JPH02415B2 - - Google Patents

Info

Publication number
JPH02415B2
JPH02415B2 JP18877582A JP18877582A JPH02415B2 JP H02415 B2 JPH02415 B2 JP H02415B2 JP 18877582 A JP18877582 A JP 18877582A JP 18877582 A JP18877582 A JP 18877582A JP H02415 B2 JPH02415 B2 JP H02415B2
Authority
JP
Japan
Prior art keywords
temperature
hot rolling
drawability
steel
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18877582A
Other languages
Japanese (ja)
Other versions
JPS5980727A (en
Inventor
Kazunori Oosawa
Takashi Obara
Minoru Nishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18877582A priority Critical patent/JPS5980727A/en
Publication of JPS5980727A publication Critical patent/JPS5980727A/en
Publication of JPH02415B2 publication Critical patent/JPH02415B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は連続焼鈍による絞り性の良好な冷延
鋼板の製造方法に関するものである。 絞り性の良好な冷延鋼板は、従来低炭素アルミ
キルド鋼を素材とし、箱焼鈍法により主として製
造されて来た。しかし箱焼鈍法は、処理に日数を
要するばかりでなく、コイル状態で熱処理される
ためコイルの半径方向で加熱および冷却速度に差
異を生じその結果コイル全体にわたつて均質な材
質を得ることが困難であつた。 これに対して連続焼鈍法を用いると箱焼鈍法に
よる上掲の欠点を解消することが可能である。 しかし連続焼鈍では、急速加熱、急速冷却処理
を伴なうため結晶粒の成長性が悪く、また鋼中に
固溶しているCの析出が進まないため硬質で絞り
性、耐時効性が劣る。 連続焼鈍法のこれらの欠点を解消するため特公
昭50−1341号公報に開示されているように熱間圧
延時、高温で巻取ることにより絞り性に有利な方
位の粒成長を促進させ、かつ連続焼鈍中急速冷却
後に300℃〜500℃で数秒〜数分の過時効処理を行
なつて、未析出の固溶Cの析出を促進させ、耐時
効性の改善を行なう方法が提案されているが、熱
延時の高温巻取は酸洗性の低下を伴なうばかりで
なくこのような方法により製造された冷延鋼板の
絞り性は末だ箱焼鈍材の材質よりも劣つている。 一方連続焼鈍材の耐時効性を悪化させている主
原因が固溶Cに依存することからC含有量を
0.0050%以下に低減した極低炭素鋼の素材を用い
て耐時効性を向上させる方法も提案されている。 ところで一般に絞り用鋼板を製造するに際し、
高いランクフオード値(値=(r0+2r45
r90)/4)を得るためには、熱延仕上げをAr3
態点以上で終了することが必須とされている。 それというのは、箱焼鈍法、連続焼鈍法の何れ
を問わずAr3変態点以下、すなわちα(フエライ
ト)+γ(オーステナイト)の2相域又はα域で熱
延を終了したときには、絞り性に不利な(110)、
(100)方位が板面に平行に発達し、そのため焼鈍
時に絞り性に有利な(111)方位を板面に平行に
発達させるのを阻害するとされていたことによ
る。 ここで上記のように、C量を極端に低くするこ
とは、耐時効性の面では有利であるが、それによ
るAr3変態点の上昇を伴うので熱延仕上時、γ
(オーステナイト)域で仕上げ圧延を終了させる
ためには、スラブ加熱温度の上昇や熱延の圧下ス
ケジユールの変更などが余儀なくされ、省エネル
ギーの面から大きなマイナスとなる。 しかも上掲のように固溶C低減による耐時効性
の改善ならびに絞り性、延性の向上を目的とし
て、熱延コイルを高温で巻取ることや、C量を
0.01%以下の極低C域に低減すること、さらには
冷間圧延後の焼鈍条件などの適当な組合せに関し
て従来数多くの提案がなされたが、これらの方法
でr値の異方性(Δr=(r0−2r45+r90)/2)が
大きくなり、絞り性の良好な鋼を製造する方法と
してはいずれもなお不充分であつた。 発明者らは、研究を重ねた結果Al含有量を多
くした鋼では、熱延仕上げ温度がAr3変態点未満
であつても、絞り性がAr3変態点以上の熱延仕上
げで製造されている鋼板と同程度又はそれ以上の
材質となる鋼板が有利に製造できる方法を確立し
た。 すなわち、Alを多量に添加した極低炭素鋼を
素材とした場合には、ある特定範囲のスラブ加熱
温度と熱延条件の時、Ar3変態点よりも低い熱延
仕上げでも絞り性の良好な鋼板が得られることを
見出したのである。 この発明は、重量百分率にてC:0.0030%以
下、N:0.0050%以下、Mn:0.5%以下を、Sol.
Al:0.10〜0.20%とともに含み、残部が実質的に
鉄及び不可避的不純物からなる組成の鋼スラブを
1150℃以下の温度に加熱した後、仕上げ温度700
〜850℃、巻取り温度600℃以下の条件で熱間圧延
を行ない、次いで常法に従う冷間圧延をしたのち
連続焼鈍を行なうことにより上掲特定組成とその
鋼板素材における焼鈍時の粒成長性、さらに絞り
性に影響を及ぼす(111)集合組織を発達させる
のに有効な熱延条件の適合を図つたものである。 以下この発明の開発経緯をその実験結果に従つ
て、詳細に説明する。 実験() C:0.0024%、N:0.0039%、Mn:0.15%、
Sol.Al:0.12%を含有し、P:0.003%、S:
0.005%の小型鋼塊を用いスラブ加熱温度1000〜
1300℃以下にて熱延仕上げ温度を580〜960℃の範
囲で変化させ、巻取相当温度700℃以下で処理し
た後実験室で冷延、連続型の焼鈍をして、その材
質を調べた。連続型焼鈍というのは、連続焼鈍シ
ユミレーターで焼鈍し、そのヒートサイクルは30
℃/sで急速加熱後800℃で40秒保持ししかる後
30℃/sで急速冷却するものである。 絞り性の尺度として値、Δr値を用いた。第
1図、第2図および第3図にその結果を示す。 まずスラブ加熱温度1150℃以下において熱延仕
上温度がAr3変態点以下の850℃よりも低いとき
第1図、第3図の○、△印のように最も値が高
くかつΔr値は非常に小さくなり、特性が良く、
かつ異方性が小さい材料が得られた。 次に第3図によれば熱延仕上を、600℃〜850℃
の温度域で終了した場合、、Δr値とも良好と
なり、とくに熱延仕上温度が700〜850℃の場合に
材質が著しく良好となることが分る。 この理由については、明らかではないが、熱延
仕上げ時にAr3変態点よりも低い温度による熱間
仕上げにより導入された加工歪のみ一部とAlN
の析出とが何らかの作用をもち、材質が良好とな
つたと考えられる。熱延仕上げ温度が、600〜850
℃とくに700〜850℃の範囲であつても700℃程度
の高温で巻き取つた場合の材質は低温で巻取つた
場合よりむしろ悪くなり、高温巻取りによる材質
の改善は見られない。 かくして高温巻取材は、酸洗時の脱スケールコ
ストの上昇を伴なつたのに対し、この発明では
Ar3変態点以下の低温の熱延仕上げを行なうこと
により、低温で巻取つても高温巻取り材をはるか
に凌駕する材質を得ることができるので酸洗コス
トの低減の面でもとくに有利である。 この発明での熱延時の巻取温度としては酸洗時
のコストアツプを防ぐ目的でその上限を600℃と
する。 実験() C:0.0021%、N:0.0037%、Mn:0.16%を含
み、P:0.003%、S:0.005%である成分組成を
基準としてSol.Alを0.025〜0.24%の範囲で変化さ
せた鋼を実験室的に製作し、実験()の結果を
踏まえてスラブ加熱温度1100℃、熱延仕上げ温度
800℃、巻取り相当温度520℃の条件で熱延を終了
し、板厚を3.2mmとした。その後冷延を行い、板
厚を0.8mmとし連続焼鈍して値に及ぼすAlの影
響を調べた結果を第4図に示す。図によればSol.
Al0.10〜0.20%の範囲内で深絞り性に良好な材料
が得られている。 次にこの発明の方法において鋼の成分組成を限
定した理由を説明する。 Cの成分範囲は、0.0030%をこえると、粒成
長、深絞り性を低下させるとともに時効性も劣化
するので上限を0.0030%とする。 Nの上限を0.0050%としたのは、これをこえる
添加は焼鈍時の結晶粒の成長を著しく抑制し、絞
り性を低下させるからであり、絞り性の一層の向
上をはかるためには0.0050%以下の制限を要す
る。 Mnは熱間圧延時、赤熱脆性の原因となるSを
介在物にするため有効であるが0.5%をこえる存
在は硬度が上昇して深絞り性に悪影響を及ぼすた
め、この発明でその上限を0.5%とした。 Sol.Alの限定については鋼スラブの加熱温度が
低く、また熱延仕上げ温度および巻取り温度も低
い条件の下では、Al量が多くなるに従い、AlN
が粗大化する効果と固溶Alが増加する相乗効果
により焼鈍板の粒径は大きくなり材質は軟質とな
ることが判明した。 しかしSol.Al量が多くなりすぎると添加コスト
が増すのみならず材質が硬質化してくるので上限
を0.20%とする。一方0.10%未満になるとAlNが
微細に析出し、粒成長が悪くなるとともにこの発
明で所期したようなスラブ低温加熱と低温仕上げ
圧延による絞り性に有利な集合組織{111}が発
達しなくなる。よつてSol.Al範囲を0.10〜0.20%
とする。 また不可避的不純物として含有されるP、Sは
絞り性を悪化させる理由から極力減少させなけれ
ばならないが、特に規定するものではない。 以上述べたようにこの発明では上記組成の鋼ス
ラブを低温加熱、熱延低温仕上げおよび低温巻取
りにより熱延板としその後は常法に従い酸洗後冷
間圧延してから連続焼鈍を行い、冷延鋼板を得
る。 なお連続焼鈍条件としては、とくに規定する必
要はなく、鋼板の最高到達温度が再結晶温度以上
であれば、加熱速度、冷却速度また過時効の有無
などについては、とくに制限を要しない。 以下この発明の実施例を掲げ、比較例と対比し
て効果を験証する。 転炉出鋼後20分間RH脱ガスを施すことにより
成分の異なる14種の鋼を出鋼し、連続鋳造により
板厚200mmのスラブとした。 これらのスラブを加熱炉で1010゜〜1240℃に加
熱し、60分保持した後、熱間圧延で700℃〜930℃
の温度域にて仕上げ圧延を終了し520℃で巻取り、
3.2mmの熱延コイルとした。 表1に鋼成分、スラブ加熱温度、熱延仕上温度
を示す。
This invention relates to a method for producing cold rolled steel sheets with good drawability by continuous annealing. Cold-rolled steel sheets with good drawability have conventionally been produced mainly from low-carbon aluminum killed steel by box annealing. However, with the box annealing method, not only does the process take several days, but since the coil is heat treated, the heating and cooling rates vary in the radial direction of the coil, making it difficult to obtain a uniform material throughout the coil. It was hot. On the other hand, if a continuous annealing method is used, it is possible to eliminate the above-mentioned drawbacks caused by the box annealing method. However, continuous annealing involves rapid heating and rapid cooling, which results in poor crystal grain growth, and the precipitation of C dissolved in solid solution in the steel does not progress, resulting in hard steel with poor drawability and aging resistance. . In order to eliminate these drawbacks of the continuous annealing method, as disclosed in Japanese Patent Publication No. 1341/1983, grain growth in the direction advantageous for drawability is promoted by winding at a high temperature during hot rolling, and A method has been proposed in which after rapid cooling during continuous annealing, overaging treatment is performed at 300°C to 500°C for several seconds to several minutes to promote precipitation of unprecipitated solid solution C and improve aging resistance. However, high-temperature winding during hot rolling not only causes a decrease in pickling properties, but also the drawability of cold-rolled steel sheets produced by such a method is inferior to that of the end box annealed material. On the other hand, since the main cause of deterioration of the aging resistance of continuously annealed materials depends on solid solute C, the C content is
A method has also been proposed to improve aging resistance using ultra-low carbon steel material with carbon content reduced to 0.0050% or less. By the way, when manufacturing steel sheets for drawing,
High rankford value (value = (r 0 + 2r 45 +
In order to obtain r 90 )/4), it is essential that the hot rolling finish be completed at the Ar 3 transformation point or higher. This is because, regardless of whether the box annealing method or the continuous annealing method is used, when hot rolling is completed below the Ar 3 transformation point, that is, in the two-phase region of α (ferrite) + γ (austenite) or in the α region, the drawability will deteriorate. unfavorable (110),
This is because the (100) orientation develops parallel to the sheet surface, which is thought to prevent the (111) orientation, which is advantageous for drawability, from developing parallel to the sheet surface during annealing. As mentioned above, extremely low C content is advantageous in terms of aging resistance, but it also increases the Ar 3 transformation point, so during hot rolling finishing, γ
In order to finish finish rolling in the (austenite) region, it is necessary to increase the slab heating temperature and change the hot rolling reduction schedule, which is a big disadvantage in terms of energy saving. Moreover, as mentioned above, in order to improve aging resistance, drawability, and ductility by reducing solid solution C, hot-rolled coils are wound at high temperatures and the amount of C is reduced.
Many proposals have been made in the past regarding reducing C to an extremely low range of 0.01% or less, and furthermore, on appropriate combinations of annealing conditions after cold rolling. (r 0 −2r 45 +r 90 )/2) became large, and both methods were still insufficient as methods for producing steel with good drawability. As a result of repeated research, the inventors found that steel with a high Al content can be manufactured with a hot-rolled finish that has drawability equal to or higher than the Ar 3 transformation point, even if the hot-rolled finishing temperature is below the Ar 3 transformation point. We have established a method that can advantageously produce steel plates with a material quality comparable to or higher than that of existing steel plates. In other words, when ultra-low carbon steel with a large amount of Al added is used as a material, when the slab heating temperature and hot rolling conditions are within a certain range, good drawability can be achieved even with a hot rolled finish lower than the Ar 3 transformation point. They discovered that steel plates could be obtained. This invention is based on Sol.
A steel slab containing Al: 0.10 to 0.20%, with the remainder consisting essentially of iron and unavoidable impurities.
After heating to a temperature below 1150℃, finishing temperature 700℃
By performing hot rolling under the conditions of ~850℃ and a coiling temperature of 600℃ or less, then cold rolling according to a conventional method, and then continuous annealing, the above specific composition and grain growth properties during annealing of the steel sheet material are determined. Furthermore, the hot rolling conditions were adapted to be effective in developing the (111) texture, which affects drawability. The development history of this invention will be explained in detail below in accordance with the experimental results. Experiment () C: 0.0024%, N: 0.0039%, Mn: 0.15%,
Contains Sol.Al: 0.12%, P: 0.003%, S:
Slab heating temperature 1000 ~ using 0.005% small steel ingot
The hot-rolled finishing temperature was varied in the range of 580 to 960°C at 1300°C or lower, and the coiling equivalent temperature was processed at 700°C or lower, followed by cold rolling and continuous annealing in the laboratory, and the material properties were investigated. . Continuous annealing is annealing in a continuous annealing simulator, and the heat cycle is 30
After rapid heating at ℃/s and holding at 800℃ for 40 seconds,
It rapidly cools at 30°C/s. The value, Δr value, was used as a measure of drawability. The results are shown in FIGS. 1, 2 and 3. First, when the slab heating temperature is 1150°C or lower and the hot rolling finishing temperature is lower than 850°C, which is below the Ar 3 transformation point, the value is highest as shown by the ○ and △ marks in Figures 1 and 3, and the Δr value is extremely high. Smaller, better characteristics,
A material with low anisotropy was obtained. Next, according to Figure 3, hot rolling finishing is carried out at 600°C to 850°C.
It can be seen that when the hot rolling is completed in the temperature range of , both the Δr values are good, and the material quality is particularly good when the hot rolling finishing temperature is 700 to 850°C. The reason for this is not clear, but only a portion of the processing strain introduced by hot finishing at a temperature lower than the Ar3 transformation point and AlN
It is thought that this precipitation had some effect on the material, resulting in a better quality of the material. Hot rolling finishing temperature is 600~850
℃, especially in the range of 700 to 850℃, the quality of the material when wound at a high temperature of about 700℃ is worse than that when wound at a low temperature, and there is no improvement in material quality due to high temperature winding. Thus, high-temperature web material was accompanied by an increase in descaling cost during pickling, whereas this invention
By performing hot rolling finishing at a low temperature below the Ar 3 transformation point, it is possible to obtain a material that far exceeds that of high-temperature rolled material even when rolled at a low temperature, which is particularly advantageous in terms of reducing pickling costs. . In this invention, the upper limit of the winding temperature during hot rolling is 600°C in order to prevent cost increases during pickling. Experiment () Sol.Al was varied in the range of 0.025 to 0.24% based on the component composition containing C: 0.0021%, N: 0.0037%, Mn: 0.16%, P: 0.003%, S: 0.005%. The steel was manufactured in the laboratory, and based on the results of the experiment (), the slab heating temperature was 1100℃, and the hot rolling finishing temperature was
Hot rolling was completed under conditions of 800°C and a coiling equivalent temperature of 520°C, and the plate thickness was 3.2 mm. After that, it was cold-rolled to a thickness of 0.8 mm and continuously annealed, and the effect of Al on the value was investigated. The results are shown in Figure 4. According to the diagram, Sol.
Materials with good deep drawability were obtained within the range of 0.10 to 0.20% Al. Next, the reason why the composition of steel is limited in the method of this invention will be explained. The upper limit of the C component range is set at 0.0030%, since if it exceeds 0.0030%, grain growth and deep drawability will be reduced, as well as aging properties. The reason why the upper limit of N was set at 0.0050% is that adding more than this will significantly suppress the growth of crystal grains during annealing and reduce drawability.In order to further improve drawability, 0.0050% The following restrictions are required. Mn is effective during hot rolling because it turns S, which causes red-hot brittleness, into inclusions, but the presence of more than 0.5% increases hardness and has a negative effect on deep drawability. It was set at 0.5%. Regarding the limitation of Sol.Al, under conditions where the heating temperature of the steel slab is low, and the hot rolling finishing temperature and coiling temperature are also low, as the amount of Al increases, the AlN
It was found that due to the synergistic effect of the coarsening of aluminum and the increase of solid solution Al, the grain size of the annealed plate becomes larger and the material becomes softer. However, if the amount of Sol.Al increases too much, not only will the addition cost increase, but the material will become hard, so the upper limit is set at 0.20%. On the other hand, if it is less than 0.10%, AlN will precipitate finely, grain growth will deteriorate, and the texture {111}, which is advantageous for drawability due to slab low-temperature heating and low-temperature finish rolling, as expected in the present invention, will not develop. So the Sol.Al range is 0.10~0.20%
shall be. Further, P and S contained as unavoidable impurities must be reduced as much as possible because they deteriorate drawing properties, but are not particularly stipulated. As described above, in this invention, a steel slab having the above composition is made into a hot-rolled plate by low-temperature heating, hot-rolling and low-temperature finishing, and low-temperature winding, followed by pickling, cold rolling, continuous annealing, and cold rolling according to a conventional method. Obtain rolled steel plate. Note that there is no need to specify any particular conditions for continuous annealing, and as long as the highest temperature of the steel plate is equal to or higher than the recrystallization temperature, there are no particular restrictions on the heating rate, cooling rate, presence or absence of overaging, etc. Examples of this invention will be listed below, and the effects will be verified by comparing them with comparative examples. After tapping in the converter, RH degassing was performed for 20 minutes to tap 14 types of steel with different compositions, which were then continuously cast into slabs with a thickness of 200 mm. These slabs are heated to 1010° to 1240°C in a heating furnace, held for 60 minutes, and then heated to 700°C to 930°C by hot rolling.
Finish rolling is completed in the temperature range of 520℃, and
It was made into a 3.2mm hot rolled coil. Table 1 shows the steel composition, slab heating temperature, and hot rolling finishing temperature.

【表】【table】

【表】 該コイルを酸洗後0.8mmに冷間圧延し、引続き
連続焼鈍を施した。連続焼鈍の条件としては加熱
速度が約15℃/秒、均熱は800℃で25秒保持、冷
却速度は約45℃/秒である。その後、約0.8%の
調質圧延を施した。 このようにして製造された鋼板の材質を表2に
示す。
[Table] After pickling, the coil was cold rolled to a thickness of 0.8 mm and subsequently subjected to continuous annealing. The conditions for continuous annealing are a heating rate of approximately 15°C/sec, soaking at 800°C for 25 seconds, and a cooling rate of approximately 45°C/sec. Thereafter, it was subjected to about 0.8% temper rolling. Table 2 shows the materials of the steel sheets manufactured in this manner.

【表】 この表から明らかなようにこの発明により製造
された冷延鋼板は、その絞り性(、Δr値)が
いづれも優れている。 以上詳細に述べてきたとおりこの発明は、C、
NおよびAlの特定組成の鋼スラブを用い、とく
に熱延前の加熱を1150℃以下とし、仕上圧延温度
700〜850℃、巻取温度600℃以下とする熱間圧延
を行ない、続いて冷間圧延した後急速加熱、急速
冷却の連続焼鈍を行なうことから成る冷延鋼板の
製造方法であり、この方法により絞り性の優れた
冷延鋼板を製造することができるのである。
[Table] As is clear from this table, the cold-rolled steel sheets produced according to the present invention have excellent drawability (and Δr value). As described in detail above, this invention comprises C,
Using a steel slab with a specific composition of N and Al, the heating before hot rolling is kept at 1150℃ or less, and the finishing rolling temperature is
A method for producing cold rolled steel sheets, which comprises hot rolling at 700 to 850°C and a coiling temperature of 600°C or less, followed by continuous annealing of rapid heating and rapid cooling after cold rolling. This makes it possible to produce cold-rolled steel sheets with excellent drawability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、降伏応力と値に及ぼすスラブ加熱
温度の影響を示す図表、第2図は、降伏応力と全
伸びに及ぼす熱延仕上げ温度の影響を示す図表、
第3図は値とΔr値に及ぼす熱延仕上げ温度の
影響を示す図表、第4図は値に及ぼすSol.Al量
の影響を示す図表である。
Fig. 1 is a chart showing the effect of slab heating temperature on yield stress and value, Fig. 2 is a chart showing the effect of hot rolling finishing temperature on yield stress and total elongation,
FIG. 3 is a chart showing the effect of hot rolling finishing temperature on the value and Δr value, and FIG. 4 is a chart showing the effect of Sol.Al amount on the value.

Claims (1)

【特許請求の範囲】[Claims] 1 重量百分率にて、C:0.0030%以下、N:
0.0050%以下、Mn:0.5%以下を、Sol.Al:0.10
〜0.20%とともに含み、残部実質的に鉄及び不可
避的不純物からなる組成の鋼スラブを1150℃以下
の温度に加熱した後、仕上げ温度700〜850℃、巻
取り温度600℃以下の条件で熱間圧延を行ない、
次いで常法に従う冷間圧延をしたのち連続焼鈍を
行なうことを特徴とする連続焼鈍による絞り性の
良好な冷延鋼板の製造方法。
1 In terms of weight percentage, C: 0.0030% or less, N:
0.0050% or less, Mn: 0.5% or less, Sol.Al: 0.10
After heating a steel slab with a composition of ~0.20% and the remainder essentially consisting of iron and unavoidable impurities to a temperature of 1150℃ or less, it is hot-rolled at a finishing temperature of 700 to 850℃ and a coiling temperature of 600℃ or less. Perform rolling,
A method for producing a cold-rolled steel sheet with good drawability by continuous annealing, characterized in that cold rolling is then carried out according to a conventional method and then continuous annealing is carried out.
JP18877582A 1982-10-27 1982-10-27 Manufacture of cold rolled steel sheet with high drawability by continuous annealing Granted JPS5980727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18877582A JPS5980727A (en) 1982-10-27 1982-10-27 Manufacture of cold rolled steel sheet with high drawability by continuous annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18877582A JPS5980727A (en) 1982-10-27 1982-10-27 Manufacture of cold rolled steel sheet with high drawability by continuous annealing

Publications (2)

Publication Number Publication Date
JPS5980727A JPS5980727A (en) 1984-05-10
JPH02415B2 true JPH02415B2 (en) 1990-01-08

Family

ID=16229562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18877582A Granted JPS5980727A (en) 1982-10-27 1982-10-27 Manufacture of cold rolled steel sheet with high drawability by continuous annealing

Country Status (1)

Country Link
JP (1) JPS5980727A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119615A (en) * 1984-11-16 1986-06-06 Nippon Steel Corp Melt-working method of metallic surface
JPS61238919A (en) * 1985-04-15 1986-10-24 Kawasaki Steel Corp Manufacture of cold rolled deep drawing steel sheet having low anisotropy in plane
JP4848311B2 (en) * 2007-05-16 2011-12-28 新日本製鐵株式会社 Temperature measuring device

Also Published As

Publication number Publication date
JPS5980727A (en) 1984-05-10

Similar Documents

Publication Publication Date Title
JPS6116323B2 (en)
JP3160281B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic properties
JPS6114213B2 (en)
JPH02415B2 (en)
JPS5980726A (en) Production of high strength cold rolled steel sheet having excellent deep drawability and small plate anisotropy
JPS5842249B2 (en) Manufacturing method of soft cold-rolled steel sheet for pressing by continuous annealing
JP2612452B2 (en) Manufacturing method of high ductility and high strength cold rolled steel sheet
JPH0532443B2 (en)
JPH02141536A (en) Production of steel sheet for drawn can decreased earing
JPS6114216B2 (en)
JP3818025B2 (en) Method for producing cold-rolled steel sheet with small anisotropy
JPH0797628A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss
JP3194120B2 (en) Manufacturing method of cold-rolled steel sheet for non-aging deep drawing excellent in material uniformity in coil by continuous annealing
JPH075984B2 (en) Method for producing Cr-based stainless steel thin plate using thin casting method
JPS6242968B2 (en)
JPH06240358A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JP3737558B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPS638165B2 (en)
JPS6044377B2 (en) Method for producing soft cold-rolled steel sheets for drawing with excellent aging resistance through continuous annealing
JPS6043432A (en) Manufacture of cold rolled aluminum killed steel sheet
JPH08157963A (en) Production of grain oriented silicon steel sheet
JPS60190521A (en) Manufacture of nonoriented electrical steel sheet
JP4332960B2 (en) Manufacturing method of high workability soft cold-rolled steel sheet
JPH07113128B2 (en) Method for manufacturing silicon steel sheet
JPH0369967B2 (en)