JP3894383B2 - Surface-treated steel sheet with excellent high-speed seam weldability, adhesion, and corrosion resistance, and its manufacturing method - Google Patents

Surface-treated steel sheet with excellent high-speed seam weldability, adhesion, and corrosion resistance, and its manufacturing method Download PDF

Info

Publication number
JP3894383B2
JP3894383B2 JP20816397A JP20816397A JP3894383B2 JP 3894383 B2 JP3894383 B2 JP 3894383B2 JP 20816397 A JP20816397 A JP 20816397A JP 20816397 A JP20816397 A JP 20816397A JP 3894383 B2 JP3894383 B2 JP 3894383B2
Authority
JP
Japan
Prior art keywords
plating
chromium
corrosion resistance
steel sheet
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20816397A
Other languages
Japanese (ja)
Other versions
JPH1150268A (en
Inventor
伸一 山口
茂 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20816397A priority Critical patent/JP3894383B2/en
Publication of JPH1150268A publication Critical patent/JPH1150268A/en
Application granted granted Critical
Publication of JP3894383B2 publication Critical patent/JP3894383B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、製缶素材として、特に高速シーム溶接性、塗料およびフィルムの密着性、耐食性に優れた溶接缶用鋼板の製造方法に関するものである。
【0002】
【従来の技術】
近年、ワイヤーシーム抵抗溶接法による溶接缶の製缶技術が急速に進展し、飲料缶分野での実用化が急速に進展してきた。この種の溶接缶に使用される缶用鋼板は、電気めっきによりFe−Ni合金めっきを行った後、Snめっきを行い、さらに溶錫処理し、クロメート処理を行うシーム溶接性に優れた製缶用表面処理鋼板の製造方法(特開昭60−208494号公報)、あるいは、Fe−Ni合金を施した後、Snめっき、クロメート処理することにより塗料密着性、溶接性に優れたシーム溶接缶用表面処理鋼板の製造方法(特開昭60−13098号公報)により作製される。確かにこのような発明による製造方法は、溶接性、耐食性、塗料密着性を備えた溶接缶用表面処理鋼板を提供するものである。
さらに、これらの容器用表面処理鋼板を用いて缶内面には耐食性を確保するための塗装焼き付けが行われ、缶外面には多色刷り印刷が行われている。この後、ワイヤーシーム溶接法により、製缶が行われて、実用に供されている。
【0003】
【発明が解決しようとする課題】
近年では、より一層の製缶技術の進歩と製缶コストダウンが相俟って、製缶行程の大幅な生産性向上のため製缶スピードアップが図られている。ところが製缶スピードを上げると溶接適用電流範囲(ACR)が小さくなり、溶接性が悪くなり、溶接不良を生じ易くなる。これは、密着性および耐食性のためのクロメート被膜を構成しているオキサイドクロム(クロム酸化物)の電気抵抗が非常に高く、さらに融点、電気抵抗かつ硬度の高い金属クロムのため、従来の製缶ラインスピードでは問題ない付着量レベルでも高速化時には悪影響を及ぼすからである。
【0004】
単にクロメート付着量を低減するだけでは、その他の特性(密着性、耐食性)の低下が起こる。密着性や耐食性の特性を低下させず、高速シーム溶接性を向上させるためには、金属クロム量およびオキサイドクロム量を個々にかつ、厳密に管理することが重要であることがわかった。しかし、金属クロム量とオキサイドクロム量は、クロメート処理浴中での電解時に決定してしまい、クロメート処理浴温が高いほどオキサイドクロム量は低減するものの高速シーム溶接性が向上するほどオキサイドクロムは低減しない。
【0005】
さらに、以上の処理を行った後ドラックアウト浴洗および高温水洗による従来のオキサイドクロム溶解法を行ってもほとんど溶解しない。そこで、発明者らは誠意検討した結果、クロメート処理浴の温度を低温化するほど電解時でのオキサイドクロム量は増加するものの、このとき生成したオキサイドクロムは硫酸イオンの共析量が多いため溶解性の高く、電解した後高温のクロム酸浴に浸漬することで規定量のオキサイドクロム量まで溶解することができることをも明らかにした。
【0006】
【課題を解決するための手段】
本発明の要旨は次の通りである。
(1)被めっき鋼板表面に、Niを5〜55%含有し、かつNiとしてめっき量2〜40mg/m2 のFe−Ni合金めっき層を形成した後、その表面にめっき量400〜2500mg/m2 のSnめっき層を形成し、その後浴温10〜40℃の硫酸イオンを含むクロムめっき浴中で電解を行い、次いで浴温50〜70℃のクロム酸浴中に浸漬し、前記Snめっき層の表面に7〜15mg/m2 の金属クロム層その表面に金属クロム換算で1〜8mg/m2 のオキサイドクロム層を形成することを特徴とする高速シーム溶接性、耐食性、密着性に優れた表面処理鋼板の製造方法。
【0007】
(2)Snめっき層を形成した後溶錫処理を行うことを特徴とする、前記(1)に記載の高速シーム溶接性、耐食性、密着性に優れた表面処理鋼板の製造方法、である。
【0008】
以下、本発明の作用である高速シーム溶接性、耐食性、密着性の優れた表面処理鋼板の製造方法について詳しく説明する。
本発明においてめっき原板は特に規制されるものではなく、通常、容器材料として使用されている鋼板を用いる。めっき原板の製造方法、材質なども特に規制されるものではなく、通常の鋼片製造工程から熱間圧延、酸洗、冷延工程、焼鈍、調質等の工程を経て製造される。さらに、このめっき原板は必要とされる缶体強度および板厚に応じて冷間圧延後、焼鈍を行ってから再冷間圧延(即ち2CR法)とする工程で製造しても良い。
【0009】
上記のめっき原板に、通常、めっき原板の表面を正常化するため前処理として脱脂、酸洗が行われるが、それらの方法は特に規制するものではなく、例えば、10%苛性ソーダ中で脱脂した後、5%硫酸溶液中で酸洗を行えばよい。脱脂、酸洗に引き続き、Fe−Ni合金めっき浴中での陰極電解が行われる。Fe−Ni合金めっき層を付与する目的は、耐食性と溶接性の両特性の確保である。
【0010】
Niは高耐食性金属のため、NiをFe−Ni合金めっきとしてめっき層中に含有させることにより、めっき層の耐食性を向上させることができる。Niによるめっき層の耐食性向上効果は、片面当たりのFe−Ni合金めっき層中のNi量2mg/m2 以上から発現する。従って、Niとしてめっき量は2mg/m2 以上必要である。合金めっき中のNi量が多くなるほど、めっき層の耐食性向上効果は増加するが、NiはSnと極めて合金化しやすい金属のため合金めっき中のNi量が多くなると上層のSnとの合金化が製缶工程で進行し、興行的に効率よく溶接するために必要な、合金化していないSnが十分量確保されない。従って合金めっき中のNi量は、40mg/m2 以下にする必要がある。
【0011】
また、耐食性と溶接性の両特性を確保するためには、Fe−Ni合金めっき層中のNi含有率は以下のように規定される。Ni含有率が低すぎるとNiの表面濃度が低くなり表面から進行する腐食を防ぐことが困難になるため、Fe−Ni合金めっき層中のNi含有率は5%以上必要である。また、Ni含有率が55%を越えると、Niの表面濃度が高くなりすぎSnとの合金化が進行しやすくなる、Fe−Ni合金めっき層中のNi含有率は55%以下にする必要がある。
従って、実用上、耐食性と溶接性を確保するために必要なFe−Ni合金めっきにおけるNi含有量は鋼板片面当たり2〜40mg/m2 、Fe−Niめっき層中のNi含有率は5〜55%にする必要がある。
【0012】
Fe−Ni合金めっきの後、Snめっきが行われる。ここでいうSnめっきとは金属Snと不可避的不純物からなる。Snめっきは、前述したように溶接性確保するために行われるが、工業的に効率良く溶接を行うには、Snのめっき量を400mg/m2 以上にする必要がある。Snめっき量が2500mg/m2 を越えると、溶接性の向上効果が飽和するため、経済的には2500mg/m2 以下でよい。このSnめっき方法については特に規制するものではなく、例えば、通常の電気めっきにより行うことができる。
【0013】
Snめっきの後、溶融錫処理を行うことにより、SnがFe−Ni表面上で球状化し、より密着性の優れためっき層構造が形成できる。そのため、Snめっきの後、Snの溶融溶錫処理を行うことが望ましい。溶融溶錫処理においてはSnの融点を超える加熱処理が行えれば良く、例えば、通電加熱、誘導加熱、炉内加熱などの方法を使用すればよい。
【0014】
引き続き溶融溶錫処理の後、フィルムおよび/または塗料密着性、耐食性(アンダーカッティングコロージョン(=塗膜下腐食の防止)を目的としてクロメート被膜が付与される。ここで言うクロメート被膜とは、下層に金属クロム層、上層に水和酸化クロム層の二層よりなる被膜を指している。水和酸化クロム層には後述するめっき助剤である硫酸イオンやフッ素イオンなどを含む場合がある。フォルム密着性や耐食性は、この水和酸化クロムの官能基とフィルムもしくは塗料の官能基が強固な化学結合を行うこと、および金属クロムの保護効果による製缶時クロメート被膜と金属Sn界面における脆化した酸化Sn生成抑制によって確保される。
【0015】
しかし、水和酸化クロム被膜は電気的に絶縁体のために電気抵抗が非常に高く、金属クロムも融点、電気抵抗かつ硬度が高いので、両者とも溶接性を劣化せしめる負の要因である。すなわち、溶接速度が80m/分を超えるような高速溶接では溶接部分に短時間に大電流を流すため局部的に発熱しやすくチリとよばれる溶接欠陥を発生しやすい。そのため、良好なフィルムおよび塗料密着性、耐食性と実用的に高速シーム溶接性を劣化せしめない適正なクロメート被膜付着量が非常に重要になってくる。
【0016】
従って、クロメート被膜付着量は、片面当たり金属クロム換算で2〜8mg/m2 のオキサイドクロムと8〜15mg/m2 の金属クロムが選定される。即ち、オキサイドクロム量が1mg/m2 未満(金属クロム換算)ではフィルムもしくは塗料の密着性の向上に効果が得られず、金属クロム量が7mg/m2 未満ではアンダーカッティングコロージョンの防止に効果が得られないので1mg/m2 以上オキサイドクロム量および8mg/m2 以上の金属クロムの付着量が望ましい。一方、オキサイドクロム量が8mg/m2 、金属クロム量が15mg/m2 を越えると、接触抵抗が増加し始め、高速シーム溶接時に局部的な発熱によりチリが発生し易くなり、溶接性が劣化する。
【0017】
クロメート処理法は、無水クロム酸の浴にめっき助剤として硫酸を加えたクロメート処理浴での陰極電解処理によって行う。単にクロメート処理浴での電解のみでは上記に示した構造のクロメート被膜を形成させるのは非常に困難である。必要最小の金属クロムを析出させると必要以上のオキサイドクロムが生成し、高速シーム溶接性が悪くなる。そのため電解時に溶解性の高いオキサイドクロムを生成させ、その後そのオキサイドクロムをクロム酸浴で溶解させる必要がある。
【0018】
オキサイドクロムのクロム酸浴での溶解性は、電解時の浴温により決定され浴温の低下と共に向上する。特に電解時の浴温40℃以下でのオキサイドクロムの溶解性は顕著であり、40℃を電解時の浴温の上限とすることが望ましい。電解時の浴温の下限は特に規定しないが、あまり低温にするのは冷凍機の設置または能力増が必要で不経済であるため、10℃を下限とするのが好ましい。
また、生成したオキサイドクロムの溶解能力はクロム酸浴温の上昇と共に増加し、特に50℃以上で顕著である。クロム酸浴温の上限は特に規定しないが、あまり高温にすると浴のヒューム回収が大がかりとなり不経済であるため、70℃を上限とするのが好ましい。
【0019】
【実施例】
以下に本発明の実施例および比較例について述べ、その結果を各々表1に示す。冷間圧延もしくは焼鈍後の2回圧延により、所定の板厚に調整しためっき原板を5%苛性ソーダ中で電解脱脂し、水洗後10%硫酸中で電解酸洗し、表面活性後表面処理を行った。このめっき原板に、
(1)に示す条件でFe−Ni合金めっきを行った後、(2)に示す条件で錫めっきを行い、引き続き(3)−(A)〜(C)に示す条件で加熱処理を行い、引き続き(4)に示す処理浴でクロメート被膜を生成させた後、(5)に示す条件でオキサイドクロムを溶解させたものを作製した。
【0020】
【表1】

Figure 0003894383
【0021】
(1)Fe−Ni合金めっき条件
Niイオン:25g/l、Feイオン:50g/l、硫酸イオン:15g/l、塩素イオン:10g/l、ホウ酸:20g/lを有する35℃のめっき浴中に試験片を浸漬し、5A/dm2 で電解することによりFe−Ni合金めっき層を形成させる。
(2)錫めっき条件
錫イオン:15g/l、フェノールスルホン酸イオン:15g/l、光沢添加剤:1.2g/lを有する50℃のめっき浴中に(1)で作製した試験片を浸漬し、8A/dm2 で電解することにより錫めっきを行う。電解時間はめっき量に応じて調節する。
【0022】
(3)加熱処理条件
(A)加熱炉法
400℃雰囲気の加熱炉に(2)で作製した錫めっき鋼板を5〜30sec入れ、錫を溶融させ取り出し、直ちに冷却する。
(B)通電加熱法
(2)で作製した錫めっき鋼板に交流を通電し、鋼板電気抵抗により発熱させ、錫を溶融させ、直ちに冷却する。
(C)誘導加熱法
(2)で作製した錫めっき鋼板を誘導加熱により発熱させ、錫を溶融させ、直ちに冷却する。
【0023】
(4)クロメート処理条件
以下のめっき組成の浴中に(3)で作製した試験片を浸漬し電解する。電解時間はめっき量に応じて調整する。
酸化クロム 100g/l、硫酸イオン0.6g/l
めっき条件 10〜60℃ 5〜80A/dm2
(5)オキサイドクロム溶解処理条件
以下の浴組成の浴中に(4)で作製した試験片を浸漬する。浸漬時間は、任意に調整する。
酸化クロム 100g/l、硫酸イオン0.6g/l
溶解条件 40〜70℃
【0024】
上記処理材について、以下に示す(A)〜(D)の各項目について実施し、その性能を評価した。
(A)高速シーム溶接性
試験片は高温短時間での塗装焼き付け条件を想定して320℃まで23secでする昇温条件で焼き付けを行い、以下の溶接条件で高速シーム溶接性を評価した。ラップ代0.5mm、加圧力45kgf、溶接ワイヤースピード100m/mimの条件で、電流を変更して溶接を実施し十分な溶接強度が得られる最小電流値とチリなどの溶接欠陥が目立ち始める最大電流値からなる適正電流範囲の広さから総合的に判断し、3段階(◎:非常に広い、○:実用上問題なし、×:狭い)で評価した。
【0025】
(B)塗料密着性
試験片の缶内面側に相当する面にエポキシフェノール系の塗料を55mg/dm2 塗布し、さらに缶外面に相当する面にクリヤーラッカーを40mg/dm2 塗布し、290℃まで15secの焼き付け条件で関そう硬化した。引き続き、各々の面に1mm間隔でスクラッチを入れ、100個の碁盤目を作製し、速やかにテープ剥離し、その剥離状況を観察し、3段階(◎:剥離無し、○:1〜4個剥離、×:5個以上剥離)で塗料密着性を評価した。
【0026】
(C)フィルム密着性評価試験
試験片に厚さ15μmのPET(ポリエチレンテレフタレート)系のフィルムをラミネートした後、地鉄に達するまでクロスカットを入れ、速やかに240℃に加熱し、クロスカット中央部に5kg/cm2 の空気ガスを垂直に吹き付け、3段階(◎:全く剥離無し、○:僅かな剥離、×:大部分で剥離)でフィルムの剥離状況を評価した。
【0027】
(D)UCC(アンダーカッティングコロージョン)評価テスト
試験片の缶内面に相当する面の耐食性を評価するため、缶内面側に相当する面に厚さ15μmのPET(ポリエチレンテレフタレート)系フィルムをラミネートした。その後地鉄に達するまでクロスカットを入れ、1.5%クエン酸ー1.5%食塩混合液からなる試験液中に大気開放下55℃×4日間浸漬した。試験終了後、速やかにスクラッチ部および平面部をテープで剥離して、スクラッチ部近傍の腐食状況、スクラッチ部のピッティング状況および平面部のフィルム剥離状況を3段階(◎:剥離が無く腐食も認められない、○:僅かな剥離があるが腐食は認められない、×:大部分で剥離し激しい腐食が認められる)で総合的に評価した。
【0028】
【発明の効果】
以上述べたように、本発明により製造された溶接缶用鋼板は、優れた高速シーム溶接性、密着性および耐食性を有することが明らかになった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a steel sheet for a welding can that is excellent in high-speed seam weldability, paint and film adhesion, and corrosion resistance as a can-making material.
[0002]
[Prior art]
In recent years, welding can manufacturing technology using wire seam resistance welding has been rapidly advanced, and practical application in the beverage can field has been rapidly progressing. The steel plate for cans used in this type of welded can is a can-making machine with excellent seam weldability in which Fe-Ni alloy plating is performed by electroplating, Sn plating is performed, and further, tin treatment is performed and chromate treatment is performed. For surface treated steel sheets (Japanese Patent Laid-Open No. 60-208494), or for seam welded cans with excellent paint adhesion and weldability by applying Sn-plating and chromate treatment after applying Fe-Ni alloy It is produced by a method for producing a surface-treated steel sheet (Japanese Patent Laid-Open No. 60-13098). Certainly, the manufacturing method according to the present invention provides a surface-treated steel sheet for a welding can having weldability, corrosion resistance, and paint adhesion.
Furthermore, using these surface-treated steel sheets for containers, paint baking is performed on the inner surface of the can to ensure corrosion resistance, and multicolor printing is performed on the outer surface of the can. Thereafter, the can is made by a wire seam welding method and put into practical use.
[0003]
[Problems to be solved by the invention]
In recent years, combined with further progress in canning technology and reduction in canning costs, canning speed has been increased in order to greatly improve the productivity of the canning process. However, when the can-making speed is increased, the welding application current range (ACR) is reduced, the weldability is deteriorated, and poor welding is likely to occur. This is because the chromium oxide film (chromium oxide) that forms the chromate film for adhesion and corrosion resistance has a very high electrical resistance, and also has a high melting point, electrical resistance, and hardness, so that conventional cans are made. This is because even if the amount of adhesion is not a problem with the line speed, it has an adverse effect when the speed is increased.
[0004]
Simply reducing the amount of chromate attached will cause other properties (adhesion, corrosion resistance) to deteriorate. In order to improve high-speed seam weldability without deteriorating adhesion and corrosion resistance characteristics, it has been found that it is important to individually and strictly control the amounts of metal chromium and oxide chromium. However, the amount of metal chromium and oxide chromium are determined during electrolysis in the chromate treatment bath. The higher the chromate treatment bath temperature, the lower the oxide chromium amount, but the higher the high-speed seam weldability, the lower the oxide chromium. do not do.
[0005]
Furthermore, even if the conventional oxide chromium dissolution method by the wash-out bath washing and the high-temperature water washing is performed after the above treatment, it hardly dissolves. Therefore, as a result of sincerity investigations, the inventors have found that the amount of oxide chromium during electrolysis increases as the temperature of the chromate treatment bath is lowered. It has also been clarified that it can be dissolved up to a specified amount of oxide chromium by immersing it in a hot chromic acid bath after electrolysis.
[0006]
[Means for Solving the Problems]
The gist of the present invention is as follows.
(1) On the surface of the steel sheet to be plated , after forming an Fe—Ni alloy plating layer containing 5 to 55% of Ni and having a plating amount of 2 to 40 mg / m 2 as Ni, a plating amount of 400 to 2500 mg is formed on the surface. / M 2 Sn plating layer is formed, and then electrolysis is performed in a chromium plating bath containing sulfate ions at a bath temperature of 10 to 40 ° C., followed by immersion in a chromic acid bath at a bath temperature of 50 to 70 ° C. fast seam weldability, characterized by forming an oxide layer of chromium 1~8mg / m 2 reckoned as metal chromium 7~15mg / m 2 of metallic chromium layer and its surface on the surface of the plating layer, the corrosion resistance, adhesion A method for producing a surface-treated steel sheet with excellent resistance .
[0007]
(2) The method for producing a surface-treated steel sheet excellent in high-speed seam weldability, corrosion resistance, and adhesion according to (1) , wherein the tin-plating process is performed after the Sn plating layer is formed.
[0008]
Hereinafter, the method for producing a surface-treated steel sheet excellent in high-speed seam weldability, corrosion resistance, and adhesion, which is an operation of the present invention, will be described in detail.
In the present invention, the plating original plate is not particularly restricted, and a steel plate that is usually used as a container material is used. There are no particular restrictions on the production method, material, etc. of the plating original plate, and the plate is produced through processes such as hot rolling, pickling, cold rolling, annealing, tempering and the like from a normal steel piece production process. Further, the plating original plate may be manufactured in a process of performing cold rolling (ie, 2CR method) after performing cold rolling and annealing after depending on the required strength of the can body and the plate thickness.
[0009]
The above-mentioned plating base plate is usually degreased and pickled as a pretreatment to normalize the surface of the plating base plate, but these methods are not particularly restricted, for example, after degreasing in 10% caustic soda Pickling may be performed in a 5% sulfuric acid solution. Subsequent to degreasing and pickling, cathodic electrolysis in an Fe—Ni alloy plating bath is performed. The purpose of providing the Fe—Ni alloy plating layer is to secure both characteristics of corrosion resistance and weldability.
[0010]
Since Ni is a highly corrosion-resistant metal, the corrosion resistance of the plating layer can be improved by incorporating Ni into the plating layer as an Fe—Ni alloy plating. The effect of improving the corrosion resistance of the plating layer by Ni is manifested from a Ni amount of 2 mg / m 2 or more in the Fe—Ni alloy plating layer per side. Therefore, the amount of plating as Ni is required to be 2 mg / m 2 or more. As the amount of Ni in the alloy plating increases, the effect of improving the corrosion resistance of the plating layer increases. However, since Ni is a metal that is extremely easy to alloy with Sn, alloying with the upper Sn layer is produced when the amount of Ni in the alloy plating increases. A sufficient amount of non-alloyed Sn necessary for the welding process to proceed efficiently in the can process is not ensured. Therefore, the amount of Ni in the alloy plating needs to be 40 mg / m 2 or less.
[0011]
Moreover, in order to ensure both characteristics of corrosion resistance and weldability, the Ni content in the Fe—Ni alloy plating layer is defined as follows. If the Ni content is too low, the surface concentration of Ni becomes low and it is difficult to prevent corrosion that proceeds from the surface. Therefore, the Ni content in the Fe—Ni alloy plating layer needs to be 5% or more. Further, if the Ni content exceeds 55%, the surface concentration of Ni becomes too high and alloying with Sn tends to proceed, and the Ni content in the Fe—Ni alloy plating layer needs to be 55% or less. is there.
Therefore, practically, the Ni content in the Fe—Ni alloy plating necessary to ensure corrosion resistance and weldability is 2 to 40 mg / m 2 per one side of the steel sheet, and the Ni content in the Fe—Ni plating layer is 5 to 55. %.
[0012]
After the Fe—Ni alloy plating, Sn plating is performed. The Sn plating here is made of metal Sn and inevitable impurities. As described above, Sn plating is performed to ensure weldability. However, in order to perform welding efficiently industrially, the Sn plating amount needs to be 400 mg / m 2 or more. If the Sn plating amount exceeds 2500 mg / m 2 , the effect of improving the weldability is saturated, so that it may be 2500 mg / m 2 or less economically. The Sn plating method is not particularly limited, and can be performed by, for example, ordinary electroplating.
[0013]
By performing molten tin treatment after Sn plating, Sn is spheroidized on the Fe—Ni surface, and a plating layer structure with better adhesion can be formed. Therefore, it is desirable to perform the Sn molten tin treatment after Sn plating. In the molten tin treatment, it is sufficient if a heat treatment exceeding the melting point of Sn can be performed. For example, a method such as energization heating, induction heating, or furnace heating may be used.
[0014]
Then, after the molten tin treatment, a chromate film is applied for the purpose of film and / or paint adhesion and corrosion resistance (undercutting corrosion (= prevention of corrosion under the coating)). This refers to a coating composed of a metallic chromium layer and an upper layer of a hydrated chromium oxide layer, and the hydrated chromium oxide layer may contain sulfate ions or fluorine ions, which are plating aids described later. As for the properties and corrosion resistance, the functional group of the hydrated chromium oxide and the functional group of the film or paint form a strong chemical bond, and the brittle oxidation at the interface between the chromate film and the metal Sn during canning due to the protective effect of the metal chromium. Secured by Sn generation suppression.
[0015]
However, since the hydrated chromium oxide film is an electrical insulator, the electrical resistance is very high, and the chromium metal has a high melting point, electrical resistance and hardness, both of which are negative factors that degrade the weldability. That is, in high-speed welding in which the welding speed exceeds 80 m / min, a large amount of current is passed through the welded portion in a short time, so that heat is locally generated and a welding defect called dust is likely to occur. For this reason, good film and paint adhesion, corrosion resistance, and an appropriate chromate film adhesion amount that does not cause practical deterioration of high-speed seam weldability become very important.
[0016]
Therefore, 2-8 mg / m < 2 > of oxide chromium and 8-15 mg / m < 2 > of metal chromium are selected as the amount of chromate film deposited on one side in terms of metal chromium. That is, if the amount of oxide chromium is less than 1 mg / m 2 (converted to metal chromium), no effect is obtained in improving the adhesion of the film or paint, and if the amount of metal chromium is less than 7 mg / m 2, it is effective in preventing undercutting corrosion. Since it cannot be obtained, an amount of oxide chromium of 1 mg / m 2 or more and an amount of metal chromium of 8 mg / m 2 or more are desirable. On the other hand, when the amount of oxide chromium exceeds 8 mg / m 2 and the amount of metal chromium exceeds 15 mg / m 2 , contact resistance starts to increase, and local heat generation during high-speed seam welding tends to generate dust, resulting in poor weldability. To do.
[0017]
The chromate treatment is performed by cathodic electrolysis in a chromate treatment bath in which sulfuric acid is added as a plating aid to a chromic anhydride bath. It is very difficult to form a chromate film having the structure shown above only by electrolysis in a chromate treatment bath. When the minimum amount of metallic chromium is deposited, more oxide chromium is generated than necessary, and high-speed seam weldability is deteriorated. Therefore, it is necessary to generate highly soluble oxide chromium during electrolysis and then dissolve the oxide chromium in a chromic acid bath.
[0018]
The solubility of oxide chromium in a chromic acid bath is determined by the bath temperature during electrolysis and improves with a decrease in bath temperature. In particular, the solubility of oxide chromium at a bath temperature of 40 ° C. or lower during electrolysis is remarkable, and it is desirable that 40 ° C. be the upper limit of the bath temperature during electrolysis. The lower limit of the bath temperature at the time of electrolysis is not particularly defined, but it is preferable to set the lower limit to 10 ° C. because it is uneconomical because it is necessary to install a refrigerator or increase the capacity.
Further, the dissolving ability of the produced oxide chromium increases with an increase in the chromic acid bath temperature, and is particularly remarkable at 50 ° C. or higher. The upper limit of the chromic acid bath temperature is not particularly defined, but if the temperature is too high, the recovery of the bath fume becomes large and uneconomical, so it is preferable to set the upper limit at 70 ° C.
[0019]
【Example】
Examples of the present invention and comparative examples are described below, and the results are shown in Table 1, respectively. Cold-rolled or twice-rolled after annealing, the plating plate adjusted to the specified plate thickness is electrolytically degreased in 5% caustic soda, then washed with water, electrolytically pickled in 10% sulfuric acid, and surface treatment is performed after surface activation. It was. On this plating plate,
After performing Fe—Ni alloy plating under the conditions shown in (1), tin plating is performed under the conditions shown in (2), and subsequently heat treatment is performed under the conditions shown in (3)-(A) to (C). Subsequently, after forming a chromate film in the treatment bath shown in (4), a solution in which oxide chromium was dissolved under the conditions shown in (5) was produced.
[0020]
[Table 1]
Figure 0003894383
[0021]
(1) Fe—Ni alloy plating conditions 35 ° C. plating bath having Ni ions: 25 g / l, Fe ions: 50 g / l, sulfate ions: 15 g / l, chlorine ions: 10 g / l, boric acid: 20 g / l A test piece is immersed therein and electrolyzed at 5 A / dm 2 to form a Fe—Ni alloy plating layer.
(2) Tin plating conditions The test piece prepared in (1) was immersed in a 50 ° C. plating bath having tin ion: 15 g / l, phenol sulfonate ion: 15 g / l, and gloss additive: 1.2 g / l. Then, tin plating is performed by electrolysis at 8 A / dm 2 . The electrolysis time is adjusted according to the amount of plating.
[0022]
(3) Heat treatment conditions (A) Heating furnace method The tin-plated steel sheet prepared in (2) is placed in a heating furnace at 400 ° C. for 5 to 30 seconds, the tin is melted and taken out, and immediately cooled.
(B) An alternating current is applied to the tin-plated steel sheet produced by the electric heating method (2), heat is generated by the electric resistance of the steel sheet, the tin is melted, and immediately cooled.
(C) The tin-plated steel sheet produced by the induction heating method (2) is heated by induction heating to melt tin, and immediately cooled.
[0023]
(4) Chromate treatment conditions The test piece prepared in (3) is immersed in a bath having a plating composition or less and electrolyzed. The electrolysis time is adjusted according to the amount of plating.
Chromium oxide 100g / l, sulfate ion 0.6g / l
Plating conditions 10-60 ° C 5-80 A / dm 2
(5) Oxide chromium dissolution treatment conditions The test piece prepared in (4) is immersed in a bath having a bath composition below. The immersion time is arbitrarily adjusted.
Chromium oxide 100g / l, sulfate ion 0.6g / l
Dissolution conditions 40-70 ° C
[0024]
About the said processing material, it implemented about each item of (A)-(D) shown below, and evaluated the performance.
(A) The high-speed seam weldability test piece was baked under a temperature rising condition of 23 seconds up to 320 ° C. assuming a high-temperature short-time coating baking condition, and the high-speed seam weldability was evaluated under the following welding conditions. The minimum current value at which sufficient welding strength can be obtained by changing the current under conditions of lapping of 0.5 mm, welding pressure of 45 kgf, and welding wire speed of 100 m / mim, and the maximum current at which welding defects such as dust start to stand out Judging comprehensively from the width of the appropriate current range consisting of values, evaluation was made in three stages (◎: very wide, ○: no practical problem, ×: narrow).
[0025]
(B) 55 mg / dm 2 of epoxy phenolic paint was applied to the surface corresponding to the inner surface of the paint adhesion test piece, and 40 mg / dm 2 of clear lacquer was applied to the surface corresponding to the outer surface of the can. Until it was cured for 15 seconds. Subsequently, scratches are made on each surface at 1 mm intervals to produce 100 grids, and the tape is peeled off quickly. The peeled state is observed, and three stages (◎: no peeling, ○: 1 to 4 pieces are peeled off) , X: peeling 5 or more), and paint adhesion was evaluated.
[0026]
(C) Film adhesion evaluation test After laminating a 15 μm-thick PET (polyethylene terephthalate) film on the test piece, a crosscut is made until it reaches the ground iron, and then immediately heated to 240 ° C., the center of the crosscut A 5 kg / cm 2 air gas was blown vertically onto the film, and the film peeling state was evaluated in three stages (◎: no peeling, ○: slight peeling, x: peeling in most).
[0027]
(D) UCC (Under Cutting Corrosion) Evaluation In order to evaluate the corrosion resistance of the surface corresponding to the inner surface of the can of the test specimen, a PET (polyethylene terephthalate) film having a thickness of 15 μm was laminated on the surface corresponding to the inner surface of the can. After that, a crosscut was put in until it reached the ground iron, and it was immersed in a test solution composed of a 1.5% citric acid-1.5% sodium chloride mixed solution at 55 ° C. for 4 days under open air. Immediately after the test, the scratch part and the flat part are peeled off with tape, and the corrosion situation near the scratch part, the pitting situation of the scratch part, and the film peeling situation of the flat part are classified into three stages (◎: no peeling and corrosion is recognized) No, ○: There is slight peeling, but no corrosion is observed, and X: Most peeling and severe corrosion are recognized).
[0028]
【The invention's effect】
As described above, it has been clarified that the steel plate for welding cans manufactured according to the present invention has excellent high-speed seam weldability, adhesion, and corrosion resistance.

Claims (2)

被めっき鋼板表面に、Niを5〜55%含有し、かつNiとしてめっき量2〜40mg/m2 のFe−Ni合金めっき層を形成した後、その表面にめっき量400〜2500mg/m2 のSnめっき層を形成し、その後浴温10〜40℃の硫酸イオンを含むクロムめっき浴中で電解を行い、次いで浴温50〜70℃のクロム酸浴中に浸漬し、前記Snめっき層の表面に7〜15mg/m2 の金属クロム層その表面に金属クロム換算で1〜8mg/m2 のオキサイドクロム層を形成することを特徴とする高速シーム溶接性、耐食性、密着性に優れた表面処理鋼板の製造方法。 To be plated surface of the steel sheet, the Ni containing 5 to 55%, and after forming the Fe-Ni alloy plating layer of coating weight to 40 mg / m 2 as Ni, plating amount 400~2500mg / m 2 on its surface Of the Sn plating layer , followed by electrolysis in a chromium plating bath containing sulfate ions at a bath temperature of 10 to 40 ° C., and then immersed in a chromic acid bath at a bath temperature of 50 to 70 ° C. fast seam weldability, characterized by forming an oxide layer of chromium 1~8mg / m 2 reckoned as metal chromium on the surface thereof 7~15mg / m 2 of metallic chromium layer on the surface, corrosion resistance, excellent adhesion Manufacturing method of surface-treated steel sheet . Snめっき層を形成した後溶錫処理を行うことを特徴とする請求項1に記載の高速シーム溶接性、耐食性、密着性に優れた表面処理鋼板の製造方法。The method for producing a surface-treated steel sheet excellent in high-speed seam weldability, corrosion resistance, and adhesion according to claim 1, wherein the tin-plating process is performed after forming the Sn plating layer.
JP20816397A 1997-08-01 1997-08-01 Surface-treated steel sheet with excellent high-speed seam weldability, adhesion, and corrosion resistance, and its manufacturing method Expired - Fee Related JP3894383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20816397A JP3894383B2 (en) 1997-08-01 1997-08-01 Surface-treated steel sheet with excellent high-speed seam weldability, adhesion, and corrosion resistance, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20816397A JP3894383B2 (en) 1997-08-01 1997-08-01 Surface-treated steel sheet with excellent high-speed seam weldability, adhesion, and corrosion resistance, and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH1150268A JPH1150268A (en) 1999-02-23
JP3894383B2 true JP3894383B2 (en) 2007-03-22

Family

ID=16551705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20816397A Expired - Fee Related JP3894383B2 (en) 1997-08-01 1997-08-01 Surface-treated steel sheet with excellent high-speed seam weldability, adhesion, and corrosion resistance, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3894383B2 (en)

Also Published As

Publication number Publication date
JPH1150268A (en) 1999-02-23

Similar Documents

Publication Publication Date Title
JP3514837B2 (en) Hot-dip galvanizing method
JP3894383B2 (en) Surface-treated steel sheet with excellent high-speed seam weldability, adhesion, and corrosion resistance, and its manufacturing method
JP4280181B2 (en) Steel plate for welding cans with excellent weldability, adhesion and corrosion resistance
JP3895873B2 (en) Manufacturing method for surface-treated steel sheets with excellent high-speed seam weldability, adhesion, and corrosion resistance
JP3822704B2 (en) Manufacturing method of steel sheet for welding can excellent in weldability, corrosion resistance, appearance and adhesion
JP3670857B2 (en) Chemical treatment of nickel-plated steel sheet
JP3745457B2 (en) Manufacturing method of steel sheet for welding can excellent in weldability, corrosion resistance, appearance and adhesion
JP3720961B2 (en) Steel plate for welding cans with excellent weldability, corrosion resistance, and adhesion
JP3461684B2 (en) Manufacturing method of steel plate for laminated welding can
JP3670844B2 (en) Chemical treatment of tin-plated steel sheet
JP4452198B2 (en) Surface-treated steel sheet with excellent seam weldability
JP3670845B2 (en) Chemical treatment of nickel-plated steel sheet
JP4102326B2 (en) Thin tin-plated steel sheet for welding cans
JPS6240396A (en) Surface treated steel sheet for can having superior weldability and corrosion resistance
JPH11106952A (en) Steel sheet for welded can excellent in waldability, corrosion resistance and film adhesion
JP3643473B2 (en) Surface-treated steel sheet with excellent high-speed seam weldability, adhesion, and corrosion resistance, and its manufacturing method
JPH11106953A (en) Steel sheet for welded can excellent in weldability, corrosion resistance and film adhesion
JP3270318B2 (en) Steel plate for welded cans with excellent weldability, corrosion resistance, appearance and adhesion
JPH03150390A (en) Surface-treated steel sheet for di can
JP3140305B2 (en) Manufacturing method of tin-coated steel sheet with excellent paint adhesion
JPS6379994A (en) Production of steel sheet for welded can
JPH0428796B2 (en)
JP2000080498A (en) Chemical treatment of tin group plated steel plate
JPS5952212B2 (en) Manufacturing method of steel plate for welded cans
JPH08302479A (en) Functionally-gradient sn alloy-plated steel sheet for welded can excellent in weldability and film adhesion and its production

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040615

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040730

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041014

A61 First payment of annual fees (during grant procedure)

Effective date: 20061207

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20101222

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20101222

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20111222

LAPS Cancellation because of no payment of annual fees