JPS6215610A - Traveling control method for autonomous traveling robot - Google Patents

Traveling control method for autonomous traveling robot

Info

Publication number
JPS6215610A
JPS6215610A JP60154012A JP15401285A JPS6215610A JP S6215610 A JPS6215610 A JP S6215610A JP 60154012 A JP60154012 A JP 60154012A JP 15401285 A JP15401285 A JP 15401285A JP S6215610 A JPS6215610 A JP S6215610A
Authority
JP
Japan
Prior art keywords
traveling
travel
robot
straight
running
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60154012A
Other languages
Japanese (ja)
Inventor
Hitoshi Ogasawara
均 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60154012A priority Critical patent/JPS6215610A/en
Publication of JPS6215610A publication Critical patent/JPS6215610A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4061Steering means; Means for avoiding obstacles; Details related to the place where the driver is accommodated
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)

Abstract

PURPOSE:To minimize the overrun width of a cleaning range by correcting the traveling reference coordinates after inversion of the advancing direction due to a U-turn, etc. with the deflection amount of only the preceding rectilinear travel carried out before inversion of the direction. CONSTITUTION:A cleaning robot repeats the parallel rectilinear traveling and the right and left U-turns to clean the entire surface of a floor. The maximum right and left deflection values Amax and Bmax from a drive reference line 28 for rectilinear traveling or meandering traveling 20 are calculated from the advancing distance data given from a traveling distance measuring device 6 and the traveling direction data given from a advancing direction measuring device 7 and stored in a storae device 2. Then the coordinates of the traveling standard line for curved traveling or the rectilinear traveling direction to be restarted after inversion of the advancing direction are corrected based on said values Amax and Bmax.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、自律走行ロボットに係シ、特に効率的な走行
制御に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to autonomous running robots, and particularly to efficient running control.

〔発明の背景〕[Background of the invention]

従来の自律走行する掃除用ロボットの走行は。 How does a conventional autonomous cleaning robot operate?

特開昭55−97608号に示されるように、前進と左
右90″回転の組合せで、一定のピッチ幅Pで横方向に
移動する走行である。しかし、移動ピッチ幅を一定にす
ると、そのピッチ幅は、走行開始から終了までのすべて
の前進走行における床面の凹凸や摩擦抵抗の変化による
蛇行を考慮して、掃除機の掃除幅よシ相当小さく設定し
なければならない。したがって、従来技術では、掃除範
囲のむだなオーバー2ツブをさせることになシ、走行の
効率及び経済性について配慮されていなかった。
As shown in Japanese Patent Application Laid-Open No. 55-97608, this is a combination of forward movement and left/right rotation of 90'', moving in the lateral direction with a constant pitch width P. However, if the movement pitch width is constant, the pitch The width must be set considerably smaller than the cleaning width of the vacuum cleaner, taking into account meandering due to unevenness of the floor surface and changes in frictional resistance during all forward travel from the start to the end of travel.Therefore, in the conventional technology, However, there was no consideration given to running efficiency and economy, as there was no need to wastefully overspread the cleaning range.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、床面tくまなく走行させるpボッ)に
おいて、床面を効率的にしかも経済的に走行させる自律
走行ロボットを提供することにある。
An object of the present invention is to provide an autonomous mobile robot that travels all over the floor efficiently and economically.

〔発明の概要〕[Summary of the invention]

本発明の自律走行ロボットは、走行基準線に沿った直進
走行あるいけ曲線走行と、進行方向の反転とを繰返す走
行において、直進走行あるいは曲線走行の走行基準線か
らのぶれ量の最大値を計算し、進行方向反転後に再び開
始する直進走行あるいは曲線走行のための走行基準線の
座標を、上記ぶれ量の最大値をもとに補正する。この方
法により走行のオーバーラツプを最小限にして、床面全
体を効率的に走行させる。
The autonomous mobile robot of the present invention calculates the maximum amount of deviation from the running reference line when running straight or curved while repeatedly running straight or curved along the running reference line and reversing the direction of travel. Then, the coordinates of the running reference line for straight running or curved running that starts again after the direction of travel is reversed are corrected based on the maximum value of the amount of blur. This method minimizes travel overlap and efficiently travels over the entire floor surface.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面により説明する。 An embodiment of the present invention will be described below with reference to the drawings.

本発明の自律走行ロボットの一実施例を、掃除用の走行
ロボットの例で説明する。
An embodiment of the autonomous mobile robot of the present invention will be described using an example of a cleaning mobile robot.

第2図は、掃除用走行ロボットの構成を示すブロック図
である。
FIG. 2 is a block diagram showing the configuration of the cleaning traveling robot.

第2図において、1#−i走行ロボットを制御する演算
処理装置、2け演算処理装置1のデータを蓄える記憶装
置、3は演算処理装置1へ各計測装置から信号を入力す
るだめの入力ボート、4け演算処理装置1から各駆動装
置に信号を出すための出力ボート、5は走行中に進行前
方にある障害物を検出するための障害物検出装置、6け
車輪の回転数を測定する走行距離計測装置、7けジャイ
ロ等のロボットの進行方向を測定する進行方向計測装置
である。5と6と7の各装置は入力ポート3に接続して
いる。8は車輪駆動装胃、9け掃除装置であシ、8と9
は出カポ−)4に接続している。
In Fig. 2, there is an arithmetic processing unit that controls the 1#-i traveling robot, a storage device that stores the data of the two-digit arithmetic processing unit 1, and an input port 3 that is used to input signals from each measuring device to the arithmetic processing unit 1. , an output boat for sending signals from the 4-digit arithmetic processing unit 1 to each drive device; 5 is an obstacle detection device for detecting obstacles in front of the vehicle while driving; and 5 measures the rotation speed of the 6-digit wheels. This is a traveling direction measuring device that measures the traveling direction of a robot such as a traveling distance measuring device or a 7-digit gyro. Devices 5, 6, and 7 are connected to input port 3. 8 is a wheel-driven stomach, 9 is a cleaning device, 8 and 9
is connected to output capo) 4.

次に動作を説明する。ロボットの走行方法を。Next, the operation will be explained. How the robot runs.

第3図に示す長方形の部屋10の中で走行させた例で説
明する。
An example in which the vehicle is run inside a rectangular room 10 shown in FIG. 3 will be explained.

実施例の掃除用走行ロボットの走行方法は、第3図に示
すように、平行な直進走行12.13.14.15と右
Uターン16及び左Uターン17を繰返し、走行開始点
18から走行終了点19まで走行して、床面全域を掃除
する。
As shown in FIG. 3, the running method of the cleaning robot of the embodiment is as shown in FIG. Travel to end point 19 and clean the entire floor surface.

ロボットの直進走行は、細かく見れば、床面の凹凸や床
面と車輪との接触抵抗の変化のため、第4図の20に示
すように蛇行する。
When the robot runs in a straight line, if you look at it in detail, it will meander as shown at 20 in FIG. 4 due to unevenness of the floor surface and changes in the contact resistance between the floor surface and the wheels.

第4図で、21けロボットの本体の外形、22けpポッ
ト本体21の前部に設けた掃除装置のごみ吸入口、23
と24は前方車輪、25と26は後方車輪、27けロボ
ットの自己位置である。ロボッ)は、x7座標のy軸に
平行に直進走行させるとする。28はロボットが直進す
べきy軸に平行な直線である走行基準線で、そのX座標
を本実施例では走行基準座標といいXlとする。破線2
9及び30け、上記ごみ吸入口22で掃除を行う範囲の
左端部及び右端部の曲線である。
Figure 4 shows the external shape of the 21-piece robot body, the dust intake port 23 of the cleaning device provided at the front of the 22-piece pot body 21, and the
and 24 are the front wheels, 25 and 26 are the rear wheels, and 27 is the self-position of the robot. The robot (robot) is assumed to run straight parallel to the y-axis of the x7 coordinate. Reference numeral 28 denotes a travel reference line that is a straight line parallel to the y-axis along which the robot should move straight, and its X coordinate is referred to as the travel reference coordinate in this embodiment, and is designated as Xl. Broken line 2
9 and 30 are the curves at the left and right ends of the range to be cleaned by the dirt intake port 22.

第4図の蛇行走行20の走行基準線28からの左右ぶれ
量の最大値をAmax及びBmaxとする。
Let Amax and Bmax be the maximum values of the amount of left-right vibration from the travel reference line 28 during the meandering travel 20 in FIG.

なお1け、ごみ吸入口の掃除幅である。Note that the 1st digit is the cleaning width of the dust inlet.

第5図は、第2図の直進とUターンを繰返す走行例にお
ける。直進走行の走行基準座標の設定方法を示す。
FIG. 5 shows an example of traveling in which the vehicle repeatedly goes straight and makes U-turns as shown in FIG. The following describes how to set the driving reference coordinates for straight-ahead driving.

第5図で、20は第4図で述べた。走行基準線281C
沿って蛇行して進む走行軌跡である。曲線29及び30
け、蛇行走行20にともない前記ごみ吸入口22で掃除
される範囲の左右の境界線であシ、斜線部はその掃除範
囲である。直線31は、完全に掃除がされている範囲と
されていない範囲の境界線で、31け前記掃除境界線3
0のX座標の最小となる点32を通るy軸に平行な直線
である。寸法Amax及びBmaxは、蛇行走行軌跡2
00走行基準線28からの左右ぶれ量の最大値である。
In FIG. 5, 20 was described in FIG. Travel reference line 281C
This is a traveling trajectory that snakes along the road. Curves 29 and 30
The left and right boundaries of the range to be cleaned by the dirt intake port 22 as the vehicle travels in the meandering direction 20 are shown, and the shaded area is the cleaning range. The straight line 31 is the boundary line between the area that has been completely cleaned and the area that has not been completely cleaned.
This is a straight line parallel to the y-axis passing through the point 32 where the X coordinate of 0 is the minimum. Dimensions Amax and Bmax are meandering travel trajectory 2
This is the maximum value of the amount of left-right vibration from the 00 travel reference line 28.

曲線33は、上記20で走行したロボットが、前方に障
害物を検出してUターンした後、再び直進走行すべき直
線の走行基準線34に沿って蛇行して進む走行軌跡であ
る。曲線35及び36け、蛇行走行33にともないどみ
吸入口22で掃除される範囲の左右の境界線である。U
ターン後の走行基準線34のX座標の走行基準座標をx
bとする。
A curve 33 is a travel locus in which the robot that traveled in step 20 above detects an obstacle in front and makes a U-turn, then meanders along a straight travel reference line 34 on which it should travel straight again. Curves 35 and 36 are the left and right boundaries of the range that is cleaned by the suction port 22 as the meandering travel 33 progresses. U
The running reference coordinate of the X coordinate of the running reference line 34 after the turn is x
b.

次に第2図の演算処理装置1で行う走行制御の方法を第
1図の流れ図で説明する。
Next, a method of driving control performed by the arithmetic processing device 1 shown in FIG. 2 will be explained with reference to the flowchart shown in FIG. 1.

第1図で、まず走行開始における走行基準座標X&の初
期値の設定と、Uターンの右Uターンか左Uターンかの
初期指定を行う。次にAmaxとBmxf:OKする。
In FIG. 1, first, the initial value of the travel reference coordinate X& at the start of travel is set, and the initial designation of whether the U-turn is a right U-turn or a left U-turn is performed. Next, Amax and Bmxf: OK.

次に第2図の障害物検出装置5で。Next, the obstacle detection device 5 shown in FIG.

進行前方に障害物があるか判断する。前方に障害物がな
ければ、処理は下に進み、車輪駆動装置8に直進走行を
命令する。次に走行距離計測装置6から車輪の走行距離
データを入力し、進行方向計測装置7から進行方向デー
タを入力する。これらの走行距離データと進行方向デー
タによ〕ロボットの自己位置座標(xi、yl)を計算
する。
Determine if there are any obstacles ahead. If there is no obstacle ahead, the process proceeds downward and the wheel drive device 8 is commanded to run straight ahead. Next, wheel mileage data is input from the mileage measuring device 6, and traveling direction data is input from the traveling direction measuring device 7. The self-position coordinates (xi, yl) of the robot are calculated using these traveling distance data and traveling direction data.

次に、上記走行基準座標Xaから自己位置座標x1を引
いた値)Ca  XlとAmax f:比較し、Xa 
 Xi≧−であればAmx=x* −xz とする。逆
にxa−ti(AmxならばAmaxはその11の値と
する。同様に、自己位置座標のXiから走行基準座標x
1t−引いた値X* −XaとBmx 1に比較し、)
C1Xa≧Bmax でらればBmx = xi−xa
とする。逆にxi −Xa (BmaxならばBm&X
 はその11の値とする。以上の方法で。
Next, compare the value obtained by subtracting the self-position coordinate x1 from the travel reference coordinate Xa) Ca
If Xi≧-, Amx=x*-xz. Conversely, if xa-ti (Amx, then Amax is the value of 11.Similarly, from the self-position coordinate Xi to the travel reference coordinate x
1t - minus value X* - compared to Xa and Bmx 1)
If C1Xa≧Bmax, then Bmx = xi-xa
shall be. Conversely, xi −Xa (if Bmax, then Bm&X
is the value of 11. In the above method.

第4図の蛇行走行200走行基準線28からの左右のぶ
れ量の最大値を求め、第2vAの記憶装置2にArmx
及びBmaxの値を記憶する。
The maximum value of the amount of left and right vibration from the meandering 200 travel reference line 28 in FIG. 4 is determined, and the Armx
and Bmax values are stored.

そして前記障害物検出で前方に障害物が有れば、処理は
横に進み、車輪駆動装置8に走行停止を命令する。次に
Uターン可能かを判断する。Uターン可能ならば、右U
ターンと左Uターンの切シ替えを行う。
If an obstacle is detected in front of the vehicle, the process proceeds sideways and the wheel drive device 8 is commanded to stop running. Next, determine whether a U-turn is possible. If a U-turn is possible, make a right U
Switch between a turn and a left U-turn.

次にUターン後の直進走行の走行基準座標の設定を行う
。走行基準座標の設定において、第5図の蛇行走行20
によって完全に掃除される境界線31のX座標勤は、(
1)式である Xa : xa +T −Atmx −= (1)そし
て、Uターン後の蛇行走行55による掃除境界、1I3
5と、上記境界1131との距離01に、Uターン前の
蛇行走行20の走行基準線28からのぶれ量Amax及
びBmaxとKよ)(2)式とする。
Next, the travel reference coordinates for straight forward travel after a U-turn are set. In setting the travel reference coordinates, meandering travel 20 in Fig. 5
The X coordinate of the boundary line 31 that is completely cleaned by (
1) Expression Xa: xa +T - Atmx -= (1) And the cleaning boundary due to the meandering run 55 after the U-turn, 1I3
5 and the distance 01 from the boundary 1131, the deviation amount Amax and Bmax from the travel reference line 28 of the meandering travel 20 before the U-turn, and K.

C= k (Amax + Bmax ) = (2)
ここでkは、走行距離計測装置6及び進行方向計測装置
7の計測誤差を見込んだ係数でるる。
C=k(Amax+Bmax)=(2)
Here, k is a coefficient that takes into account measurement errors of the mileage measuring device 6 and the traveling direction measuring device 7.

したがって、Uターン後の走行基準座標xbf:、完全
に掃除がされている境界線31のX座標勤から右にy−
cだけ移動した座標に設定する。すなわち走行基準座標
xbを(3)式の値に設定する。
Therefore, the travel reference coordinate xbf after the U-turn is: y-
Set the coordinates moved by c. That is, the travel reference coordinate xb is set to the value of equation (3).

xb = Xa + 1− (f +k ) Amax
 −k Bmax −= (3)次に、車輪駆動装置8
に、Uターン後のロボットの自己位置が上記(3)式の
走行基準座標nになるUターン走行を命令する。
xb = Xa + 1- (f + k) Amax
−k Bmax −= (3) Next, the wheel drive device 8
Then, the robot is instructed to run in a U-turn so that its own position after the U-turn is at the running reference coordinate n in equation (3) above.

この自己位置を任意の走行基準座標xbKする例を第6
図と第7図で述べる。第6図は、走行基準座標xbをU
ターン前の基準座標Xaよシ左右車輪間隔p1だけ横に
移した(xb=xa+P1)例でアシ。
An example of setting this self-position to an arbitrary travel reference coordinate xbK is shown in the sixth example.
This is explained in Fig. 7 and Fig. 7. Figure 6 shows the traveling reference coordinate xb
In this example, the reference coordinate Xa before the turn is moved sideways by the left and right wheel distance p1 (xb=xa+P1).

第7図は、xb’を車輪間隔よシ狭い任意の距離P2右
に移動した(xb=xa+p*)例である。
FIG. 7 is an example in which xb' is moved to the right by an arbitrary distance P2 narrower than the wheel spacing (xb=xa+p*).

第6図で、38.39はロボット本体、40.41.4
2は車輪、As、44は胃ボットの自己位置を示す。車
輪40を、車輪41を中心に42まで180@旋回させ
て、ロボットの自己位置43を44まで旋回させる。し
たがって走行基準座標Xbは、左右車輪間隔をplとす
れば、Xb = Xa + plとなる。
In Figure 6, 38.39 is the robot body, 40.41.4
2 indicates a wheel, As, and 44 indicate the self-position of the stomach bot. The wheel 40 is rotated 180@ to 42 around the wheel 41, and the self position 43 of the robot is rotated to 44. Therefore, the traveling reference coordinate Xb is expressed as Xb = Xa + pl, where pl is the distance between the left and right wheels.

第7図で、45.46.47は胃ボット本体。In Figure 7, 45, 46, and 47 are the stomach bot bodies.

48.49.50.51は車輪、52.55.54はロ
ボットの自己位置を示す。車輪49t−1車輪48を中
心に50まで旋回させ、次に車輪4Bを車輪50を中心
に51まで右旋回させて、ロボットの自己位置1f!:
52から53,541で移動させる。したがって走行基
準座標Xbは、上記車輪49のsatでの旋回量により
、任意の距離p2右に移動する( xb = xa +
 pz)ことができる。
48.49.50.51 indicates the wheels, and 52.55.54 indicates the robot's self-position. Wheel 49t-1 Turn around wheel 48 to 50, then turn wheel 4B to the right around wheel 50 to 51, and the robot's self-position 1f! :
52 to 53,541. Therefore, the traveling reference coordinate Xb moves to the right by an arbitrary distance p2 depending on the amount of turning of the wheel 49 at sat (xb = xa +
pz) can be done.

再び第1図で、車輪駆動装置8に上記の走行基準座標を
指定したUターン走行をさせた後、Uターン前の走行基
準座標X&を、前記Uターン後の走行基準座標xbの値
に置き替える。そして処理を第1図の結合子記号■に戻
す。一方Uターン可能かの判断で、Uターンできない場
合は、第2図の走行制御の例では掃除が終了しているの
で、車輪駆動装置8と掃除装置9を停止させる。
Referring again to FIG. 1, after causing the wheel drive device 8 to perform a U-turn with the above-mentioned travel reference coordinates specified, the travel reference coordinates X& before the U-turn are set to the values of the travel reference coordinates xb after the U-turn. Change. Then, the process returns to the connector symbol ■ in FIG. On the other hand, when it is determined whether a U-turn is possible, if the U-turn is not possible, the wheel drive device 8 and the cleaning device 9 are stopped because cleaning has been completed in the travel control example shown in FIG.

なお上記説明では、走行方向をy軸に平行な直進走行と
し、走行基準座標をX座標としたが、逆に走行方向をI
軸に平行な直進走行とし、走行基準座標t−y座標で設
定しても同様である。
In the above explanation, the running direction was set as straight running parallel to the y-axis, and the running reference coordinate was set as the X coordinate, but conversely, the running direction was set as I
The same effect can be obtained even if the vehicle is set to travel in a straight line parallel to the axis and the travel reference coordinates are t-y coordinates.

次に実施例の効果を説明する。第3図に示すような直進
走行と■ターフを繰返して床面をくまな〈走行させる走
行制御において、従来技術は、直進走行を一定のピッチ
幅横に移動する走行方法である。
Next, the effects of the embodiment will be explained. As shown in FIG. 3, the prior art is a driving method in which the vehicle travels in a straight line and moves horizontally by a fixed pitch width in a driving control in which the vehicle travels all over the floor surface by repeating straight traveling and turf.

一般に、自律走行ロボットは、走行基準線からのぶれ量
のフィードバック制御で直進走行をする場合の、床面の
凹凸や床面と車輪の摩擦抵抗の変化があ)、またフィー
ドバック制御に時間遅れがあるため、蛇行走行になる。
In general, when an autonomous robot moves straight through feedback control of the amount of deviation from the running reference line, there are differences in the unevenness of the floor surface and changes in the frictional resistance between the floor surface and the wheels), and there is also a time delay in feedback control. Because of this, it becomes a meandering ride.

従来技術では、掃除のやシ残しをなくすため、掃除範囲
のオーバーラツプは、最悪を考えて、第2図の走行開始
18から走行終了19までのすべての直進走行における
走行基準線からのぶれ量の最大値にしなければならない
In the conventional technology, in order to eliminate the cleaning residue, the overlap in the cleaning range is considered to be the worst, and the amount of deviation from the driving reference line during all straight driving from the start of driving 18 to the end of driving 19 in Fig. 2 is calculated. Must be set to maximum value.

例えば、掃除幅1を50備とし、第3図の走行開始18
から走行終了までの直進走行のぶれ量が。
For example, if the cleaning width 1 is set to 50, the travel start 18 in Fig.
The amount of blur when driving straight from the time to the end of the trip.

12回の直進走行12.13.14.15・・・・・・
の中で14のみ±10傷であ)、他の11回のぶれ量が
±3cILであったとすると、掃除範囲のオーバーラツ
プは最悪を考えて左右に10cm取らなければならない
。またこの場合のピッチ幅は30(:IIにも小さくな
る。
12 straight runs 12.13.14.15...
Among them, only 14 scratches were ±10 scratches), and the other 11 vibrations were ±3 cIL, so the overlap of the cleaning range would have to be 10 cm on the left and right, considering the worst case scenario. Further, the pitch width in this case becomes as small as 30 (:II).

これに対して、本実施例の掃除範囲のオーバーラツプは
、走行基準座標xbを求める(3)式で示すように、U
ターン前の前回の直進走行の左右ぶれ景の最大値A+n
ax及びBmaxに計測誤差の係数にとの積土((1+
k)Amax+kBmax)である。この計測誤差の係
数には、計測装置の走行距離計測装置6にエンコーダを
、進行方向計測装置7にジャイロを使用した場合、α0
1〜α02なので本実施例の掃除用走行ロボッ)におい
ては無視可能である。
On the other hand, the overlap of the cleaning range in this embodiment is caused by U
Maximum value of left and right blur during the previous straight run before the turn A+n
Loading soil ((1+
k) Amax+kBmax). The coefficient of this measurement error includes α0
1 to α02, so it can be ignored in the cleaning robot of this embodiment.

このように実施例では、蛇行走行を考慮した掃除範囲の
オーバーラツプを、Uターン前の前回の直進走行におけ
るぶれ量Amax及びBmaxのみによるので、従来技
術のように走行開始から走行終了までのすべての直進走
行におけるぶれ量の最悪の場合を考えなくてもよいので
、それだけオーバーラツプを小さくすることができる。
As described above, in the embodiment, the overlap of the cleaning range considering meandering travel is determined only by the amount of vibration Amax and Bmax in the previous straight travel before the U-turn. Since there is no need to consider the worst case of the amount of blur in straight running, the overlap can be reduced accordingly.

例えば、従来技術の例と同じ条件の、掃除幅1t−50
cILとし、第3図の走行開始18から走行終了までの
直進走行のぶれ量が、12回の直進走行12.13.j
4,15.・・・・・・の中で14のみ±10clIで
あシ、他の11回のぶれ量が±3儂であったとすると、
実施例のオーバーラツプは平均でS、1clIと、従来
例の101よシ小さくすることができる。また横への移
動II(ピッチ幅っけ平均で約471と広くできる。
For example, under the same conditions as the example of the prior art, the cleaning width is 1t-50.
cIL, and the amount of blur in straight running from the start of running 18 to the end of running in FIG. j
4,15. If only 14 of them were ±10clI, and the other 11 vibrations were ±3clI,
The overlap of the embodiment can be reduced to S,1clI on average, which is smaller than 101 of the conventional example. Also, the horizontal movement II (pitch width can be widened to about 471 on average).

したがって、本実施例によれば、直進走行とUターンを
繰返して床面をくまなく走行させる場合、掃除範囲のオ
ーバーラツプを最小限にすることができ、床面を効率的
に掃除できる効果がある。しかも掃除の所用時間を短縮
できるので経済的になる効果もある。
Therefore, according to this embodiment, when traveling all over the floor by repeatedly traveling straight and making U-turns, overlap in the cleaning range can be minimized, and the floor can be efficiently cleaned. . Moreover, it also has the effect of being economical because the time required for cleaning can be shortened.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、Uターンなどによる進行方向反転後の
走行基準座標を、方向反転前の前回の直進走行のみのぶ
れ量により補正することで、掃除範囲のオーバーラツプ
幅を最小限度にとどめることができるので、床面の掃除
を効率良く行うことができる効果がある。しかも効率的
に掃除が行えるので、掃除の所要時間を短縮でき、経済
的になる効果もある。
According to the present invention, by correcting the travel reference coordinates after a reversal of the traveling direction due to a U-turn or the like, based on the amount of deviation of the previous straight travel before reversing the direction, it is possible to keep the overlap width of the cleaning range to a minimum. This has the effect of making it possible to efficiently clean the floor surface. Moreover, since the cleaning can be performed efficiently, the time required for cleaning can be shortened, which also has the effect of being economical.

実施例では、走行基準線を直線で説明したが、走行基準
線が曲線であっても、上記と同じ効果がある。実施例で
は、走行基準線からのぶれ景をロボットの自己位置によ
)求めたが、掃除境界線のぶれ量よル求めても同じ効果
がある。
In the embodiment, the traveling reference line is described as a straight line, but even if the traveling reference line is a curved line, the same effect as described above can be obtained. In the embodiment, the blurred view from the travel reference line was determined based on the robot's own position, but the same effect can be obtained by determining the amount of blurring of the cleaning boundary line.

また、実施例は、掃除用の走行ロボットを例に上げて説
明したが、部屋の中をくまなく走行させることが要求さ
れている。例えば、塗装用の走行ロボットに応用すると
、塗装作業の効率が向上すると共に作業が短時間ででき
、さらに使用する塗料の量も少なくなるなどの効果があ
る。
Further, although the embodiment has been described using a cleaning robot as an example, it is required to travel all over the room. For example, when applied to a traveling robot for painting, the efficiency of painting work can be improved, the work can be completed in a short time, and the amount of paint used can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例である掃除用走行ロボット
の走行制御方法の流れ図、第2図は掃除用走行ロボット
の構成図、第5図は掃除用走行ロボットの走行例の平面
図、第4図と第5図は走行基準座標の設定方法の説明図
、第6図と第7図は実施例の走行制御におけるUターン
走行の例を示す平面図である。 1・・・演算処理装置、2・・・記憶装置、3・・・入
力ボート、4・・・出力ボート、5・・・障害物検出装
置。 6・・・走行距離計測装置、7・・・進行方向計測装置
。 8・・・車輪駆動装置、9・・・掃除装置。 第2(2) 第3図 第牛図
FIG. 1 is a flowchart of a method for controlling the running of a cleaning robot according to an embodiment of the present invention, FIG. 2 is a configuration diagram of the cleaning robot, and FIG. 5 is a plan view of an example of how the cleaning robot runs. , FIGS. 4 and 5 are explanatory diagrams of a method of setting travel reference coordinates, and FIGS. 6 and 7 are plan views showing an example of U-turn travel in the travel control of the embodiment. DESCRIPTION OF SYMBOLS 1... Arithmetic processing unit, 2... Storage device, 3... Input boat, 4... Output boat, 5... Obstacle detection device. 6... Mileage measuring device, 7... Traveling direction measuring device. 8... Wheel drive device, 9... Cleaning device. Part 2 (2) Figure 3 Cow diagram

Claims (1)

【特許請求の範囲】 1)ロボットの位置を決定するためのデータの計測装置
と、計測データの演算及び走行方法を指令する演算処理
装置と、演算結果を記憶する記憶装置と、演算処理装置
の指令に従い走行する車輪駆動装置とを具備し、平行で
かつ直線の走行基準線に沿った直進走行と進行方向の反
転とを繰返す自律走行ロボットにおいて、演算処理装置
でロボット位置の走行基準線からのぶれ量の最大値を計
算し、進行方向反転後の直進走行の走行基準線の座標値
を、前回の直進走行における前記ぶれ量の最大値により
補正することを特徴とする自律走行ロボットの走行制御
方法。 2)特許請求の範囲第1項記載の自律走行ロボットの走
行制御方法において、平行でかつ直線の走行基準線に沿
った直進走行と進行方向の反転を繰返す走行の代りに、
定めた曲線の走行基準線に沿った曲線走行と進行方向の
反転を繰返す走行を行うことを特徴とする特許請求の範
囲第1項記載の自律走行ロボットの走行制御方法。
[Scope of Claims] 1) A data measuring device for determining the position of the robot, an arithmetic processing device for calculating the measured data and instructing the running method, a storage device for storing the calculation results, and an arithmetic processing device for calculating the robot's position. In an autonomous robot that is equipped with a wheel drive device that runs according to commands and that repeatedly travels straight along a parallel and straight running reference line and reverses the direction of travel, a processing unit calculates the position of the robot from the running reference line. Travel control for an autonomous robot, characterized in that the maximum value of the amount of shake is calculated, and the coordinate value of a travel reference line during straight-ahead travel after reversal of the direction of travel is corrected by the maximum value of the amount of shake during the previous straight-ahead run. Method. 2) In the method for controlling the movement of an autonomous mobile robot as set forth in claim 1, instead of running straight along a parallel and straight reference line and repeatedly reversing the direction of movement,
2. The autonomous mobile robot travel control method according to claim 1, wherein the autonomous mobile robot travels repeatedly along a curved travel reference line and reverses the traveling direction.
JP60154012A 1985-07-15 1985-07-15 Traveling control method for autonomous traveling robot Pending JPS6215610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60154012A JPS6215610A (en) 1985-07-15 1985-07-15 Traveling control method for autonomous traveling robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60154012A JPS6215610A (en) 1985-07-15 1985-07-15 Traveling control method for autonomous traveling robot

Publications (1)

Publication Number Publication Date
JPS6215610A true JPS6215610A (en) 1987-01-24

Family

ID=15574974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60154012A Pending JPS6215610A (en) 1985-07-15 1985-07-15 Traveling control method for autonomous traveling robot

Country Status (1)

Country Link
JP (1) JPS6215610A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0324296A (en) * 1989-06-21 1991-02-01 Toyo Kohan Co Ltd Electrolytic chromated steel sheet for welded can
EP0572930A1 (en) * 1992-06-02 1993-12-08 Siemens Aktiengesellschaft Activated vacuum cleaner
JP2007298348A (en) * 2006-04-28 2007-11-15 Kansai Gas Meter Co Ltd Structure for linking toggle bar of power transmission mechanism in gas meter, and method therefor
JP2016170616A (en) * 2015-03-12 2016-09-23 トヨタ自動車株式会社 Contacting external force calculation system, rolling resistance torque detection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0324296A (en) * 1989-06-21 1991-02-01 Toyo Kohan Co Ltd Electrolytic chromated steel sheet for welded can
JPH0637714B2 (en) * 1989-06-21 1994-05-18 東洋鋼鈑株式会社 Electrolytic chromic acid treated steel plate for welding can
EP0572930A1 (en) * 1992-06-02 1993-12-08 Siemens Aktiengesellschaft Activated vacuum cleaner
JP2007298348A (en) * 2006-04-28 2007-11-15 Kansai Gas Meter Co Ltd Structure for linking toggle bar of power transmission mechanism in gas meter, and method therefor
JP2016170616A (en) * 2015-03-12 2016-09-23 トヨタ自動車株式会社 Contacting external force calculation system, rolling resistance torque detection method

Similar Documents

Publication Publication Date Title
US5548511A (en) Method for controlling self-running cleaning apparatus
US6124694A (en) Wide area navigation for a robot scrubber
JP4165965B2 (en) Autonomous work vehicle
JP3660042B2 (en) Cleaning robot control method
JPH04333902A (en) Automatic running cleaning system of cleaner
JPS62154008A (en) Travel control method for self-travel robot
CN111466846B (en) Cleaning method of cleaning robot, chip and cleaning robot
US4986378A (en) Machine configuration and method for steering a vehicle away from a wall
JP2004326692A (en) Autonomous travelling robot
JPH075922A (en) Steering control method for unmanned work vehicle
JPS6215610A (en) Traveling control method for autonomous traveling robot
JPH09204223A (en) Autonomous mobile working vehicle
JP3237500B2 (en) Autonomous mobile work vehicle
JP3076648B2 (en) Self-propelled vacuum cleaner
JP2785305B2 (en) Self-propelled vacuum cleaner
JP2005346477A (en) Autonomous travelling body
JP3747487B2 (en) Self-propelled vacuum cleaner
JPH06131044A (en) Controller for unmanned traveling car
JPH07253815A (en) Automonous running working truck
JPH064132A (en) Obstacle evading method for moving body
WO2023241404A1 (en) Autonomous mobile apparatus, operation method, and storage medium
JPH06149364A (en) Controller for unmanned traveling car
JP2005332055A (en) Autonomous traveling cleaning robot
JP3931679B2 (en) Mobile robot
JPS6093524A (en) Controller of moving robot