JPH0425350B2 - - Google Patents

Info

Publication number
JPH0425350B2
JPH0425350B2 JP60129531A JP12953185A JPH0425350B2 JP H0425350 B2 JPH0425350 B2 JP H0425350B2 JP 60129531 A JP60129531 A JP 60129531A JP 12953185 A JP12953185 A JP 12953185A JP H0425350 B2 JPH0425350 B2 JP H0425350B2
Authority
JP
Japan
Prior art keywords
chromium
tin
amount
metal
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60129531A
Other languages
Japanese (ja)
Other versions
JPS61288080A (en
Inventor
Kyoko Hamahara
Hajime Ogata
Takamasa Nakakoji
Toshiro Ichida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP12953185A priority Critical patent/JPS61288080A/en
Publication of JPS61288080A publication Critical patent/JPS61288080A/en
Publication of JPH0425350B2 publication Critical patent/JPH0425350B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は、食缶、飲料缶、一般缶用として、特
に電気抵抗溶接により缶胴を接合する方式に適し
た溶接性と塗装後耐食性にすぐれたシーム溶接缶
用表面処理鋼板に関するものである。 <従来技術とその問題点> 食缶用と素材として従来一般にぶりきと称され
る錫めつき鋼板が広く用いられてきた。この缶胴
の接合方式としては、以前は半田による接合方式
が採用されていたが、半田に含まれる鉛の毒性の
問題から、近年、純錫半田が使用されるようにな
つた。しかし、純錫半田は、接合時の濡れ性が劣
ることから半田接合の技術上の問題があり、更に
高価な純錫半田を使用することにより製造コスト
が上昇するという問題があつた。 一方、近年、食品容器は、例えば、ポリエチレ
ン、アルミニウム、ガラス、紙などの低価格競合
材料の進出に直面しており、上記の如き高価な錫
を付着量2.8〜11.2g/m2の如く厚くめつきしたぶ
りき缶は製造コストが高いので、耐食性には格段
すぐれた特性を有しているとはいえ、苦しい競合
的立場を強いられてきた。 ぶりき缶の上記欠点を解消する目的で、最近半
田接合法に代つて缶胴を電気抵抗溶接によつて接
合する方式が発展し、普及するようになつてき
た。そのためには電気抵抗溶接に適した缶用素材
が必要である。 従来から用いられている缶用材料としては、上
記ぶりきのほかにクロムタイプのテインフリース
チールがある。これは電解クロメート処理を施
し、表面に金属クロムとクロム水和酸化物層を形
成したものであり、経済性には優れているが、表
面に存在する厚いクロム水和酸化物被膜が高抵抗
であるために、溶接性が悪く、溶接部の強度不足
を生じ溶接缶用素材としては適当でない。 その他従来の缶用素材がいずれも溶接缶用素材
として不適切であることから種々の試みが提案さ
れている。例えば、アメリカのナシヨナルスチー
ル社によつて発表された「ニツケルライト」に代
表されるニツケルめつき鋼板があるが、これは鋼
板上に約0.5g/m2の目付量のニツケルめつきを施
した上、表面に在来のクロメート処理を施したも
ので、塗料の密着性が劣り、また30m/min以上
の高速溶接での溶接性が劣るために広く用いられ
るにいたつていない。 更に他の1つは、アメリカ、ジヨーンズ・ロー
リン・ステイール社によつて発表された「テイン
アロイ」に代表されるものである。これは約
0.6g/m2の薄目付の錫めつきを溶錫処理した後、
在来のクロメート処理を施したものであるが、耐
錆性、塗料の密着性、溶接性ともに不充分であ
る。 電気抵抗溶接に適する缶用素材の具備すべき要
件としては溶接性と塗装後の耐食性がすぐれたも
のであることが要求される。この要件を具体的に
説明すると、溶接の際に充分の溶接強度があり、
しかも溶接部にいわゆる「散り」などの溶接欠陥
を生じない適正溶接電流範囲を有し、缶内容物に
対して塗装して用いた場合、塗膜の有する耐食性
を充分生かすことができる塗膜の密着性を有し、
更に不可避的に生ずる塗膜欠陥部においては、素
材自体の優れた耐食性によつて腐食を防止できる
ものでなければならない。このような低コストで
溶接性と塗装後耐食性を満足する溶接缶用素材と
して、本発明者らは先に鋼板表面に多数の凸部を
有する金属錫層を有し、この金属錫層上にクロム
水和酸化物あるいは金属クロムとクロム水和酸化
物からなるクロメート被膜を有するシーム溶接缶
用表面処理鋼板(特願昭59−063883号)を提供し
た。 上記方法で得られるシーム溶接缶用表面処理鋼
板は、特に金属錫層を凸状に形成させることによ
る錫の節約効果が大きく、少ない錫量で適正溶接
電流範囲を有し、シーム溶接缶用素材として溶接
性、塗装後耐食性ともに優れたものであつた。し
かし、缶内容物によつては、非常に厳しい条件下
での塗装後耐食性が要求され、こういつた条件下
では、塗装後耐食性の充分でないものがあること
が判明した。 <発明の構成> 本発明は、鋼板表面に下記(i)〜(iii)の性状の多数
の凸部および凹部を有する金属錫層と、 各凸部の面積が1μm2〜800000μm2 凸部の占める面積百分率が20〜80% 凸部の金属錫の厚さが0.007μm〜0.7μm この金属錫層上に金属クロムとクロム水和酸化
物からなるクロメート皮膜層を有するシーム溶接
缶用表面処理鋼板において、金属錫凸部上の金属
クロム量をXMmg/m2、クロム水和酸化物量をXO
mg/m2、金属錫凹部上の金属クロム量をYMmg/
m2、クロム水和酸化物量をYOmg/m2とした時、 XM≧2、18≧XM+XO≧4 YM≧4、YM+YO≧8 となるように金属錫層上のクロメート皮膜層を分
布させることにより、溶接性と塗装後耐食性の非
常に良好なシーム溶接缶用表面処理鋼板を提供す
るものである。 また、本発明は、鋼板表面に下記(i)〜(iii)の性状
の多数の凸部および凹部を有する金属錫層と、 各凸部の面積が1μm2〜800000μm2 凸部の占める面積百分率が20〜80% 凸部の金属錫の厚さが0.007μm〜0.7μm この金属錫層上に金属クロムとクロム水和酸化
物からなるクロメート皮膜層とを有し、該クロメ
ート皮膜層が、前記金属錫凸部上に金属クロム量
をXMmg/m2、クロム水和酸化物量(以下クロム
換算量)をXOmg/m2、前記金属錫凹部上の金属
クロム量をYMmg/m2、クロム水和酸化物量をYO
mg/m2とした時、 XM≧2、18≧XM+XO≧4 YM≧4、YM+YO≧8 を満足するシーム溶接缶用表面処理鋼板を製造す
るに際し、鋼板表面に前記多数の凸部および凹部
を有する金属錫層を形成し、この金属錫層上への
クロメート皮膜形成の電解処理を行う前に、金属
錫層を形成した鋼板をクロメート処理液に浸漬処
理することを特徴とするシーム溶接缶用表面処理
鋼板の製造方法を提供するものである。 以下、本発明を更に詳細に説明する。 発明者らは、先に、溶接性と塗装後耐食性に優
れた薄目付ぶりきとして特願昭59−63883号に示
す鋼板を提案した。この鋼板は溶接性を塗装後耐
食性に優れた薄目付ぶりきとして画期的な製品を
提供するもので、しかも低コストであるという特
性を有するので、従来のぶりき材に代わるだけで
なくTFSにも代わつて用いられるようになつた。
この場合には、さらに金属Crの多いものが要求
されるようになつたが、単純に金属Crの量を増
やした場合には溶接性が悪くなり、クレームが発
生した。 従つて実ラインではSn量と金属Cr量を非常に
厳密な範囲で管理しなければならず、作業性、効
率が低いものとなつた。そこで本発明者らは、溶
接性は従来の性能を有し、安定して塗料密着性や
塗装後耐食性の優れた薄目付ぶりきについて考察
した。まず始めに同じCr量で塗装後耐食性の異
なる原因について表面皮膜構造の違いを調査し
た。 特願昭59−063883号に示すような表面に多数の
凸部および凹部を有するシーム溶接缶用表面処理
鋼板の構造は、摸式的に表わすと、第1a図また
は第1b図の様になつている。第1図において、
1は鋼板、2は金属錫層、3はクロメート皮膜
層、4は金属錫凸部、5は金属錫凹部である。金
属錫凹部5は、錫を節約するために、ほとんど金
属錫を有しないので塗装後耐食性は、上層のクロ
メート皮膜3が重要な役割をする。 そこで発明者らは、このクロメート皮膜の構造
と塗装後耐食性の関係を徹底的に調べたところ、
塗装後耐食性の非常に優れたものは、金属クロム
をある値以上有し、クロメート皮膜が金属錫凹部
に多いものであつた。 すなわち、種々のサンプルを用いて金属錫層上
のクロメート皮膜をAESのライン分析を用いて
分布を調べたところ、大きく分けると第2d図の
様にクロメート皮膜が均一なものと、第2c図の
様に金属錫の少ない部分の上にはクロメート皮膜
量が多いものとがあり、第2c図の分布を示すも
のは、塗装後耐食性が非常に優れていた。 第2c図および第2d図のAESライン分析結
果を摸式的に表わしたのがそれぞれ第2a図およ
び第2b図である。鋼板表面に多数の凸部4およ
び凹部5を有する金属錫層の場合、金属錫が多い
凸部4については、錫の犠牲防食用によつて塗装
後耐食性もあまり問題がない。 しかし凸部3以外の錫の少ない凹部5について
は、塗装後耐食性をクロメート皮膜でカバーする
必要があり、クロメート皮膜が重要な役割をす
る。一方、金属錫凸部上のクロメート皮膜は多す
ぎると溶接性が劣り、適正溶接電流範囲が得られ
ない。そこでクロメート皮膜が第2a図および第
2c図の様な分布をしていると凸部金属錫の溶接
性を損なうことなく、塗装後耐食性の優れたシー
ム溶接缶用表面処理鋼板が得られると考えられ
る。 そこで本発明者らは更にこのクロメート皮膜の
構造と、分布、量が溶接性と塗装後耐食性に与え
る影響について詳しく調べた。すなわち金属錫凸
部4上の金属クロム量をXMmg/m2、クロム水和
酸化物量をXOmg/m2とし、金属錫凹部5上の金
属クロム量をYMmg/m2、クロム水和酸化物量を
YOmg/m2とした時、このXM、YM、XM+XO、YM
+YOを変化させて、塗装後耐食性と溶接性を詳
しく調べた。その結果を第3図および第4図に示
す。 凸部金属錫部4上の金属クロム量(XM)が2
mg/m2未満の場合や、金属クロムとクロム水和酸
化物の合計量(XM+XO)が4mg/m2未満では塗
装後耐食性の劣るものがあり、またXM+XOが18
mg/m2を越すと溶接性が劣つた。 また金属錫凹部5は金属錫がほとんどないた
め、耐食性の良い条件は金属クロム量(YM)は
4mg/m2以上、また金属クロムとクロム水和酸化
物の合計量(YM+YO)は8mg/m2以上必要であ
ることがわかつた。 以上の構造を有するクロメート皮膜とすること
によつて、不良品の発生率が大幅に低減し、さら
に溶接性を悪くすることなく、これまでより優れ
た塗料密着性と塗装後耐食性を有する薄目付ぶり
きを実ラインで製造することができた。 また、クロメート皮膜を金属錫凹部上に多く形
成させる方法としては、金属錫凸部上のクロムの
電流効率を小さくするとか、金属錫凹部上のクロ
ム電流効率を大きくするとかの方法が考えられ
る。つまり、金属錫凸部よりも金属錫凹部のクロ
ムの電流効率が高ければ、クロムは凹部の方に多
く電着されることになる。 具体的に実施する際に現存の設備をそのまま用
いて行える最も簡便な方法は、錫めつきし、凸状
錫層を形成させた後、クロメート処理する前に、
同クロメート溶液に浸漬し、凸状錫部を酸化さ
せ、酸化錫を多く形成せしめることによつて凸状
錫部のクロムの電流効率を低くし、金属錫凹部に
クロメート皮膜を多く形成させることである。 クロメート電解処理前の浸漬処理は、第1番目
のクロメート処理層のダウンパスをoffとするの
が最も良い方法である。更に長い時間浸漬し、2
パス以上電解をoffとしても本発明の効果は認め
られるが、必要以上にoffのパスを設けることは、
設備コストの面からマイナスであり、さらにoff
パス数が多くなれば、クロムの電流効率が小さく
なりすぎるのでよくない。 さらにクロメート処理の電流密度が10A/dm2
以上とすると効果は大きくなる。電流密度が小さ
い場合には、下地の状態の影響を受けにくいた
め、前浸漬の効果が無くなつてしまうのではない
かと考えられる。 従つてクロメート処理を第1番目のクロメート
処理層のダウンパスをoffとし、クロメート浸漬
処理した後、10A/dm2以上の電流密度でクロメ
ート電解処理する事によつて本発明者らが先に提
案した多数の凸部を有する金属錫層を有するシー
ム溶接缶用表面処理鋼板(特願昭59−063883号)
の塗装後耐食性を、設備コストや管理コストをほ
とんど要することなく向上させるという大きな効
果を得ることができた。 本発明において、金属錫の効果は溶接性の向上
である。金属錫層は多数の凸部を有し、金属錫は
凸状もしくは凸凹状に分散して存在させるのが好
ましい。そして、 各凸部の面積が1μm2〜800000μm2 凸部の占める面積百分率が20〜80% 凸部の金属錫の厚さが0.007μm〜0.7μmとす
るのが好適である。 各凸部の面積を1μm2〜800000μm2に限定した理
由は、1μm2未満では溶接時の接触面積を広げる
効果が不十分であり、溶接性向上の効果がなく、
800000μm2超ではこの効果が飽和してしまい、不
必要に錫を使用することになり、経済的デメリツ
トを生ずる。 また同時に、凸部の面積百分率を20〜80%に限
定した理由は、20%未満では溶接時の接触面積を
広げる効果が不十分であり、溶接性向上の効果が
なく、80%超では凸状にする経済的優位性が失わ
れるからである。 また同時に、凸部の金属錫の厚さを0.007μm〜
0.7μmに限定した理由は、0.007μm未満では溶接
性向上効果が十分得られないからであり、0.7μm
超では溶接性向上効果が飽和し、経済的デメリツ
トを生ずるからである。金属錫の厚さは、下地金
属の種類、塗装後の焼付条件により上記範囲内で
任意に選べば良い。 金属錫を凸状もしくは凸凹状に分散して存在さ
せる方法としては、これらの限定されることはな
いが、代表的に次のようなものを挙げることがで
きる。 (1) フラツクスを用いた凝集 平坦に電気錫めつきを施した後、フラツクス
(ZnCl2、NH4Cl等の水溶液)を表面に任意の分
布状態に塗布した後、溶錫処理を行い、フラツク
スが塗布された所と塗布されていない所の溶融錫
濡れ性の差を利用して、凸状もしくは凸凹状に錫
を凝集凝固させる。 (2) 不活性表面への凝集 表面に溶融錫の濡れに対する不活性化処理
(Niの拡散処理等)を施した後、平坦に電気錫め
つきを施し、溶錫処理を行い、錫を凝集凝固させ
る。 この金属錫層の下にはニツケル拡散層(不活性
層)32をその重量比Ni/(Ni+Fe)が0.50以
下に、かつその厚さが5000Å以下になるように設
けることができる。ニツケル拡散層は平坦な錫層
を凸部状に処理するためあるいは局部的凸部を有
する薄い金属錫層を形成するための不活性層とし
て形成するものである。ニツケル拡散層が上記範
囲をはずれると上記の如く凸部を満足いくように
形成されにくくなる。 以下にシーム溶接缶用表面処理鋼板の品質特性
を把握するために用いたAES分析法、溶接法、
塗装後耐食性の評価方法を示した。 (1) AES測定 シーム溶接缶用表面処理鋼板表面の金属クロム
の分布と定量、金属クロムとクロム水和酸化物の
総和の分布と定量をAESにより調べた。 測定は、真空度1.0×10-9Torr、ビーム電圧
10.0KVの条件で分布は大まかにライン分析を用
いて調べ、特に厳密な定量値は、ライン分析と深
さ方向の分析を組み合わせ、検量線法で、すべて
の分析試料を同じ日に行つた。 金属クロムの分布と定量は、得られためつき板
を熱アルカリ(7.5N NaOH、90℃)に10分間浸
漬した後、上記方法で、金属クロムとクロム水和
酸化物の総和の分布と定量は得られためつき板を
そのまま上記方法で行つた。 (2) 溶接性の評価 溶接電極として約1.5mmφの銅ワイヤーを使用
し、これを移動しながら供試材試片を一定の加圧
下で重ね合わせ、溶接速度40m/分で電気抵抗溶
接を行い、溶接部が十分の強度を有し、かつ、い
わゆる「散り」の発生がないという条件から決め
られる溶接電流と加圧力の適正の範囲の大きさに
より素材の溶接性を評価した。 なお、溶接部の強度は溶接部を挾んだ円筒端部
からV字型の切込みを入れ、3角部をプライヤー
で握つて他端に向つて引つ張る、いわゆるピール
テストを行い、途中で溶接部分が切断しないこと
を必要強度とした。 (3) 塗装後の耐食性 供試材試片にエポキシ・フエノール系塗料を50
mg/dm2の厚さに塗装後、クロスカツトを入れ、
更に5mmのエリクセン張り出しを行つたものを、
端部と裏面をシールして塗装後耐食性の試験片と
した。この試験片を試験液として市販品のグレー
プフルーツジユース、トマトジユース、ミルクお
よびコーヒーを用いて55℃において1週間浸漬し
た後の加工部の腐食状態を総合的に判定した。 溶接性試験と塗装後耐食性の評価記号はそれぞ
れ第1表、第2表に示すとおりである。
<Industrial Application Field> The present invention provides a seam-welded can surface with excellent weldability and corrosion resistance after painting, which is particularly suitable for joining can bodies by electric resistance welding, for food cans, beverage cans, and general cans. This relates to treated steel sheets. <Prior art and its problems> Tin-plated steel sheets, commonly referred to as tinplate, have been widely used as a material for food cans. Previously, solder was used to join these can bodies, but due to the toxicity of lead contained in solder, pure tin solder has come to be used in recent years. However, pure tin solder has a technical problem in solder bonding due to poor wettability during bonding, and furthermore, the use of expensive pure tin solder increases manufacturing costs. On the other hand, in recent years, food containers have been faced with the entry of low-priced competing materials such as polyethylene, aluminum, glass, and paper. Since plated tin cans are expensive to manufacture, they have been forced into a difficult competitive position, even though they have excellent corrosion resistance. In order to eliminate the above-mentioned drawbacks of tin cans, a method of joining can bodies by electric resistance welding instead of soldering has recently been developed and has become popular. For this purpose, a can material suitable for electric resistance welding is required. In addition to the tinplate mentioned above, chromium-type stain-free steel is a conventionally used material for cans. This is an electrolytic chromate treatment that forms metallic chromium and a chromium hydrated oxide layer on the surface, and is highly economical, but the thick chromium hydrated oxide film on the surface has high resistance. Therefore, the weldability is poor and the strength of the welded part is insufficient, making it unsuitable as a material for welded cans. Since all other conventional can materials are unsuitable as materials for welded cans, various attempts have been proposed. For example, there is a nickel-plated steel plate represented by ``Nitzkelite'' released by the American National Steel Company, which has a nickel plating with an area weight of approximately 0.5 g/m 2 on the steel plate. In addition, the surface is treated with conventional chromate treatment, resulting in poor paint adhesion and poor weldability at high speeds of 30 m/min or higher, so it has not been widely used. Yet another type is represented by ``Tein Alloy'' released by John's Rollin Steel Company in the United States. This is about
After 0.6g/ m2 thin tin plating is treated with hot tin,
Although it has undergone conventional chromate treatment, its rust resistance, paint adhesion, and weldability are insufficient. Can materials suitable for electric resistance welding must have excellent weldability and corrosion resistance after painting. To explain this requirement specifically, there is sufficient welding strength during welding,
Moreover, it has an appropriate welding current range that does not cause welding defects such as so-called "splashing" in the welded part, and when used to coat the contents of a can, the coating film can take full advantage of its corrosion resistance. Has adhesion,
Furthermore, in the areas where coating film defects inevitably occur, corrosion must be prevented by the excellent corrosion resistance of the material itself. In order to create a material for welded cans that satisfies weldability and post-painting corrosion resistance at such a low cost, the present inventors first prepared a metal tin layer with a large number of convex portions on the surface of a steel plate, and A surface-treated steel sheet for seam welded cans (Japanese Patent Application No. 1983-063883) having a chromate coating consisting of chromium hydrated oxide or metallic chromium and chromium hydrated oxide was provided. The surface-treated steel sheet for seam welded cans obtained by the above method has a particularly large tin saving effect by forming the metal tin layer in a convex shape, has an appropriate welding current range with a small amount of tin, and is a material for seam welded cans. As a result, both weldability and post-painting corrosion resistance were excellent. However, depending on the contents of the can, post-coating corrosion resistance is required under very severe conditions, and it has been found that some cans do not have sufficient post-coating corrosion resistance under these conditions. <Structure of the Invention> The present invention includes a metal tin layer having a large number of convex portions and concave portions having the following properties (i) to (iii) on the surface of a steel plate, and an area of each convex portion of 1 μm 2 to 800000 μm. The area percentage occupied is 20 to 80%. The thickness of the metal tin in the convex portion is 0.007 μm to 0.7 μm. The surface treated steel sheet for seam welded cans has a chromate film layer made of metal chromium and chromium hydrated oxide on the metal tin layer. , the amount of metallic chromium on the metallic tin protrusion is X M mg/m 2 and the amount of hydrated chromium oxide is X O
mg/m 2 , the amount of metallic chromium on the metallic tin recess is Y M mg/
m 2 , and the amount of chromium hydrated oxide is Y O mg/m 2 , the metal tin layer is set so that X M ≧2, 18≧X M +X O ≧4 Y M ≧4, Y M +Y O ≧8 By distributing the upper chromate film layer, a surface-treated steel sheet for seam welded cans with very good weldability and post-painting corrosion resistance is provided. Further, the present invention provides a metal tin layer having a large number of convex portions and concave portions having the following properties (i) to (iii) on the surface of the steel plate, and an area of each convex portion of 1 μm 2 to 800000 μm 2 and an area percentage occupied by the convex portions. is 20 to 80%. The thickness of the metal tin in the convex portion is 0.007 μm to 0.7 μm. A chromate film layer made of metal chromium and chromium hydrated oxide is provided on the metal tin layer, and the chromate film layer is The amount of metallic chromium on the metal tin protrusion is X M mg/m 2 , the amount of hydrated chromium oxide (hereinafter referred to as chromium equivalent amount) is X O mg/m 2 , and the amount of metallic chromium on the metal tin concave portion is Y M mg/m 2 m 2 , the amount of chromium hydrated oxide is Y O
When manufacturing a surface -treated steel sheet for seam welded cans that satisfies the following conditions: mg / m 2 , Before forming the metallic tin layer having a large number of convex portions and concave portions and performing electrolytic treatment to form a chromate film on the metallic tin layer, the steel plate on which the metallic tin layer has been formed is immersed in a chromate treatment solution. The present invention provides a method for manufacturing a surface-treated steel sheet for seam-welded cans, characterized by the following. The present invention will be explained in more detail below. The inventors previously proposed a steel plate shown in Japanese Patent Application No. 59-63883 as a light tint with excellent weldability and post-painting corrosion resistance. This steel plate provides an innovative product as a thin tint with excellent weldability and corrosion resistance after painting, and has the characteristics of low cost. It came to be used instead of.
In this case, a material with even more Cr metal was required, but if the amount of Cr metal was simply increased, weldability deteriorated, leading to complaints. Therefore, in actual production lines, the amount of Sn and the amount of metal Cr must be controlled within very strict ranges, resulting in low workability and efficiency. Therefore, the present inventors considered a thin coating that has conventional weldability performance and is stable and excellent in paint adhesion and post-painting corrosion resistance. First, we investigated the difference in surface film structure as the cause of the difference in corrosion resistance after painting with the same Cr content. The structure of a surface-treated steel plate for seam-welded cans having a large number of convex and concave portions on the surface as shown in Japanese Patent Application No. 59-063883 is schematically shown in Figures 1a and 1b. ing. In Figure 1,
1 is a steel plate, 2 is a metal tin layer, 3 is a chromate film layer, 4 is a metal tin protrusion, and 5 is a metal tin recess. Since the metallic tin recess 5 contains almost no metallic tin in order to save tin, the upper chromate film 3 plays an important role in corrosion resistance after painting. Therefore, the inventors thoroughly investigated the relationship between the structure of this chromate film and its corrosion resistance after painting.
Those with excellent corrosion resistance after painting had metallic chromium above a certain value and had a large chromate film in the metallic tin recesses. In other words, when we investigated the distribution of the chromate film on the metal tin layer using various samples using AES line analysis, we found that the chromate film was roughly divided into those with a uniform chromate film as shown in Figure 2d, and those with a uniform chromate film as shown in Figure 2c. As shown in the figure, there are cases where a large amount of chromate film is deposited on areas with a small amount of metallic tin, and those showing the distribution shown in Fig. 2c have extremely excellent corrosion resistance after painting. FIGS. 2a and 2b schematically represent the AES line analysis results of FIGS. 2c and 2d, respectively. In the case of a metallic tin layer having a large number of convex portions 4 and concave portions 5 on the surface of the steel plate, the convex portions 4 containing a large amount of metallic tin do not have much problem in corrosion resistance after painting due to the sacrificial corrosion protection of tin. However, for the concave portions 5 other than the convex portions 3 that contain less tin, it is necessary to cover the corrosion resistance after painting with a chromate film, and the chromate film plays an important role. On the other hand, if there is too much chromate film on the metal tin convex portion, weldability will be poor and an appropriate welding current range will not be obtained. Therefore, we believe that if the chromate film has a distribution as shown in Figures 2a and 2c, a surface-treated steel sheet for seam welded cans with excellent corrosion resistance after painting can be obtained without impairing the weldability of the convex metal tin. It will be done. Therefore, the present inventors further investigated in detail the influence of the structure, distribution, and amount of this chromate film on weldability and post-painting corrosion resistance. That is, the amount of metal chromium on the metal tin convex portion 4 is X M mg/m 2 , the amount of hydrated chromium oxide is X O mg/m 2 , the amount of metal chromium on the metal tin recess 5 is Y M mg/m 2 , The amount of chromium hydrated oxide
When Y O mg/m 2 , this X M , Y M , X M +X O , Y M
Corrosion resistance and weldability after painting were investigated in detail by varying +Y O. The results are shown in FIGS. 3 and 4. The amount of metal chromium (X M ) on the convex metal tin portion 4 is 2
If the total amount of metallic chromium and chromium hydrated oxide (X M + X O ) is less than 4 mg/m 2 , the corrosion resistance after painting may be poor, and if X M + X O is less than 18
When the content exceeded mg/m 2 , weldability deteriorated. Furthermore, since there is almost no metallic tin in the metallic tin recess 5, the conditions for good corrosion resistance are that the amount of metallic chromium (Y M ) is 4 mg/m 2 or more, and the total amount of metallic chromium and chromium hydrated oxide (Y M +Y O ) It was found that 8 mg/m 2 or more is required. By creating a chromate film with the above structure, the incidence of defective products is significantly reduced, and the coating has a thin coating that has better paint adhesion and post-painting corrosion resistance than ever before, without worsening weldability. We were able to manufacture tinplate on an actual line. Further, as a method for forming a large amount of chromate film on the metal tin recesses, there may be a method of reducing the current efficiency of chromium on the metal tin protrusions or increasing the chromium current efficiency on the metal tin recesses. In other words, if the current efficiency of chromium in the metal tin recesses is higher than that in the metal tin convex parts, more chromium will be electrodeposited in the recesses. The simplest method, which can be carried out using existing equipment as it is, is to tin plate, form a convex tin layer, and then, before chromate treatment,
By immersing it in the same chromate solution, the convex tin part is oxidized and a large amount of tin oxide is formed, thereby lowering the current efficiency of chromium in the convex tin part and forming a large chromate film in the concave part of the metal tin. be. The best method for the immersion treatment before the chromate electrolytic treatment is to turn off the downpass of the first chromate treatment layer. Soak for a longer time, 2
Although the effect of the present invention can be recognized even if electrolysis is turned off for more than one pass, providing more passes than necessary is
This is negative in terms of equipment costs, and even more
If the number of passes increases, the current efficiency of chromium becomes too small, which is not good. Furthermore, the current density of chromate treatment is 10A/dm 2
If it is more than that, the effect will be greater. It is thought that when the current density is low, the effect of pre-soaking is lost because it is less affected by the condition of the substrate. Therefore, the present inventors have previously proposed that the chromate treatment is performed by turning off the downpass of the first chromate treatment layer, performing chromate immersion treatment, and then performing chromate electrolysis treatment at a current density of 10 A/dm 2 or more. Surface-treated steel sheet for seam welded cans having a metallic tin layer with a large number of convex portions (Japanese Patent Application No. 59-063883)
We were able to obtain the great effect of improving the post-painting corrosion resistance of the paint with almost no equipment or management costs. In the present invention, the effect of metallic tin is to improve weldability. It is preferable that the metal tin layer has a large number of convex portions, and the metal tin is dispersed in a convex or uneven shape. Preferably, the area of each convex portion is 1 μm 2 to 800000 μm 2 The area percentage occupied by the convex portion is 20 to 80%, and the thickness of the metal tin of the convex portion is 0.007 μm to 0.7 μm. The reason for limiting the area of each convex part to 1 μm 2 to 800000 μm 2 is that if it is less than 1 μm 2 , the effect of expanding the contact area during welding is insufficient, and there is no effect of improving weldability.
If it exceeds 800,000 μm 2 , this effect will be saturated and tin will be used unnecessarily, resulting in an economic disadvantage. At the same time, the reason for limiting the area percentage of the convex portion to 20 to 80% is that if it is less than 20%, the effect of expanding the contact area during welding is insufficient and there is no effect of improving weldability, and if it exceeds 80%, the convex portion This is because the economic advantage of maintaining a At the same time, the thickness of the metal tin on the convex part is 0.007 μm ~
The reason why it is limited to 0.7μm is that if it is less than 0.007μm, the effect of improving weldability cannot be sufficiently obtained.
This is because if the welding property is exceeded, the effect of improving weldability is saturated, resulting in an economic disadvantage. The thickness of the metal tin may be arbitrarily selected within the above range depending on the type of base metal and the baking conditions after painting. Methods for dispersing metallic tin in a convex or uneven shape are not limited to these methods, but the following methods can be exemplified. (1) Coagulation using flux After applying electrolytic tin plating to a flat surface, flux (an aqueous solution of ZnCl 2 , NH 4 Cl, etc.) is applied to the surface in an arbitrary distribution state, and then a molten tin treatment is performed to form the flux. Utilizing the difference in wettability of molten tin between areas coated with and areas not coated, tin is coagulated and solidified in a convex or uneven shape. (2) Agglomeration on an inert surface After the surface is subjected to inactivation treatment (Ni diffusion treatment, etc.) against wetting of molten tin, electrolytic tin plating is applied to the surface, followed by molten tin treatment to agglomerate the tin. Let solidify. A nickel diffusion layer (inactive layer) 32 can be provided under this metal tin layer so that its weight ratio Ni/(Ni+Fe) is 0.50 or less and its thickness is 5000 Å or less. The nickel diffusion layer is formed as an inert layer for processing a flat tin layer into a convex shape or for forming a thin metal tin layer having local convexities. If the nickel diffusion layer deviates from the above range, it becomes difficult to form the convex portions satisfactorily as described above. Below are the AES analysis method, welding method, and
A method for evaluating corrosion resistance after painting was shown. (1) AES measurement The distribution and quantification of metallic chromium on the surface of a surface-treated steel sheet for seam welded cans, and the distribution and quantification of the total sum of metallic chromium and chromium hydrated oxide, were investigated by AES. Measurements were carried out at a vacuum level of 1.0×10 -9 Torr and a beam voltage.
The distribution was roughly investigated using line analysis under the condition of 10.0KV, and especially exact quantitative values were obtained by combining line analysis and depth direction analysis, using the calibration curve method, and performing all analysis samples on the same day. The distribution and quantification of metallic chromium was determined by immersing the obtained test plate in hot alkali (7.5N NaOH, 90°C) for 10 minutes, and using the above method. The obtained test plate was directly subjected to the above method. (2) Evaluation of weldability Using a copper wire with a diameter of approximately 1.5 mm as a welding electrode, we overlapped the test material specimens under constant pressure while moving the wire, and performed electric resistance welding at a welding speed of 40 m/min. The weldability of the material was evaluated based on the size of the appropriate range of welding current and pressure, which was determined based on the conditions that the welded part had sufficient strength and there was no occurrence of so-called "splashing". The strength of the welded part was determined by a so-called peel test, in which a V-shaped cut was made from the end of a cylinder that held the welded part in place, and the triangular part was grasped with pliers and pulled toward the other end. The required strength was that the welded part would not break. (3) Corrosion resistance after painting 50% of epoxy/phenol paint was applied to the sample material.
After painting to a thickness of mg/dm 2 , put a cross cut,
Furthermore, the one with 5mm Eriksen overhang,
The edges and back side were sealed and a test piece was prepared for corrosion resistance after painting. This test piece was immersed for one week at 55°C using commercially available grapefruit juice, tomato juice, milk, and coffee as test liquids, and then the corrosion state of the processed part was comprehensively evaluated. The evaluation symbols for the weldability test and post-painting corrosion resistance are shown in Tables 1 and 2, respectively.

【表】【table】

【表】 <実施例> 次に本発明を実施例をあげて具体的に説明す
る。 通常のブリキ原板を電解脱脂、酸洗した後、以
下の方法に従つて金属錫を凸状に存在させ、その
上にクロメート処理を施した。 (実施例 1) 硫酸ニツケル250g/l、塩化ニツケル45g/
l、ほう酸30g/lの液を用いてニツケルめつき
し、さらに硫酸第一鉄55g/l、フエノールスル
ホン酸(65%)35g/l、光沢剤適量の液を用い
て錫めつきを積層させ、錫の融点以上で加熱溶融
処理して錫を凝集凝固させ、凸状の金属錫層を得
た。このときの各凸部の面積は2〜170μm2で、
凸部の面積百分率は55%で、凸部の金属錫の厚さ
は0.10〜0.50μmであつた。また凹部の金属錫の厚
さは0〜0.005μmだつた。 さらにCrO340g/l、H2SO40.38g/lの溶液
に0.4秒浸漬後、20A/dm2の陰極処理を施した。 (比較例 1) 実施例1と同じ方法により、凸状の金属錫層を
得、さらにCrO315g/l液中でめつき前浸漬処理
することなく、直ちに5A/dm2の陰極処理をし、
CrO350g/l、60℃液に3秒浸漬した。 (比較例 2) 実施例1と同じ方法で凸状の金属錫層を得、さ
らにCrO3 100g/l+H2SO4 0.7g/lのクロメ
ート処理液に0.5秒浸漬後、35A/dm2の陰極処
理を行つた。 (実施例 2) 硫酸ニツケル250g/l、塩化ニツケル45g/
l、ほう酸30g/lの液を用いてニツケルめつき
し、10%H2+90%N2雰囲気中で700℃の焼鈍し、
Niめつきを拡散浸透させた。この鋼板を圧下率
1.5%の調質圧延をおこなつた後、脱脂、酸洗を
行い、塩化第一錫50g/l、フツ化ナトリウム
45g/l、フツ化水素ナトリウム10g/l、塩化
ナトリウム54g/l、黄血ソーダ0.8g/l、光沢
剤適量の液を用いて錫めつきをし、ひき続き錫の
融点以上で加熱溶融処理して錫を凝集凝固させ、
凸状の金属錫層を得た。このときの各凸部の面積
は2〜235μm2で、凸部の面積百分率は、70%で、
凸部の金属錫の厚さは0.08〜0.27μmであつた。ま
た凹部の金属錫の厚さは0〜0.001μmだつた。 さらにCrO3 50g/l、NaF 5g/lの溶液に
0.6秒浸漬後、30A/dm2の陰極処理を施した。 (比較例 3) 実施例2と同じ方法により、凸状の金属錫層を
得、さらに実施例2と同じクロメート処理液を用
いて、めつき前浸漬処理せずに、直ちに30A/d
m2の陰極処理を施した。 (比較例 4) 実施例2と同じ方法で凸状の金属錫層を得、さ
らにCrO3 20g/l+Na2 Cr2 O7 3g/l+
H2SO4 0.2g/lの液中でめつき前浸漬処理を行
わず、直ちに30A/dm2の陰極処理を行つた。 実施例1〜2および比較例1〜4で得られた鋼
板の金属錫凸部(第1図の4)上の金属クロム量
XM、金属クロムとクロム水和酸化物の合計クロ
ム量(XM+XO)、金属錫凹部(第1図の5)上
の金属クロム量YM、金属クロムとクロム水和酸
化物の総クロム量(YM+YO)と、溶接試験結
果、および塗装後耐食性試験結果を第3表に示し
た。
[Table] <Example> Next, the present invention will be specifically explained with reference to Examples. After electrolytically degreasing and pickling an ordinary tin plate, metal tin was made to exist in a convex shape according to the following method, and chromate treatment was applied thereto. (Example 1) Nickel sulfate 250g/l, nickel chloride 45g/l
1, nickel plating using a solution containing 30g/l of boric acid, and then tin plating using a solution containing 55g/l of ferrous sulfate, 35g/l of phenolsulfonic acid (65%), and an appropriate amount of brightener. A convex metallic tin layer was obtained by heating and melting the tin at a temperature higher than the melting point of tin to coagulate and solidify the tin. The area of each convex portion at this time is 2 to 170 μm2,
The area percentage of the protrusions was 55%, and the thickness of the metal tin in the protrusions was 0.10 to 0.50 μm. Further, the thickness of the metal tin in the recess was 0 to 0.005 μm. Furthermore, after immersion in a solution of 40 g/l of CrO 3 and 0.38 g/l of H 2 SO 4 for 0.4 seconds, cathodic treatment at 20 A/dm 2 was performed. (Comparative Example 1) A convex metallic tin layer was obtained by the same method as in Example 1, and immediately subjected to cathodic treatment at 5 A/dm 2 without pre-plating immersion treatment in a 15 g/l CrO 3 solution. ,
It was immersed in a CrO 3 50g/l solution at 60°C for 3 seconds. (Comparative Example 2) A convex metallic tin layer was obtained in the same manner as in Example 1, and after immersed in a chromate treatment solution of 100 g/l of CrO 3 + 0.7 g/l of H 2 SO 4 for 0.5 seconds, a cathode of 35 A/dm 2 was formed. I processed it. (Example 2) Nickel sulfate 250g/l, nickel chloride 45g/l
1. Nickel plated using a solution of 30 g/l of boric acid, annealed at 700°C in a 10% H 2 + 90% N 2 atmosphere,
Diffuse and penetrate the Ni glare. Reduction rate of this steel plate
After 1.5% temper rolling, degreasing and pickling, 50g/l of stannous chloride and sodium fluoride.
Tin plating using 45g/l, sodium hydrogen fluoride 10g/l, sodium chloride 54g/l, yellow blood soda 0.8g/l, and an appropriate amount of brightener, followed by heating and melting treatment above the melting point of tin. to coagulate and solidify tin,
A convex metallic tin layer was obtained. At this time, the area of each convex portion is 2 to 235 μm 2 , and the area percentage of the convex portion is 70%.
The thickness of the metal tin in the convex portion was 0.08 to 0.27 μm. Further, the thickness of the metal tin in the recess was 0 to 0.001 μm. Furthermore, in a solution of 50g/l of CrO 3 and 5g/l of NaF.
After immersion for 0.6 seconds, cathode treatment at 30 A/dm 2 was performed. (Comparative Example 3) A convex metallic tin layer was obtained by the same method as in Example 2, and using the same chromate treatment solution as in Example 2, it was immediately heated to 30 A/d without dipping before plating.
m 2 cathodically treated. (Comparative Example 4) A convex metallic tin layer was obtained by the same method as in Example 2, and further CrO 3 20 g/l + Na 2 Cr 2 O 7 3 g/l +
A cathodic treatment of 30 A/dm 2 was immediately performed without performing a pre-plating dipping treatment in a H 2 SO 4 solution of 0.2 g/l. Amount of metallic chromium on the metallic tin protrusions (4 in Fig. 1) of the steel plates obtained in Examples 1 to 2 and Comparative Examples 1 to 4
X M , total amount of chromium in metallic chromium and chromium hydrated oxide (X M +X O ), amount of metallic chromium on the metallic tin recess (5 in Figure 1) Y M , total amount of metallic chromium and chromium hydrated oxide Table 3 shows the amount of chromium (Y M +Y O ), the welding test results, and the post-painting corrosion resistance test results.

【表】 アンダーラインは本発明の範囲をはずれたものを示す

実施例1,2は、金属錫を凸状に形成させたこ
とにより、少ない錫量で適正溶接電流範囲を有
し、また金属錫凸部上の金属クロム量、クロム水
和酸化物量、さらに金属錫凹部上の金属クロム
量、クロム水和酸化物量が本発明の適正範囲であ
るので、塗装後耐食性も非常にすぐれ、前述のシ
ーム溶接缶用表面処理鋼板としての要件を全て満
足するものが得られた。 比較例1は、金属錫凸部上のクロム水和酸化物
量が多いため、適正溶接電流範囲が存在せず、ま
た金属錫凹部上の金属クロム量も少ないため、塗
装後耐食性も悪かつた。 比較例2は、金属錫凹部上のクロム水和酸化物
量が少ないため、塗装後耐食性が少し劣つた。 比較例3は金属クロムを全く有しないクロメー
ト皮膜であるため、塗装後耐食性が悪かつた。 比較例4は、金属錫凸部上のクロム水和酸化物
量が多いため、適正溶接電流範囲が存在しなかつ
た。 <発明の効果> 上述したことから明らかなように、本発明によ
るシーム溶接缶用表面処理鋼板は、鋼板上に凸状
の金属錫層を有するために金属錫の節約効果が大
きく、充分な溶接性能をもち、さらに上層に塗装
後耐食性に有効な金属クロムとクロム水和酸化物
からなるクロメート皮膜を有し、しかも金属錫の
凹凸に合わせたクロメート皮膜の分布を厳密に限
定したのでその溶接性はもちろんの事、非常にき
びしい条件下での塗装後耐食性もきわめてすぐれ
ており、本発明者等が、先に挙げた溶接缶用素材
に要求されたすべての条件を満足するシーム溶接
缶用表面処理鋼板を提供することができた。
[Table] Underlined items indicate items outside the scope of the present invention.
Examples 1 and 2 have an appropriate welding current range with a small amount of tin because the metal tin is formed in a convex shape, and the amount of metal chromium and chromium hydrated oxide on the convex portion of the metal tin, as well as the amount of metal Since the amount of metallic chromium and the amount of chromium hydrated oxide on the tin recesses are within the appropriate range of the present invention, a product with excellent corrosion resistance after painting and satisfying all of the above-mentioned requirements as a surface-treated steel sheet for seam-welded cans can be obtained. It was done. In Comparative Example 1, the amount of hydrated chromium oxide on the metal tin protrusions was large, so there was no appropriate welding current range, and the amount of metal chromium on the metal tin recesses was also small, so the corrosion resistance after painting was poor. In Comparative Example 2, the amount of hydrated chromium oxide on the metal tin recesses was small, so the corrosion resistance after painting was slightly inferior. Since Comparative Example 3 was a chromate film containing no metallic chromium, the corrosion resistance after painting was poor. In Comparative Example 4, there was no appropriate welding current range because the amount of hydrated chromium oxide on the metal tin protrusion was large. <Effects of the Invention> As is clear from the above, the surface-treated steel sheet for seam welded cans according to the present invention has a convex metal tin layer on the steel sheet, so it has a large metal tin saving effect and can be used for sufficient welding. Furthermore, the upper layer has a chromate film made of metallic chromium and chromium hydrated oxide, which is effective for corrosion resistance after painting.Moreover, the distribution of the chromate film is strictly limited to match the irregularities of the metallic tin, resulting in excellent weldability. The present inventors have developed a surface for seam welded cans that satisfies all of the conditions required for materials for welded cans listed above. We were able to provide treated steel sheets.

【図面の簡単な説明】[Brief explanation of drawings]

第1a図および第1b図は、凸状の金属錫層を
有するシーム溶接缶用表面処理鋼板の線図的断面
図である。第2a図および第2b図は、凸状金属
錫層を有するシーム溶接缶用表面処理鋼板のCr
とSnのAESライン分析図である。第2c図およ
び第2d図は、それぞれ第2a図および第2b図
の模式図である。第3図および第4図は、それぞ
れ金属錫凸部と凹部上の金属クロム量、クロム水
和酸化物量が溶接性および塗装後耐食性に及ぼす
影響を示したグラフである。 符号の説明、1…鋼板、2…金属錫、3…クロ
メート皮膜、4…金属錫凸部、5…金属錫凹部。
1a and 1b are diagrammatic cross-sectional views of a surface-treated steel sheet for seam-welded cans having a convex metallic tin layer. Figures 2a and 2b show Cr surface treated steel sheets for seam welded cans having a convex metal tin layer.
and Sn AES line analysis diagram. Figures 2c and 2d are schematic diagrams of Figures 2a and 2b, respectively. FIG. 3 and FIG. 4 are graphs showing the effects of the amount of metallic chromium and the amount of chromium hydrate on the weldability and post-painting corrosion resistance on the metallic tin convex portions and concave portions, respectively. Explanation of the symbols: 1... Steel plate, 2... Metal tin, 3... Chromate film, 4... Metal tin protrusion, 5... Metal tin recess.

Claims (1)

【特許請求の範囲】 1 鋼板表面に下記(i)〜(iii)の性状の多数の凸部お
よび凹部を有する金属錫層と、 各凸部の面積が1μm2〜800000μm2 凸部の占める面積百分率が20〜80% 凸部の金属錫の厚さが0.007μm〜0.7μm この金属錫層上に金属クロムとクロム水和酸化
物からなるクロメート皮膜層とを有するシーム溶
接缶用表面処理鋼板において、 該クロメート皮膜層が、前記金属錫凸部上の金
属クロム量をXMmg/m2、クロム水和酸化物量
(以下クロム換算量)をXOmg/m2、前記金属錫凹
部上の金属クロム量をYMmg/m2、クロム水和酸
化物量をYOmg/m2とした時、 XM≧2、18≧XM+XO≧4 YM≧4、YM+YO≧8 を満足するようにしたことを特徴とするシーム溶
接缶用表面処理鋼板。 2 鋼板表面に下記(i)〜(iii)の性状の多数の凸部お
よび凹部を有する金属錫層と、 各凸部の面積が1μm2〜800000μm2 凸部の占める面積百分率が20〜80% 凸部の金属錫の厚さが0.007μm〜0.7μm この金属錫層上に金属クロムとクロム水和酸化
物からなるクロメート皮膜層とを有し、該クロメ
ート皮膜層が、前記金属錫凸部上の金属クロム量
をXMmg/m2、クロム水和酸化物量(以下クロム
換算量)をXOmg/m2、前記金属錫凹部上の金属
クロム量をYMmg/m2、クロム水和酸化物量をYO
mg/m2とした時、 XM≧2、18≧XM+XO≧4 YM≧4、YM+YO≧8 を満足するシーム溶接缶用表面処理鋼板を製造す
るに際し、鋼板表面に前記多数の凸部および凹部
を有する金属錫層を形成し、この金属錫層上への
クロメート皮膜形成の電解処理を行う前に、金属
錫層を形成した鋼板をクロメート処理液に浸漬処
理することを特徴とするシーム溶接缶用表面処理
鋼板の製造方法。
[Claims] 1. A metal tin layer having a large number of convex portions and concave portions having the following properties (i) to (iii) on the surface of the steel plate, and the area of each convex portion is 1 μm 2 to 800000 μm 2 The area occupied by the convex portions The percentage is 20 to 80% The thickness of the metal tin in the convex portion is 0.007 μm to 0.7 μm In the surface-treated steel sheet for seam welded cans that has a chromate film layer consisting of metal chromium and chromium hydrated oxide on the metal tin layer. , the chromate film layer has an amount of metal chromium on the metal tin convex portion of When the amount of metallic chromium is Y M mg/m 2 and the amount of hydrated chromium oxide is Y O mg/m 2 , X M ≧2, 18≧X M +X O ≧4 Y M ≧4, Y M +Y O ≧ 8. A surface-treated steel sheet for seam welded cans, which satisfies the following. 2 A metal tin layer having a large number of convex portions and concave portions with the following properties (i) to (iii) on the surface of the steel plate, and the area of each convex portion is 1 μm 2 to 800000 μm 2 The area percentage occupied by the convex portions is 20 to 80% The thickness of the metal tin on the convex portion is 0.007 μm to 0.7 μm. A chromate film layer made of metal chromium and chromium hydrated oxide is provided on the metal tin layer, and the chromate film layer is on the metal tin convex portion. The amount of metallic chromium is X M mg/m 2 , the amount of hydrated chromium oxide (hereinafter referred to as chromium equivalent amount) is X O mg/m 2 , the amount of metallic chromium on the metal tin recess is Y M mg/m 2 , chromium water The amount of oxide is Y O
When manufacturing a surface -treated steel sheet for seam welded cans that satisfies the following conditions: mg / m 2 , Before forming the metallic tin layer having a large number of convex portions and concave portions and performing electrolytic treatment to form a chromate film on the metallic tin layer, the steel plate on which the metallic tin layer has been formed is immersed in a chromate treatment solution. A method for manufacturing a surface-treated steel sheet for seam-welded cans, characterized by:
JP12953185A 1985-06-14 1985-06-14 Surface treated steel sheet for seam welded can and its manufacture Granted JPS61288080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12953185A JPS61288080A (en) 1985-06-14 1985-06-14 Surface treated steel sheet for seam welded can and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12953185A JPS61288080A (en) 1985-06-14 1985-06-14 Surface treated steel sheet for seam welded can and its manufacture

Publications (2)

Publication Number Publication Date
JPS61288080A JPS61288080A (en) 1986-12-18
JPH0425350B2 true JPH0425350B2 (en) 1992-04-30

Family

ID=15011817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12953185A Granted JPS61288080A (en) 1985-06-14 1985-06-14 Surface treated steel sheet for seam welded can and its manufacture

Country Status (1)

Country Link
JP (1) JPS61288080A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2765891B1 (en) * 1997-07-10 1999-08-20 Lorraine Laminage METHOD FOR SURFACE TREATMENT OF ALLOY HARDENED STEEL SHEETS ESSENTIALLY INCLUDING ZINC AND IRON
JP4660626B2 (en) * 2009-02-04 2011-03-30 新日本製鐵株式会社 Tin-plated steel sheet with excellent post-retort coating film adhesion and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61264196A (en) * 1985-05-20 1986-11-22 Toyo Kohan Co Ltd Surface treated steel sheet for welded can and its manufacture
JPS6254399A (en) * 1985-04-01 1987-03-10 ホーチキ株式会社 Analog fire alarm

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254399A (en) * 1985-04-01 1987-03-10 ホーチキ株式会社 Analog fire alarm
JPS61264196A (en) * 1985-05-20 1986-11-22 Toyo Kohan Co Ltd Surface treated steel sheet for welded can and its manufacture

Also Published As

Publication number Publication date
JPS61288080A (en) 1986-12-18

Similar Documents

Publication Publication Date Title
JPS6254399B2 (en)
JP4818755B2 (en) Steel plate for welding can
US4561943A (en) Process for preparing surface-treated steel strips adapted for electric resistance welding and strips produced by said process
JPH0216397B2 (en)
JPS6046199B2 (en) Manufacturing method of surface-treated steel plate for welded cans with high rust resistance
JPS59598B2 (en) Tampered steel plate with excellent weldability
CA1253451A (en) Process for preparing surface-treated steel strips adapted for electric resistance welding
JPS61223197A (en) Surface-treated steel plate
JPS6136595B2 (en)
JPS6214240B2 (en)
JPH0425350B2 (en)
JPS6250554B2 (en)
JPS6330998B2 (en)
JPH0431039B2 (en)
JPH0243835B2 (en)
JPH0434636B2 (en)
JPH11106952A (en) Steel sheet for welded can excellent in waldability, corrosion resistance and film adhesion
KR960012183B1 (en) Surface treated steel sheet for welded cans
JPH11106953A (en) Steel sheet for welded can excellent in weldability, corrosion resistance and film adhesion
KR890002987B1 (en) Surface treated steel plates with a weldability and method therefor
JPS59133398A (en) Production of surface treated steel sheet for welded can having excellent rust preventiveness and paintability
JPS6318676B2 (en)
JPS5989784A (en) Manufacture of steel sheet for welded can with superior corrosion resistance after coating
JPH0368949B2 (en)
JPH11106954A (en) Surface treated steel sheet for welded can excellent in weldability, corrosion resistance and appearance

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees