSnめっき層が形成され、最表層に金属Cr換算量で、2〜30mg/m2 のクロメート皮膜を付与されたことを特徴とする溶接性、塗料密着性、フィルム密着性、耐食性に優れた溶接缶用鋼板。 Forming a nitride layer containing nitrogen amounts 100~6000ppm the surface 1/8 thickness region of the steel sheet, in the steel sheet subjected to Ni plating layer or Fe-Ni alloy plating contains 5 to 150 mg / m 2 of Ni nitrided The base Ni layer was coated with 300 to 3000 mg / m 2 of Sn plating, and a part or all of the base Ni layer and part of the Sn plating layer were alloyed by molten tin treatment to form an island. Sn-plated layer is formed, and the outermost layer is provided with a chromate film of 2 to 30 mg / m 2 in terms of metal Cr. Excellent weldability, paint adhesion, film adhesion, and corrosion resistance Steel plate for welding cans. 溶融溶錫処理を施された鋼板の、Snめっき層中に含まれる合金化していない金属Sn(フリーSn)が100mg/m2 以上であることを特徴とする請求項1に記載の溶接性、塗料密着性、フィルム密着性、耐食性に優れた溶接缶用鋼板。 The weldability according to claim 1, wherein the non-alloyed metal Sn (free Sn) contained in the Sn plating layer of the steel sheet subjected to the molten tin treatment is 100 mg / m 2 or more. Steel sheet for welding cans with excellent paint adhesion, film adhesion, and corrosion resistance. クロメート皮膜が、水和酸化クロムまたは水和酸化クロムと金属クロムから構成されていることを特徴とする請求項1または2に記載の溶接性、塗料密着性、フィルム密着性、耐食性に優れた溶接缶用鋼板。 The welding excellent in weldability, paint adhesion, film adhesion, and corrosion resistance according to claim 1 or 2 , wherein the chromate film is composed of hydrated chromium oxide or hydrated chromium oxide and metal chromium. Steel plate for cans.
JP2004064995A 2004-03-09 2004-03-09 Steel plate for welding cans with excellent weldability, adhesion and corrosion resistance Expired - Fee Related JP4280181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004064995A JP4280181B2 (en) 2004-03-09 2004-03-09 Steel plate for welding cans with excellent weldability, adhesion and corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004064995A JP4280181B2 (en) 2004-03-09 2004-03-09 Steel plate for welding cans with excellent weldability, adhesion and corrosion resistance

Publications (2)

Publication Number Publication Date
JP2005256014A JP2005256014A (en) 2005-09-22
JP4280181B2 true JP4280181B2 (en) 2009-06-17

Family

ID=35082047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004064995A Expired - Fee Related JP4280181B2 (en) 2004-03-09 2004-03-09 Steel plate for welding cans with excellent weldability, adhesion and corrosion resistance

Country Status (1)

Country Link
JP (1) JP4280181B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046754A (en) * 2007-08-23 2009-03-05 Toyo Seikan Kaisha Ltd Surface treated tinned steel sheet for welded can, and welded can composed thereof
CN102099501A (en) * 2008-07-22 2011-06-15 新日本制铁株式会社 Non-oriented electromagnetic steel plate and method for manufacturing the same
JP5885345B2 (en) 2012-05-29 2016-03-15 東洋鋼鈑株式会社 Surface-treated steel sheet for containers excellent in processing adhesion with resin, its production method and can
JP6565308B2 (en) * 2015-05-01 2019-08-28 日本製鉄株式会社 Steel plate for container and method for producing steel plate for container
US20240326381A1 (en) * 2021-11-12 2024-10-03 Nippon Steel Corporation Welded member

Also Published As

Publication number Publication date
JP2005256014A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
KR101108312B1 (en) Plated steel sheet for can and process for producing the same
JP4818755B2 (en) Steel plate for welding can
JP4280181B2 (en) Steel plate for welding cans with excellent weldability, adhesion and corrosion resistance
JPS6136595B2 (en)
KR102602054B1 (en) Method for manufacturing steel strip with improved bonding of hot dip galvanizing
JP3720961B2 (en) Steel plate for welding cans with excellent weldability, corrosion resistance, and adhesion
JP3461684B2 (en) Manufacturing method of steel plate for laminated welding can
JP2007056278A (en) Steel sheet for welded can having excellent weldability, adhesiveness and corrosion resistance
JP3261069B2 (en) Surface-treated steel sheet, polyester resin-coated steel sheet having excellent content resistance, and method for producing the same
JP3822704B2 (en) Manufacturing method of steel sheet for welding can excellent in weldability, corrosion resistance, appearance and adhesion
JP3745457B2 (en) Manufacturing method of steel sheet for welding can excellent in weldability, corrosion resistance, appearance and adhesion
JP3895873B2 (en) Manufacturing method for surface-treated steel sheets with excellent high-speed seam weldability, adhesion, and corrosion resistance
JPH11106952A (en) Steel sheet for welded can excellent in waldability, corrosion resistance and film adhesion
JPH11106953A (en) Steel sheet for welded can excellent in weldability, corrosion resistance and film adhesion
JP3894383B2 (en) Surface-treated steel sheet with excellent high-speed seam weldability, adhesion, and corrosion resistance, and its manufacturing method
JP4280174B2 (en) Steel plate for welding can and method for producing the same
JPS6240396A (en) Surface treated steel sheet for can having superior weldability and corrosion resistance
JPH0428796B2 (en)
JPH07166398A (en) Production of steel sheet for welded can excellent in high speed seam weldability, corrosion resistance and coating adhesion
JP2000080499A (en) Chemical treating method for nickel plated steel sheet
JP3270318B2 (en) Steel plate for welded cans with excellent weldability, corrosion resistance, appearance and adhesion
JP3670844B2 (en) Chemical treatment of tin-plated steel sheet
JP3670845B2 (en) Chemical treatment of nickel-plated steel sheet
JPH11106954A (en) Surface treated steel sheet for welded can excellent in weldability, corrosion resistance and appearance
JPS62274091A (en) Thinly tinned steel sheet for welded can

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4280181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees