JP4799294B2 - Method for producing high formability Al-Mg alloy plate - Google Patents

Method for producing high formability Al-Mg alloy plate Download PDF

Info

Publication number
JP4799294B2
JP4799294B2 JP2006181279A JP2006181279A JP4799294B2 JP 4799294 B2 JP4799294 B2 JP 4799294B2 JP 2006181279 A JP2006181279 A JP 2006181279A JP 2006181279 A JP2006181279 A JP 2006181279A JP 4799294 B2 JP4799294 B2 JP 4799294B2
Authority
JP
Japan
Prior art keywords
alloy
plate
rolling
peripheral speed
alloy plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006181279A
Other languages
Japanese (ja)
Other versions
JP2008006483A (en
Inventor
義和 鈴木
俊雄 小松原
Original Assignee
古河スカイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河スカイ株式会社 filed Critical 古河スカイ株式会社
Priority to JP2006181279A priority Critical patent/JP4799294B2/en
Publication of JP2008006483A publication Critical patent/JP2008006483A/en
Application granted granted Critical
Publication of JP4799294B2 publication Critical patent/JP4799294B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、自動車のボディシート、その他各種車両用部品や、電子・電気機器のシャーシやパネルなどの各種電子・電気機器部品等に使用される成形加工用のアルミニウム合金板の製造方法に関し、特に強度のみならず、優れた成形性を有するAl−Mg系合金からなる高成形性アルミニウム合金板の製造方法に関するものである。   The present invention relates to a method of manufacturing an aluminum alloy plate for forming used for body parts of automobiles, various other vehicle parts, various electronic / electric equipment parts such as chassis and panels of electronic / electric equipment, etc. The present invention relates to a method for producing a highly formable aluminum alloy plate made of an Al-Mg alloy having excellent formability as well as strength.

自動車のボディシートには、従来は冷延鋼板を使用することが多かったが、最近では地球温暖化抑制やエネルギコスト低減などのために、自動車を軽量化して燃費を向上させる要望が強まっており、そこで従来の冷延鋼板に代えて、冷延鋼板とほぼ同等の強度で比重が約1/3であるアルミニウム合金板を自動車のボディシートに使用する傾向が増大しつつある。また自動車以外の電子・電気機器等のパネル、シャーシの如き成形加工部品についても、最近ではアルミニウム合金板を用いることが多くなっている。   Conventionally, cold rolled steel sheets were often used for automobile body sheets, but recently there has been a growing demand for lighter automobiles to improve fuel economy in order to reduce global warming and reduce energy costs. Therefore, instead of the conventional cold-rolled steel plate, there is an increasing tendency to use an aluminum alloy plate having substantially the same strength as the cold-rolled steel plate and a specific gravity of about 1/3 for the body sheet of an automobile. Recently, aluminum alloy plates are often used for molded parts such as panels and chassis of electronic and electric devices other than automobiles.

ところでこのような成形加工用素材としてのアルミニウム合金板としては、従来はAl−Mg系のJIS 5052合金やJIS 5182合金のO材等が最も広く使用されている。このようなAl−Mg系アルミニウム合金からなる成形加工用素材の製造方法としては、従来一般にはDC鋳造法によって鋳造して均質化処理を施し、続いて熱間圧延してからさらに冷間圧延を行ない、再結晶熱処理を行なう方法が適用されている。しかしながら従来の一般的な方法により製造されたAl−Mg系の成形加工用アルミニウム合金板は、強度は冷延鋼板とほぼ同等ではあるものの、成形加工性、とりわけ深絞り性が冷延鋼板と比較して劣っているのが実情である。   By the way, as an aluminum alloy plate as such a forming material, conventionally, Al-Mg based JIS 5052 alloy or JIS 5182 alloy O material has been most widely used. As a method for producing a forming material made of such an Al—Mg-based aluminum alloy, conventionally, casting is generally performed by a DC casting method and subjected to a homogenization treatment, followed by hot rolling and further cold rolling. And a method of performing recrystallization heat treatment is applied. However, Al-Mg-based aluminum alloy sheets for forming work manufactured by conventional methods are almost the same as cold-rolled steel sheets, but their formability, especially deep drawability, is comparable to that of cold-rolled steel sheets. The fact is that it is inferior.

ところで、冷延鋼板においては、成形加工性、とりわけ深絞り性の指標としてランクフォード値(r値)が従来から広く使用されている。そしてランクフォード値、特に平均ランクフォード値(平均r値)が高いほど深絞り性が優れている。ここで平均r値とは、圧延方向に対して0°、45°、90°の各方向で測定したr値(r、r45、r90)の平均値であり、平均r値=(r+2×r45+r90)/4で表わされる値である。 By the way, in cold-rolled steel sheets, the Rankford value (r value) has been widely used as an index of formability, particularly deep drawability. And the higher the rankford value, especially the average rankford value (average r value), the better the deep drawability. Here, the average r value is an average value of r values (r 0 , r 45 , r 90 ) measured in directions of 0 °, 45 °, and 90 ° with respect to the rolling direction, and the average r value = ( r 0 + 2 × r 45 + r 90 ) / 4.

一方、一般に成形加工用素材では、深絞り性が集合組織によって大きな影響を受けることが良く知られている。そして体心立方格子構造を有する冷延鋼板では、圧延集合組織の板面に平行な主方位面が{111}面となり、その{111}面の方位集積密度を高めることによって、平均r値が上がり、深絞り性が向上することが知られている。そして冷延鋼板では、冷間圧延・再結晶熱処理によって得られる結晶方位が前述のように{111}面であることから、{111}面の方位集積密度を高めて深絞り性を向上させることが容易であり、そのための方法も既に充分に確立している。   On the other hand, in general, it is well known that deep drawability is greatly influenced by the texture in a forming material. And in the cold-rolled steel sheet having a body-centered cubic lattice structure, the main orientation plane parallel to the plane of the rolled texture becomes the {111} plane, and the average r value is increased by increasing the orientation density of the {111} plane. It is known that the deep drawability is improved. And in cold-rolled steel sheets, the crystal orientation obtained by cold rolling / recrystallization heat treatment is the {111} plane as described above, so the orientation density of the {111} plane is increased to improve the deep drawability. The method for this is already well established.

これに対して面心立方格子構造を有するアルミニウム合金の場合は、従来の一般的な方法により加工熱処理を行なえば、成形性向上に有効な{111}面が形成されないばかりでなく、むしろ成形性を阻害する{100}面の方位密度が主方位となってしまって、平均r値を充分に上げることができず、成形性、特に深絞り性を向上させることが困難であった。   On the other hand, in the case of an aluminum alloy having a face-centered cubic lattice structure, if the heat treatment is performed by a conventional general method, not only the {111} plane effective for improving the formability is formed, but also the formability. The orientation density of the {100} plane that hinders the orientation becomes the main orientation, and the average r value cannot be sufficiently increased, making it difficult to improve the moldability, particularly the deep drawability.

そこで最近に至り、アルミニウム合金に剪断変形を与えることにより{111}集合組織を形成させて、平均r値および深絞り性を向上させる技術が、例えば非特許文献1において提唱されている。この非特許文献1では、{111}集合組織の材料でr値が高くなることの理論解析が開示されており、さらに{111}集合組織を形成するための具体的手法として、熱間圧延と冷間圧延の中間的な温度で圧延する温間圧延や、圧延時における上下の圧延ロールの回転周速を異ならしめる異周速圧延を適用して剪断変形を導入する方法が提案されている。   Therefore, recently, for example, Non-Patent Document 1 proposes a technique for forming a {111} texture by applying shear deformation to an aluminum alloy to improve the average r value and deep drawability. This Non-Patent Document 1 discloses a theoretical analysis that the r value becomes high with a material of {111} texture, and as a specific method for forming {111} texture, hot rolling and Methods have been proposed in which shear deformation is introduced by applying warm rolling in which the rolling is performed at an intermediate temperature of cold rolling or different circumferential speed rolling in which the rotational circumferential speeds of the upper and lower rolling rolls are different during rolling.

一方特許文献としては、特許文献1では異周速圧延を、また特許文献2では温間異周速圧延を適用することにより、それぞれ{111}集合組織を形成して深絞り性を向上させる技術が提案されている。また特許文献1の発明者らは、同様に異周速圧延によりアルミニウム合金に剪断変形を与える技術について、非特許文献2、3においても開示している。   On the other hand, as patent documents, Patent Document 1 applies different peripheral speed rolling, and Patent Document 2 applies warm different peripheral speed rolling, thereby forming a {111} texture and improving deep drawability, respectively. Has been proposed. In addition, the inventors of Patent Document 1 also disclose non-patent documents 2 and 3 as to techniques for applying shear deformation to an aluminum alloy by different speed rolling.

特開2003−305503号公報JP 2003-305503 A 特開2005−139494号公報JP-A-2005-139494 軽金属学会第50回シンポジウムテキスト、「再結晶・集合組織の解析と制御」(1996)、P18Textbook of the 50th Symposium of the Japan Institute of Light Metals, “Analysis and Control of Recrystallization and Texture” (1996), P18 軽金属、第50巻第7号(2000)、P335〜340Light Metal, Vol. 50, No. 7 (2000), P335-340 軽金属、第52巻第4号(2002)、P185〜189Light Metal, Vol.52, No.4 (2002), P185-189

ところで上述のような従来技術では、異周速圧延により剪断変形を与えることがAl合金における集合組織制御に有効であることが示されてはいるが、これを実際に行なう際の問題点について未だ充分な考慮がなされていない。すなわち、例えば特許文献1の発明者らは、他の非特許文献2、3において、剪断変形を材料に付与するための異周速圧延を、無潤滑状態で実施することとしており、このように無潤滑状態で圧延することは、剪断変形導入の効率の面では有効ではあるが、表面品質の優れたプレス成形素材を実際に製造するには適していない。すなわち異周速圧延では、材料表面がロールとの摩擦を受けるため、無潤滑状態で圧延すれば、表面欠陥(表面荒れや割れ)が生じやすく、極端な場合には圧延そのものが不可能となってしまう。また無潤滑状態での異周速圧延では、圧延ロールにアルミ凝着が起こりやすく、このことも安定的な圧延を困難としてしまう。   By the way, in the prior art as described above, it has been shown that applying shear deformation by different circumferential speed rolling is effective for texture control in an Al alloy, but there are still problems in actually performing this. There is not enough consideration. That is, for example, the inventors of Patent Document 1 have decided to carry out different peripheral speed rolling for imparting shear deformation to a material in a non-lubricated state in other Non-Patent Documents 2 and 3, as described above. Rolling in a non-lubricated state is effective in terms of the efficiency of introducing shear deformation, but is not suitable for actually producing a press-molding material with excellent surface quality. In other words, with different peripheral speed rolling, the surface of the material is subject to friction with the roll, so surface rolling (surface roughening and cracking) is likely to occur if rolling in an unlubricated state, and in extreme cases, rolling itself becomes impossible. End up. Moreover, in the different peripheral speed rolling in a non-lubricated state, aluminum adhesion tends to occur on the rolling roll, which also makes stable rolling difficult.

異周速圧延は、未だアルミニウム合金の一般的な圧延方法としては確立されていないのが実情であり、一方前述の特許文献1、2では、実際の量産的規模での圧延において重要な表面の潤滑に関しては全く言及しておらず、したがってこれらの従来技術も無潤滑での実施を想定していると考えざるを得ず、その点から、特許文献1、2の提案は、少なくとも工業的な量産規模での製造において健全な板材を得るための技術として完成しているとは言えないのである。   The different speed rolling is not yet established as a general rolling method for aluminum alloys, whereas in the above-mentioned Patent Documents 1 and 2, the surface of an important surface in rolling on an actual mass production scale is used. There is no mention of lubrication, so it must be considered that these prior arts are also supposed to be implemented without lubrication. From that point, the proposals in Patent Documents 1 and 2 are at least industrial. It cannot be said that it has been completed as a technique for obtaining a sound plate material in mass production.

この発明は以上の事情を背景としてなされたもので、異周速圧延を適用して集合組織制御を行なって、Al−Mg系合金のr値および深絞り性を向上させると同時に、板の表面欠陥(微小割れなど)の発生や材料のロールへの凝着を防止して、量産的規模での工業的な製造で健全な板材を得るという課題を解決しようとするものである。   The present invention has been made against the background described above. The texture control is performed by applying different circumferential speed rolling to improve the r value and deep drawability of the Al-Mg alloy, and at the same time, the surface of the plate. It is intended to solve the problem of obtaining a sound plate material by industrial production on a mass production scale by preventing the occurrence of defects (such as microcracks) and adhesion of the material to a roll.

本発明者等は、Al−Mg系合金を素材として用いて、適切な潤滑剤の使用により、表面の割れや表面欠陥の発生を防止しながら異周速圧延を行なって充分な剪断変形を与える方法および条件を見出すべく、種々実験・検討を重ねた結果、基本的には、Al−Mg系合金素材板について、表面に潤滑剤を付与した状態で、150〜300℃の範囲内の温度でロール周速比が1.2〜2.5の範囲内で、85%を越える圧下率の条件で温間異周速圧延を行ない、その後焼鈍もしくは溶体化処理により再結晶させることにより、割れや表面欠陥の発生を防止しながら、平均r値が0.9以上となる高成形性Al−Mg系合金板が得られることを見出し、この発明をなすに至ったのである。   The inventors of the present invention use an Al—Mg alloy as a raw material, and by using an appropriate lubricant, perform alternate speed rolling while preventing the occurrence of surface cracks and surface defects to give sufficient shear deformation. As a result of repeated various experiments and examinations to find out the method and conditions, basically, with respect to the Al-Mg alloy material plate, at a temperature in the range of 150 to 300 ° C with a lubricant applied to the surface. When the roll peripheral speed ratio is in the range of 1.2 to 2.5, the roll is subjected to warm different peripheral speed rolling under the condition of a reduction ratio exceeding 85%, and then recrystallized by annealing or solution treatment, so that cracks and The present inventors have found that a highly formable Al—Mg alloy plate having an average r value of 0.9 or more can be obtained while preventing the occurrence of surface defects.

具体的には、請求項1の発明の高成形性Al−Mg系合金板の製造方法は、Al−Mg系合金素材板について、表面に潤滑剤を付与した状態で、150〜300℃の範囲内の温度で、ロール周速比が1.2〜2.5の範囲内でしかも85%を越える圧下率の条件で温間異周速圧延を行ない、その後再結晶熱処理を行なって、平均r値が0.9以上のAl−Mg系合金板を得ることを特徴とするものである。   Specifically, the method for producing a highly formable Al—Mg alloy plate according to the first aspect of the present invention is a range of 150 to 300 ° C. with a lubricant applied to the surface of the Al—Mg alloy material plate. At a temperature within the range, the roll peripheral speed ratio is in the range of 1.2 to 2.5, and the rolling is performed at a different rolling speed at a rolling reduction rate exceeding 85%, and then the recrystallization heat treatment is performed to obtain an average r An Al—Mg alloy plate having a value of 0.9 or more is obtained.

また請求項2の発明は、請求項1に記載の高成形性Al−Mg系合金板の製造方法において、前記潤滑剤として、常温での動粘度が10〜350mm/sでしかも引火点が305℃以上の潤滑油を用い、その潤滑油の付着量が100〜700mg/mの範囲内となるようにAl−Mg系合金素材板に付着させて温間異周速圧延を行なうことを特徴とするものである。 The invention according to claim 2 is the method for producing a highly formable Al—Mg alloy plate according to claim 1, wherein the lubricant has a kinematic viscosity at room temperature of 10 to 350 mm 2 / s and a flash point. Using a lubricating oil of 305 ° C. or higher, and attaching the lubricating oil to the Al—Mg alloy material plate so that the amount of the lubricating oil is within the range of 100 to 700 mg / m 2 , performing warm different peripheral speed rolling. It is a feature.

さらに請求項3の発明は、請求項1もしくは請求項2に記載の高成形性Al−Mg系合金板の製造方法において、前記Al−Mg系合金素材板として、Mg2.0〜6.5%を含有し、残部がAlおよび不可避的不純物からなるAl−Mg系合金板を用い、その表面に潤滑剤を付与した状態で温間異周速圧延を行なった後、前記再結晶熱処理として、310〜570℃の範囲内の温度で焼鈍して再結晶させることを特徴とするものである。   Furthermore, the invention of claim 3 is the method for producing a highly formable Al—Mg alloy plate according to claim 1 or claim 2, wherein the Al—Mg alloy material plate is Mg 2.0 to 6.5%. As the recrystallization heat treatment, the recrystallization heat treatment is performed using an Al—Mg-based alloy plate containing Al and the inevitable impurities in the balance and subjected to warm differential circumferential rolling with a lubricant applied to the surface. It is characterized by annealing at a temperature in the range of ˜570 ° C. and recrystallization.

また請求項4の発明は、請求項1もしくは請求項2に記載の高成形性Al−Mg系合金板の製造方法において、前記Al−Mg系合金素材板として、Mg2.0〜6.5%およびCu0.05〜0.5%を含有し、残部がAlおよび不可避的不純物からなるAl−Mg系合金板を用い、その表面に潤滑剤を付与した状態で温間異周速圧延を行なった後、前記再結晶熱処理として、310〜570℃の範囲内の温度で焼鈍して再結晶させることを特徴とするものである。   The invention of claim 4 is the method for producing a highly formable Al—Mg alloy plate according to claim 1 or claim 2, wherein the Al—Mg alloy material plate is Mg 2.0 to 6.5%. And an Al-Mg alloy plate containing 0.05 to 0.5% of Cu and the balance being Al and unavoidable impurities, and performing a warm different peripheral speed rolling with a lubricant applied to the surface. Then, as said recrystallization heat processing, it anneals at the temperature within the range of 310-570 degreeC, and is recrystallized.

そしてまた請求項5の発明は、請求項1もしくは請求項2に記載の高成形性Al−Mg系合金板の製造方法において、前記Al−Mg系合金素材板として、Mg2.0〜6.5%およびCu0.5%を越え1.8%以下を含有し、残部がAlおよび不可避的不純物からなるAl−Mg系合金板を用い、その表面に潤滑剤を付与した状態での温間異周速圧延を行なった後、前記再結晶熱処理として、510〜570℃の温度に加熱する溶体化処理を行なって再結晶させることを特徴とするものである。   The invention of claim 5 is the method for producing a highly formable Al—Mg alloy plate according to claim 1 or claim 2, wherein the Al—Mg alloy material plate is Mg 2.0 to 6.5. % And Cu 0.5% and 1.8% or less, with the balance being Al-Mg based alloy plate made of Al and inevitable impurities, with a lubricant applied to its surface, After performing the rapid rolling, as the recrystallization heat treatment, a solution treatment for heating to a temperature of 510 to 570 ° C. is performed and recrystallization is performed.

また請求項6の発明は、請求項5に記載の高成形性Al−Mg系合金板の製造方法において、前記Al−Mg系合金素材板として、前記各成分のほか、さらにAg0.05〜0.6%を含有するAl−Mg系合金素材板を用いることを特徴とするものである。   The invention according to claim 6 is the method for producing a highly formable Al—Mg alloy plate according to claim 5, wherein the Al—Mg alloy material plate includes Ag 0.05 to 0 in addition to the above components. An Al—Mg alloy material plate containing 6% is used.

さらに請求項7の発明は、請求項1〜請求項5のいずれかの請求項に記載の高成形性Al−Mg系合金板の製造方法において、前記Al−Mg系合金素材板として、前記各成分のほか、さらにMn0.03〜0.5%、Cr0.03〜0.3%、Zr0.03〜0.3%、およびV0.03〜0.3%のうちの1種または2種以上を含有するAl−Mg系合金素材板を用いることを特徴とするものである。   Furthermore, the invention of claim 7 is the method for producing a highly formable Al-Mg alloy plate according to any one of claims 1 to 5, wherein each of the Al-Mg alloy material plates is the above-described Al-Mg alloy material plate. In addition to the components, one or more of Mn 0.03-0.5%, Cr 0.03-0.3%, Zr 0.03-0.3%, and V0.03-0.3% It is characterized by using an Al-Mg based alloy material plate containing.

この発明の製造方法によれば、潤滑剤を使用した温間異周速圧延を、適切な条件下で適用することによって、割れ等の表面欠陥やアルミの凝着などの発生を招くことなく、r値が高くて成形性、特に深絞り性に優れた健全なAl−Mg系合金板を、量産的規模での工業的な製造において確実かつ安定して得ることができる。そしてまた合金成分組成を適切に選択することによって、ベークハード性を付与した高成形性Al−Mg系合金板をも製造することができる。   According to the manufacturing method of the present invention, by applying warm different speed rolling using a lubricant under appropriate conditions, without causing the occurrence of surface defects such as cracks and adhesion of aluminum, A sound Al-Mg alloy plate having a high r value and excellent formability, particularly deep drawability, can be obtained reliably and stably in industrial production on a mass production scale. And the high formability Al-Mg type | system | group alloy board which provided the bake hard property can also be manufactured by selecting an alloy component composition appropriately.

先ずこの発明で対象とするAl−Mg系合金の成分組成およびその限定理由について説明する。   First, the component composition of the Al—Mg-based alloy that is the subject of this invention and the reason for its limitation will be described.

この発明の方法で使用するAl−Mg系合金は、基本的にはMgを必須成分として含有するものであれば、特にその具体的な成分組成は問わないが、望ましいAl−Mg系合金の第1の態様としては、先ず請求項3で規定するように、Mg2.0〜6.5%含有し、残部がAlおよび不可避的不純物からなるAl−Mg系合金がある。ここで、Mgは強度、伸び、深絞り性の向上に寄与する添加元素であるが、その添加量が2.0%未満では、強度、伸びおよび成形性が不充分となり、一方6.5%を越えれば圧延性が劣り、安定的に温間異周速圧延を行なうことが困難となる。なおこのようなAl−Mg系合金を用いた場合、後に改めて説明するように、温間異周速圧延の後の再結晶熱処理として、310〜570℃の範囲内の温度で焼鈍して再結晶組織とすることが適当であり、またこの再結晶処理としての焼鈍をバッチ炉で行なう場合、310〜450℃で0.5〜24h保持することが好ましく、一方連続焼鈍装置(CAL)で行なう場合には、400〜570℃で保持5min以下の条件が好ましい。   The Al—Mg-based alloy used in the method of the present invention is basically not particularly limited as long as it contains Mg as an essential component. As an aspect of the first aspect, as defined in claim 3, there is an Al—Mg alloy containing 2.0 to 6.5% Mg and the balance being Al and inevitable impurities. Here, Mg is an additive element that contributes to the improvement of strength, elongation, and deep drawability. However, if the addition amount is less than 2.0%, the strength, elongation, and formability become insufficient, while 6.5% If it exceeds 1, the rollability is inferior, and it becomes difficult to stably perform warm different peripheral speed rolling. When such an Al—Mg alloy is used, as will be described later, as a recrystallization heat treatment after warm differential circumferential rolling, annealing is performed at a temperature within a range of 310 to 570 ° C. and recrystallization is performed. It is appropriate to form a structure, and when performing annealing as a recrystallization process in a batch furnace, it is preferable to hold at 310 to 450 ° C. for 0.5 to 24 hours, whereas when performing in a continuous annealing apparatus (CAL) For this, the condition of holding at 400 to 570 ° C. for 5 min or less is preferable.

さらにこの発明の方法で対象とするAl−Mg系合金の第2の態様としては、請求項4で規定しているようなMg2.0〜6.5%、Cu0.05〜0.5%を含有し、残部がAlおよび不可避的不純物よりなる合金があり、また第3の態様としては、請求項5において規定しているようなMg2.0〜6.5%、Cu0.5%を越え1.8%以下を含有し、残部がAlおよび不可避的不純物よりなる合金がある。これらの請求項4、請求項5のいずれ合金も、Al−2.0〜6.5%Mg合金に対して、強度向上に寄与する元素であるCuを添加したものである。   Furthermore, as a second aspect of the Al—Mg alloy targeted by the method of the present invention, Mg 2.0 to 6.5% and Cu 0.05 to 0.5% as defined in claim 4 are used. There is an alloy containing Al and unavoidable impurities in the balance, and as a third aspect, Mg 2.0 to 6.5% as defined in claim 5, Cu exceeding 0.5% 1 There are alloys containing 0.8% or less, the balance being Al and inevitable impurities. In any of the alloys according to claims 4 and 5, Cu, which is an element contributing to strength improvement, is added to an Al-2.0 to 6.5% Mg alloy.

これらのうち、請求項4で規定するようなAl−2.0〜6.5%Mg合金に対する0.05〜0.5%のCuの添加は、成形後の塗装焼付け加熱時における材料の軟化を低減して、塗装焼付け加熱後の強度を向上させる効果を有する。ここで、Cu量が0.05%未満では、充分な強度向上の効果が図れない。   Of these, the addition of 0.05 to 0.5% Cu to the Al-2.0 to 6.5% Mg alloy as defined in claim 4 is to soften the material at the time of baking after painting and baking. Has the effect of improving the strength after baking and baking. Here, if the amount of Cu is less than 0.05%, a sufficient strength improvement effect cannot be achieved.

このような請求項4で規定するCu量0.05〜0.5%のAl−Mg系合金を使用する場合、温間異周速圧延の後の再結晶処理としては、後に改めて説明するように、310〜570℃の範囲内の温度での焼鈍を適用すれば良く、またその場合バッチ焼鈍(310〜450℃で0.5〜24h保持)もしくはCAL焼鈍(400〜570℃で保持5min以下)のいずれを適用しても良い。   When such an Al—Mg-based alloy having a Cu content of 0.05 to 0.5% as defined in claim 4 is used, the recrystallization treatment after the warm different speed rolling will be described later. In addition, annealing at a temperature within a range of 310 to 570 ° C. may be applied. In that case, batch annealing (holding at 310 to 450 ° C. for 0.5 to 24 hours) or CAL annealing (holding at 400 to 570 ° C. for 5 minutes or less) Any of) may be applied.

一方請求項5で規定するようなAl−2.0〜6.5%Mg合金に対してCu0.5%を越え1.8%以下を添加した合金は、適切な溶体化処理を施しておくことによって、成形後の塗装焼付け加熱時(ベーク時)に、析出硬化の効果が回復軟化を上廻ってベーク前よりも温度が上昇するベークハード性を付与することができ、Cu添加による強度向上の効果が一層大きくなる。ここで、Cu量の添加量が0.5%以下では、ベークハード性は充分に付与されなくなり、一方Cu添加量が1.8%を越えれば、圧延割れが生じやすくなって、最終的に健全な製品板が得られなくなる。なお、ベークハード性を充分に付与するためには、Cu量は1.0%以上とすることが望ましい。   On the other hand, the alloy which added more than Cu0.5% and 1.8% or less with respect to Al-2.0-6.5% Mg alloy as prescribed in claim 5 is subjected to appropriate solution treatment. By this, during baking and baking of paint after molding (during baking), the effect of precipitation hardening is higher than recovery softening and can provide bake hardness that increases the temperature compared to before baking, and the strength improvement by adding Cu The effect becomes even greater. Here, when the amount of Cu added is 0.5% or less, the bake hardness is not sufficiently imparted. On the other hand, when the amount of Cu added exceeds 1.8%, rolling cracks are likely to occur. A sound product board cannot be obtained. In order to sufficiently impart the bake hardness, the Cu content is desirably 1.0% or more.

ここで、請求項5で規定するようにCu0.5%を越え1.8%以下を添加してベークハード性を付与する場合には、添加したCuを一旦充分に固溶させ、その状態から急冷して析出硬化能を持たせるための熱処理、すなわち溶体化処理を行うことが必要であり、そこで温間異周速圧延後の再結晶処理を溶体化処理と兼ねて行なうことが適当であり、その再結晶熱処理を兼ねた溶体化処理としては、後に改めて説明するように、5℃/sec以上の加熱速度で510〜580℃の範囲内の温度に加熱して保持なしもしくは5分以内の保持後、5℃/sec以下の冷却速度で冷却することが適切である。   Here, as specified in claim 5, when adding over 0.5% Cu and 1.8% or less to provide bake hardness, the added Cu is once sufficiently dissolved in the solution. It is necessary to perform a heat treatment for rapid cooling and precipitation hardening, that is, a solution treatment, and therefore it is appropriate to perform a recrystallization treatment after warm different speed rolling in combination with a solution treatment. As a solution treatment that also serves as the recrystallization heat treatment, as explained later, the solution is heated to a temperature in the range of 510 to 580 ° C. at a heating rate of 5 ° C./sec or more and is not held or within 5 minutes. After holding, it is appropriate to cool at a cooling rate of 5 ° C./sec or less.

さらにこの発明で対象とするAl−Mg系合金の第4の態様としては、請求項5で規定する2.0〜6.5%のMgと0.5%を越え1.8%以下のCuを含有する合金に対して、さらにAgを0.05〜0.6%添加した合金(請求項6で規定する合金)がある。ここで、Agは0.5%を越え1.8%以下のCuとともに添加されることによって強度向上に寄与する元素である。Ag添加量が0.05%未満では強度向上の効果が乏しく、一方0.6%より多くAgを添加しても、それ以上の強度上昇効果は得られず、コスト上昇を招くだけであり、そこでAg添加量は0.05〜0.6%の範囲内とした。なおこのように0.5%を越え1.8%以下のCuとともに0.05〜0.6%のAgを添加した合金では、温間異周速圧延の後の再結晶熱処理としては、ベークハード性を付与するために請求項5に関して説明したと同様な溶体化処理と兼ねて行なうことが適切である。   Furthermore, as a fourth aspect of the Al—Mg-based alloy targeted in the present invention, 2.0 to 6.5% Mg as defined in claim 5 and Cu exceeding 0.5% and not more than 1.8% are specified. There is an alloy in which 0.05 to 0.6% of Ag is further added (alloy defined in claim 6) with respect to an alloy containing. Here, Ag is an element that contributes to strength improvement by adding together with Cu exceeding 0.5% and not more than 1.8%. If the amount of Ag added is less than 0.05%, the effect of improving the strength is poor. On the other hand, even if Ag is added in an amount of more than 0.6%, no further effect of increasing the strength can be obtained, and only the cost is increased. Therefore, the amount of Ag added is set in the range of 0.05 to 0.6%. In addition, in such an alloy in which 0.05% to 0.6% Ag is added together with Cu exceeding 0.5% and not more than 1.8%, the recrystallization heat treatment after the warm different peripheral speed rolling is performed by baking. In order to impart hardness, it is appropriate to perform the same solution treatment as described in the fifth aspect.

さらにこの発明で対象とするAl−Mg系合金の第5の態様としては、以上のような各Al−Mg系合金に対して、Mn0.03〜0.5%、Cr0.03〜0.3%、Zr0.03〜0.3%、およびV0.03〜0.3%のうちの1種または2種以上を添加した合金(請求項7で規定する合金)がある。これらのMn、Cr、Zr、Vは、いずれも強度の向上と再結晶粒の安定化に寄与する元素であり、それぞれの下限より低い添加量ではその効果が乏しく、一方それぞれの上限を越えて添加すれば、組織中に粗大な晶出物が形成されやすくなって不適当となる。なお上記のMn、Cr、Zr、Vの添加量範囲は、強度向上等のために積極的に添加される場合の規定であり、これらの合金元素が不純物としてそれぞれの下限より低い濃度で含有される場合も、特段の影響がないだけで、この発明の対象合金から排除されることはない。   Furthermore, as a 5th aspect of the Al-Mg type | system | group alloy made into object by this invention, Mn 0.03-0.5%, Cr0.03-0.3% with respect to each above Al-Mg type | mold alloy %, Zr0.03-0.3%, and V0.03-0.3% are added to one or more alloys (alloys defined in claim 7). These Mn, Cr, Zr, and V are all elements that contribute to the improvement of strength and the stabilization of recrystallized grains, and their effects are poor when added in amounts lower than their respective lower limits, while exceeding the respective upper limits. If added, coarse crystals are easily formed in the structure, which is inappropriate. The above-mentioned range of addition amounts of Mn, Cr, Zr, and V is a stipulation in the case where they are positively added to improve the strength, etc., and these alloy elements are contained as impurities in concentrations lower than their respective lower limits. In this case, it is not excluded from the target alloy of the present invention, since it has no particular influence.

なお一般的なアルミニウム合金の鋳造時には、結晶微細化材としてTiが添加されることが多く、またTiは強度の向上と再結晶粒の安定化にも寄与するものであり、そこでこの発明の場合も0.2%以下のTiを添加することは許容される。また鋳塊結晶粒微細化の目的でTiを添加する場合、500ppm以下のBまたはCを、Tiと合せて添加することも差し支えない。さらに、Mgを含有する合金については、鋳造時の溶湯酸化防止のためBeを添加することも一般的であり、この発明の場合も500ppm以下のBeであれば添加して差し支えない。   In addition, when casting a general aluminum alloy, Ti is often added as a crystal refining material, and Ti also contributes to improvement of strength and stabilization of recrystallized grains. However, it is permissible to add 0.2% or less of Ti. When Ti is added for the purpose of refining ingot crystal grains, 500 ppm or less of B or C may be added together with Ti. Furthermore, for alloys containing Mg, Be is generally added to prevent molten metal oxidation during casting. In the case of this invention as well, Be may be added as long as it is 500 ppm or less.

そのほかアルミニウム合金の不可避的不純物元素としては、FeおよびSiが挙げられるが、これらが過剰に存在すれば延性や成形性が低下するから、いずれも0.25%以下に規制することが望ましい。   In addition, examples of the inevitable impurity elements of the aluminum alloy include Fe and Si. If these elements are present in excess, ductility and formability deteriorate, so it is desirable that both be regulated to 0.25% or less.

この発明の方法において、温間異周速圧延に供するAl−Mg系合金からなる素材板としては、熱間圧延板を用いることが好適であるが、それに限らず、薄いDC鋳塊(スラブ状鋳塊)、あるいは連続鋳造板を用いても良い。   In the method of the present invention, it is preferable to use a hot-rolled plate as a material plate made of an Al—Mg-based alloy to be subjected to warm different peripheral speed rolling, but not limited thereto, a thin DC ingot (slab shape) Ingots) or continuous cast plates may be used.

温間異周速圧延に供するAl−Mg系合金熱間圧延板は、常法に従って半連続鋳造(DC鋳造)法による鋳塊を熱間圧延する方法で作製することができる。この場合、鋳塊の面削は、通常の方法に従って実施すれば良く、また熱間圧延前には、450〜570℃で0.5〜24hの均質化処理を行なうことが好ましい。熱間圧延の条件は特に限定されるものではないが、熱間圧延開始温度は350〜500℃とすることが好ましく、また熱間圧延板の上がり板厚は、その後の温間異周速圧延の条件および最終板製品板厚によって異なるが、通常は5〜120mmとすることが好ましい。熱間圧延後には、室温まで冷却した後に改めて再加熱して温間異周速圧延を行なっても良い。あるいは熱間圧延に引続いて150〜300℃の範囲内に材料温度を調整して、温間異周速圧延を直ちに行なっても良い。すなわち、従来の一般的な熱間圧延工程においても粗熱間圧延と仕上圧延とを引続いて実施するのが通常であり、この仕上熱間圧延の代わりに温間異周速圧延を実施すればよいことを意味する。   An Al—Mg alloy hot-rolled sheet to be subjected to warm different peripheral speed rolling can be produced by a method of hot rolling an ingot by a semi-continuous casting (DC casting) method according to a conventional method. In this case, the ingot may be chamfered according to a normal method, and it is preferable to perform a homogenization treatment at 450 to 570 ° C. for 0.5 to 24 hours before hot rolling. The hot rolling conditions are not particularly limited, but the hot rolling start temperature is preferably 350 to 500 ° C., and the hot rolled sheet has a thickness of the subsequent hot different circumferential speed rolling. Usually, it is preferable to set it as 5-120 mm, although it changes with conditions and final board product board thickness. After hot rolling, it may be cooled again to room temperature and then reheated to perform warm different peripheral speed rolling. Or you may adjust a material temperature in the range of 150-300 degreeC following hot rolling, and may perform warm different-speed rolling immediately. That is, it is normal to continue the rough hot rolling and finish rolling in the conventional general hot rolling process, and instead of the finish hot rolling, warm different peripheral speed rolling is performed. That means it ’s good.

一方、前述のように、薄型のDC鋳塊や連続鋳造板などを、そのまま素材板として温間異周速圧延に供することも可能である。ここで薄型のDC鋳塊の場合は、板厚50〜120mmが好適であり、またこの場合、温間異周速圧延前に450〜570℃で0.5〜24hの均質化処理を行なうことが好ましい。また連続鋳造板を用いる場合、双ロール式連続鋳造、あるいはベルト式もしくはブロック式の連続鋳造によるものが利用可能である。双ロール式の連続鋳造板としては板厚5〜10mmのものが好適で、ベルト式もしくはブロック式の連続鋳造板としては、板厚15〜60mmのものが好適である。これらの連続鋳造板の場合も、温間異周速圧延前に450〜570℃で0.5〜24hの均質化処理を行なっても良い。さらに、厚い鋳造板が得られるベルト式もしくはブロック式の連続鋳造板の場合、改めて熱間圧延を施して、板厚5〜30mmとしてから温間異周速圧延に供しても差し支えない。   On the other hand, as described above, a thin DC ingot, a continuous cast plate, or the like can be used as a raw material plate as it is for warm differential rolling. Here, in the case of a thin DC ingot, a plate thickness of 50 to 120 mm is suitable, and in this case, a homogenization treatment is performed at 450 to 570 ° C. for 0.5 to 24 h before warm different peripheral speed rolling. Is preferred. When a continuous cast plate is used, twin roll type continuous casting, belt type or block type continuous casting can be used. A twin roll type continuous cast plate having a thickness of 5 to 10 mm is suitable, and a belt type or block type continuous cast plate having a thickness of 15 to 60 mm is suitable. Also in the case of these continuous cast plates, a homogenization treatment may be performed at 450 to 570 ° C. for 0.5 to 24 hours before warm different peripheral speed rolling. Furthermore, in the case of a belt-type or block-type continuous cast plate from which a thick cast plate can be obtained, it may be subjected to hot rolling anew to obtain a plate thickness of 5 to 30 mm and then subjected to warm different peripheral speed rolling.

この発明のAl−Mg系合金板の製造方法においては、前述のような熱間圧延板、あるいは薄型のDC鋳塊もしくは連続鋳造板を素材板として、それに温間異周速圧延を施す。この温間異周速圧延においては、割れや表面欠陥の発生を防止して健全な板を得る目的で潤滑剤を用いる。このような目的の潤滑剤としては、具体的には、常温25℃での動粘度が10〜350mm/sの範囲内でしかも引火点が305℃以上である潤滑油が適当である。潤滑剤の動粘度が10mm/s未満では表面欠陥の防止効果が不充分となり、一方動粘度が350mm/sを越えれば、材料に対するロールのスリップを引き起こして温間異周速圧延時に引火して安定的に剪断変形を付与することが困難となる。なお粘度に関しては、温度による粘度変化が小さいことが望ましく、具体的には粘度温度係数が0.8以下であることが望ましい。また潤滑油の引火点が305℃未満では、温間異周速圧延時に引火して安全に温間異周速圧延を行なうことが不可能となる。前述のような粘度条件、引火点条件を満たす潤滑剤としては、シリコーン系の油が好適であり、その代表的なものとしては、ジメチルシリコーン油がある。 In the method for producing an Al—Mg alloy plate according to the present invention, a hot rolled plate as described above, or a thin DC ingot or continuous cast plate is used as a material plate, and it is subjected to warm different peripheral speed rolling. In this warm different peripheral speed rolling, a lubricant is used for the purpose of preventing the occurrence of cracks and surface defects and obtaining a sound plate. Specifically, a lubricant having a kinematic viscosity at a room temperature of 25 ° C. within a range of 10 to 350 mm 2 / s and a flash point of 305 ° C. or higher is suitable as the lubricant for such purpose. If the kinematic viscosity of the lubricant is less than 10 mm 2 / s, the effect of preventing surface defects will be insufficient. On the other hand, if the kinematic viscosity exceeds 350 mm 2 / s, it will cause a roll slip on the material and ignite during warm different speed rolling. Thus, it becomes difficult to stably apply shear deformation. Regarding the viscosity, it is desirable that the change in viscosity with temperature is small, and specifically, the viscosity temperature coefficient is desirably 0.8 or less. Further, if the flash point of the lubricating oil is less than 305 ° C., it is impossible to ignite at the time of warm different peripheral speed rolling and to perform the warm different peripheral speed rolling safely. As the lubricant satisfying the viscosity condition and the flash point as described above, a silicone-based oil is suitable, and a typical example thereof is dimethyl silicone oil.

上述のような潤滑油を素材板表面に付着量が100〜700mg/mの範囲内となるように付着させて温間異周速圧延を行なう。潤滑油付着手段としては、素材板表面に直接スプレー等により塗布することが好ましく、また静電塗布などの自動塗布方法も使用することができる。また場合によっては、ロール表面にスプレーすることにより、規定範囲内の量の潤滑油が材料表面に付着される方式を採用しても差し支えない。ここで潤滑油の付着量が100mg/mより少なければ、表面欠陥の発生やロールへのアルミの凝着を防ぐ効果が不充分となり、一方700mg/mを越えれば、材料に対するロールのスリップを引き起こして、安定的に剪断変形を付与する目的が果たせなくなる。 Lubricating oil as described above is adhered to the surface of the material plate so that the amount of adhesion is in the range of 100 to 700 mg / m 2 , and warm different peripheral speed rolling is performed. As the lubricating oil adhering means, it is preferable to apply directly to the surface of the material plate by spraying or the like, and an automatic application method such as electrostatic application can also be used. In some cases, it may be possible to adopt a method in which an amount of lubricating oil within a specified range adheres to the material surface by spraying on the roll surface. If the adhesion amount of lubricating oil is less than 100 mg / m 2, the effect of preventing the occurrence of surface defects and adhesion of aluminum to the roll will be insufficient. On the other hand, if it exceeds 700 mg / m 2 , the slip of the roll against the material will occur. The purpose of stably imparting shear deformation is not fulfilled.

さらに温間異周速圧延時における材料温度は150〜300℃の範囲内とする。温間異周速圧延時の温度が150℃より低ければ、材料の変形抵抗が大きくなるため、高圧下での異周速圧延を行なう際に割れが起こりやすくなり、その結果材料内に均質に剪断変形を導入することが困難となる。一方、異周速圧延時の温度が300℃を越えれば、圧延中に再結晶が生じて、剪断変形を充分に導入することができなくなり、そのため目的とする集合組織制御が不可能となり、またこの発明の方法で用いる潤滑油では300℃を越えれば引火の危険があり、安定的な圧延作業が実施できなくなる。なお合金の成分組成や素材板の組織状態によっては、270〜300℃程度の温度でも局部的に再結晶が生じる場合があるが、この場合には、個々の素材板の再結晶温度が温間異周速圧延時の温度の上限を越えるように成分調整するか、または温間異周速圧延の温度を270℃より低い温度とすることが望ましい。   Furthermore, the material temperature at the time of warm different peripheral speed rolling shall be in the range of 150-300 degreeC. If the temperature during warm differential speed rolling is lower than 150 ° C., the deformation resistance of the material increases, so cracking is likely to occur when performing different peripheral speed rolling under high pressure, and as a result, the material is homogeneous in the material. It becomes difficult to introduce shear deformation. On the other hand, if the temperature during different peripheral speed rolling exceeds 300 ° C., recrystallization occurs during rolling, and shear deformation cannot be sufficiently introduced, so that the desired texture control becomes impossible. If the lubricating oil used in the method of the present invention exceeds 300 ° C., there is a risk of ignition and stable rolling operation cannot be performed. Depending on the component composition of the alloy and the structure of the material plate, recrystallization may occur locally even at a temperature of about 270 to 300 ° C. In this case, the recrystallization temperature of each material plate is warm. It is desirable to adjust the components so as to exceed the upper limit of the temperature at the different speed rolling, or to set the temperature of the warm different speed rolling to a temperature lower than 270 ° C.

さらに温間異周速圧延におけるロール周速比、すなわち一対の圧延ロールのうち、周速が小さい側のロールの周速に対する、周速が大きい側の周速比は、1.2〜2.5の範囲内とする。ここで、周速比が1.2未満であれば、充分な剪断変形の付与が不可能となり、一方2.5を越えれば、ロールと材料との間のスリップが生じるか、または材料の局部的な変形が生じて、正常な板が得られなくなってしまう。   Furthermore, the roll peripheral speed ratio in warm different peripheral speed rolling, that is, the peripheral speed ratio on the side having a large peripheral speed with respect to the peripheral speed of the roll on the side having a small peripheral speed, is 1.2 to 2. Within the range of 5. Here, if the peripheral speed ratio is less than 1.2, it is impossible to impart sufficient shear deformation, while if it exceeds 2.5, slip between the roll and the material occurs or the material is locally localized. Deformation will occur and a normal plate cannot be obtained.

またこの発明の方法では、温間異周速圧延における圧下率を85%超の高圧下率とする必要がある。すなわち、この発明の方法の場合、温間異周速圧延時に表面欠陥や割れの発生防止のために潤滑剤を使用しており、このように潤滑剤を使用した圧延では、高圧下率で圧延しなければ剪断歪みの付与が不充分となってしまう。逆に言えば、より高圧下率の温間異周速圧延でも、潤滑剤の使用によって割れを生じることなく圧延が可能となるのである。ここで、温間異周速圧延における圧下率が85%未満では、充分に剪断変形を付与することができなくなって、集合組織制御によるr値および深絞り性の向上が達成されなくなる。なお、より一層の成形性の向上のためには、圧下率は90%を越えることが望ましく、さらに95%を越える圧下率がより望ましい。なおまた、温間異周速圧延における圧下率の上限については特に限定しないが、割れの無い健全な板材を得るためには、通常は99.5%以下であることが望ましい。また最終板厚(温間異周速圧延上がり板厚)も特に限定しないが、成形用としては、0.3〜2mm程度が適当である。   Moreover, in the method of this invention, it is necessary to make the reduction rate in warm different peripheral speed rolling into a high pressure reduction rate exceeding 85%. That is, in the case of the method of the present invention, a lubricant is used to prevent the occurrence of surface defects and cracks at the time of warm differential circumferential rolling, and in rolling using such a lubricant, rolling is performed at a high pressure rate. Otherwise, the application of shear strain will be insufficient. In other words, even in the case of warm differential rolling at a higher rate under a higher pressure, rolling can be performed without causing cracks by using a lubricant. Here, if the rolling reduction in warm different peripheral speed rolling is less than 85%, sufficient shear deformation cannot be imparted, and improvement of the r value and deep drawability by texture control cannot be achieved. In order to further improve the moldability, the rolling reduction is preferably over 90%, and more preferably over 95%. In addition, the upper limit of the rolling reduction in the warm different peripheral speed rolling is not particularly limited, but it is usually preferably 99.5% or less in order to obtain a healthy plate material without cracks. Further, the final thickness (thickness after warm different peripheral speed rolling) is not particularly limited, but about 0.3 to 2 mm is suitable for forming.

なお温間異周速圧延で使用する圧延機は、上下の圧延ロールを異なる周速度で駆動させ得る機構を有する必要があることはもちろんである。その形式は特に問わないが、上下ロールが速度可変モーターにより別駆動されるもの、あるいはギアなどの機械的機構で周速の比を変化させ得るものが好適である。また温間異周速圧延を安定的に行うためには、ロールの加熱機構を有する圧延機を使用することが望ましい。この場合、ロール内にヒーターを内包させるか、あるいはロール加熱用のヒーターをロールに近接した外部に設置するかのいずれでも差し支えない。   Of course, the rolling mill used in the warm different peripheral speed rolling needs to have a mechanism capable of driving the upper and lower rolling rolls at different peripheral speeds. The type is not particularly limited, but those in which the upper and lower rolls are separately driven by a variable speed motor or those in which the ratio of the peripheral speed can be changed by a mechanical mechanism such as a gear are suitable. In order to stably perform the warm different peripheral speed rolling, it is desirable to use a rolling mill having a roll heating mechanism. In this case, either a heater may be included in the roll, or a heater for heating the roll may be installed outside the roll.

以上のようにして温間異周速圧延を行なって所定の板厚としたAl−Mg合金板については、その後に再結晶熱処理(焼鈍もしくは溶体化処理と兼ねて)を行なって再結晶させることにより、高r値と良好な深絞り性となる集合組織状態が得られる。すなわち、この発明で最終的な目的とする高成形性、特に優れた深絞り性を得るためには、平均r値を上げる作用のある板面において結晶方位{111}の面およびそれに近い面の方位集積密度が高いことが必要であり、具体的には、{111}、{332}および{221}が板面に平行となる結晶方位のうちの一つ以上が、方位集積密度としてランダムの1.2倍以上であることが望ましく、さらには1.5倍以上であることが望ましく、またこれに加えて、平均r値を下げる傾向のある{100}方位の面の集積密度が低い状態とする必要があるが、この{100}方位の方位集積密度がランダムの0.9倍以下であることが望ましく、このような結晶組織を安定的に得るために、温間異周速圧延後に再結晶させる必要がある。なお結晶組織の方位集積密度は、X線回折法あるいはEBSP法のいずれの解析法で求めても構わない。但しこの解析時には、材料全体として適切な集合組織状態となっていることを確認するため、板厚全域の平均で上記の基準を満たすことを確認する必要がある。   The Al-Mg alloy sheet having a predetermined thickness obtained by performing the warm different peripheral speed rolling as described above is then recrystallized by performing recrystallization heat treatment (in combination with annealing or solution treatment). Thus, a texture state with a high r value and good deep drawability can be obtained. That is, in order to obtain the ultimate high formability, particularly excellent deep drawability, in the present invention, the plane of the crystal orientation {111} and the plane close to it in the plate surface having the effect of increasing the average r value. It is necessary that the orientation accumulation density is high. Specifically, one or more of crystal orientations in which {111}, {332} and {221} are parallel to the plate surface are random as the orientation accumulation density. It is preferably 1.2 times or more, more preferably 1.5 times or more, and in addition to this, the density of {100} orientation planes that tend to lower the average r value is low. However, it is desirable that the orientation density of the {100} orientation is 0.9 times or less of the random, and in order to stably obtain such a crystal structure, It is necessary to recrystallize. Note that the orientation density of the crystal structure may be obtained by any analysis method such as an X-ray diffraction method or an EBSP method. However, at the time of this analysis, in order to confirm that the material as a whole is in an appropriate textured state, it is necessary to confirm that the above-mentioned criteria are satisfied on average over the entire plate thickness.

上述のような再結晶熱処理は、対象とするAl−Mg系合金の成分組成に応じて、回復・再結晶のみを目的とする焼鈍として行なう場合と、Cu、Ag等の析出硬化に寄与する元素を固溶させる溶体化処理と兼ねて行なう場合とがある。すなわち、先ず請求項3で規定するようなMg2.0〜6.5%を含有し、残部Alおよび不可避的不純物からなるAl−Mg系合金、および請求項4で規定するようにMg2.0〜6.5%、Cu0.05〜0.5%、残部Alおよび不可避的不純物からなるAl−Mg系合金の場合は、再結晶熱処理としては回復・再結晶のみを主目的とした焼鈍を行なう。この場合の焼鈍の加熱温度は、310〜570℃の範囲内とする。焼鈍温度が310℃より低ければ、再結晶が不充分となるため不適当となり、570℃を越えれば局部的に融解が起こるため不適当となる。またこの焼鈍をバッチ炉で行う場合は、310〜450℃で0.5〜24h保持の条件が好ましい。一方この焼鈍を連続焼鈍装置(CAL)で行う場合には、400〜570℃で保持なしもしくは5min以下の保持の条件が好ましい。なお、CALによる焼鈍は、5℃/sec以上の加熱昇温速度、冷却速度による急速加熱および急速冷却を特徴とするものであって、実験室的にはソルトバスによる焼鈍で代替して実施することができる。   The recrystallization heat treatment as described above is carried out as annealing for the purpose of recovery / recrystallization only, depending on the component composition of the target Al—Mg alloy, and elements contributing to precipitation hardening such as Cu and Ag. In some cases, it is also performed as a solution treatment for solid solution. That is, first, an Mg—2.0 to 6.5% Mg as defined in claim 3 and an Al—Mg-based alloy consisting of the balance Al and unavoidable impurities, and Mg 2.0 to In the case of an Al—Mg alloy composed of 6.5%, Cu 0.05 to 0.5%, the balance Al and inevitable impurities, the recrystallization heat treatment is performed mainly for recovery and recrystallization. In this case, the heating temperature for annealing is set within a range of 310 to 570 ° C. If the annealing temperature is lower than 310 ° C., the recrystallization is insufficient and unsuitable, and if it exceeds 570 ° C., melting occurs locally, and therefore inappropriate. Moreover, when performing this annealing with a batch furnace, the conditions of holding at 310-450 degreeC for 0.5-24h are preferable. On the other hand, when this annealing is performed with a continuous annealing apparatus (CAL), the condition of no holding at 400 to 570 ° C. or holding for 5 min or less is preferable. Note that annealing by CAL is characterized by a heating rate of heating of 5 ° C./sec or more, rapid heating and rapid cooling by a cooling rate, and it is performed in the laboratory instead of annealing by a salt bath. be able to.

一方、請求項5で規定するように、2.0〜6.5%のMgに加えて、0.5%を越え1.8%以下のCuを添加した場合、あるいは請求項6で規定するように0.5%を越え1.8%以下のCuと0.05〜0.5%のAgとを添加した場合、すなわちベークハード性を持たせた場合には、再結晶と兼ねて、添加したCu等を充分に固溶させた後、その状態から急冷して、析出硬化能を持たせるための熱処理、すなわち溶体化処理を行うことが必要である。この溶体化処理における加熱温度は、510〜570℃の範囲内の温度、望ましくは535〜570℃の範囲内の温度とする。溶体化処理はCALにより実施可能で、保持時間は0min(すなわち温度到達後直ちに冷却)〜5minとし、5℃/sec以上の急速加熱および急速冷却で実施する。このような急速加熱、急速冷却は、ソルトバス加熱および水焼入れあるいは強制空冷によっても実施することができる。   On the other hand, as defined in claim 5, in addition to 2.0 to 6.5% Mg, when more than 0.5% and 1.8% or less of Cu is added, or as defined in claim 6. When adding more than 0.5% Cu and less than 1.8% Cu and 0.05 to 0.5% Ag, that is, when bake hardness is imparted, After sufficiently adding the added Cu or the like to the solid solution, it is necessary to rapidly cool from that state and perform a heat treatment for providing precipitation hardening ability, that is, a solution treatment. The heating temperature in the solution treatment is a temperature within a range of 510 to 570 ° C, preferably a temperature within a range of 535 to 570 ° C. The solution treatment can be performed by CAL. The holding time is 0 min (that is, cooling immediately after reaching the temperature) to 5 min, and the heating is performed by rapid heating and rapid cooling at 5 ° C./sec or more. Such rapid heating and rapid cooling can also be performed by salt bath heating and water quenching or forced air cooling.

以下にこの発明の実施例を比較例とともに示す。   Examples of the present invention are shown below together with comparative examples.

表1の合金符号A〜Qに示す各成分組成の合金を常法に従って溶解し、厚さ80mm、幅200mmの断面を有するDC鋳塊とした。なお請求項7で規定するMn、Cr、ZrおよびVの添加量上限を越えたPおよびQの合金組成の鋳塊では、組織中に粗大な金属間化合物が形成されているのが確認されたため、不適当と判断して、その後の工程および試験対象から外した。そのほかA〜Oの各合金のDC鋳塊については、500℃×10hの均質化処理を施した後、温間異周速圧延の元材(素材板)とするように準備加工を行なった。すなわち元材として熱間圧延板を用いる場合(異周速圧延の圧延条件を示す表2における圧延条件R1〜R4、R7〜R18の場合)には、両面を面削して厚さ72mmとしてから、430℃で2hの予備加熱の後、表2中に記載された圧延開始板厚(異周速圧延の開始時の板厚を示す)まで熱間圧延した。一方DC鋳塊をそのまま元材とする場合(表2の圧延条件R5)には、鋳塊を厚さ72mmに面削加工したものを元板として用いた。そのほか、表2の圧延条件R6では、双ロール法で作製した厚さ7.2mmの連続鋳造板を元板として用いたが、これには予め460℃で10hの均質化処理を施しておいた。   Alloys having respective component compositions shown in alloy codes A to Q of Table 1 were melted in accordance with a conventional method to obtain a DC ingot having a cross section having a thickness of 80 mm and a width of 200 mm. In addition, in the ingot of the alloy composition of P and Q exceeding the upper limit of the amount of Mn, Cr, Zr and V specified in claim 7, it was confirmed that a coarse intermetallic compound was formed in the structure. Therefore, it was judged to be inappropriate, and it was excluded from the subsequent processes and test subjects. In addition, the DC ingots of the alloys A to O were subjected to homogenization treatment at 500 ° C. × 10 h, and then subjected to preparatory processing so as to be a base material (material plate) for warm different peripheral speed rolling. That is, when a hot-rolled sheet is used as a base material (in the case of rolling conditions R1 to R4 and R7 to R18 in Table 2 showing rolling conditions of different peripheral speed rolling), both surfaces are chamfered to a thickness of 72 mm. After preheating at 430 ° C. for 2 hours, hot rolling was performed to the rolling start plate thickness described in Table 2 (indicating the plate thickness at the start of different peripheral speed rolling). On the other hand, when the DC ingot was used as a base material as it was (rolling condition R5 in Table 2), the ingot was chamfered to a thickness of 72 mm and used as the base plate. In addition, in rolling condition R6 of Table 2, a continuous cast plate having a thickness of 7.2 mm produced by a twin roll method was used as a base plate, and this was previously subjected to a homogenization treatment at 460 ° C. for 10 hours. .

以上のような各合金からなる元板について、表2のR1〜R18に示す条件で温間異周速圧延を行った。なお温間異周速圧延前には、各元材をそれぞれ所定の圧延温度で2h保持する予備加熱を行った。用いた圧延機はロール内にヒーターを内包したものであり、温間異周速圧延時にはこのヒーターによりロールを所定の圧延温度に対して−15℃〜+0℃の範囲内となるように温度制御を行なった。この圧延では、片方のロールの周速を20m/minに固定し、もう一つのロールの周速を変化させて所定の周速比とした。圧延の潤滑剤としては数種類のシリコーン油(ジメチルシリコーンオイル)を用いたが、これらの引火点はすべて310℃〜320℃の範囲内にあり、また常温での動粘度はそれぞれ表2中に示す通りであり、さらに粘度温度係数は0.55〜0.65の範囲内にある。この潤滑油は、静電塗布装置により温間圧延直前の元材表面に表2の量を塗布し、圧延パス間に適宜、消耗分を補充塗布した。温間異周速圧延後には、再結晶熱処理を行なった。この再結晶熱処理としては、表3の熱処理条件HT1〜HT5に示すように、バッチ焼鈍、およびCAL連続焼鈍に相当するソルトバス焼鈍(溶体化処理)のいずれかで行なった。   The base plate made of each alloy as described above was subjected to warm different peripheral speed rolling under the conditions indicated by R1 to R18 in Table 2. In addition, before the warm different peripheral speed rolling, preheating was performed to hold each base material at a predetermined rolling temperature for 2 hours. The used rolling mill includes a heater in the roll, and at the time of warm different peripheral speed rolling, the temperature of the roll is set within a range of −15 ° C. to + 0 ° C. with respect to a predetermined rolling temperature by this heater. Control was performed. In this rolling, the peripheral speed of one roll was fixed at 20 m / min, and the peripheral speed of the other roll was changed to obtain a predetermined peripheral speed ratio. Several types of silicone oil (dimethyl silicone oil) were used as rolling lubricants, but all of these flash points were in the range of 310 ° C. to 320 ° C., and kinematic viscosities at room temperature are shown in Table 2, respectively. Furthermore, the viscosity temperature coefficient is in the range of 0.55 to 0.65. The lubricating oil was applied in the amount shown in Table 2 on the surface of the original material immediately before warm rolling by an electrostatic coating apparatus, and the amount of wear was appropriately supplemented between rolling passes. After warm different peripheral speed rolling, recrystallization heat treatment was performed. As the recrystallization heat treatment, as shown in the heat treatment conditions HT1 to HT5 in Table 3, the recrystallization heat treatment was performed by either batch annealing or salt bath annealing (solution treatment) corresponding to CAL continuous annealing.

以上のようにして温間異周速圧延を施して得られた各圧延板について、その健全性を調べるとともに、機械的性質として引張強さ、耐力、伸び、さらにベークハード(BH)性評価として、ストレッチ後の耐力およびベークハード(BH)後の耐力を調べたので、その結果を表4、表5に示す。なおこれらの評価方法、試験方法は次の通りである。   About each rolled sheet obtained by carrying out warm different peripheral speed rolling as mentioned above, while examining the soundness, as mechanical properties, tensile strength, proof stress, elongation, and also as bake hard (BH) property evaluation Since the yield strength after stretching and the yield strength after baking hard (BH) were examined, the results are shown in Tables 4 and 5. These evaluation methods and test methods are as follows.

圧延板の健全性は、外観および断面観察により評価した。すなわち、圧延あるいはその後の熱処理で割れや形状不良、膨れなどを生じて、その後の特性評価が不可能な場合は××とした。また材料の圧延方向に平行な100mm長さの断面を5箇所観察して、深さ30μm以上(板厚に対して3%以上)の表面割れ欠陥が生じていた場合には×とし、これが認められない場合は良好と判断し○とした。機械的性質は、圧延方向(0°)にJIS5号試験片を切出し、引張試験により引張強さ、耐力および伸びを評価した。ベークハード(BH)性の評価では、引張試験片に通常の成形での加工ひずみに相当する2%の引張変形(ストレッチ)を与えた後、170℃で20min保持するBH処理を行い、ストレッチ後(BH処理前)の耐力とBH処理後の耐力を求めた。   The soundness of the rolled sheet was evaluated by appearance and cross-sectional observation. That is, it was set as XX when cracking, shape defect, swelling, etc. were caused by rolling or subsequent heat treatment and subsequent characteristic evaluation was impossible. In addition, when a cross section having a length of 100 mm parallel to the rolling direction of the material was observed at five locations, a surface crack defect having a depth of 30 μm or more (3% or more with respect to the plate thickness) was indicated as x, which was recognized. If not, it was judged as good and marked as o. For mechanical properties, JIS No. 5 test pieces were cut in the rolling direction (0 °), and tensile strength, proof stress and elongation were evaluated by a tensile test. In the evaluation of the bake hard (BH) property, the tensile test piece was subjected to a 2% tensile deformation (stretch) corresponding to the processing strain in normal molding, and then subjected to a BH treatment for 20 minutes at 170 ° C. The yield strength after BH treatment and the yield strength after BH treatment were determined.

さらに、前述のようにして得られた各圧延板について、再結晶熱処理後の材料のr値に影響する各結晶面の方位集積密度を調べるとともに、平均r値と深絞り性を調べたので、その結果を表6、表7に示す。各測定方法、評価方法は次の通りである。   Furthermore, for each rolled plate obtained as described above, the orientation density of each crystal plane affecting the r value of the material after recrystallization heat treatment was examined, and the average r value and deep drawability were examined. The results are shown in Tables 6 and 7. Each measuring method and evaluation method are as follows.

各結晶面の方位集積密度は、SEM−EBSPにより測定した。EBSPでは圧延方向断面で各測定点での結晶方位と圧延板面に平行な結晶面を解析し、すべての測定点についての情報から、各方位の集積密度(ランダムに対する倍率)を算出できる。この手法により、板厚全体での集合組織状態が捉えられる。具体的には、板厚(1000μm)×長さ(400μm)の観察領域10箇所について、解析間隔2.5μmにてEBSP測定を行い、これらを平均して面方位{111}、{332}、{221}および{100}の方位集積密度を求めた。平均r値は、引張試験によりJIS5号試験片を圧延方向に対して0°、45°、および95°方向に引張り、15%ひずみでの各方向r値から算出した。さらに深絞り性は、限界絞り比(LDR)を測定して評価した。   The orientation density of each crystal plane was measured by SEM-EBSP. In EBSP, the crystal orientation at each measurement point and the crystal plane parallel to the rolled plate surface are analyzed in the cross section in the rolling direction, and the integration density (magnification relative to random) can be calculated from information on all measurement points. By this method, the texture state in the entire plate thickness can be captured. Specifically, EBSP measurement was performed at an analysis interval of 2.5 μm for 10 observation regions of plate thickness (1000 μm) × length (400 μm), and these were averaged to obtain a plane orientation of {111}, {332}, The orientation density of {221} and {100} was determined. The average r value was calculated from each direction r value at 15% strain by pulling a JIS No. 5 test piece in the direction of 0 °, 45 ° and 95 ° with respect to the rolling direction by a tensile test. Further, the deep drawability was evaluated by measuring the limit drawing ratio (LDR).

表4に示すように、本発明例1〜21のいずれも、適正な条件で潤滑剤を塗布して温間異周速圧延を行っており、問題となる割れや形状不良が生じることなく所定の板厚まで圧延が可能で、板の表面欠陥の問題も生じなかった。またこれらの本発明例1〜21では、表6に示すように、適切な条件の温間異周速圧延と再結晶熱処理により、平均r値の向上に有効な{111}、{332}、{221}の面方位のいずれかの方位集積密度がランダムの1.5倍以上になっており、かつ平均r値を下げる傾向のある{100}面の方位集積密度が0.9倍以下になっていた。その結果、いずれも平均r値が0.9以上となり、LDRで表わされる深絞り性も良好であることが判明した。そしてこれらのうちでも、温間異周速圧延の圧下率が95%を越えれば、安定して平均r値1.0以上が得られ、より望ましい状態となった(合金Eでは発明例7〜10)。なお文献等で言われている高r値に有効とされる板面{111}方位の集積が比較的弱くても、それに近い{332}、{221}などの方位の集積が高く、{100}面の集積が低い状態であれば、高r値が達成されることが確認されている(例えば発明例14)。   As shown in Table 4, all of Examples 1 to 21 of the present invention are applied with a lubricant under appropriate conditions and are subjected to warm different peripheral speed rolling, and are predetermined without causing problematic cracks and defective shapes. It was possible to roll up to a plate thickness, and no problem of surface defects of the plate occurred. Moreover, in these invention examples 1-21, as shown in Table 6, {111}, {332}, which are effective in improving the average r value by warm different peripheral speed rolling and recrystallization heat treatment under appropriate conditions The orientation integration density of any of the {221} plane orientations is 1.5 times or more random, and the orientation integration density of the {100} plane that tends to lower the average r value is 0.9 times or less. It was. As a result, it was found that the average r value was 0.9 or more and the deep drawability represented by LDR was good. Among these, when the rolling reduction ratio of the warm different peripheral speed rolling exceeds 95%, an average r value of 1.0 or more was stably obtained, and a more desirable state was obtained (in Alloy E, Invention Examples 7 to 7). 10). It should be noted that even if the accumulation of {111} orientations, which is effective for the high r value said in the literature, is relatively weak, the accumulation of orientations {332}, {221}, etc. close to it is high, {100 } It has been confirmed that a high r value is achieved if the integration of the surface is low (for example, Invention Example 14).

ここで、発明例1〜21のうち、発明例1〜3および20〜21は、素材合金としてCuを添加しないか、またはCu添加量が0.5%以下と少ない場合であり、これらの例ではBH性は有していない(ストレッチ後の耐力=BH前の耐力が、BH処理後より高い)。一方発明例4〜19は、0.5%を越えるCuを添加したベークハード性を有するAl−Mg系合金を素材とした例であり、これらのうちでも発明例7(E合金、Cu1.07%)では、BH処理後の強度が発明例4(D合金、Cu0.68%)より高くなっており、したがってより良好なBH性を求める場合には、1%を越えるCu添加量が望ましいことが明らかである。特にAgを添加した発明例16〜18では、高いBH性を示し、高r値・高成形性とを充分に両立させることができた。   Here, of Invention Examples 1 to 21, Invention Examples 1 to 3 and 20 to 21 are cases where Cu is not added as a material alloy or the amount of Cu addition is as small as 0.5% or less. Then, it does not have BH property (strength after stretching = strength before BH is higher than after BH treatment). On the other hand, Invention Examples 4 to 19 are examples in which an Al—Mg-based alloy having bake hardness added with Cu exceeding 0.5% is used as a raw material, and among these, Invention Example 7 (E alloy, Cu 1.07) %), The strength after BH treatment is higher than that of Invention Example 4 (D alloy, Cu 0.68%). Therefore, when better BH properties are required, a Cu addition amount exceeding 1% is desirable. Is clear. In particular, Invention Examples 16 to 18 to which Ag was added exhibited high BH properties, and were able to achieve both a high r value and high moldability.

一方、表5、表7に示すように、比較例1〜18の場合は、いずれかの性能が本発明例より劣っていた。   On the other hand, as shown in Tables 5 and 7, in the case of Comparative Examples 1 to 18, any of the performances was inferior to the inventive examples.

すなわち、比較例1は、Mgの添加量が少ない例であり、この場合はその他の条件を本発明範囲内としても強度が低くなるため、自動車用外板用などの成形用板として不適当となった。さらに比較例2は、合金のMg量が高すぎる例であり、温間異周速圧延時に著しい割れが生じて圧延が不可能となった。さらに比較例3はCu添加量が多すぎる例で、この場合も温間異周速圧延時に著しい割れが生じて圧延が不可能となった。   That is, Comparative Example 1 is an example in which the amount of Mg added is small. In this case, the strength is low even if the other conditions are within the scope of the present invention, so that it is not suitable as a molding plate for an automotive outer plate. became. Furthermore, Comparative Example 2 is an example in which the amount of Mg in the alloy is too high, and remarkable cracking occurred during rolling with different peripheral speeds, making rolling impossible. Furthermore, Comparative Example 3 is an example in which the amount of Cu added is too large. In this case, too, cracks occurred during the rolling with different speeds at the warm temperature, making rolling impossible.

一方比較例4は、本発明成分組成範囲内の合金に対し、等周速の冷間圧延を適用した例である。この場合、平均r値の向上に有効な{111}、{332}、{221}の面方位の方位集積密度が低い一方、平均r値を低下させる作用のある{100}面の方位集積密度が高くなり、そのため平均r値が0.7以下と低く、LDRも発明例より低くなった。また比較例5は温間で等周速圧延した例であり、この場合も方位集積密度が不適当となり、結果として平均r値が低く、LDRも発明例より低くなった。   On the other hand, Comparative Example 4 is an example in which cold rolling at equal circumferential speed is applied to an alloy within the composition range of the present invention. In this case, the {111}, {332}, {221} plane orientation azimuth density effective for improving the average r value is low, while the {100} plane azimuth density is effective in reducing the average r value. Therefore, the average r value was as low as 0.7 or less, and the LDR was also lower than that of the inventive examples. Further, Comparative Example 5 is an example in which uniform circumferential speed rolling was performed in this case. In this case as well, the orientation density was inappropriate, and as a result, the average r value was low and the LDR was also lower than that of the inventive example.

さらに比較例6は、温間異周速圧延の圧下率が低い例で、この場合も{100}面の方位集積密度が高く、結果として平均r値とLDRが発明例より低くなった。また比較例7は、温間異周速圧延の周速比が低い例で、この場合も{100}面の方位集積密度が高くなり、平均r値とLDRが発明例より低くなった。さらに比較例8は、温間異周速圧延の周速比が高い例であるが、この場合は圧延時に材料のそり変形が大きく、均一で安定して圧延ができず、局部的に大きな割れが起きて圧延を完了できなかった。また比較例9は、温間異周速圧延の温度が低い例であるが、割れのため圧延を完了できなかった。   Further, Comparative Example 6 is an example in which the rolling reduction ratio of the warm different peripheral speed rolling is low. In this case, the {100} plane orientation density is high, and as a result, the average r value and LDR are lower than those of the inventive examples. Comparative Example 7 is an example in which the peripheral speed ratio of warm different peripheral speed rolling is low. In this case as well, the {100} plane orientation accumulation density was high, and the average r value and LDR were lower than those of the inventive examples. Further, Comparative Example 8 is an example in which the peripheral speed ratio of warm different peripheral speed rolling is high. In this case, the material is greatly warped during rolling, and uniform and stable rolling cannot be performed, and locally large cracks occur. Occurred and rolling could not be completed. Moreover, although the comparative example 9 is an example where the temperature of warm different peripheral speed rolling is low, the rolling could not be completed due to cracking.

また比較例10は、温間異周速圧延の潤滑油の動粘度が低い例であり、ロールへの凝着を充分に抑えられず、結果として板表面に微小な割れ欠陥を生じた。一方比較例11は、温間異周速圧延の潤滑油の動粘度が高い例で、この場合は圧延時にロールのスリップが生じ、材料の変形が不均一になり、圧延を完了できなかった。   Further, Comparative Example 10 is an example in which the kinematic viscosity of the lubricating oil of the warm different peripheral speed rolling is low, the adhesion to the roll could not be sufficiently suppressed, and as a result, a minute crack defect was generated on the plate surface. On the other hand, Comparative Example 11 is an example in which the kinematic viscosity of the lubricating oil of warm different peripheral speed rolling is high. In this case, roll slip occurred during rolling, and the deformation of the material became uneven, and the rolling could not be completed.

さらに比較例12は、温間異周速圧延を無潤滑で行った例である。B合金(Al−3.02%Mg)を圧下率87.8%で所定板厚まで圧延することはできたが、表面欠陥を生じており、同合金の発明例より延性も低くなってしまった。また比較例13も、温間異周速圧延を無潤滑で行った例であり、この例では比較例12の場合よりも合金添加量の多いJ合金を用いており、その場合圧延割れのため圧下率87.8%の圧延が完了できなかった。さらに比較例14も、圧下率96.3%の温間異周速圧延を無潤滑の条件で試みたが、圧延割れ発生のため、所定板厚まで圧延を継続できなかった。   Further, Comparative Example 12 is an example in which warm different peripheral speed rolling was performed without lubrication. Although it was possible to roll the B alloy (Al-3.02% Mg) to a predetermined plate thickness at a reduction rate of 87.8%, surface defects were generated and the ductility was lower than the invention example of the alloy. It was. Further, Comparative Example 13 is also an example in which warm different peripheral speed rolling was performed without lubrication. In this example, a J alloy having a larger alloy addition amount than that in Comparative Example 12 is used, and in this case, due to rolling cracks. Rolling with a reduction ratio of 87.8% could not be completed. Further, Comparative Example 14 also tried warm different peripheral speed rolling with a rolling reduction of 96.3% under non-lubricating conditions, but rolling could not be continued to a predetermined plate thickness due to occurrence of rolling cracks.

一方比較例15は、温間異周速圧延の潤滑油の塗布量が少ない例であり、この場合は表面欠陥(表面割れ)を防ぐことができなかった。また比較例16は、温間異周速圧延の潤滑油塗布量が多い例であるが、この場合は圧延時にロールと材料との間でスリップが起こり、そのため材料の変形が不均一になり、著しい材料の曲がりが生じて圧延を完了できなかった。   On the other hand, Comparative Example 15 is an example in which the amount of the lubricating oil applied in the warm different peripheral speed rolling is small, and in this case, surface defects (surface cracks) could not be prevented. Further, Comparative Example 16 is an example in which the amount of lubricating oil applied in warm different peripheral speed rolling is large, but in this case, slip occurs between the roll and the material during rolling, so that the deformation of the material becomes uneven, The rolling could not be completed due to significant material bending.

また比較例17は、再結晶熱処理(溶体化処理)の温度が580℃と高過ぎた例であり、この場合は処理時に局部融解が生じ、そのため表面膨れが発生してしまった。一方比較例18は、溶体化処理の温度が低い470℃の例であり、同様のE合金の発明例と比べてBH処理後の耐力が低くなった。なおこの処理温度を280℃にした場合には、未再結晶部が残る組織になることが別途確認されている。   Comparative Example 17 is an example in which the temperature of the recrystallization heat treatment (solution treatment) was too high at 580 ° C. In this case, local melting occurred during the treatment, and thus surface swelling occurred. On the other hand, Comparative Example 18 is an example at a temperature of 470 ° C. where the solution treatment temperature is low, and the yield strength after the BH treatment is lower than that of the similar E alloy invention example. In addition, when this processing temperature is 280 degreeC, it is confirmed separately that it becomes a structure | tissue in which an unrecrystallized part remains.

Claims (7)

Al−Mg系合金素材板について、表面に潤滑剤を付与した状態で、150〜300℃の範囲内の温度で、ロール周速比が1.2〜2.5の範囲内でしかも85%を越える圧下率の条件で温間異周速圧延を行ない、その後再結晶熱処理を行なって、平均r値が0.9以上のAl−Mg系合金板を得ることを特徴とする、高成形性Al−Mg系合金板の製造方法。   About Al-Mg type alloy material plate, with a lubricant applied to the surface, at a temperature in the range of 150 to 300 ° C, the roll peripheral speed ratio is in the range of 1.2 to 2.5 and 85%. A high formability Al, characterized in that a warm different peripheral speed rolling is performed under conditions of a rolling reduction exceeding, and then a recrystallization heat treatment is performed to obtain an Al-Mg based alloy sheet having an average r value of 0.9 or more. -Manufacturing method of Mg type alloy plate. 請求項1に記載の高成形性Al−Mg系合金板の製造方法において、
前記潤滑剤として、常温での動粘度が10〜350mm/sでしかも引火点が305℃以上の潤滑油を用い、その潤滑油の付着量が100〜700mg/mの範囲内となるようにAl−Mg系合金素材板に付着させて温間異周速圧延を行なうことを特徴とする、高成形性Al−Mg系合金板の製造方法。
In the manufacturing method of the high formability Al-Mg alloy plate according to claim 1,
As the lubricant, a lubricating oil having a kinematic viscosity at normal temperature of 10 to 350 mm 2 / s and a flash point of 305 ° C. or higher is used, and the amount of the lubricating oil adhered is in the range of 100 to 700 mg / m 2. A method for producing a highly formable Al—Mg alloy plate, characterized in that it is attached to an Al—Mg alloy material plate and subjected to warm differential circumferential rolling.
請求項1もしくは請求項2に記載の高成形性Al−Mg系合金板の製造方法において、
前記Al−Mg系合金素材板として、Mg2.0〜6.5%(mass%、以下同じ)を含有し、残部がAlおよび不可避的不純物からなるAl−Mg系合金板を用い、その表面に潤滑剤を付与した状態で温間異周速圧延を行なった後、前記再結晶熱処理として、310〜570℃の範囲内の温度で焼鈍して再結晶させることを特徴とする、高成形性Al−Mg系合金板の製造方法。
In the manufacturing method of the highly formable Al-Mg type alloy plate according to claim 1 or 2,
As the Al—Mg-based alloy material plate, an Al—Mg-based alloy plate containing Mg 2.0 to 6.5% (mass%, the same shall apply hereinafter), the balance being Al and inevitable impurities is used on the surface thereof. A high formability Al, characterized in that after performing warm different speed rolling in a state where a lubricant is applied, the recrystallization heat treatment is performed by annealing at a temperature within a range of 310 to 570 ° C. and recrystallization. -Manufacturing method of Mg type alloy plate.
請求項1もしくは請求項2に記載の高成形性Al−Mg系合金板の製造方法において、
前記Al−Mg系合金素材板として、Mg2.0〜6.5%およびCu0.05〜0.5%を含有し、残部がAlおよび不可避的不純物からなるAl−Mg系合金板を用い、その表面に潤滑剤を付与した状態で温間異周速圧延を行なった後、前記再結晶熱処理として、310〜570℃の範囲内の温度で焼鈍して再結晶させることを特徴とする、高成形性Al−Mg系合金板の製造方法。
In the manufacturing method of the highly formable Al-Mg type alloy plate according to claim 1 or 2,
As the Al—Mg-based alloy material plate, an Al—Mg-based alloy plate containing Mg 2.0 to 6.5% and Cu 0.05 to 0.5%, the balance consisting of Al and inevitable impurities is used. High-forming, characterized in that after carrying out warm different speed rolling in a state where a lubricant is applied to the surface, the recrystallization heat treatment is annealed and recrystallized at a temperature within a range of 310 to 570 ° C. For producing a conductive Al-Mg alloy plate.
請求項1もしくは請求項2に記載の高成形性Al−Mg系合金板の製造方法において、
前記Al−Mg系合金素材板として、Mg2.0〜6.5%およびCu0.5%を越え1.8%以下を含有し、残部がAlおよび不可避的不純物からなるAl−Mg系合金板を用い、その表面に潤滑剤を付与した状態で温間異周速圧延を行なった後、前記再結晶熱処理として、510〜570℃の温度に加熱する溶体化処理を行なって再結晶させることを特徴とする、高成形性Al−Mg系合金板の製造方法。
In the manufacturing method of the highly formable Al-Mg type alloy plate according to claim 1 or 2,
As the Al—Mg-based alloy material plate, an Al—Mg-based alloy plate containing Mg 2.0 to 6.5% and Cu exceeding 0.5% and 1.8% or less, with the balance being Al and inevitable impurities. Use, after carrying out the warm different peripheral speed rolling in the state which provided the lubricant to the surface, as a recrystallization heat treatment, it carries out the solution treatment which heats to the temperature of 510-570 ° C, and is recrystallized A method for producing a highly formable Al—Mg alloy plate.
請求項5に記載の高成形性Al−Mg系合金板の製造方法において、
前記Al−Mg系合金素材板として、前記各成分のほか、さらにAg0.05〜0.6%を含有するAl−Mg系合金素材板を用いることを特徴とする、高成形性Al−Mg系合金板の製造方法。
In the manufacturing method of the high formability Al-Mg alloy plate according to claim 5,
The Al-Mg-based alloy material plate is an Al-Mg-based alloy material plate containing 0.05% to 0.6% Ag in addition to the above components. Manufacturing method of alloy plate.
請求項1〜請求項5のいずれかの請求項に記載の高成形性Al−Mg系合金板の製造方法において、
前記Al−Mg系合金素材板として、前記各成分のほか、さらにMn0.03〜0.5%、Cr0.03〜0.3%、Zr0.03〜0.3%、およびV0.03〜0.3%のうちの1種または2種以上を含有するAl−Mg系合金素材板を用いることを特徴とする、高成形性Al−Mg系合金板の製造方法。
In the manufacturing method of the high formability Al-Mg alloy plate according to any one of claims 1 to 5,
As the Al—Mg alloy material plate, in addition to the above components, Mn 0.03 to 0.5%, Cr 0.03 to 0.3%, Zr 0.03 to 0.3%, and V 0.03 to 0 A method for producing a highly formable Al—Mg alloy plate, comprising using an Al—Mg alloy material plate containing one or more of 3%.
JP2006181279A 2006-06-30 2006-06-30 Method for producing high formability Al-Mg alloy plate Expired - Fee Related JP4799294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006181279A JP4799294B2 (en) 2006-06-30 2006-06-30 Method for producing high formability Al-Mg alloy plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006181279A JP4799294B2 (en) 2006-06-30 2006-06-30 Method for producing high formability Al-Mg alloy plate

Publications (2)

Publication Number Publication Date
JP2008006483A JP2008006483A (en) 2008-01-17
JP4799294B2 true JP4799294B2 (en) 2011-10-26

Family

ID=39065168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006181279A Expired - Fee Related JP4799294B2 (en) 2006-06-30 2006-06-30 Method for producing high formability Al-Mg alloy plate

Country Status (1)

Country Link
JP (1) JP4799294B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111420991A (en) * 2020-05-08 2020-07-17 太原科技大学 Method for rolling magnesium-aluminum laminated plate at different temperatures

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5679555B2 (en) * 2010-12-15 2015-03-04 株式会社牛越製作所 Metallic glass plastic forming method and plastic forming apparatus
JP2012237035A (en) * 2011-05-11 2012-12-06 Furukawa-Sky Aluminum Corp HIGHLY FORMABLE Al-Mg-BASED ALLOY PLATE AND METHOD OF MANUFACTURING THE SAME
KR101315653B1 (en) * 2012-05-17 2013-10-08 금오공과대학교 산학협력단 Fabrication method of al alloy sheets having high deep drawability by asymmetric rolling
JP5965418B2 (en) * 2014-01-09 2016-08-03 株式会社日立金属ネオマテリアル Chassis and mobile devices
CN105177364A (en) * 2015-06-29 2015-12-23 安徽越天特种车桥有限公司 Nano molybdenum carbide doped composite aluminum alloy automobile part high in thermal stability and casting process thereof
CN106391705B (en) * 2016-11-30 2018-03-16 西安诺博尔稀贵金属材料有限公司 A kind of milling method of wide cut fine silver sheet material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3370873B2 (en) * 1996-11-28 2003-01-27 株式会社神戸製鋼所 Rolling method of aluminum or aluminum alloy plate
JPH10310854A (en) * 1997-05-09 1998-11-24 Nkk Corp Manufacture of aluminum alloy sheet for press forming, excellent in plastic anisotropy and baking hardenability of coating film
JPH1190324A (en) * 1997-09-25 1999-04-06 Shinko Arukoa Yuso Kizai Kk Aluminum or aluminum alloy sheet showing black gloss after clear coating, and its production
JP2001279405A (en) * 2000-03-31 2001-10-10 Kobe Steel Ltd Method for producing aluminum alloy plate having fine crystal grain structure and aluminum alloy plate obtainable by the same producing method
JP2003112215A (en) * 2001-09-28 2003-04-15 Sumitomo Metal Ind Ltd ROLLING OIL FOR Mg ALLOY SHEET AND METHOD FOR MANUFACTURING Mg ALLOY SHEET
JP2003305503A (en) * 2002-04-09 2003-10-28 Mitsubishi Alum Co Ltd Highly formable aluminum alloy plate and method for producing the same
JP4257185B2 (en) * 2003-11-05 2009-04-22 古河スカイ株式会社 Aluminum alloy plate for forming and method for producing the same
JP4256791B2 (en) * 2004-01-19 2009-04-22 株式会社神戸製鋼所 Aluminum alloy plate for packaging container tab and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111420991A (en) * 2020-05-08 2020-07-17 太原科技大学 Method for rolling magnesium-aluminum laminated plate at different temperatures

Also Published As

Publication number Publication date
JP2008006483A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
US7824607B2 (en) Aluminum alloy sheet
JP3558628B2 (en) Magnesium alloy plate and method for producing the same
JP5882380B2 (en) Manufacturing method of aluminum alloy sheet for press forming
EP1842935B1 (en) Aluminum alloy plate and process for producing the same
JP4495623B2 (en) Aluminum alloy plate excellent in stretch flangeability and bending workability and method for producing the same
JP4799294B2 (en) Method for producing high formability Al-Mg alloy plate
JP4306547B2 (en) Magnesium alloy plate and manufacturing method thereof
JP6301095B2 (en) Al-Mg-Si aluminum alloy plate for automobile panel and method for producing the same
JP2006257475A (en) Al-Mg-Si ALLOY SHEET SUPERIOR IN PRESS FORMABILITY, MANUFACTURING METHOD THEREFOR AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET MATERIAL
JP4263073B2 (en) Aluminum alloy plate for forming and method for producing the same
JP4257185B2 (en) Aluminum alloy plate for forming and method for producing the same
JP4799295B2 (en) Method for producing highly formable Al-Mg-Si alloy plate
JP5813358B2 (en) Highly formable Al-Mg-Si alloy plate and method for producing the same
JP2004315878A (en) Method for manufacturing aluminum alloy sheet to be formed superior in hem bendability and surface quality
JP4550598B2 (en) Aluminum alloy sheet for forming
KR101159410B1 (en) Alluminum alloy sheet superior in paint baking hardenability and invulnerable to room temperature aging, and method for production thereof
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
JP3838504B2 (en) Aluminum alloy plate for panel forming and manufacturing method thereof
JP4202894B2 (en) Mg-containing Al alloy
JP2011144410A (en) METHOD FOR MANUFACTURING HIGHLY FORMABLE Al-Mg-Si-BASED ALLOY SHEET
JP2008231475A (en) Aluminum alloy sheet for forming workpiece, and producing method therefor
JP2012237035A (en) HIGHLY FORMABLE Al-Mg-BASED ALLOY PLATE AND METHOD OF MANUFACTURING THE SAME
JP2004315913A (en) Aluminum alloy sheet for high temperature forming, and method of producing aluminum alloy panel
JP3766334B2 (en) Aluminum alloy plate with excellent bending workability
JP4456505B2 (en) Manufacturing method of forming aluminum alloy sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090520

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100507

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20100507

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110711

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4799294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees