JP2012214846A - Aluminum alloy sheet for molding process and method for producing the same - Google Patents

Aluminum alloy sheet for molding process and method for producing the same Download PDF

Info

Publication number
JP2012214846A
JP2012214846A JP2011081001A JP2011081001A JP2012214846A JP 2012214846 A JP2012214846 A JP 2012214846A JP 2011081001 A JP2011081001 A JP 2011081001A JP 2011081001 A JP2011081001 A JP 2011081001A JP 2012214846 A JP2012214846 A JP 2012214846A
Authority
JP
Japan
Prior art keywords
rolling
aluminum alloy
mass
temperature
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011081001A
Other languages
Japanese (ja)
Other versions
JP5758676B2 (en
Inventor
Takahiko Nakamura
貴彦 中村
Tetsuya Masuda
哲也 増田
Daisuke Kaneda
大輔 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011081001A priority Critical patent/JP5758676B2/en
Priority to KR1020120032212A priority patent/KR20120112167A/en
Priority to CN201210088639.0A priority patent/CN102732759B/en
Publication of JP2012214846A publication Critical patent/JP2012214846A/en
Priority to KR1020150003445A priority patent/KR101820569B1/en
Application granted granted Critical
Publication of JP5758676B2 publication Critical patent/JP5758676B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Al-Mg-Si-based alloy sheet that has enough moldability and strength as an automotive panel etc. and does not cause defective appearance after molding and coating under severe molding conditions, and a method for producing the same.SOLUTION: The aluminum alloy sheet for molding process is produced by subjecting an aluminum alloy containing 0.4-1.5 mass% of Si, 0.4-1.0 mass% of Mg, 0.1-1.0 mass% of Fe, and 0.1-0.5 mass% of Mn, with the balance comprising Al and unavoidable impurities to casting; homogenizing heat treatment; hot rolling such that the initiation temperature is 350-450°C and the end temperature is (445-3r)°C or more relative to the rolling reduction r% in the final pass; cold rolling; solution treatment; and quenching treatment. Furthermore, in the central part in the sheet thickness direction of a cross-section surface including the rolling direction, an Al-Mn-Fe(-Si)-based intermetallic compound with an equivalent circle diameter of 2.0 μm or more has an area rate of 0.4% or more and a number density of 1,350 pieces/mmor more.

Description

本発明は、プレス加工されて自動車用パネル等に成形されるAl−Mg−Si系合金板に関し、特に表面性状に優れたアルミニウム合金板およびその製造方法に関する。   The present invention relates to an Al—Mg—Si alloy plate that is pressed and formed into an automotive panel or the like, and more particularly, to an aluminum alloy plate excellent in surface properties and a method for manufacturing the same.

近年、自動車の燃費向上のために、自動車用の部材について、これまで使用されてきた鋼材に代わって、軽量で成形性や焼付硬化性にも優れたアルミニウム材の適用が増加している。   In recent years, in order to improve the fuel efficiency of automobiles, the application of aluminum materials, which are lightweight and excellent in formability and bake hardenability, is increasing in place of steel materials that have been used so far.

自動車用部材の中で、アウタパネル(外板)やインナパネル(内板)のようなパネル構造体に適用されるアルミニウム材としては、高強度のJIS 5000,6000系アルミニウム合金材が挙げられる。特に6000系のようなAl−Mg−Si系合金材は、優れた時効硬化能を有しているため、プレス加工や曲げ加工時には低耐力により成形性を確保する一方で、成形後のパネルの塗装焼付け処理等の比較的低温の人工時効(硬化)処理時の加熱により時効硬化して耐力が向上し、必要な強度が得られるというベークハード性を有する(例えば特許文献1参照)。   Among automotive members, examples of the aluminum material applied to a panel structure such as an outer panel (outer plate) and an inner panel (inner plate) include high-strength JIS 5000,6000 series aluminum alloy materials. In particular, Al-Mg-Si alloy materials such as 6000 series have excellent age-hardening ability, so that the formability of the panel after molding is ensured while ensuring low formability during press working and bending. It has a bake hard property that the yield strength is improved by heating at the time of artificial aging (curing) treatment at a relatively low temperature such as paint baking treatment, and the required strength is obtained (see, for example, Patent Document 1).

パネル構造体、特にアウタパネル用の板材としては、成形性や強度の他に、パネル構造体に製造された後の表面の美観が要求されるが、6000系アルミニウム合金板は、プレス加工等による成形後においては肌荒れが、さらに塗装後の表面にはリジングマークのような外観不良を生じ易い。そのため、リジングマーク等の外観不良を防止できるようなAl−Mg−Si系合金板が開発されている。   As a plate material for a panel structure, particularly an outer panel, in addition to formability and strength, the appearance of the surface after being manufactured into the panel structure is required, but the 6000 series aluminum alloy plate is formed by press working or the like. Later, rough skin is likely to occur, and the surface after coating tends to have a poor appearance such as a ridging mark. Therefore, an Al—Mg—Si alloy plate that can prevent appearance defects such as ridging marks has been developed.

リジングマークは、成形により板表面に形成された圧延方向に沿った筋状の凹凸が現われたものであり、詳細な検証の結果、板厚方向における板厚全体の塑性変形量の積み重なりがこの凹凸を形成することが判明している。すなわち、圧延直角(幅)方向における結晶方位成分毎の分布(偏り)の程度によって、リジングマークが発生するか否かが決定される。そのため、肌荒れを防止するための結晶粒の微細化に加え、結晶の方位が特定の向きに揃っていないランダムな方位の結晶となるように、方位毎に結晶の面積率を規定したり(特許文献2〜5)、再結晶の核となる金属間化合物の析出を規定したAl−Mg−Si系合金板が開発されている(特許文献6)。そして、このような微細かつランダムな方位の結晶とするべく、金属間化合物を形成させるMn等を所定量添加したり、鋳塊の均質化処理や冷間圧延後の溶体化処理を所定の熱処理条件で行ったり、熱間圧延および冷間圧延における加工率や圧下率、さらに熱間圧延における開始温度や終了温度を制御することが知られている。   The ridging mark is a striped unevenness along the rolling direction that was formed on the surface of the plate by molding. As a result of detailed verification, the stacking of the total plastic deformation amount in the thickness direction is Has been found to form. That is, whether or not a ridging mark is generated is determined by the degree of distribution (bias) for each crystal orientation component in the direction perpendicular to the rolling (width) direction. Therefore, in addition to refinement of crystal grains to prevent rough skin, the crystal area ratio is specified for each orientation so that the orientation of the crystals is not aligned in a specific direction (patents) References 2 to 5), Al—Mg—Si based alloy plates that define the precipitation of intermetallic compounds that are the core of recrystallization have been developed (Patent Document 6). And in order to obtain such fine and randomly oriented crystals, a predetermined amount of Mn or the like for forming an intermetallic compound is added, or ingot homogenization treatment or solution treatment after cold rolling is conducted with a predetermined heat treatment. It is known to perform under conditions, or to control the processing rate and reduction ratio in hot rolling and cold rolling, and further the start temperature and end temperature in hot rolling.

特開2008−303449号公報JP 2008-303449 A 特許第4063388号公報Japanese Patent No. 4063388 特開2009−263781号公報JP 2009-263781 A 特許第4499369号公報Japanese Patent No. 4499369 特許第4202894号公報Japanese Patent No. 4202894 特許第4328242号公報Japanese Patent No. 4328242

しかしながら、特許文献2は、熱間圧延の終了温度を高く規制するために安定した製造が困難であり、特許文献5は、熱間仕上げ圧延の速度を抑制するために表面にキズを生じ易く、それぞれ製造条件に改良の余地がある。さらにパネル構造体の大型化や形状の複雑化、あるいは薄肉化等によりプレス加工条件が厳しくなると、リジングマーク等の外観不良がいっそう生じ易くなり、特許文献2〜6におけるAl−Mg−Si系合金板では不十分である。   However, Patent Document 2 is difficult to produce stably because the end temperature of hot rolling is highly regulated, and Patent Document 5 is liable to cause scratches on the surface to suppress the speed of hot finish rolling. There is room for improvement in manufacturing conditions. Furthermore, when the press processing conditions become severe due to enlargement of the panel structure, complexity of the shape, or thinning, etc., appearance defects such as ridging marks are more likely to occur, and the Al—Mg—Si alloy in Patent Documents 2 to 6 A board is not enough.

本発明は、前記問題点に鑑みてなされたものであり、自動車用パネル等として成形性および強度を十分に有し、薄肉化や厳しい加工条件による成形後、さらに塗装後において外観不良を生じない、優れた表面性状を有するAl−Mg−Si系合金板およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and has sufficient formability and strength as an automotive panel or the like, and does not cause poor appearance after molding under thinning or severe processing conditions, and further after coating. An object of the present invention is to provide an Al—Mg—Si alloy plate having excellent surface properties and a method for producing the same.

前記課題を解決するために、本発明者らは、従来に発明した再結晶組織の微細化のための圧延条件等に加え、その再結晶の際に核となる金属間化合物が高密度で存在する場合に、それぞれの金属間化合物が核となるためにいっそう再結晶組織が微細化され、さらに再結晶した結晶の方位がランダムとなり易いことを見出した。そこで、アルミニウム合金板の断面に現れる金属間化合物について、その大きさおよび分布状態の適正値、ならびにかかる金属間化合物を晶出、析出させるための条件を鋭意研究した。   In order to solve the above-mentioned problems, the present inventors have a high density of intermetallic compounds that serve as nuclei in the recrystallization in addition to the rolling conditions for refining the recrystallized structure previously invented. In this case, it has been found that the recrystallized structure is further refined because each intermetallic compound becomes a nucleus, and the orientation of the recrystallized crystal tends to be random. In view of this, for the intermetallic compounds appearing in the cross section of the aluminum alloy plate, we have intensively studied the appropriate values of the size and distribution state and the conditions for crystallizing and precipitating the intermetallic compounds.

すなわち、本発明に係る成形加工用アルミニウム合金板は、Si:0.4〜1.5質量%、Mg:0.4〜1.0質量%、Fe:0.1〜1.0質量%、Mn:0.1〜0.5質量%を含有し、残部がAlおよび不可避的不純物からなるアルミニウム合金で形成されたものである。そして、この成形加工用アルミニウム合金板は、圧延方向を含む断面の板厚方向中心部において、円相当径が2.0μm以上のAl−Mn−Fe(−Si)系金属間化合物が、面積率:0.4%以上、個数密度:1350個/mm2以上であることを特徴とする。前記成形加工用アルミニウム合金は、さらにCu:0.05〜1.0質量%、Cr:0.15質量%以下、Zr:0.15質量%以下、Ti:0.007〜0.10質量%の少なくとも一種を含有することが好ましく、さらにZn:0.5質量%以下を含有してもよい。 That is, the aluminum alloy plate for forming according to the present invention has Si: 0.4 to 1.5 mass%, Mg: 0.4 to 1.0 mass%, Fe: 0.1 to 1.0 mass%, Mn: 0.1 to 0.5% by mass, and the balance is formed of an aluminum alloy composed of Al and inevitable impurities. And this aluminum alloy sheet for forming processing has an area ratio of an Al—Mn—Fe (—Si) intermetallic compound having an equivalent circle diameter of 2.0 μm or more at the center in the thickness direction of the cross section including the rolling direction. : 0.4% or more, number density: 1350 / mm 2 or more. The aluminum alloy for forming is further Cu: 0.05 to 1.0% by mass, Cr: 0.15% by mass or less, Zr: 0.15% by mass or less, Ti: 0.007 to 0.10% by mass. It is preferable to contain at least one kind of Zn, and Zn may be contained in an amount of 0.5% by mass or less.

このように、所定量のSi,Mgを含有するAl−Mg−Si系合金とすることで、高い成形性および強度を有し、さらに所定量のMn,Feを添加して十分な量の金属間化合物を析出させることで、かかる金属間化合物を核として微細な再結晶組織が得られ、ランダムな結晶方位となるため、厳しい加工条件で成形されても塗装後の表面にリジングマークのような外観不良を生じない。   As described above, an Al—Mg—Si alloy containing a predetermined amount of Si and Mg has high formability and strength, and a sufficient amount of metal is added by adding a predetermined amount of Mn and Fe. By precipitating intermetallic compounds, a fine recrystallized structure is obtained with such intermetallic compounds as nuclei, and random crystal orientations are obtained. Appearance does not occur.

また、本発明に係る成形加工用アルミニウム合金板の製造方法は、前記成分のアルミニウム合金を溶解して鋳塊を鋳造する鋳造工程と、前記鋳塊を500〜580℃の範囲の温度で1時間以上の熱処理にて均質化する均質化熱処理工程と、前記均質化した鋳塊を350〜450℃の範囲の温度としてから熱間圧延して熱間圧延板を製造する熱間圧延工程と、前記熱間圧延板を総圧延率40%以上で冷間圧延して冷間圧延板を製造する冷間圧延工程と、前記冷間圧延板を500〜560℃の範囲の温度に到達するまで加熱した後に室温に冷却する溶体化処理工程と、を行うものである。そして、前記熱間圧延工程は、100mm以下30mm以上の板厚に到達しているときに圧下率40%以上の圧延パスを少なくとも1パス行い、最終圧延パスにおいて、当該圧延パスにおける圧下率(%)をrで表したとき、終了温度が(445−3r)℃以上になるように圧延することを特徴とする。   Further, the method for producing an aluminum alloy plate for forming according to the present invention comprises a casting step of casting the ingot by melting the aluminum alloy of the above components, and the ingot for 1 hour at a temperature in the range of 500 to 580 ° C. A homogenization heat treatment step for homogenization by the above heat treatment, a hot rolling step for producing a hot-rolled sheet by hot rolling the homogenized ingot at a temperature in the range of 350 to 450 ° C, and A cold rolling process in which a hot rolled sheet is cold rolled at a total rolling rate of 40% or more to produce a cold rolled sheet, and the cold rolled sheet is heated until reaching a temperature in the range of 500 to 560 ° C. And a solution treatment step of cooling to room temperature later. In the hot rolling step, at least one rolling pass with a reduction rate of 40% or more is performed when the plate thickness reaches 100 mm or less and 30 mm or more, and in the final rolling pass, the reduction rate (% ) Is expressed by r, rolling is performed such that the end temperature is (445-3r) ° C. or higher.

このように、熱間圧延工程において、所定の板厚範囲での圧延パスを十分な圧下率で圧延することで粗大な組織をなくし、さらに終了温度を最終圧延パスの圧下率に応じた所定値以上とすることにより終了後に再結晶が促進される。その結果、冷間圧延前に中間焼鈍することなく、ランダムな方位の結晶からなる微細な再結晶組織のアルミニウム合金板が得られる。   In this way, in the hot rolling process, a coarse structure is eliminated by rolling a rolling pass in a predetermined thickness range with a sufficient reduction rate, and the end temperature is a predetermined value corresponding to the reduction rate of the final rolling pass. By doing so, recrystallization is promoted after completion. As a result, an aluminum alloy plate having a fine recrystallized structure made of crystals of random orientation can be obtained without intermediate annealing before cold rolling.

本発明に係る成形加工用アルミニウム合金板によれば、成形性および強度を十分に有し、厳しい加工条件で成形されても塗装後の表面にリジングマークのような外観不良を生じない自動車用パネル等を製造することができる。そして、本発明に係る成形加工用アルミニウム合金板の製造方法によれば、前記の効果を有する成形加工用アルミニウム合金板を生産性よく製造することができる。   According to the aluminum alloy sheet for forming according to the present invention, an automotive panel that has sufficient formability and strength and does not cause appearance defects such as ridging marks on the surface after painting even if it is molded under severe processing conditions. Etc. can be manufactured. And according to the manufacturing method of the aluminum alloy plate for shaping | molding which concerns on this invention, the aluminum alloy plate for shaping | molding processing which has the said effect can be manufactured with sufficient productivity.

球頭張出し成形性試験の方法を説明する断面図である。It is sectional drawing explaining the method of a ball head overhang | projection formability test. フラットヘム加工の方法を説明する側面図である。It is a side view explaining the method of flat hem processing. 表面粗さの測定方法を説明するプロファイル図である。It is a profile figure explaining the measuring method of surface roughness.

本発明に係る成形加工用アルミニウム合金板(以下、アルミニウム合金板)は、プレス加工等により所望の形状に成形された後、表面に塗装、焼付け処理を施して、自動車のパネル構造体等に製造されるための板材である。本発明に係るアルミニウム合金板は、特に板厚を規定しないが、このような自動車のパネル構造体に成形される板材としては、1.0mm程度が一般的である。
以下、本発明に係るアルミニウム合金板を実現するための形態について説明する。
An aluminum alloy plate for forming according to the present invention (hereinafter referred to as an aluminum alloy plate) is formed into a desired shape by pressing or the like, and then painted and baked on the surface to produce an automotive panel structure or the like. It is a plate material to be made. The aluminum alloy plate according to the present invention does not particularly define a plate thickness, but is generally about 1.0 mm as a plate material formed on such a panel structure of an automobile.
Hereinafter, the form for implement | achieving the aluminum alloy plate which concerns on this invention is demonstrated.

本発明に係るアルミニウム合金板は、Si:0.4〜1.5質量%、Mg:0.4〜1.0質量%、Fe:0.1〜1.0質量%、Mn:0.1〜0.5質量%を含有し、残部がAlおよび不可避的不純物からなるアルミニウム合金で形成されたものであり、一般的なアルミニウム合金板と同様に、溶解、鋳造、熱間圧延、冷間圧延を経て板材に製造される(製造方法の詳細は後記にて説明する。)。あるいは前記アルミニウム合金は、さらにCu:0.05〜1.0質量%を含有してもよい。そして、本発明に係るアルミニウム合金板は、その圧延方向を含む断面の板厚方向中心部において、円相当径が2.0μm以上のAl−Mn−Fe(−Si)系金属間化合物が、面積率:0.4%以上、個数密度:1350個/mm2以上である。以下、本発明に係るアルミニウム合金板を構成する各要素について説明する。 The aluminum alloy plate according to the present invention has Si: 0.4 to 1.5 mass%, Mg: 0.4 to 1.0 mass%, Fe: 0.1 to 1.0 mass%, Mn: 0.1 It is formed of an aluminum alloy containing ~ 0.5% by mass, the balance being Al and inevitable impurities, and, like a general aluminum alloy plate, melting, casting, hot rolling, cold rolling (The details of the manufacturing method will be described later). Or the said aluminum alloy may contain Cu: 0.05-1.0 mass% further. The aluminum alloy plate according to the present invention has an area of an Al-Mn-Fe (-Si) intermetallic compound having a circle-equivalent diameter of 2.0 μm or more at the center in the thickness direction of the cross section including the rolling direction. Rate: 0.4% or more, number density: 1350 / mm 2 or more. Hereinafter, each element which comprises the aluminum alloy plate which concerns on this invention is demonstrated.

〔アルミニウム合金の成分〕
(Si:0.4〜1.5質量%)
Siは、地金不純物としてアルミニウム合金中に混入するものであり、また、アルミニウム合金において固溶強化により強度を向上させる効果があり、さらにMgと共存する場合、塗装焼付け処理等の低温での人工時効処理時に、Mg−Si系金属間化合物(Mg2Si)を生成して強度向上に寄与する。これらの効果により十分な強度を得るために、Siの含有量は0.4質量%以上とし、好ましくは0.6質量%以上である。一方、Siの含有量が1.5質量%を超えると、鋳造における凝固時に晶出物が、その後の冷却時に析出物がそれぞれ粗大なものとして生成して、後続の工程においても残留するため、成形性が低下し、さらに粒界割れが発生するために溶接性が低下する。したがって、Siの含有量は1.5質量%以下とし、好ましくは1.3質量%以下である。
[Components of aluminum alloy]
(Si: 0.4-1.5 mass%)
Si is mixed into the aluminum alloy as a metal base impurity, and has the effect of improving the strength by solid solution strengthening in the aluminum alloy. Further, when coexisting with Mg, it is artificial at low temperatures such as paint baking treatment. During the aging treatment, an Mg—Si based intermetallic compound (Mg 2 Si) is generated and contributes to strength improvement. In order to obtain sufficient strength due to these effects, the Si content is 0.4% by mass or more, preferably 0.6% by mass or more. On the other hand, if the content of Si exceeds 1.5% by mass, the crystallized product is generated at the time of solidification in casting, and the precipitate is generated as a coarse product at the time of subsequent cooling, and remains in the subsequent steps. Formability is lowered, and further, intergranular cracking occurs, so that weldability is lowered. Therefore, the Si content is 1.5% by mass or less, and preferably 1.3% by mass or less.

(Mg:0.4〜1.0質量%)
Mgは、アルミニウム合金において固溶強化により強度を向上させる効果があり、さらにSiと共存する場合、塗装焼付け処理等の低温での人工時効処理時に、Mg2SiのようなMg−Si系金属間化合物を生成して強度向上に寄与する。これらの効果により十分な強度を得るために、Mgの含有量は0.4質量%以上とする。一方、Mgの含有量が1.0質量%を超えると、鋳造時に前記金属間化合物が粗大なものとなって晶出、析出して、後続の工程を経ても残留するために成形性が低下する。したがって、Mgの含有量は1.0質量%以下とし、好ましくは0.8質量%以下である。
(Mg: 0.4-1.0% by mass)
Mg has the effect of improving the strength by solid solution strengthening in an aluminum alloy, and when coexisting with Si, during artificial aging treatment at low temperature such as paint baking treatment, between Mg-Si based metals such as Mg 2 Si A compound is produced and contributes to strength improvement. In order to obtain sufficient strength due to these effects, the Mg content is set to 0.4% by mass or more. On the other hand, if the Mg content exceeds 1.0% by mass, the intermetallic compound becomes coarse at the time of casting and crystallizes and precipitates, and remains after the subsequent process, so that the formability is lowered. To do. Therefore, the Mg content is 1.0% by mass or less, preferably 0.8% by mass or less.

(Fe:0.1〜1.0質量%)
Feは、地金不純物としてアルミニウム合金中に混入するものであり、また、アルミニウム合金中で、Mn,Siと共にAl6(Mn,Fe)のようなAl−Mn−Fe系金属間化合物やAl12(Mn,Fe)3SiのようなAl−Mn−Fe−Si系金属間化合物を生成する。鋳造時にこれらの金属間化合物が晶出することで、熱間圧延後においてこの晶出物を核に再結晶が進行して、微細かつランダムな集合組織となる。晶出物を適正な量として微細な再結晶組織を得るために、Feの含有量は0.1質量%以上とし、好ましくは0.15質量%以上、さらに好ましくは0.2質量%以上である。なお、Feについてはある程度の含有量を許容することで、当該アルミニウム合金の原料にスクラップ材等を多く混合できて、リサイクル性が向上する。ただし、Feの含有量が1.0質量%を超えると、前記の金属間化合物が粗大に生成されて、強度や成形性が低下する。したがって、Feの含有量は1.0質量%以下とする。
(Fe: 0.1 to 1.0% by mass)
Fe is mixed in the aluminum alloy as a metal impurity, and in the aluminum alloy, Al—Mn—Fe intermetallic compound such as Al 6 (Mn, Fe) together with Mn and Si, Al 12 An Al—Mn—Fe—Si intermetallic compound such as (Mn, Fe) 3 Si is produced. When these intermetallic compounds are crystallized at the time of casting, after hot rolling, recrystallization proceeds with the crystallized material as a nucleus, and a fine and random texture is formed. In order to obtain a fine recrystallized structure with an appropriate amount of crystallized material, the Fe content is 0.1% by mass or more, preferably 0.15% by mass or more, more preferably 0.2% by mass or more. is there. In addition, by allowing a certain amount of Fe, a large amount of scrap material or the like can be mixed with the raw material of the aluminum alloy, thereby improving recyclability. However, if the Fe content exceeds 1.0% by mass, the intermetallic compound is coarsely produced, and the strength and formability deteriorate. Therefore, the Fe content is 1.0% by mass or less.

(Mn:0.1〜0.5質量%)
Mnは、アルミニウム合金中で、Fe,Siと共にAl6(Mn,Fe)のようなAl−Mn−Fe系金属間化合物やAl12(Mn,Fe)3SiのようなAl−Mn−Fe−Si系金属間化合物を生成する。鋳造時にこれらの金属間化合物が晶出することで、熱間圧延後においてこの晶出物を核に再結晶が進行して、微細かつランダムな集合組織となる。晶出物を適正な量として微細な再結晶組織を得るために、Mnの含有量は0.1質量%以上とする。一方、Mnの含有量が0.5質量%を超えると、前記の金属間化合物が粗大に生成されて、強度や成形性が低下する。したがって、Mnの含有量は0.5質量%以下とする。
(Mn: 0.1 to 0.5% by mass)
Mn is an Al—Mn—Fe-based intermetallic compound such as Al 6 (Mn, Fe) and Al—Mn—Fe— such as Al 12 (Mn, Fe) 3 Si together with Fe and Si. Si-based intermetallic compound is generated. When these intermetallic compounds are crystallized at the time of casting, after hot rolling, recrystallization proceeds with the crystallized material as a nucleus, and a fine and random texture is formed. In order to obtain a fine recrystallized structure with an appropriate amount of crystallized matter, the Mn content is set to 0.1% by mass or more. On the other hand, when the content of Mn exceeds 0.5% by mass, the intermetallic compound is coarsely produced, and the strength and formability are lowered. Therefore, the Mn content is 0.5 mass% or less.

(Cu:0.05〜1.0質量%)
Cuは、アルミニウム合金において固溶して、加工硬化性を高くしてプレス加工時の成形性が向上する。また、Cuは、塗装焼付け処理等の低温での人工時効処理で、時効析出物の形成を促進させる効果を有する。これらの効果を十分なものとするために、Cuの含有量は0.05質量%以上とすることが好ましい。一方、Cuの含有量が1.0質量%を超えると、加工硬化が過大となって成形性が低下し、また耐応力腐食割れ性や耐糸錆性が著しく劣化する。したがって、Cuの含有量は1.0質量%以下とする。
(Cu: 0.05 to 1.0% by mass)
Cu dissolves in the aluminum alloy to increase work hardenability and improve the formability during press working. Further, Cu has an effect of promoting the formation of aging precipitates by an artificial aging treatment at a low temperature such as a paint baking treatment. In order to make these effects sufficient, the Cu content is preferably 0.05% by mass or more. On the other hand, if the Cu content exceeds 1.0% by mass, the work hardening becomes excessive and the formability is lowered, and the stress corrosion cracking resistance and the yarn rust resistance are remarkably deteriorated. Therefore, the Cu content is 1.0% by mass or less.

(Cr:0.15質量%以下、Zr:0.15質量%以下、Ti:0.007〜0.10質量%、Zn:0.5質量%以下)
本発明に係るアルミニウム合金板は、前記成分以外に、例えばCr,Zn,Ti,Zr,Bが不可避的不純物として含まれていることが考えられ、これらの含有量は、Cr,Zr:各0.15質量%以下、Zn:0.5質量%以下、Ti:0.10質量%以下であれば、本発明の効果を阻害するものではなく許容される。また、TiおよびBを添加することにより、アルミニウム合金の鋳塊組織を微細化する作用が得られる。このような作用を得るために、通常、質量比でTiがBの5倍となる配合の鋳塊微細化剤(TiB)を、ワッフル状あるいはロッド状の形態で溶湯(溶解炉、介在物フィルタ、脱ガス装置、溶湯流量制御装置のいずれかに投入された、スラブ凝固前の溶湯)に添加する。この場合、アルミニウム合金板におけるTiの含有量が0.007質量%以上となる量のTi(TiB)の添加により、鋳塊の結晶粒が微細化され、アルミニウム合金板の成形性が向上する。すなわち、前記効果を得るためにはTiの含有量を0.007質量%以上とすることが好ましく、この場合、前記配合に応じたBも必然的に添加されることとなる。一方、アルミニウム合金板におけるTiの含有量が0.10質量%を超えると、粗大な晶出物が形成され、アルミニウム合金板の成形性が低下する。したがって、Tiの含有量は0.10質量%以下とし、また前記配合に応じてBの含有量を許容するものとする。
(Cr: 0.15 mass% or less, Zr: 0.15 mass% or less, Ti: 0.007 to 0.10 mass%, Zn: 0.5 mass% or less)
The aluminum alloy plate according to the present invention may contain, for example, Cr, Zn, Ti, Zr, and B as unavoidable impurities in addition to the above-described components. .15% by mass or less, Zn: 0.5% by mass or less, and Ti: 0.10% by mass or less are acceptable without impairing the effects of the present invention. Moreover, the effect | action which refines | miniaturizes the ingot structure | tissue of an aluminum alloy is acquired by adding Ti and B. In order to obtain such an effect, the ingot refining agent (TiB) having a composition in which Ti is 5 times the mass ratio of B is usually used as a molten metal (melting furnace, inclusion filter) in the form of a waffle or a rod. , Added to either the degassing device or the molten metal flow rate control device, before the slab solidification. In this case, by adding Ti (TiB) in such an amount that the Ti content in the aluminum alloy plate is 0.007% by mass or more, the crystal grains of the ingot are refined, and the formability of the aluminum alloy plate is improved. That is, in order to obtain the above effect, the Ti content is preferably set to 0.007% by mass or more, and in this case, B corresponding to the above composition is inevitably added. On the other hand, when the Ti content in the aluminum alloy plate exceeds 0.10% by mass, a coarse crystallized product is formed, and the formability of the aluminum alloy plate is lowered. Therefore, the Ti content is 0.10% by mass or less, and the B content is allowed according to the above composition.

Cr,Zrの各含有量が0.15質量%を超えると、粗大な金属間化合物が生成されてアルミニウム合金板の成形性が低下し、また耐食性が低下する。同様に、Znの含有量が0.5質量%を超えると、粗大な金属間化合物が生成されてアルミニウム合金板の成形性が低下し、また耐食性が著しく低下する。一方、Cr,Zrは、アルミニウム合金板が製造される際に、均質化熱処理時に分散粒子(分散相)を生成し、結晶粒を微細化する効果を有するため、前記範囲で含有することが好ましい。また、Znは、熱交換器用のアルミニウム合金ブレージングシート等のクラッド材に多く添加されるため、その製造過程で発生したスクラップ材に多く含有する。そこで、本発明に係るアルミニウム合金板は、Znについてはある程度の含有量を許容することで、当該アルミニウム合金の原料に前記スクラップ材を多く混合できて、リサイクル性が向上する。   When each content of Cr and Zr exceeds 0.15% by mass, a coarse intermetallic compound is generated, the formability of the aluminum alloy plate is lowered, and the corrosion resistance is lowered. Similarly, when the Zn content exceeds 0.5% by mass, a coarse intermetallic compound is generated, the formability of the aluminum alloy plate is lowered, and the corrosion resistance is remarkably lowered. On the other hand, Cr and Zr have the effect of producing dispersed particles (dispersed phase) during the homogenization heat treatment and making the crystal grains finer when an aluminum alloy plate is produced. . Further, since Zn is added in a large amount to a clad material such as an aluminum alloy brazing sheet for a heat exchanger, it is contained in a large amount in a scrap material generated in the manufacturing process. Therefore, in the aluminum alloy plate according to the present invention, by allowing a certain amount of Zn, a large amount of the scrap material can be mixed with the raw material of the aluminum alloy, and the recyclability is improved.

〔アルミニウム合金板の金属間化合物〕
(圧延方向を含む断面の板厚方向中心部における円相当径が2.0μm以上のAl−Mn−Fe(−Si)系金属間化合物の面積率:0.4%以上、個数密度:1350個/mm2以上)
本発明に係るアルミニウム合金板に存在する金属間化合物は、主にAl6(Mn,Fe)、Al12(Mn,Fe)3Si等のAl−Mn−Fe系、Al−Mn−Fe−Si系金属間化合物(以下、これらをまとめて「Al−Mn−Fe(−Si)系金属間化合物」という)、およびMg2Si等のMg−Si系金属間化合物である。アルミニウム合金板において、これらの金属間化合物のうち、ある程度の大きさ以上のものが熱間圧延後において再結晶の核となる。ここで、本発明に係るアルミニウム合金板は、冷間圧延後に溶体化処理されているため、Si,Mgの一部は固溶する。したがって、アルミニウム合金板においては、熱間圧延後すなわち冷間圧延前において再結晶の核となったMg−Si系金属間化合物を特定することが困難であるため、Al−Mn−Fe(−Si)系金属間化合物を指標とする。すなわちアルミニウム合金板の圧延方向を含む断面(L−ST面)の板厚方向中心部における円相当径が2.0μm以上のAl−Mn−Fe(−Si)系金属間化合物が、熱間圧延後において再結晶の核となった金属間化合物であると推測される。
[Intermetallic compound of aluminum alloy sheet]
(Area ratio of Al-Mn-Fe (-Si) intermetallic compound having an equivalent circle diameter of 2.0 μm or more at the center in the thickness direction of the cross section including the rolling direction: 0.4% or more, number density: 1350 / Mm 2 or more)
The intermetallic compounds present in the aluminum alloy plate according to the present invention are mainly Al-Mn-Fe series such as Al 6 (Mn, Fe), Al 12 (Mn, Fe) 3 Si, Al-Mn-Fe-Si. These are intermetallic compounds (hereinafter collectively referred to as “Al—Mn—Fe (—Si) intermetallic compounds”) and Mg—Si intermetallic compounds such as Mg 2 Si. In the aluminum alloy sheet, among these intermetallic compounds, those having a certain size or more become the core of recrystallization after hot rolling. Here, since the aluminum alloy plate according to the present invention is subjected to a solution treatment after cold rolling, a part of Si and Mg is dissolved. Therefore, in an aluminum alloy sheet, it is difficult to specify the Mg—Si-based intermetallic compound that has become the nucleus of recrystallization after hot rolling, that is, before cold rolling, so Al—Mn—Fe (—Si ) Based on intermetallic compounds. That is, an Al—Mn—Fe (—Si) intermetallic compound having an equivalent circle diameter of 2.0 μm or more at the center in the thickness direction of the cross section (L-ST plane) including the rolling direction of the aluminum alloy plate is hot-rolled. It is presumed that it is an intermetallic compound that later became the nucleus of recrystallization.

円相当径が2.0μm以上の金属間化合物とは、当該金属間化合物のアルミニウム合金板の断面における面積(断面積)が直径2.0μmの円の面積以上であることを指し、最大長では3〜6μm程度に相当する。そして、このようなAl−Mn−Fe(−Si)系金属間化合物が、アルミニウム合金板の圧延方向を含む断面の板厚方向中心部において面積率0.4%以上かつ1350個/mm2以上存在していれば、熱間圧延板の段階で、少なくとも表面において、再結晶の核となり得る大きさの金属間化合物(Mg−Si系金属間化合物を含む)が十分に分布して、微細かつ方位のランダムな再結晶組織が形成されたと判定することができる。このような金属間化合物の分布は、前記Mg,Si,Fe,Mnの各含有量、および後記の製造条件により制御される。 An intermetallic compound having an equivalent circle diameter of 2.0 μm or more means that the area (cross-sectional area) of the intermetallic compound in the cross section of the aluminum alloy plate is not less than the area of a circle having a diameter of 2.0 μm. It corresponds to about 3 to 6 μm. And such an Al-Mn-Fe (-Si) type intermetallic compound has an area ratio of 0.4% or more and 1350 pieces / mm 2 or more in the central part in the plate thickness direction of the cross section including the rolling direction of the aluminum alloy plate. If present, at the surface of the hot-rolled sheet, at least on the surface, intermetallic compounds (including Mg-Si intermetallic compounds) having a size that can be recrystallization nuclei are sufficiently distributed, fine and It can be determined that a recrystallized structure having a random orientation was formed. The distribution of such intermetallic compounds is controlled by the contents of the Mg, Si, Fe, and Mn and the production conditions described later.

圧延板においては、圧延面すなわち鋳塊表面に近い金属間化合物の方が圧延時に破砕されて微細化し易いため、熱間圧延板の表面近傍にあって再結晶の核となった大きさがある程度以上の金属間化合物は、その多くが後続の冷間圧延にて破砕されている傾向がある。したがって、本発明に係るアルミニウム合金板は、比較的大きな金属間化合物が多く存在(残留)し易い板厚方向中心部において、金属間化合物の分布を規制する。なお、断面の板厚方向中心部とは、具体的には、板厚方向1/2の部位を中心として板厚の55〜70%に相当する範囲を指す。本発明に係るアルミニウム合金板においては、圧延方向を含む断面における金属間化合物を観察して、その円相当径により分布の規制対象を選別する。   In the rolled plate, the intermetallic compound closer to the rolling surface, ie, the ingot surface, is more easily crushed and refined during rolling, so the size that is the core of recrystallization near the surface of the hot rolled plate is somewhat Many of the above intermetallic compounds tend to be crushed by subsequent cold rolling. Therefore, the aluminum alloy plate according to the present invention regulates the distribution of the intermetallic compound in the central portion in the plate thickness direction in which many relatively large intermetallic compounds are likely to exist (residual). The central portion in the plate thickness direction of the cross section specifically refers to a range corresponding to 55 to 70% of the plate thickness centering on a portion in the plate thickness direction 1/2. In the aluminum alloy sheet according to the present invention, the intermetallic compound in the cross section including the rolling direction is observed, and the distribution restriction target is selected based on the equivalent circle diameter.

金属間化合物の検出手段には、走査型電子顕微鏡(SEM)の適用が一例として挙げられる。Al−Mn−Fe(−Si)系金属間化合物はSEMの組成(COMPO)像において母相とのコントラストで識別でき、Al−Mn−Fe系金属間化合物およびAl−Mn−Fe−Si系金属間化合物はAl母相より白く写り、Mg−Si系金属間化合物はAl母相より黒く写る。アルミニウム合金板の断面における金属間化合物は、アルミニウム合金板を切り出して、圧延方向と板厚方向を含む切断面(L−ST面)を機械研磨にて鏡面に仕上げて観察面とし、アルミニウム合金板の板厚方向1/2の部位を中心とした板厚の55〜70%に相当する範囲を観察する。この範囲の領域から好ましくは複数の視野を倍率100倍程度で観察、撮影し、画像処理装置等を用いて円相当径が2.0μm以上のAl−Mn−Fe(−Si)系金属間化合物についての面積率および個数密度を測定できる。   Application of a scanning electron microscope (SEM) is an example of the intermetallic compound detection means. Al-Mn-Fe (-Si) -based intermetallic compounds can be identified by contrast with the parent phase in the SEM composition (COMPO) image. Al-Mn-Fe-based intermetallic compounds and Al-Mn-Fe-Si-based metals The intermetallic compound appears whiter than the Al matrix, and the Mg—Si intermetallic compound appears blacker than the Al matrix. The intermetallic compound in the cross section of the aluminum alloy plate is cut out of the aluminum alloy plate, and the cut surface (L-ST surface) including the rolling direction and the plate thickness direction is mirror-finished by mechanical polishing to obtain an observation surface. A range corresponding to 55 to 70% of the plate thickness centering on a portion in the plate thickness direction 1/2 is observed. Preferably, a plurality of fields of view are observed and photographed at a magnification of about 100 times from an area within this range, and an Al-Mn-Fe (-Si) intermetallic compound having an equivalent circle diameter of 2.0 μm or more using an image processing apparatus or the like. The area ratio and number density can be measured.

次に、本発明に係る成形加工用アルミニウム合金板の製造方法を説明する。本発明に係るアルミニウム合金板は、前記成分のアルミニウム合金を溶解して鋳塊を鋳造する鋳造工程と、鋳塊を熱処理により均質化する均熱処理工程と、この鋳塊を熱間圧延して熱間圧延板とする熱間圧延工程と、熱間圧延板を冷間圧延して冷間圧延板とする冷間圧延工程と、冷間圧延板を加熱および冷却により溶体化、焼入れ処理をする溶体化処理工程と、を行うことによって製造される。以下に、各工程の条件について説明する。   Next, the manufacturing method of the aluminum alloy plate for shaping | molding which concerns on this invention is demonstrated. The aluminum alloy plate according to the present invention includes a casting process for melting an aluminum alloy having the above components to cast an ingot, a soaking process for homogenizing the ingot by heat treatment, and hot rolling the ingot to heat it. A hot rolling process for forming a cold rolled sheet, a cold rolling process for cold rolling the hot rolled sheet to form a cold rolled sheet, and a solution for subjecting the cold rolled sheet to solution and quenching by heating and cooling Manufacturing process. Below, the conditions of each process are demonstrated.

〔鋳造工程〕
はじめに、アルミニウム合金を溶解し、DC鋳造法等の公知の半連続鋳造法により鋳造し、アルミニウム合金の固相線温度未満まで冷却して、鋳塊を得る。
[Casting process]
First, an aluminum alloy is melted, cast by a known semi-continuous casting method such as a DC casting method, and cooled to below the solidus temperature of the aluminum alloy to obtain an ingot.

〔均熱処理工程〕
鋳塊を圧延する前に、所定温度で均質化熱処理(均熱処理)することが必要である。鋳塊に熱処理を施すことによって、内部応力が除去され、鋳造時に偏析したβ−Mg2Siや組織が均質化され、また、鋳造冷却時に晶出したりそれ以降に析出した金属間化合物が成長して、熱間圧延後において再結晶の核となり得る適度な大きさになる。
[Soaking process]
Before rolling the ingot, it is necessary to perform a homogenization heat treatment (soaking) at a predetermined temperature. By applying heat treatment to the ingot, internal stress is removed, β-Mg 2 Si segregated during casting and the structure are homogenized, and intermetallic compounds that crystallize during casting cooling and precipitate after that grow. Thus, it becomes an appropriate size that can become a nucleus of recrystallization after hot rolling.

(熱処理温度:500〜580℃、熱処理時間:1時間以上)
均熱処理工程において、熱処理温度(鋳塊温度)が500℃未満では、鋳塊の組織の均質化に時間がかかるため、生産性が低くなり、さらに温度が低くなると本発明に係るアルミニウム合金板の成分の鋳塊を均質化することが困難となる。一方、熱処理温度が580℃を超えると、鋳塊が局所的に再溶融(バーニング)して板の表面の性状が悪化し、さらにはその後の熱間圧延が不可能となる。したがって、均熱処理工程において、熱処理温度は500℃以上580℃以下とする。また、熱処理時間は1時間未満では鋳塊の均質化が完了していない虞があるため、1時間以上とし、一方、上限は特に限定するものではないが、処理時間が長くなると生産性が低下するため、10時間以下が好ましい。
(Heat treatment temperature: 500-580 ° C., heat treatment time: 1 hour or more)
In the soaking process, if the heat treatment temperature (ingot temperature) is less than 500 ° C., it takes time to homogenize the structure of the ingot, so that the productivity is lowered, and when the temperature is further lowered, the aluminum alloy plate according to the present invention It becomes difficult to homogenize the ingots of the components. On the other hand, when the heat treatment temperature exceeds 580 ° C., the ingot is locally remelted (burned) to deteriorate the surface properties of the plate, and further hot rolling becomes impossible. Therefore, in the soaking process, the heat treatment temperature is set to 500 ° C. or more and 580 ° C. or less. In addition, if the heat treatment time is less than 1 hour, homogenization of the ingot may not be completed. Therefore, the heat treatment time is set to 1 hour or more. On the other hand, the upper limit is not particularly limited. Therefore, 10 hours or less is preferable.

鋳塊を圧延する前に、鋳塊の表層を切削して除去する面削を行う必要がある。面削は均熱処理の前後のいずれでも行うことができる。均熱処理の前に面削を行った場合は、均熱処理の終了後、鋳塊の温度降下が熱間圧延の所定の開始温度までとなるように、速やかに熱間圧延を開始することが好ましい。一方、均熱処理の後に面削を行った場合は、鋳塊を前記所定の開始温度に加熱(予備加熱)してから、熱間圧延を行う。   Before rolling the ingot, it is necessary to perform chamfering by cutting and removing the surface layer of the ingot. Chamfering can be performed either before or after soaking. When chamfering is performed before soaking, it is preferable to start hot rolling immediately after the soaking so that the temperature drop of the ingot reaches a predetermined start temperature of hot rolling. . On the other hand, when chamfering is performed after soaking, the ingot is heated to the predetermined start temperature (preliminary heating) and then hot rolled.

〔熱間圧延工程〕
均質化された鋳塊を熱間圧延する。まず、所定の温度範囲の開始温度とした鋳塊に対して粗圧延をして、さらに仕上げ圧延により所望の板厚として、所定の温度以上の終了温度で巻き取って熱間圧延板を得る。熱間圧延板の板厚は、アルミニウム合金板としたときの板厚すなわち後続の冷間圧延工程後の冷間圧延板の板厚から、冷間圧延工程における総圧延率(冷間加工率)を逆算して設定し、具体的には、1.7〜10mm程度の範囲が好ましい。
[Hot rolling process]
The homogenized ingot is hot-rolled. First, rough rolling is performed on the ingot having a start temperature within a predetermined temperature range, and further, a desired sheet thickness is obtained by finish rolling, and a hot rolled sheet is obtained by winding at an end temperature equal to or higher than a predetermined temperature. The thickness of the hot-rolled sheet is the thickness of the aluminum alloy sheet, that is, the thickness of the cold-rolled sheet after the subsequent cold-rolling process, and the total rolling rate (cold working rate) in the cold-rolling process. Is set by reverse calculation, and specifically, a range of about 1.7 to 10 mm is preferable.

(開始温度:350〜450℃)
450℃を超える温度の鋳塊等を圧延すると、熱間圧延の終了温度が高くなり過ぎる虞があり、その後の再結晶にて組織が粗大化し、最終的にアルミニウム合金板に製造されたときに肌荒れ等の不具合が発生するため、熱間圧延開始温度は450℃以下とする。一方、温度が低いと、変形抵抗が大きいために1パスの圧下率を高くすることが困難となり、所望の板厚とするまでのパス数が多くなって生産性が低下する上、パスを多く繰り返すことでさらに温度が降下する。熱間圧延の開始時において鋳塊の温度が350℃未満では、終了温度が低くなり過ぎて後記の所定温度を満足できないため、熱間圧延開始温度は350℃以上とする。このような開始温度は、先行の均熱処理の終了後に鋳塊を当該開始温度まで冷却するか、均熱処理後に冷却された鋳塊を予備加熱することにより制御する。
(Starting temperature: 350-450 ° C)
When rolling an ingot or the like having a temperature exceeding 450 ° C., the end temperature of hot rolling may become too high, and the structure is coarsened by subsequent recrystallization and finally produced into an aluminum alloy sheet. Since problems such as rough skin occur, the hot rolling start temperature is set to 450 ° C. or lower. On the other hand, if the temperature is low, it is difficult to increase the rolling reduction of one pass because the deformation resistance is large, the number of passes until the desired plate thickness is increased, the productivity is lowered, and the number of passes is increased. Repeatedly lowers the temperature further. If the temperature of the ingot is less than 350 ° C. at the start of hot rolling, the end temperature becomes too low to satisfy the predetermined temperature described later, so the hot rolling start temperature is set to 350 ° C. or higher. Such a start temperature is controlled by cooling the ingot to the start temperature after the preceding soaking or by preheating the ingot cooled after the soaking.

(板厚100〜30mmにおける圧下率40%以上の圧延パス:1パス以上)
熱間圧延は、一般的なアルミニウム材の熱間圧延と同様に1パスの圧下率30〜50%程度の範囲で行うことができるが、本発明においては、パス数を低減して生産性を向上させるために、また、温度降下を抑制して終了温度を後記の所定値以上として再結晶させるために、各パスの圧下率はある程度高いことが好ましい。特に、板厚が100mm以下となってから30mmよりも薄くなる前に、圧下率40%以上の圧延パスを少なくとも1パス行う必要がある。熱間圧延(粗圧延)の初期〜中期において40%以上の高い圧下率で圧延されることがない場合、結晶粒が粗大化し、このような粗大組織が熱間圧延(仕上げ圧延)の終了まで残存する。その結果、その後の再結晶において、金属間化合物が十分に分布していても微細な結晶組織が得られ難い。この圧下率40%以上の圧延パスは、100mmを超える板厚の圧延板に行っても、当該圧延板の深部の圧延組織が残存し易く、一方、30mm未満の板厚の圧延板に行っても、かかる圧延パスによる板厚の変化量の絶対値が小さいために効果が十分に得られない。なお、100〜30mmに限定される板厚とは、圧下率40%以上のパスで圧延する直前の板厚を指す。
(Rolling pass of 40% or more rolling reduction at plate thickness of 100 to 30 mm: 1 pass or more)
Hot rolling can be performed in the range of about 30 to 50% reduction in one pass as in the case of general hot rolling of aluminum materials. In the present invention, the number of passes is reduced to increase productivity. In order to improve the temperature, and to suppress the temperature drop and recrystallize the end temperature to a predetermined value or higher as described later, it is preferable that the rolling reduction rate of each pass is high to some extent. In particular, it is necessary to carry out at least one rolling pass with a rolling reduction of 40% or more before the plate thickness becomes 100 mm or less and before it becomes thinner than 30 mm. When rolling is not performed at a high rolling reduction of 40% or more in the initial to middle stages of hot rolling (rough rolling), the crystal grains become coarse, and such a coarse structure is until the end of hot rolling (finish rolling). Remains. As a result, in subsequent recrystallization, even if the intermetallic compound is sufficiently distributed, it is difficult to obtain a fine crystal structure. Even if this rolling pass with a rolling reduction of 40% or more is performed on a rolled plate having a thickness of more than 100 mm, the deep rolling structure of the rolled plate tends to remain, whereas it is performed on a rolled plate having a thickness of less than 30 mm. However, since the absolute value of the amount of change in sheet thickness due to the rolling pass is small, the effect cannot be sufficiently obtained. In addition, the plate | board thickness limited to 100-30 mm points out the plate | board thickness just before rolling by a pass with a rolling reduction of 40% or more.

(終了温度:(445−(最終パス圧下率)×3)℃以上)
熱間圧延工程の終了時(熱間仕上げ圧延の終了時)で熱間圧延板の巻取り温度(終了温度)が低いと、熱間仕上げ圧延の最終パス後において再結晶の進行が不十分で、熱間圧延板に圧延組織が残存する。本発明に係るアルミニウム合金板は、前記した通り、熱間圧延後において、適正に分布した金属間化合物を核として微細な再結晶組織が形成される。したがって、冷間圧延前に完全に再結晶している必要があるため、圧延組織が残存している熱間圧延板は、冷間圧延前に焼鈍(中間焼鈍)を行う工程が必要になり、生産性が低下する。一方、最終パスの圧下率が高いほど、その後の再結晶が進行し易い傾向がある。この最終パスの圧下率(%)をrで表したとき、終了温度が(445−3r)℃以上であれば、再結晶が熱間圧延板の巻取り時において十分に進行して完了する(圧延組織が残存しない)。すなわち、熱間圧延の最終パスにおいて、圧下率が高いほど終了温度が低くなってもよいが、前記したように、圧延板の温度が低くなると、変形抵抗が大きいために圧下率を高くすることが困難になる。したがって、熱間圧延工程における終了温度は、前記最終パスの圧下率に応じた温度以上とする。なお、終了温度が400℃を超えると、前記したように再結晶にて組織が粗大化するが、開始温度の上限の規定により、終了温度が400℃を超えることは生じ難いため、本発明においては特に規定しない。
(End temperature: (445- (final pass reduction ratio) × 3) ° C. or higher)
If the hot rolling sheet winding temperature (end temperature) is low at the end of the hot rolling process (at the end of hot finish rolling), the progress of recrystallization is insufficient after the final pass of hot finish rolling. The rolled structure remains on the hot rolled sheet. As described above, in the aluminum alloy plate according to the present invention, a fine recrystallized structure is formed with appropriately distributed intermetallic compounds as nuclei after hot rolling. Therefore, since it is necessary to be completely recrystallized before cold rolling, the hot rolled sheet in which the rolled structure remains needs a step of performing annealing (intermediate annealing) before cold rolling, Productivity decreases. On the other hand, the higher the rolling reduction in the final pass, the more likely the subsequent recrystallization proceeds. When the rolling reduction (%) of this final pass is represented by r, if the end temperature is (445-3r) ° C. or higher, the recrystallization is sufficiently advanced and completed at the time of winding the hot rolled sheet ( No rolling structure remains). That is, in the final pass of hot rolling, the end temperature may be lowered as the rolling reduction is higher. However, as described above, when the temperature of the rolled plate is lowered, the rolling resistance is increased due to the large deformation resistance. Becomes difficult. Therefore, the end temperature in the hot rolling process is set to be equal to or higher than the temperature according to the rolling reduction of the final pass. When the end temperature exceeds 400 ° C., the structure becomes coarse by recrystallization as described above, but it is difficult for the end temperature to exceed 400 ° C. due to the upper limit of the start temperature. Is not specified.

(熱間圧延板の再結晶組織の観察方法)
ここで、熱間圧延板の再結晶の進行状態を観察する方法を説明する。再結晶が完了すると、等軸状の再結晶粒、具体的には特許第3491819号公報に示すように、熱間圧延板の圧延面(表面)に平行な面と圧延方向を含む断面との各面において平均アスペクト比が1〜3の範囲である再結晶粒が得られる。詳しくは、熱間圧延板組織の、圧延方向における粒径dL、圧延直角(幅)方向における粒径dLT、板厚方向における粒径dSTが、1≦dL/dLT≦3、1≦dL/dST≦3となるものが等軸状の再結晶粒である。これに対して、アスペクト比dL/dLT、dL/dSTの平均が3を超えるということは圧延組織のファイバー組織が残留していることを示す。なお、1未満については、圧延によりdLがdLT、dSTよりも短くなることはないため、規定しない。dL/dLTは熱間圧延板の表面を、dL/dSTは熱間圧延板の圧延方向を含む断面を、それぞれ機械研磨した後に電解エッチングをして、光学顕微鏡(偏光板使用)を用いて観察することで測定できる。
(Observation method of recrystallized structure of hot rolled sheet)
Here, a method for observing the progress of recrystallization of the hot-rolled sheet will be described. When the recrystallization is completed, equiaxed recrystallized grains, specifically, as shown in Japanese Patent No. 3491819, a plane parallel to the rolling surface (surface) of the hot rolled plate and a cross section including the rolling direction Recrystallized grains having an average aspect ratio in the range of 1 to 3 on each face are obtained. Specifically, the grain size d L in the rolling direction, the grain size d LT in the direction perpendicular to the rolling (width) direction, and the grain size d ST in the sheet thickness direction of the hot rolled sheet structure are 1 ≦ d L / d LT ≦ 3, Those satisfying 1 ≦ d L / d ST ≦ 3 are equiaxed recrystallized grains. On the other hand, when the average of the aspect ratios d L / d LT and d L / d ST exceeds 3, it indicates that the fiber structure of the rolled structure remains. Note that less than 1, for d L by rolling d LT, made it is not shorter than d ST, not specified. d L / d LT is the surface of the hot-rolled plate, d L / d ST is the cross-section including the rolling direction of the hot-rolled plate, mechanically polished, and then electroetched to obtain an optical microscope (using a polarizing plate) It can measure by observing using.

〔冷間圧延工程〕
(総圧延率:40%以上)
熱間圧延板を冷間圧延して、所定のアルミニウム合金板の板厚として冷間圧延板とする。冷間圧延は、総圧延率(冷間加工率)が高いほど歪みが多く蓄積して、後続の溶体化処理による再結晶組織の結晶粒が微細となって、表面性状が向上する。総圧延率が40%未満では溶体化処理にて再結晶粒が粗大化して、成形加工後の良好な表面性状が得られないため、総圧延率40%以上で冷間圧延する。総圧延率が大きくなると、冷間圧延パス数が増加して生産性が低下するため、90%以下とすることが好ましい。
[Cold rolling process]
(Total rolling ratio: 40% or more)
The hot-rolled sheet is cold-rolled to obtain a cold-rolled sheet having a predetermined aluminum alloy sheet thickness. In cold rolling, the higher the total rolling rate (cold working rate), the more distortion is accumulated, and the crystal grains of the recrystallized structure by the subsequent solution treatment become finer, and the surface properties are improved. If the total rolling rate is less than 40%, the recrystallized grains are coarsened by the solution treatment, and good surface properties after forming cannot be obtained. Therefore, cold rolling is performed at a total rolling rate of 40% or more. When the total rolling rate increases, the number of cold rolling passes increases and the productivity decreases, so 90% or less is preferable.

本発明に係るアルミニウム合金板の製造方法によれば、熱間圧延工程において前記所定値以上の終了温度とすることにより、熱間圧延板の再結晶が完了するため、冷間圧延工程の前または途中で焼鈍(中間焼鈍)を行って再結晶させる必要はない。言い換えれば、前記規定の熱間圧延終了温度とならなかった場合は、熱間圧延板または冷間圧延の途中にて中間焼鈍を行って再結晶させることで、アルミニウム合金板を製造することができる。焼鈍温度(熱間圧延板の温度)が不十分であると再結晶が進行せず、反対に高過ぎると、結晶粒が粗大化して、アルミニウム合金板における結晶粒も粗大なものとなって表面性状が劣化する。熱間圧延板の昇温速度が速い連続焼鈍炉を適用する場合は、焼鈍温度を400〜550℃の範囲とし、焼鈍時間(通板時間)を30秒間以下とする。これに対して、バッチ式の炉を適用する場合は昇温速度が遅いため、300〜450℃の範囲で1〜10時間行う。このような中間焼鈍を行うことで、熱間圧延板の再結晶だけでなく、結晶粒が微細なものとなるため、アルミニウム合金板の表面性状がいっそう向上する。したがって、熱間圧延終了時に再結晶が完了している熱間圧延板に、さらに中間焼鈍を行ってもよい。   According to the method for producing an aluminum alloy sheet according to the present invention, the recrystallization of the hot-rolled sheet is completed by setting the end temperature equal to or higher than the predetermined value in the hot-rolling process. There is no need to perform recrystallization by annealing (intermediate annealing) in the middle. In other words, when the specified hot rolling finish temperature is not reached, an aluminum alloy plate can be manufactured by performing recrystallization by performing intermediate annealing in the middle of hot rolling plate or cold rolling. . If the annealing temperature (temperature of the hot-rolled sheet) is insufficient, recrystallization does not proceed. On the other hand, if it is too high, the crystal grains become coarse and the crystal grains in the aluminum alloy sheet become coarse. Properties deteriorate. When applying a continuous annealing furnace in which the temperature rising rate of the hot-rolled sheet is fast, the annealing temperature is set to a range of 400 to 550 ° C., and the annealing time (passing time) is set to 30 seconds or less. On the other hand, when applying a batch type furnace, since the rate of temperature rise is slow, it is performed in the range of 300 to 450 ° C. for 1 to 10 hours. By performing such intermediate annealing, not only recrystallization of the hot-rolled plate, but also the crystal grains become finer, so that the surface properties of the aluminum alloy plate are further improved. Therefore, intermediate annealing may be further performed on the hot-rolled sheet that has been recrystallized at the end of hot rolling.

〔溶体化処理工程〕
(加熱温度:500〜560℃)
冷間圧延板を加熱することにより溶体化処理をし、その後に室温(50℃以下)に冷却することにより焼入れ処理をして、本発明に係るアルミニウム合金板となる。このような処理を行うことにより、冷間圧延板に金属間化合物として存在していたMg,Siのできるだけ多くを固溶させて、成形後の塗装、焼付けによるベークハード性を確保することができる。溶体化、焼入れ処理は、6000系のような公知のAl−Mg−Si系合金材と同様の方法で行うことができる。冷間圧延板の温度が500℃未満では、Mg,Siが十分に固溶せず、固溶量が不足するのでベークハード性が得られない。一方、冷間圧延板が560℃を超えると、共晶融解により伸びが顕著に低下したり、結晶粒が粗大化して板表面が肌荒れしたりして、塗装後の表面性状が劣化する。したがって、冷間圧延板の加熱温度は500〜560℃とする。冷間圧延板がこの範囲の温度に到達すれば前記効果を得ることができるため、かかる温度を保持する必要はなく、保持時間を長くしてもさらなる効果の向上はなく生産性が低下するので、30秒間以下が好ましい。そして、加熱温度に到達した後の冷却において、冷却速度が遅いと粒界に粗大なMg2Si,Si等が析出し易く、成形性が低下するため、水冷(水焼入れ)等により急冷することが好ましい。
[Solution treatment process]
(Heating temperature: 500-560 ° C)
The cold-rolled sheet is heated to form a solution, and then cooled to room temperature (50 ° C. or lower) to be quenched to obtain the aluminum alloy sheet according to the present invention. By performing such treatment, as much of Mg and Si that existed as an intermetallic compound in the cold-rolled sheet can be dissolved as much as possible, and baking hardness by painting and baking after molding can be secured. . The solution treatment and quenching treatment can be performed in the same manner as a known Al—Mg—Si alloy material such as 6000 series. When the temperature of the cold-rolled sheet is less than 500 ° C., Mg and Si are not sufficiently dissolved, and the amount of solid solution is insufficient, so that the bake hardness cannot be obtained. On the other hand, when the cold-rolled plate exceeds 560 ° C., the elongation is remarkably reduced by eutectic melting, the crystal grains are coarsened and the plate surface is roughened, and the surface properties after coating are deteriorated. Therefore, the heating temperature of the cold rolled sheet is set to 500 to 560 ° C. Since the effect can be obtained if the cold-rolled sheet reaches a temperature in this range, it is not necessary to maintain this temperature, and even if the holding time is increased, the effect is not improved and the productivity is lowered. For 30 seconds or less. And, in cooling after reaching the heating temperature, if the cooling rate is slow, coarse Mg 2 Si, Si, etc. are likely to precipitate at the grain boundary, and the formability is lowered, so it is rapidly cooled by water cooling (water quenching) or the like. Is preferred.

〔予備時効処理工程〕
溶体化、焼入れ処理されたAl−Mg−Si系合金材は、室温に放置されると自然時効(室温時効)により強度(耐力)が漸増して、これに伴い成形性が低下する。そこで、予め強度を十分に向上させて、かつその後の経時変化を抑制するため、アルミニウム合金板は、さらに、6000系のような公知のAl−Mg−Si系合金材と同様の方法で予備時効処理を行うことが好ましい。詳しくは、70〜120℃の温度で3時間以上保持した後、室温まで放冷する。処理温度が70℃未満では、塗装、焼付け後の強度が十分に得られない。一方、120℃を超える温度に保持されると、耐力が過大となって変形抵抗が大きいために成形性が低下する。
[Preliminary aging treatment process]
When the Al—Mg—Si alloy material that has been subjected to solution treatment and quenching treatment is left at room temperature, the strength (proof strength) gradually increases due to natural aging (room temperature aging), and the formability decreases accordingly. Therefore, in order to sufficiently improve the strength in advance and suppress subsequent changes with time, the aluminum alloy plate is further preliminarily aged in the same manner as a known Al-Mg-Si alloy material such as 6000 series. It is preferable to carry out the treatment. Specifically, after being kept at a temperature of 70 to 120 ° C. for 3 hours or more, it is allowed to cool to room temperature. If the treatment temperature is less than 70 ° C., sufficient strength after painting and baking cannot be obtained. On the other hand, if the temperature exceeds 120 ° C., the yield strength is excessive and the deformation resistance is large, so that the moldability is lowered.

〔アルミニウム合金板の機械的特性〕
本発明に係るアルミニウム合金板は、自動車のパネル構造体等に成形されるためのプレス加工やヘム加工が可能な成形性を有し、さらに成形後、塗装、焼付け後に十分な強度を有する。具体的には、板厚1.0mmとしたアルミニウム合金板の前記予備時効処理をされたものについて、引張強さ:200MPa以上、0.2%耐力:100MPa以上150MPa以下、伸び:20%以上となる。
[Mechanical properties of aluminum alloy sheet]
The aluminum alloy plate according to the present invention has a formability capable of press working and hem working to be formed into an automotive panel structure or the like, and has sufficient strength after forming, painting and baking. Specifically, for the aluminum alloy plate having a plate thickness of 1.0 mm that has been subjected to the pre-aging treatment, tensile strength: 200 MPa or more, 0.2% proof stress: 100 MPa to 150 MPa, elongation: 20% or more Become.

以上、本発明を実施するための形態について述べてきたが、以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と対比して具体的に説明する。なお、本発明はこの実施例に限定されるものではない。   As mentioned above, although the form for implementing this invention has been described, the Example which confirmed the effect of this invention is demonstrated concretely compared with the comparative example which does not satisfy | fill the requirements of this invention below. In addition, this invention is not limited to this Example.

〔供試材作製〕
(鋳造〜均質化熱処理)
表1に示す組成のアルミニウム合金を、溶解し、半連続鋳造法を用いて厚さ600mmの鋳塊を作製した。この鋳塊を、熱処理温度550℃で5時間保持することにより均質化してから、室温に冷却して、面削処理をした。
[Sample preparation]
(Casting-Homogenization heat treatment)
An aluminum alloy having the composition shown in Table 1 was melted, and an ingot having a thickness of 600 mm was produced using a semi-continuous casting method. The ingot was homogenized by holding it at a heat treatment temperature of 550 ° C. for 5 hours, and then cooled to room temperature and subjected to a face grinding treatment.

(熱間圧延〜冷間圧延)
次に、鋳塊を予備加熱して、開始温度を400℃として熱間圧延(粗圧延、仕上げ圧延)をして、板厚4.0mmの熱間圧延板とした。粗圧延において、板厚80mmとして次の1パスにて板厚40mmにした(圧下率50%)。さらに熱間圧延(仕上げ圧延)の最終パスの直前の板厚を8mmになるようにして、圧下率50%で板厚4.0mmの熱間圧延板とし、終了温度320℃で巻き取った。この熱間圧延板を焼鈍することなく、冷間圧延をして、板厚1.0mmの冷間圧延板を作製した(総圧延率75%)。
(Hot rolling to cold rolling)
Next, the ingot was preheated and hot rolled (coarse rolling, finish rolling) at a start temperature of 400 ° C. to obtain a hot rolled plate having a plate thickness of 4.0 mm. In rough rolling, the plate thickness was set to 80 mm and the plate thickness was set to 40 mm in the next pass (the reduction ratio was 50%). Furthermore, the thickness of the plate immediately before the final pass of hot rolling (finish rolling) was set to 8 mm to obtain a hot rolled plate having a reduction ratio of 50% and a thickness of 4.0 mm, and wound at an end temperature of 320 ° C. The hot-rolled sheet was cold-rolled without annealing to produce a cold-rolled sheet having a sheet thickness of 1.0 mm (total rolling rate of 75%).

(溶体化、焼入れ処理、予備時効処理、室温時効)
冷間圧延板を、連続式の熱処理炉で加熱して到達温度550℃で10秒間保持し(溶体化処理)、水冷(水焼入れ)した。さらに70℃で5時間保持した後、室温まで放冷し(予備時効処理)、室温に3ヶ月間放置して(室温時効)アルミニウム合金板の供試材とした。
(Solution, quenching, preliminary aging, room temperature aging)
The cold-rolled sheet was heated in a continuous heat treatment furnace and held at an ultimate temperature of 550 ° C. for 10 seconds (solution treatment) and water-cooled (water quenching). Further, after being kept at 70 ° C. for 5 hours, it was allowed to cool to room temperature (preliminary aging treatment) and left at room temperature for 3 months (room temperature aging) to obtain an aluminum alloy sheet specimen.

(Al−Mn−Fe(−Si)系金属間化合物の分布の測定)
アルミニウム合金板を切り出して樹脂埋めし、圧延方向と板厚方向を含む面を観察面となるように研磨して鏡面とした。この鏡面化された面の板厚方向1/2の部位を中心とした板厚方向に±0.25mmの範囲内(板厚の50%の範囲)を、走査型電子顕微鏡(SEM)にて、加速電圧20kV、倍率100倍の組成(COMPO)像で20視野(合計5mm2)観察した。母相より白く写る部分をAl−Mn−Fe系金属間化合物およびAl−Mn−Fe−Si系金属間化合物(Al−Mn−Fe(−Si)系金属間化合物)と見なして、円相当径が2.0μm以上の金属間化合物の面積の合計および個数を求め、面積率および個数密度を算出した。アルミニウム合金板の断面の板厚中心部における円相当径が2.0μm以上のAl−Mn−Fe(−Si)金属間化合物の面積率および個数密度を表1に示す。
(Measurement of Al-Mn-Fe (-Si) intermetallic compound distribution)
An aluminum alloy plate was cut out and filled with resin, and the surface including the rolling direction and the plate thickness direction was polished to be an observation surface to obtain a mirror surface. A scanning electron microscope (SEM) is used within a range of ± 0.25 mm (50% of the plate thickness) in the plate thickness direction centered on a half of the plate thickness direction of the mirror-finished surface. Then, 20 fields of view (total 5 mm 2 ) were observed with a composition (COMPO) image at an acceleration voltage of 20 kV and a magnification of 100 times. The portion appearing whiter than the parent phase is regarded as an Al-Mn-Fe intermetallic compound and an Al-Mn-Fe-Si intermetallic compound (Al-Mn-Fe (-Si) intermetallic compound), and the equivalent circle diameter The total area and number of intermetallic compounds having a diameter of 2.0 μm or more were determined, and the area ratio and number density were calculated. Table 1 shows the area ratio and number density of Al—Mn—Fe (—Si) intermetallic compounds having an equivalent circle diameter of 2.0 μm or more at the center of the thickness of the cross section of the aluminum alloy plate.

〔評価〕
アルミニウム合金板の供試材について、以下の方法でリジングマーク性、機械的特性、成形性、および曲げ性を評価し、結果を表1に示す。
[Evaluation]
About the test material of an aluminum alloy plate, ridging mark property, mechanical characteristics, formability, and bendability were evaluated by the following methods, and the results are shown in Table 1.

(リジングマーク性)
リジングマーク性の指標として、特許文献6と同様に、プレス加工後におけるアルミニウム合金板表面の凹凸差を評価した。アルミニウム合金板から圧延方向長40mm×圧延直角方向長200mmの試験片と、圧延方向長100mm×圧延直角方向長300mmの試験片と、の2種類の形状の試験片を切り出した。これらの試験片に、プレス加工を模擬して、長手方向(圧延直角方向)にストレッチ(引張変形)を加えることにより、圧延方向長40mmの試験片には15%の塑性歪みを、圧延方向長100mmの試験片には10%の塑性歪みを、それぞれ付与した。
(Ridging mark properties)
As an index of ridging mark property, the unevenness difference on the surface of the aluminum alloy plate after press working was evaluated in the same manner as in Patent Document 6. Two types of test pieces were cut out from the aluminum alloy plate: a test piece having a length in the rolling direction of 40 mm × a length in the direction perpendicular to the roll of 200 mm and a test piece having a length in the rolling direction of 100 mm × a length in the direction of the perpendicular to the roll of 300 mm. By simulating press work on these test pieces and applying a stretch (tensile deformation) in the longitudinal direction (perpendicular to the rolling direction), a test piece having a rolling direction length of 40 mm has a plastic strain of 15% and a length in the rolling direction. A 100% test piece was given 10% plastic strain, respectively.

それぞれの試験片について、粗さ計にて圧延直角方向に沿って長さ20mmの範囲の板表面の凸凹のプロファイルを測定した。測定されるプロファイル(断面曲線)は、図3に破線で示すように、短周期の粗さ曲線と長周期のうねり曲線とが合成された曲線であるので、同図に実線で示すように各表面位置で平均値化したプロファイル(うねり曲線)とし、長さ20mm(図中L)におけるプロファイルで得られた最も高い位置P1と最も低い位置P2との差(凹凸差、図中h)を算出した。凹凸差が12μm以上になると、さらに塗装された表面にリジングマークが発生し、凹凸差が10μm以上においては軽度なリジングマークが発生する。各試験片について3箇所を同様に測定して、凹凸差の平均値(圧延方向長40mmの試験片:h40、圧延方向長100mmの試験片:h100)を表1に示す。平均値h40、h100にて判定し、圧延方向長40mmの試験片(塑性歪み15%)についてリジングマークが発生しない(h40<10μm)、かつ圧延方向長100mmの試験片(塑性歪み10%)について軽度またはリジングマークが発生しない(h100<12μm)ものを合格とし、さらにいずれの試験片についてもリジングマークが発生しない(h40<10μm、h100<10μm)ものを特に優れているとして「◎」で示し、それ以外(h40<10μm、10μm≦h100<12μm)を「○」で示す。不合格(h40≧10μm、h100≧12μmの少なくとも一方)については「×」で示す。 About each test piece, the profile of the unevenness | corrugation of the plate surface of the range of length 20mm was measured along the rolling right angle direction with the roughness meter. The profile to be measured (cross-sectional curve) is a curve obtained by combining a short-period roughness curve and a long-period waviness curve as shown by a broken line in FIG. A profile (waviness curve) averaged at the surface position is calculated, and the difference (unevenness difference, h in the figure) between the highest position P1 and the lowest position P2 obtained by the profile at a length of 20 mm (L in the figure) is calculated. did. When the unevenness difference is 12 μm or more, a ridging mark is further generated on the coated surface, and when the unevenness difference is 10 μm or more, a mild ridging mark is generated. Table 1 shows the average value of the unevenness difference (test piece with a rolling direction length of 40 mm: h 40 , test piece with a rolling direction length of 100 mm: h 100 ) measured in three places for each test piece. The average value h 40 , h 100 was used to determine that no ridging marks were generated (h 40 <10 μm) for a specimen having a length of 40 mm in the rolling direction (plastic strain 15%) and a specimen having a length of 100 mm in the rolling direction (plastic strain 10). %) That is mild or does not generate ridging marks (h 100 <12 μm) is acceptable, and any test piece that does not generate ridging marks (h 40 <10 μm, h 100 <10 μm) is particularly excellent. Is indicated by “、”, and others (h 40 <10 μm, 10 μm ≦ h 100 <12 μm) are indicated by “◯”. A failure (at least one of h 40 ≧ 10 μm and h 100 ≧ 12 μm) is indicated by “x”.

(機械的特性:引張強さ、0.2%耐力、伸び)
アルミニウム合金板を切り出して、圧延方向を長手方向として50mm×25mmのJIS5号引張試験片を作製した。この試験片を室温にてJISZ2241に準じて引張試験を行って、引張強さ、0.2%耐力(As耐力)、および伸びを測定した。また、前記と同様にアルミニウム合金板を切り出してJIS5号引張試験片を作製し、プレス加工および塗装、焼付け処理を模擬して、2%の予歪みを付与し、熱処理炉により170℃で20分の熱処理をした。この試験片について、引張試験を行って0.2%耐力(AB耐力)を測定した。合格基準は、引張強さ:200MPa以上、As耐力:100MPa以上150MPa以下、伸び:20%以上、AB耐力:170MPa以上とした。
(Mechanical properties: tensile strength, 0.2% proof stress, elongation)
An aluminum alloy plate was cut out to prepare a JIS No. 5 tensile test piece of 50 mm × 25 mm with the rolling direction as the longitudinal direction. The test piece was subjected to a tensile test at room temperature according to JISZ2241, and the tensile strength, 0.2% yield strength (As yield strength), and elongation were measured. In addition, an aluminum alloy plate was cut out in the same manner as described above to produce a JIS No. 5 tensile test piece, impressed with press working, painting, and baking treatment, 2% pre-strain was applied, and heat treatment was performed at 170 ° C. for 20 minutes. The heat treatment was performed. About this test piece, the tensile test was done and 0.2% yield strength (AB yield strength) was measured. Acceptance criteria were as follows: tensile strength: 200 MPa or more, As yield strength: 100 MPa to 150 MPa or less, elongation: 20% or more, AB yield strength: 170 MPa or more.

(成形性:張出し成形性)
アルミニウム合金板のプレス加工における割れの有無の評価に代えて、球頭張出し成形による限界張出し高さを評価した。試験片として、アルミニウム合金板を圧延方向長110mm×圧延直角方向長200mmに切り出した。この試験片を、図1に示すように、内径(穴径)102.8mm、肩半径Rd:5.0mm、外径220mmのダイスに、治具(ブランクホルダ)を用いて一定しわ押さえ力で固定した。そして、ダイス−治具間の隙間を試験片と同じ厚さ1mmのシム(図示省略)を挟むことにより一定に保ちながら、球頭直径100mm(半径Rp:50mm)の球頭ポンチを試験片表面に対して垂直方向に押し込んで張出し加工を行い、割れや括れが観察されるまでの張出し高さの限界値を求めた。限界張出しが30mm以上であるものを合格とする。
(Formability: Overhang formability)
Instead of evaluating the presence or absence of cracks in press working of an aluminum alloy plate, the limit overhang height by ball head overhang forming was evaluated. As a test piece, an aluminum alloy plate was cut into a length of 110 mm in the rolling direction and a length of 200 mm in the direction perpendicular to the rolling direction. As shown in FIG. 1, the test piece is fixed to a die having an inner diameter (hole diameter) of 102.8 mm, a shoulder radius Rd: 5.0 mm, and an outer diameter of 220 mm with a constant wrinkle holding force using a jig (blank holder). Fixed. Then, while keeping the gap between the die and the jig constant by sandwiching a shim (not shown) having the same thickness as that of the test piece, a ball head punch having a diameter of 100 mm (radius Rp: 50 mm) is placed on the surface of the test piece. The overhanging process was carried out by pushing in the vertical direction, and the limit value of the overhang height until cracking or constriction was observed was obtained. Those with a limit overhang of 30 mm or more are considered acceptable.

(成形性:曲げ性)
曲げ性の評価として、自動車のアウタパネルにプレス成形された後のフラットヘム加工を模擬した曲げ加工試験を行って評価した。アルミニウム合金板を圧延方向長180mm×圧延直角方向長30mmに切り出して、プレス成形された状態を模擬すべく10%の予歪みを付与して、曲げ加工試験片を作製し、圧延直角方向に沿って折り目が付くように、図2に示すフラットヘム加工を模擬した、以下の曲げ加工を行った。
(Formability: Bendability)
As an evaluation of bendability, a bending process test simulating flat hem processing after being press-molded on an outer panel of an automobile was performed and evaluated. An aluminum alloy sheet is cut into a length of 180 mm in the rolling direction and a length of 30 mm in the direction perpendicular to the rolling, and a pre-strain of 10% is applied to simulate the press-formed state, and a bending test piece is produced. Then, the following bending process simulating the flat hem process shown in FIG.

加工代(フラットヘム加工後における試験片の内側に折り曲げられた端部から折り曲げ部までの距離)として長手方向一端から12mmまでをはみ出させて、図2(a)に示すように、肩半径R:0.8mm(試験片の板厚の0.8倍)のダイスに治具で押さえ、ポンチにより前記加工代を90°に折り曲げた(ダウンフランジ工程)。次に、図2(b)に示すように、加工代をさらに約45°(累計約135°)内側に折り曲げた(プリヘム工程)。最後に、インナパネルを模した板厚1.0mmのアルミニウム合金板(インナパネル材、図2(b)参照)を試験片の折り曲げられた間に装入し、図2(c)に示すように、インナパネル材の両面に試験片が密着するように、加工代を略180°に内側に折り曲げた(フラットヘム工程)。   As shown in FIG. 2 (a), the shoulder radius R protrudes from the end in the longitudinal direction as a processing allowance (distance from the end portion bent to the inner side of the test piece after flat hem processing to the bent portion). : A die of 0.8 mm (0.8 times the plate thickness of the test piece) was pressed with a jig, and the machining allowance was bent to 90 ° by a punch (down flange process). Next, as shown in FIG. 2B, the machining allowance was further bent inward by about 45 ° (cumulative total of about 135 °) (pre-hem step). Finally, an aluminum alloy plate (inner panel material, see FIG. 2 (b)) having a thickness of 1.0 mm simulating an inner panel is inserted while the test piece is bent, as shown in FIG. 2 (c). In addition, the machining allowance was bent inward at approximately 180 ° so that the test pieces were in close contact with both surfaces of the inner panel material (flat hem process).

試験片(アウタパネル)の全幅にわたって折り曲げ部の外側表面を目視にて観察し、微小なものも含めて割れの見られないものを曲げ性合格とした。さらに肌荒れの発生していないものを優れているとして「◎」、肌荒れの発生したものを良好として「○」で表1に示す。不良については、微小な割れの発生したものを「×」、大きな割れの発生したものを「××」で表1に示す。   The outer surface of the bent portion was visually observed over the entire width of the test piece (outer panel), and those that were not cracked, including minute ones, were regarded as passing the bendability. Further, Table 1 shows that “」 ”indicates that the surface is not rough, and“ ◯ ”indicates that the surface is rough. As for the defects, Table 1 shows “×” when micro cracks occurred and “XX” where large cracks occurred.

Figure 2012214846
Figure 2012214846

表1に示すように、供試材No.1〜15は、アルミニウム合金の成分の各含有量が本発明の範囲内の実施例であり、製造方法における各条件が本発明の範囲内であるので、Al−Mn−Fe(−Si)系金属間化合物が十分な大きさで晶出、析出して、微細かつランダムな方位の結晶の集合組織となり、特に金属間化合物の個数密度が多いほど、よりリジングマークの発生しない良好な表面性状を示し、また耐力等の機械的特性および成形性も成形加工用アルミニウム合金板として、良好な結果が得られた。   As shown in Table 1, the test material No. Nos. 1 to 15 are examples in which the contents of the components of the aluminum alloy are within the scope of the present invention, and the conditions in the production method are within the scope of the present invention. The intermetallic compound crystallizes and precipitates in a sufficiently large size to form a texture of fine and randomly oriented crystals.In particular, the higher the number density of intermetallic compounds, the better the surface properties that do not generate ridging marks. In addition, mechanical properties such as proof stress and formability were also good as an aluminum alloy sheet for forming.

(アルミニウム合金の成分による評価)
これに対して、供試材No.16〜27は、アルミニウム合金の成分が本発明の要件を満たさない比較例である。供試材No.16,20,22は、それぞれSi,Fe,Mnが不足しているため、金属間化合物が十分に晶出、析出せず、その結果、塗装後の表面にリジングマークが発生した。また、供試材No.16,18はそれぞれSi,Mgが不足したことで、耐力等の強度が不足した。なお、供試材No.28は、成分のそれぞれは本発明の要件を満たすが、Feが本発明の範囲の下限であり、Mnが供試材No.4のように上限近傍まで多くなかったために、金属間化合物が十分に晶出、析出せず、その結果、塗装後の表面にリジングマークが発生した。
(Evaluation by components of aluminum alloy)
On the other hand, the test material No. 16 to 27 are comparative examples in which the components of the aluminum alloy do not satisfy the requirements of the present invention. Specimen No. Since 16, 20 and 22 were deficient in Si, Fe and Mn, respectively, the intermetallic compound was not sufficiently crystallized and precipitated, and as a result, ridging marks were generated on the surface after coating. In addition, specimen No. Nos. 16 and 18 lacked Si and Mg, respectively, so that strength such as proof stress was insufficient. The test material No. 28, each of the components satisfies the requirements of the present invention, Fe is the lower limit of the scope of the present invention, Mn is the test material No. Since there was not much to the vicinity of the upper limit as in 4, the intermetallic compound was not sufficiently crystallized and precipitated, and as a result, ridging marks were generated on the surface after coating.

反対に、供試材No.17,19,24はそれぞれSi,Mg,Cuが過剰なため、強度が過大となって成形性が低下した。さらに、Cuが過剰な供試材No.24は糸錆を生じた。供試材No.19,21,23,25〜27はMg,Fe,Mn,Cr,Zn,Tiが過剰なため、晶出物や析出物が粗大となり、さらに多発して、これらの析出物等が曲げ加工時に割れの起点となって曲げ性が低下した。   On the other hand, the test material No. Since 17, 19 and 24 were excessive in Si, Mg and Cu, respectively, the strength was excessive and the moldability was lowered. Furthermore, the test material No. 1 containing excessive Cu was used. No. 24 produced thread rust. Specimen No. 19, 21, 23, 25 to 27 have excessive amounts of Mg, Fe, Mn, Cr, Zn, and Ti, so that crystallized substances and precipitates become coarse and more frequently occur. The bendability decreased as a starting point of cracking.

前記実施例1の供試材No.1,5,7,14と同じアルミニウム合金の成分で、熱間圧延の最終パスにおける条件を変えた供試材を作製し、実施例1と同様に評価した。   Sample No. of Example 1 above. Sample materials having the same aluminum alloy components as 1, 5, 7, and 14 and having different conditions in the final hot rolling pass were produced and evaluated in the same manner as in Example 1.

〔供試材作製〕
(鋳造〜均質化熱処理)
表2に示す組成(合金No.として実施例1の供試材No.を示す)のアルミニウム合金について、実施例1と同様に、厚さ600mmの鋳塊を作製し、550℃×5時間の均質化熱処理をして、面削処理をした。ただし、供試材No.33については480℃×9時間、供試材No.34については600℃×2時間の均質化熱処理をした。
[Sample preparation]
(Casting-Homogenization heat treatment)
For an aluminum alloy having the composition shown in Table 2 (showing the test material No. of Example 1 as an alloy No.), an ingot having a thickness of 600 mm was prepared in the same manner as in Example 1, and 550 ° C x 5 hours Homogenizing heat treatment was performed to perform face grinding. However, the test material No. For No. 33, 480 ° C. × 9 hours, sample No. No. 34 was subjected to a homogenization heat treatment at 600 ° C. for 2 hours.

(熱間圧延)
次に、鋳塊を予備加熱にて開始温度を400℃として熱間圧延(粗圧延、仕上げ圧延)をして、板厚4.0mmの熱間圧延板とした。実施例1と同様に、粗圧延において、板厚80mmとして次の1パスにて板厚40mmにした(圧下率50%)。熱間圧延(仕上げ圧延)の最終パスにおいては、直前の板厚を調整して、表2に示す圧下率で板厚4.0mmの熱間圧延板とし、さらに表2に示す終了温度で巻き取った。
(Hot rolling)
Next, the ingot was subjected to hot rolling (coarse rolling, finish rolling) at a start temperature of 400 ° C. by preheating to obtain a hot rolled plate having a plate thickness of 4.0 mm. In the same manner as in Example 1, in rough rolling, the plate thickness was set to 80 mm, and the plate thickness was set to 40 mm in the next one pass (the reduction rate was 50%). In the final pass of hot rolling (finish rolling), the immediately preceding plate thickness is adjusted to obtain a hot rolled plate having a plate thickness of 4.0 mm at the rolling reduction shown in Table 2, and further wound at the end temperature shown in Table 2. I took it.

(熱間圧延板の熱間圧延板組織の観察)
熱間圧延後に熱間圧延板を切り出して、熱間圧延板組織を観察して、再結晶の進行状態を判定した。熱間圧延板の表面を機械研磨して、前記表面から板厚の1/4の部位の圧延面に平行な面を観察面とした。また、熱間圧延板の圧延方向を含む断面を同様に機械研磨して観察面とし、この断面の板厚の1/2の部位を観察領域とした。それぞれの観察面に、さらに5%ほうフッ化水素酸水溶液(溶液温度20〜30℃)を用いて電圧30Vで60〜90秒間の電解エッチングをした後、光学顕微鏡(偏光板使用)にて倍率100倍で熱間圧延板組織を観察した。顕微鏡像から、ラインインターセプト法により圧延方向、圧延直角方向、板厚方向における各粒径dL、dLT、dSTを測定した。1回の測定ライン長は200μmとし、各方向毎に1視野あたり各5本で計5視野観察して、各粒径の平均値を算出した。各粒径の平均値から、熱間圧延板の表面に平行な面におけるアスペクト比dL/dLT、圧延方向を含む断面におけるアスペクト比dL/dSTを求め、1≦dL/dLT≦3、1≦dL/dST≦3となる熱間圧延板については、等軸状の再結晶粒が得られ、再結晶が完了していると判定して中間焼鈍を行わずに後続の冷間圧延を行った。これに対して、アスペクト比dL/dLT、dL/dSTの少なくとも一方が3を超えた熱間圧延板は、再結晶が完了していないと判定して、以下の中間焼鈍を行ってから冷間圧延を行った。
(Observation of hot rolled sheet structure of hot rolled sheet)
After hot rolling, the hot rolled sheet was cut out and the hot rolled sheet structure was observed to determine the progress of recrystallization. The surface of the hot-rolled plate was mechanically polished, and a surface parallel to the rolled surface at a portion of ¼ of the plate thickness from the surface was used as an observation surface. Further, the cross section including the rolling direction of the hot rolled plate was similarly mechanically polished to obtain an observation surface, and a half of the thickness of the cross section was taken as the observation region. Each observation surface was further subjected to electrolytic etching for 60 to 90 seconds at a voltage of 30 V using a 5% aqueous hydrofluoric acid solution (solution temperature: 20 to 30 ° C.), and then magnification using an optical microscope (using a polarizing plate). The hot rolled sheet structure was observed at 100 times. From the microscopic image, the particle diameters d L , d LT , and d ST in the rolling direction, the direction perpendicular to the rolling direction, and the sheet thickness direction were measured by the line intercept method. The measurement line length of one measurement was 200 μm, and a total of 5 fields were observed with 5 lines per field for each direction, and the average value of each particle size was calculated. From the average value of each grain size, the aspect ratio d L / d LT in the plane parallel to the surface of the hot-rolled sheet and the aspect ratio d L / d ST in the cross section including the rolling direction are obtained, and 1 ≦ d L / d LT For hot-rolled sheets satisfying ≦ 3 and 1 ≦ d L / d ST ≦ 3, equiaxed recrystallized grains are obtained, and it is determined that the recrystallization has been completed, and subsequent annealing is not performed. Was cold rolled. On the other hand, a hot-rolled sheet in which at least one of the aspect ratios d L / d LT and d L / d ST exceeds 3 is determined that recrystallization has not been completed, and the following intermediate annealing is performed. Then, cold rolling was performed.

(中間焼鈍)
熱間圧延板組織の観察にて再結晶が完了していないと判定された熱間圧延板を、連続焼鈍炉にて500℃×10秒間、またはバッチ式の炉にて350℃×5時間の中間焼鈍を行った。詳しくは、連続焼鈍炉においては、熱間圧延板を、昇温速度20℃/秒で500℃に加熱し、焼鈍時間(通板時間)10秒間の後、降温速度100℃/秒で室温まで冷却した。バッチ式の炉においては、熱間圧延板を、昇温速度20℃/時で350℃に加熱し、焼鈍時間5時間を保持した後、降温速度20℃/時で室温まで冷却した。中間焼鈍を連続焼鈍炉にて行った供試材は「連続」で、バッチ式の炉にて行った供試材は「バッチ」でそれぞれ表2の中間焼鈍の仕様欄に示し、中間焼鈍を行わなかった供試材は「−」で示す。
(Intermediate annealing)
A hot-rolled sheet that has been determined that recrystallization has not been completed by observation of the hot-rolled sheet structure is 500 ° C. × 10 seconds in a continuous annealing furnace, or 350 ° C. × 5 hours in a batch-type furnace. Intermediate annealing was performed. Specifically, in a continuous annealing furnace, a hot-rolled sheet is heated to 500 ° C. at a heating rate of 20 ° C./second, and after 10 seconds of annealing time (passing time), to a room temperature at a cooling rate of 100 ° C./second. Cooled down. In the batch type furnace, the hot-rolled sheet was heated to 350 ° C. at a temperature rising rate of 20 ° C./hour, maintained for an annealing time of 5 hours, and then cooled to room temperature at a temperature decreasing rate of 20 ° C./hour. The specimens that were subjected to intermediate annealing in a continuous annealing furnace were “continuous”, and the specimens that were conducted in a batch-type furnace were “batch” in the specification column for intermediate annealing in Table 2, respectively. The specimens not performed are indicated by “−”.

(冷間圧延、溶体化、焼入れ処理、予備時効処理)
熱間圧延板を、実施例1と同様に冷間圧延をして、板厚1.0mmの冷間圧延板を作製した(総圧延率75%)。さらに実施例1と同様に、冷間圧延板を、到達温度550℃で溶体化処理をして水冷(水焼入れ)し、70℃×5時間の予備時効処理をし、3ヶ月間の室温時効を経て、アルミニウム合金板の供試材とした。なお、供試材の作製において、途中以降の工程および測定、評価のできなかった供試材は、表2の各欄に「−」で示す。
(Cold rolling, solution treatment, quenching treatment, preliminary aging treatment)
The hot-rolled plate was cold-rolled in the same manner as in Example 1 to produce a cold-rolled plate having a plate thickness of 1.0 mm (total rolling rate of 75%). Further, in the same manner as in Example 1, the cold-rolled plate was subjected to a solution treatment at an ultimate temperature of 550 ° C., water-cooled (water quenching), preliminarily aged at 70 ° C. for 5 hours, and aged at room temperature for 3 months. Then, it was set as the test material of an aluminum alloy plate. In addition, in preparation of a test material, the test material which was not able to be measured and evaluated after the middle is indicated by “-” in each column of Table 2.

〔評価〕
実施例1と同様に、アルミニウム合金板の供試材について、Al−Mn−Fe(−Si)金属間化合物の分布(面積率および個数密度)を測定し、リジングマーク性、機械的特性、および成形性を評価し、結果を表2に示す。なお、実施例1の供試材No.1,5,7,14についても表2に併記する。
[Evaluation]
Similarly to Example 1, the Al-Mn-Fe (-Si) intermetallic compound distribution (area ratio and number density) was measured for the specimen of the aluminum alloy plate, and ridging mark properties, mechanical properties, and The moldability was evaluated and the results are shown in Table 2. In addition, the test material No. 1 of Example 1 was used. 1, 2, 7, and 14 are also shown in Table 2.

Figure 2012214846
Figure 2012214846

表2に示すように、供試材No.29,30,32,36,37,40,41は、実施例1と同様に熱間圧延の最終パスの条件が本発明の範囲内であるので、熱間圧延板において巻取り後に再結晶が完了して、中間焼鈍することなく冷間圧延しても、供試材No.1,5,7,14と同様に、リジングマークの発生しない良好な表面性状を示し、機械的特性および成形性も成形加工用アルミニウム合金板として、良好な結果が得られた。   As shown in Table 2, the test material No. 29, 30, 32, 36, 37, 40, and 41, the conditions of the final pass of the hot rolling are within the scope of the present invention in the same manner as in Example 1. Therefore, recrystallization occurs after winding on the hot rolled plate. Even after completion and cold rolling without intermediate annealing, the specimen No. Similar to 1, 5, 7, and 14, good surface properties without ridging marks were exhibited, and good results were obtained as the aluminum alloy plate for forming processing in terms of mechanical properties and formability.

これに対して、供試材No.31,35,38,39は、最終パスの圧下率に対して終了温度が低くなり過ぎ、熱間圧延終了後において再結晶が十分に進行しなかったために、冷間圧延前に中間焼鈍を行って再結晶を完了させる必要があった。したがって、前記の実施例と同様にリジングマークの発生しない良好な表面性状を示す成形加工用アルミニウム合金板が得られたが、生産性は低下した。   On the other hand, the test material No. In 31, 35, 38, and 39, the end temperature was too low with respect to the rolling reduction of the final pass, and recrystallization did not proceed sufficiently after the end of hot rolling, so intermediate annealing was performed before cold rolling. It was necessary to complete the recrystallization. Therefore, an aluminum alloy sheet for forming and showing good surface properties free from ridging marks as in the previous example was obtained, but the productivity was lowered.

供試材No.33は、均質化熱処理の温度が低く、鋳塊の組織の均質化の進行が遅く、金属間化合物が粗大化して個数密度が不足し、熱間圧延終了後に再結晶組織が微細とならず、リジングマークが発生した。供試材No.34は、均質化熱処理の温度が高く、鋳塊にバーニングが発生して、その後の熱間圧延が不可能となった。   Specimen No. 33, the temperature of the homogenization heat treatment is low, the progress of the homogenization of the ingot structure is slow, the intermetallic compound is coarsened and the number density is insufficient, and the recrystallized structure does not become fine after the hot rolling is completed, A ridging mark occurred. Specimen No. In No. 34, the temperature of the homogenizing heat treatment was high, burning occurred in the ingot, and subsequent hot rolling became impossible.

Claims (4)

Si:0.4〜1.5質量%、Mg:0.4〜1.0質量%、Fe:0.1〜1.0質量%、Mn:0.1〜0.5質量%を含有し、残部がAlおよび不可避的不純物からなるアルミニウム合金で形成され、
圧延方向を含む断面の板厚方向中心部において、円相当径が2.0μm以上のAl−Mn−Fe(−Si)系金属間化合物が、面積率:0.4%以上、個数密度:1350個/mm2以上であることを特徴とする成形加工用アルミニウム合金板。
Si: 0.4 to 1.5 mass%, Mg: 0.4 to 1.0 mass%, Fe: 0.1 to 1.0 mass%, Mn: 0.1 to 0.5 mass% The balance is formed of an aluminum alloy consisting of Al and inevitable impurities,
In the central part in the plate thickness direction of the cross section including the rolling direction, the Al—Mn—Fe (—Si) -based intermetallic compound having an equivalent circle diameter of 2.0 μm or more has an area ratio of 0.4% or more and a number density of 1350. An aluminum alloy plate for forming, characterized by being at least pieces / mm 2 .
前記アルミニウム合金がさらにCu:0.05〜1.0質量%を含有する請求項1に記載の成形加工用アルミニウム合金板。   The aluminum alloy sheet for forming according to claim 1, wherein the aluminum alloy further contains Cu: 0.05 to 1.0 mass%. 前記アルミニウム合金がさらにCr:0.15質量%以下、Zr:0.15質量%以下、Ti:0.007〜0.10質量%、Zn:0.5質量%以下の少なくとも一種を含有する請求項1または請求項2に記載の成形加工用アルミニウム合金板。   The aluminum alloy further contains at least one of Cr: 0.15 mass% or less, Zr: 0.15 mass% or less, Ti: 0.007 to 0.10 mass%, Zn: 0.5 mass% or less. The aluminum alloy sheet for forming according to claim 1 or 2. 請求項1ないし請求項3のいずれか一項に記載のアルミニウム合金を溶解して鋳塊を鋳造する鋳造工程と、前記鋳塊を500〜580℃の範囲の温度で1時間以上の熱処理にて均質化する均質化熱処理工程と、前記均質化した鋳塊を350〜450℃の範囲の温度としてから熱間圧延して熱間圧延板を製造する熱間圧延工程と、前記熱間圧延板を総圧延率40%以上で冷間圧延して冷間圧延板を製造する冷間圧延工程と、前記冷間圧延板を500〜560℃の範囲の温度に到達するまで加熱した後に室温に冷却する溶体化処理工程と、を行う成形加工用アルミニウム合金板の製造方法であって、
前記熱間圧延工程は、100mm以下30mm以上の板厚に到達しているときに圧下率40%以上の圧延パスを少なくとも1パス行い、最終圧延パスにおける圧下率(%)をrで表したとき、終了温度が(445−3r)℃以上になるように圧延することを特徴とする成形加工用アルミニウム合金板の製造方法。
A casting process in which the aluminum alloy according to any one of claims 1 to 3 is melted to cast an ingot, and the ingot is subjected to a heat treatment at a temperature in the range of 500 to 580 ° C for 1 hour or more. A homogenizing heat treatment step for homogenizing, a hot rolling step for producing a hot rolled plate by hot rolling the homogenized ingot at a temperature in the range of 350 to 450 ° C., and the hot rolled plate A cold rolling step in which a cold rolled sheet is produced by cold rolling at a total rolling rate of 40% or more, and the cold rolled sheet is heated to a temperature in the range of 500 to 560 ° C. and then cooled to room temperature. A solution treatment step, and a method for producing a forming aluminum alloy plate,
In the hot rolling step, when a plate thickness of 100 mm or less and 30 mm or more is reached, at least one rolling pass with a reduction rate of 40% or more is performed, and the reduction rate (%) in the final rolling pass is represented by r. The method for producing an aluminum alloy sheet for forming, characterized by rolling so that the end temperature is (445-3r) ° C. or higher.
JP2011081001A 2011-03-31 2011-03-31 Aluminum alloy plate for forming and method for producing the same Expired - Fee Related JP5758676B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011081001A JP5758676B2 (en) 2011-03-31 2011-03-31 Aluminum alloy plate for forming and method for producing the same
KR1020120032212A KR20120112167A (en) 2011-03-31 2012-03-29 Aluminum alloy sheet for forming and process for manufacturing the same
CN201210088639.0A CN102732759B (en) 2011-03-31 2012-03-29 Aluminum alloy plate for formation processing and manufacturing method thereof
KR1020150003445A KR101820569B1 (en) 2011-03-31 2015-01-09 Aluminum alloy sheet for forming and process for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011081001A JP5758676B2 (en) 2011-03-31 2011-03-31 Aluminum alloy plate for forming and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012214846A true JP2012214846A (en) 2012-11-08
JP5758676B2 JP5758676B2 (en) 2015-08-05

Family

ID=46989053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011081001A Expired - Fee Related JP5758676B2 (en) 2011-03-31 2011-03-31 Aluminum alloy plate for forming and method for producing the same

Country Status (3)

Country Link
JP (1) JP5758676B2 (en)
KR (2) KR20120112167A (en)
CN (1) CN102732759B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014218734A (en) * 2013-04-09 2014-11-20 株式会社神戸製鋼所 Aluminum alloy sheet for press molding, manufacturing method therefor and press molded body thereof
JP2015040340A (en) * 2013-08-23 2015-03-02 株式会社Uacj Molding aluminum alloy sheet and method for manufacturing the same
JP2015166480A (en) * 2014-03-03 2015-09-24 住友電気工業株式会社 Aluminum alloy, aluminum alloy wire material, method for producing aluminum alloy wire material, method for producing aluminum alloy member and aluminum alloy member
EP2964800B1 (en) 2013-03-07 2017-08-09 Aleris Aluminum Duffel BVBA Method of manufacturing an al-mg-si alloy rolled sheet product with excellent formability
JP6208389B1 (en) * 2016-07-14 2017-10-04 株式会社Uacj Method for producing rolled aluminum alloy material for forming comprising aluminum alloy having excellent bending workability and ridging resistance
JP2020521885A (en) * 2017-06-06 2020-07-27 ノベリス・インコーポレイテッドNovelis Inc. Aluminum alloy article with less texture and method of making the same
JP2020537039A (en) * 2017-10-23 2020-12-17 ノベリス・インコーポレイテッドNovelis Inc. High-strength and highly moldable aluminum alloy and its manufacturing method
JP2022512995A (en) * 2019-05-08 2022-02-07 常熟希那基汽▲車▼▲零▼件有限公司 A type of alloy material and its production process

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105518168B (en) * 2013-09-06 2017-07-18 株式会社神户制钢所 Toast the excellent aluminium alloy plate of application hardening
US20160099200A1 (en) * 2014-10-01 2016-04-07 Stmicroelectronics S.R.L. Aluminum alloy lead frame for a semiconductor device and corresponding manufacturing process
JP2016141843A (en) * 2015-02-02 2016-08-08 株式会社神戸製鋼所 High strength aluminum alloy sheet
JP2017078211A (en) * 2015-10-21 2017-04-27 株式会社神戸製鋼所 Aluminum alloy sheet having high moldability
JP6506678B2 (en) * 2015-11-02 2019-04-24 株式会社神戸製鋼所 Aluminum alloy sheet for automobile structural member and method of manufacturing the same
CN108884520B (en) * 2016-03-25 2020-07-17 株式会社神户制钢所 Aluminum alloy blank for magnetic disk and aluminum alloy substrate for magnetic disk
JP2017179468A (en) * 2016-03-30 2017-10-05 株式会社神戸製鋼所 Aluminum alloy sheet with high formability
JP6461249B2 (en) * 2017-07-06 2019-01-30 三菱アルミニウム株式会社 Aluminum alloy foil and method for producing aluminum alloy foil
CN112262223B (en) * 2018-06-12 2023-02-14 爱励轧制产品德国有限责任公司 Method of manufacturing 7 xxx-series aluminum alloy sheet products having improved fatigue failure resistance
KR102559606B1 (en) * 2018-08-31 2023-07-24 가부시키가이샤 유에이씨제이 aluminum alloy plate
EP3891315A4 (en) * 2018-12-05 2022-10-26 Arconic Technologies LLC 6xxx aluminum alloys
JP6754025B1 (en) * 2018-12-26 2020-09-09 三菱アルミニウム株式会社 Manufacturing method of aluminum alloy foil and aluminum alloy foil
CN110819838A (en) * 2019-12-06 2020-02-21 中北大学 Preparation method of die-casting aluminum-magnesium-zinc-silicon-manganese-iron alloy
CN112626385B (en) * 2020-11-04 2022-08-16 佛山科学技术学院 High-plasticity quick-aging-response aluminum alloy and preparation method and application thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228956A (en) * 1994-02-16 1995-08-29 Sumitomo Light Metal Ind Ltd Production of aluminum alloy sheet for forming work
JPH10237576A (en) * 1997-02-26 1998-09-08 Nippon Steel Corp Aluminum alloy sheet excellent in formability, baking finish hardenability, chemical conversion treatment property, and corrosion resistance and its production
JP2005146375A (en) * 2003-11-18 2005-06-09 Furukawa Sky Kk Aluminum alloy sheet for forming, and method for producing the same
WO2005056859A1 (en) * 2003-12-11 2005-06-23 Nippon Light Metal Company, Ltd. METHOD FOR PRODUCING Al-Mg-Si ALLOY EXCELLENT IN BAKE-HARDENABILITY AND HEMMABILITY
JP2005240113A (en) * 2004-02-26 2005-09-08 Kobe Steel Ltd Aluminum alloy sheet having excellent ridging mark property
JP2005298922A (en) * 2004-04-13 2005-10-27 Furukawa Sky Kk Aluminum alloy plate to be formed, and manufacturing method therefor
JP2006241548A (en) * 2005-03-04 2006-09-14 Sumitomo Light Metal Ind Ltd Al-Mg-Si ALLOY SHEET SUPERIOR IN BENDABILITY, MANUFACTURING METHOD THEREFOR, AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET
JP2009108342A (en) * 2007-10-26 2009-05-21 Furukawa Sky Kk Aluminum alloy plate for forming, and its manufacturing method
JP2009173972A (en) * 2008-01-22 2009-08-06 Kobe Steel Ltd Aluminum alloy sheet having excellent ridging mark property upon forming
JP2009173973A (en) * 2008-01-22 2009-08-06 Kobe Steel Ltd Aluminum alloy sheet having excellent ridging mark property upon forming
JP2009263781A (en) * 2008-03-31 2009-11-12 Kobe Steel Ltd Aluminum alloy sheet with excellent post-fabrication surface quality and method of manufacturing same
JP2011202273A (en) * 2010-03-02 2011-10-13 Kobe Steel Ltd Aluminum alloy cold-rolled sheet for bottle can

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169740A (en) 2005-12-22 2007-07-05 Kobe Steel Ltd Aluminum alloy sheet having excellent formability and its production method
JP2008024964A (en) * 2006-07-18 2008-02-07 Nippon Light Metal Co Ltd High-strength aluminum alloy sheet and producing method therefor
JP2008303449A (en) * 2007-06-11 2008-12-18 Furukawa Sky Kk Aluminum alloy sheet for forming, and method for producing aluminum alloy sheet for forming
JP5203772B2 (en) * 2008-03-31 2013-06-05 株式会社神戸製鋼所 Aluminum alloy sheet excellent in paint bake hardenability and suppressing room temperature aging and method for producing the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228956A (en) * 1994-02-16 1995-08-29 Sumitomo Light Metal Ind Ltd Production of aluminum alloy sheet for forming work
JPH10237576A (en) * 1997-02-26 1998-09-08 Nippon Steel Corp Aluminum alloy sheet excellent in formability, baking finish hardenability, chemical conversion treatment property, and corrosion resistance and its production
JP2005146375A (en) * 2003-11-18 2005-06-09 Furukawa Sky Kk Aluminum alloy sheet for forming, and method for producing the same
WO2005056859A1 (en) * 2003-12-11 2005-06-23 Nippon Light Metal Company, Ltd. METHOD FOR PRODUCING Al-Mg-Si ALLOY EXCELLENT IN BAKE-HARDENABILITY AND HEMMABILITY
JP2005240113A (en) * 2004-02-26 2005-09-08 Kobe Steel Ltd Aluminum alloy sheet having excellent ridging mark property
JP2005298922A (en) * 2004-04-13 2005-10-27 Furukawa Sky Kk Aluminum alloy plate to be formed, and manufacturing method therefor
JP2006241548A (en) * 2005-03-04 2006-09-14 Sumitomo Light Metal Ind Ltd Al-Mg-Si ALLOY SHEET SUPERIOR IN BENDABILITY, MANUFACTURING METHOD THEREFOR, AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET
JP2009108342A (en) * 2007-10-26 2009-05-21 Furukawa Sky Kk Aluminum alloy plate for forming, and its manufacturing method
JP2009173972A (en) * 2008-01-22 2009-08-06 Kobe Steel Ltd Aluminum alloy sheet having excellent ridging mark property upon forming
JP2009173973A (en) * 2008-01-22 2009-08-06 Kobe Steel Ltd Aluminum alloy sheet having excellent ridging mark property upon forming
JP2009263781A (en) * 2008-03-31 2009-11-12 Kobe Steel Ltd Aluminum alloy sheet with excellent post-fabrication surface quality and method of manufacturing same
JP2011202273A (en) * 2010-03-02 2011-10-13 Kobe Steel Ltd Aluminum alloy cold-rolled sheet for bottle can

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2964800B1 (en) 2013-03-07 2017-08-09 Aleris Aluminum Duffel BVBA Method of manufacturing an al-mg-si alloy rolled sheet product with excellent formability
JP2014218734A (en) * 2013-04-09 2014-11-20 株式会社神戸製鋼所 Aluminum alloy sheet for press molding, manufacturing method therefor and press molded body thereof
JP2015040340A (en) * 2013-08-23 2015-03-02 株式会社Uacj Molding aluminum alloy sheet and method for manufacturing the same
JP2015166480A (en) * 2014-03-03 2015-09-24 住友電気工業株式会社 Aluminum alloy, aluminum alloy wire material, method for producing aluminum alloy wire material, method for producing aluminum alloy member and aluminum alloy member
JP2018016879A (en) * 2016-07-14 2018-02-01 株式会社Uacj Method for producing aluminum alloy rolled material for forming having excellent bending workability and ridging resistance and composed of aluminum alloy
WO2018012532A1 (en) * 2016-07-14 2018-01-18 株式会社Uacj Method for producing aluminum alloy rolled material for molding processing having superior bending workability and ridging resistance
JP6208389B1 (en) * 2016-07-14 2017-10-04 株式会社Uacj Method for producing rolled aluminum alloy material for forming comprising aluminum alloy having excellent bending workability and ridging resistance
JP2020503428A (en) * 2016-07-14 2020-01-30 コンステリウム ヌフ−ブリザックConstellium Neuf−Brisach Method for producing 6XXX aluminum sheet
US11053576B2 (en) 2016-07-14 2021-07-06 Uacj Corporation Method for producing aluminum alloy rolled material for molding having excellent bending workability and ridging resistance
JP7041664B2 (en) 2016-07-14 2022-03-24 コンステリウム ヌフ-ブリザック 6XXX Aluminum sheet manufacturing method
JP2020521885A (en) * 2017-06-06 2020-07-27 ノベリス・インコーポレイテッドNovelis Inc. Aluminum alloy article with less texture and method of making the same
JP7009514B2 (en) 2017-06-06 2022-02-10 ノベリス・インコーポレイテッド Aluminum alloy articles with less texture and their manufacturing methods
JP2020537039A (en) * 2017-10-23 2020-12-17 ノベリス・インコーポレイテッドNovelis Inc. High-strength and highly moldable aluminum alloy and its manufacturing method
JP2022172234A (en) * 2017-10-23 2022-11-15 ノベリス・インコーポレイテッド High-strength, highly formable aluminum alloys and methods of making the same
JP2022512995A (en) * 2019-05-08 2022-02-07 常熟希那基汽▲車▼▲零▼件有限公司 A type of alloy material and its production process

Also Published As

Publication number Publication date
CN102732759A (en) 2012-10-17
KR101820569B1 (en) 2018-01-19
JP5758676B2 (en) 2015-08-05
KR20120112167A (en) 2012-10-11
CN102732759B (en) 2015-07-15
KR20150013925A (en) 2015-02-05

Similar Documents

Publication Publication Date Title
JP5758676B2 (en) Aluminum alloy plate for forming and method for producing the same
US7824607B2 (en) Aluminum alloy sheet
JP5882380B2 (en) Manufacturing method of aluminum alloy sheet for press forming
JP4901757B2 (en) Aluminum alloy plate and manufacturing method thereof
JP4495623B2 (en) Aluminum alloy plate excellent in stretch flangeability and bending workability and method for producing the same
JP4939088B2 (en) Manufacturing method of aluminum alloy sheet with excellent ridging mark property during forming
JP5699255B2 (en) Method for producing AlMgSi aluminum strip
JP5870791B2 (en) Aluminum alloy plate excellent in press formability and shape freezing property and manufacturing method thereof
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
JP4799294B2 (en) Method for producing high formability Al-Mg alloy plate
JP4996853B2 (en) Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
JP5059505B2 (en) Aluminum alloy cold-rolled sheet that can be formed with high strength
JP5368968B2 (en) Aluminum alloy plate for heat insulator and manufacturing method thereof
JP5111966B2 (en) Method for manufacturing aluminum alloy panel
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
JP5323673B2 (en) Aluminum alloy plate for heat insulator and manufacturing method thereof
JP2004238657A (en) Method of manufacturing aluminum alloy plate for outer panel
JP6778615B2 (en) Aluminum alloy plate for superplastic molding and its manufacturing method
JP3491819B2 (en) Method for producing aluminum alloy sheet having excellent surface properties after forming
JP2018154869A (en) Aluminum alloy sheet excellent in press moldability, ridging mark property and bh property
JP4022497B2 (en) Method for manufacturing aluminum alloy panel
JPH07166285A (en) Hardened al alloy sheet by baking and production thereof
JP2021095619A (en) Aluminum alloy sheet for cap material and method for producing the same
JP2019007038A (en) Aluminum alloy sheet for automobile panel excellent in press moldability and dent resistance
JP2007154273A (en) Aluminum alloy sheet with little cut-powder at the time of shearing and shearing-processing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150604

R150 Certificate of patent or registration of utility model

Ref document number: 5758676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees