JPH10219413A - Production of high strength aluminum alloy excellent in intergranular corrosion resistance - Google Patents

Production of high strength aluminum alloy excellent in intergranular corrosion resistance

Info

Publication number
JPH10219413A
JPH10219413A JP9028130A JP2813097A JPH10219413A JP H10219413 A JPH10219413 A JP H10219413A JP 9028130 A JP9028130 A JP 9028130A JP 2813097 A JP2813097 A JP 2813097A JP H10219413 A JPH10219413 A JP H10219413A
Authority
JP
Japan
Prior art keywords
aluminum alloy
corrosion resistance
intergranular corrosion
temperature
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9028130A
Other languages
Japanese (ja)
Inventor
Masao Kikuchi
正夫 菊池
Makoto Saga
誠 佐賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9028130A priority Critical patent/JPH10219413A/en
Publication of JPH10219413A publication Critical patent/JPH10219413A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high strength aluminum alloy excellent in intergranular corrosion resistance and extrudability. SOLUTION: This aluminum alloy is the one having a compsn. contg., by weight, 0.5 to 1.2% Mg, 0.5 to 1.4% Si, and the balance Al with inevitable impurities, and it is cast and is subjected to hot extrusion into a prescribed shape, which is thereafter subjected to solution heat treatment at the temp. T (K) satisfying the relational inequalities of Mg (%)<-5/9Si (%)+0.23exp (T-673)/100}+0.25 and Mg (%)<-3Si (%)+0.78exp (T-673)/100}+0.42 to <843K for 10sec to 2hr, is cooled from this temp. to a temp. range till 373K at a rate of >=10K/sec and is subjected to aging treatment. This alloy can be incorporated with small amounts of Cu, Zn, Cr, Fe, Mn, Zr, V and Ti. In this way, the high strength aluminum alloy excellent in intergranular corrosion resistance and extrudability can be obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐粒界腐食性およ
び押出性に優れ、自動車をはじめ、車両,電気機器,建
築等の構造用部材に適した高強度アルミニウム合金およ
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength aluminum alloy excellent in grain boundary corrosion resistance and extrudability and suitable for structural members of automobiles, vehicles, electric equipment, buildings and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】従来より、Al−Mg−Si系合金は押
出性に優れる上に、熱処理によって高強度が得られるた
めに、車両,船舶,建築等の分野で広く使用されてい
る。近年、自動車の軽量化の観点から、アルミニウム合
金の押出形材が自動車の構造部材に適用されるようにな
り、その材料として、上記のAl−Mg−Si系合金が
注目され、強度部材に使用されている。しかしながら、
本系合金は、腐食環境、特にCl- イオンを含むような
環境下で、しばしば粒界腐食を生じ、機械的特性の劣化
を招き、時には破壊にまで到るという欠点を有してい
た。このような粒界腐食を防止するため、これまでは、
合金濃度の低いJISA6063合金が多く用いられて
きた。しかし、本合金は強度が低いため、高強度を要求
されるような部材には適用できなかった。
2. Description of the Related Art Conventionally, Al-Mg-Si based alloys have been widely used in the fields of vehicles, ships, construction, etc. because they have excellent extrudability and high strength can be obtained by heat treatment. In recent years, from the viewpoint of reducing the weight of automobiles, extruded profiles of aluminum alloys have been applied to structural members of automobiles, and the above-mentioned Al-Mg-Si-based alloy has attracted attention as a material for such materials, and has been used for strength members. Have been. However,
This alloy has the disadvantage that it often undergoes intergranular corrosion in a corrosive environment, particularly in an environment containing Cl - ions, leading to deterioration of mechanical properties and sometimes even to failure. Until now, to prevent such intergranular corrosion,
JISA6063 alloy having a low alloy concentration has been widely used. However, since the present alloy has low strength, it cannot be applied to members requiring high strength.

【0003】[0003]

【発明が解決しようとする課題】そこで、腐食環境にお
いても粒界腐食が生じにくく、かつ、高強度の押出用ア
ルミニウム合金が求められている。本発明は、以上の事
情を背景として、耐粒界腐食性に優れるとともに、押出
性が良好な高強度アルミニウム合金の製造方法を提供す
ることを目的とする。
Accordingly, there is a need for an aluminum alloy for extrusion which is hard to cause intergranular corrosion even in a corrosive environment and has high strength. An object of the present invention is to provide a method for producing a high-strength aluminum alloy having excellent intergranular corrosion resistance and excellent extrudability, with the above circumstances as a background.

【0004】[0004]

【課題を解決するための手段】Al−Mg−Si系合金
の粒界腐食は粒界に晶析出したβ相(Mg2 Si)ある
いはSi相が優先的に溶解するために生じるものと考え
られている(例えば、アルミニウムハンドブック(第5
版),軽金属協会編(1994),P.53)。そこ
で、本発明者は、Al−Mg−Si系合金における粒界
晶析出物の生成限界に及ぼす合金組成と溶体化処理温度
あるいは押出成形時の予備加熱温度の関係を詳細に調査
した結果、MgおよびSi量と溶体化処理温度あるいは
押出成形時の予備加熱温度の関係を特定し、溶体化処理
あるいは押出成形後の冷却速度を限定することによって
粒界晶析出物の生成を抑えることが可能であり、良好な
耐粒界腐食性が得られることを見い出した。
It is considered that intergranular corrosion of an Al-Mg-Si alloy occurs due to preferential dissolution of β phase (Mg 2 Si) or Si phase crystallized at the grain boundary. (For example, Aluminum Handbook (No. 5
Edition), edited by The Japan Institute of Light Metals (1994), p. 53). Thus, the present inventors have investigated in detail the relationship between the alloy composition and the solution treatment temperature or the preheating temperature during extrusion molding, which affects the generation limit of grain boundary crystal precipitates in an Al-Mg-Si-based alloy. By specifying the relationship between the amount of Si and the solution treatment temperature or the preheating temperature during extrusion molding, and by limiting the cooling rate after solution treatment or extrusion molding, it is possible to suppress the generation of grain boundary crystal precipitates. It was found that good intergranular corrosion resistance was obtained.

【0005】すなわち、本発明は、 (1)重量%で、Mg:0.5〜1.2%,Si:0.
5〜1.4%を含有し、残部がAlおよび不純物からな
るアルミニウム合金を鋳造し、所定の形状に熱間押出成
形した後、 Mg(%)<−5/9Si(%)+0.23exp
{(T−673)/100}+0.25 および、 Mg(%)<−3Si(%)+0.78exp{(T−
673)/100}+0.42 なる関係式を満足する温度T(K)以上、843K未満
の温度で10秒以上、2時間以内の溶体化処理を施し、
その温度から373Kまでの温度範囲を10K/秒以上
の速度で冷却し、さらに自然あるいは人工時効処理する
ことを特徴とする耐粒界腐食性に優れた高強度アルミニ
ウム合金の製造方法。ここでMg(%)およびSi
(%)はそれぞれ、MgおよびSiの重量%を示す。
That is, the present invention provides: (1) Mg: 0.5 to 1.2%, Si: 0.
After casting an aluminum alloy containing 5-1.4% and the remainder consisting of Al and impurities and hot-extrusion into a predetermined shape, Mg (%) <− 5 / 9Si (%) + 0.23exp
{(T-673) / 100} +0.25 and Mg (%) <-3Si (%) + 0.78exp} (T−
673) /100°+0.42. Solution treatment is performed at a temperature not less than T (K) satisfying the relational expression of not more than 843K and not less than 10 seconds and not more than 2 hours,
A method for producing a high-strength aluminum alloy excellent in intergranular corrosion resistance, characterized by cooling a temperature range from that temperature to 373K at a rate of 10K / sec or more and further performing natural or artificial aging treatment. Here, Mg (%) and Si
(%) Indicates the weight percentage of Mg and Si, respectively.

【0006】(2)上記(1)記載のアルミニウム合金
の製造方法において、この合金に、さらに、重量%で、
Cu:0.05〜1.0%,Zn:0.05〜0.6
%,Mn:0.03〜0.5%,Cr:0.03〜0.
5%,V :0.03〜0.3%,Fe:0.05〜
0.5%,Zr:0.03〜0.3%,Ti:0.00
5〜0.3%のうちの1種以上を含有する耐粒界腐食性
に優れた高強度アルミニウム合金の製造方法。
(2) The method for producing an aluminum alloy according to the above (1), further comprising:
Cu: 0.05 to 1.0%, Zn: 0.05 to 0.6
%, Mn: 0.03 to 0.5%, Cr: 0.03 to 0.
5%, V: 0.03 to 0.3%, Fe: 0.05 to
0.5%, Zr: 0.03-0.3%, Ti: 0.00
A method for producing a high-strength aluminum alloy excellent in intergranular corrosion resistance containing at least one of 5 to 0.3%.

【0007】(3)上記(1)または(2)記載のアル
ミニウム合金を溶解し、所定の形状のビレットに鋳造
し、均質化処理を施した後、 Mg(%)<−5/9Si(%)+0.23exp
{(T′−623)/100}+0.25 および、 Mg(%)<−3Si(%)+0.78exp{(T′
−623)/100}+0.42 なる関係式を満足する温度T′(K)以上、793K未
満の温度で予備加熱して熱間押出成形を行ってから、3
73Kまでの温度範囲を10K/秒以上の速度で冷却
し、さらに、自然あるいは人工時効処理することを特徴
とする耐粒界腐食性に優れた高強度アルミニウム合金の
製造方法である。
(3) The aluminum alloy according to the above (1) or (2) is melted, cast into a billet having a predetermined shape, homogenized, and then Mg (%) <− 5 / 9Si (% ) + 0.23exp
{(T'-623) / 100} +0.25 and Mg (%) <-3Si (%) + 0.78exp} (T '
−623) /100°+0.42 After preheating at a temperature T ′ (K) or more and less than 793K which satisfies the relational expression, hot extrusion molding is performed,
This is a method for producing a high-strength aluminum alloy excellent in intergranular corrosion resistance, characterized by cooling at a temperature range of up to 73 K at a rate of 10 K / sec or more and further performing natural or artificial aging treatment.

【0008】[0008]

【発明の実施の形態】以下に本発明を詳細に説明する。
まず、成分組成の限定理由について述べる。なお、%は
すべて重量%である。Mgは本発明で対象としている系
の合金で基本となる合金元素であり、Siとともに化合
物を形成して強度の上昇に寄与する。Mg量が0.5%
未満では、析出硬化によって強度の上昇に寄与するMg
2 Siの生成量が少なくなるため、十分な強度が得られ
ず、一方、1.2%を越えれば押出性が低下するととも
に以下で述べるような条件で液体化処理しても粒界析出
物の生成を抑えることができず、耐粒界腐食性が低下す
る。そのため、Mg量は0.5〜1.2%の範囲内とし
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
First, the reasons for limiting the component composition will be described. In addition, all% are weight%. Mg is a basic alloying element in the alloy of the system targeted in the present invention, and forms a compound with Si to contribute to an increase in strength. Mg content is 0.5%
If less than Mg, which contributes to an increase in strength by precipitation hardening
2 Since the amount of generated Si is small, sufficient strength cannot be obtained. On the other hand, if it exceeds 1.2%, extrudability is reduced and grain boundary precipitates are obtained even when liquefied under the conditions described below. Cannot be suppressed, and the intergranular corrosion resistance decreases. Therefore, the amount of Mg was set in the range of 0.5 to 1.2%.

【0009】Siも本発明の系の合金で基本となる合金
元素であって、Mgとともに化合物を形成して強度の向
上に寄与する。Siが0.5%未満では硬化に寄与する
Mg 2 Siの生成量が少なくなるため、十分な強度が得
られず、一方、1.4%を越えると、耐粒界腐食性が低
下するばかりでなく、凝固の際に粗大なSi相が晶出し
て押出加工性を低下させる。従って、Si量は0.5〜
1.4%の範囲内とした。Cuは時効硬化を促進させ、
合金の強度を上昇させる元素であるが、含有量が0.0
5%未満ではその効果は見られず、1.0%を越える
と、β相やSi相以外にCuを含有する粒界析出物を形
成し、耐粒界腐食性を低下させる。従って、Cu量は
0.05〜1.0%とした。
[0009] Si is also the basic alloy of the alloys of the present invention.
An element that forms a compound with Mg to improve strength.
Contribute to the top. If Si is less than 0.5%, it contributes to hardening
Mg TwoSufficient strength is obtained because the amount of generated Si is reduced.
On the other hand, if it exceeds 1.4%, the intergranular corrosion resistance is low.
Not only drop but also coarse Si phase crystallizes during solidification
And reduce the extrudability. Therefore, the amount of Si is 0.5 to
It was within the range of 1.4%. Cu promotes age hardening,
It is an element that increases the strength of the alloy, but the content is 0.0
If less than 5%, the effect is not seen and exceeds 1.0%.
And the formation of grain boundary precipitates containing Cu in addition to the β and Si phases
And reduce the intergranular corrosion resistance. Therefore, the amount of Cu is
0.05 to 1.0%.

【0010】Znは強度向上に有効な元素であるが、含
有量が0.05%未満ではその効果は小さく、0.6%
を越えると耐粒界腐食性および溶接性が低下する。した
がって、Znの含有量は0.05〜0.6%とした。C
r,Mn,ZrおよびVはいずれも結晶粒を微細化,安
定化するとともに強度を向上させる効果を有する元素で
あり、必要に応じて1種以上を添加する。この場合、い
ずれの元素も0.03%未満では上記の効果は得られ
ず、一方、CrおよびMnが0.5%、ZrおよびVが
0.3%をそれぞれ越えると上記の効果は飽和する上
に、押出性を低下させる。よって、CrおよびMnの含
有量は0.03〜0.5%、ZrおよびVの含有量は
0.03〜0.3%とする。
[0010] Zn is an effective element for improving the strength, but if its content is less than 0.05%, its effect is small, and 0.6%
If the ratio exceeds the above range, intergranular corrosion resistance and weldability will decrease. Therefore, the content of Zn is set to 0.05 to 0.6%. C
Each of r, Mn, Zr and V is an element having the effect of refining and stabilizing crystal grains and improving the strength, and one or more of them are added as necessary. In this case, if any of the elements is less than 0.03%, the above effects cannot be obtained. On the other hand, if Cr and Mn exceed 0.5% and Zr and V each exceed 0.3%, the above effects are saturated. On top, it reduces the extrudability. Therefore, the contents of Cr and Mn are set to 0.03 to 0.5%, and the contents of Zr and V are set to 0.03 to 0.3%.

【0011】Feは本来不可避的不純物であるが、上記
のCr,Mn,Zr,V等と同様の効果を有しており、
必要に応じて添加する。この場合、0.05%未満では
上記の効果は得られず、0.5%超では上記の効果は飽
和する上に、Al−Fe−Si系の金属間化合物を生成
し、押出性を低下させる。よって、Feの含有量は0.
05〜0.5%とする。Tiは一般に鋳塊の結晶粒微細
化のため、単独あるいは微量のBと組み合わせて添加す
る。この場合、Tiの含有量が0.005%未満では上
記の効果は得られず、0.3%を越えるとその効果は飽
和する。したがって、Tiの含有量は0.005〜0.
3%とする。Bの添加量は0.0005〜0.03%が
有利である。
Fe is essentially an unavoidable impurity, but has the same effect as Cr, Mn, Zr, V, etc.
Add as needed. In this case, if the content is less than 0.05%, the above effect cannot be obtained. If the content is more than 0.5%, the above effect is saturated, and an Al—Fe—Si based intermetallic compound is generated, thereby reducing the extrudability. Let it. Therefore, the content of Fe is 0.1.
0.5 to 0.5%. Ti is generally added alone or in combination with a small amount of B in order to refine the crystal grains of the ingot. In this case, if the content of Ti is less than 0.005%, the above effect cannot be obtained, and if it exceeds 0.3%, the effect is saturated. Therefore, the content of Ti is 0.005 to 0.5.
3%. The addition amount of B is advantageously 0.0005 to 0.03%.

【0012】上述した成分組成からなる高強度アルミニ
ウム合金であっても耐粒界腐食性に優れるためには、M
gおよびSi量と合金の製造条件との関係を限定する必
要がある。耐粒界腐食性を低下させる粒界晶析出物の生
成を抑制するためには、溶体化処理あるいは押出成形時
に、溶質元素であるMgとSiをAl中に完全に固溶さ
せ、その後の冷却過程においてこれらが再析出しないよ
うに十分速い速度で冷却させればよい。本発明者たち
は、まず、MgおよびSi量と溶体化処理温度との関係
を詳細に調査した結果、MgおよびSiの含有量と合金
の溶体化処理温度との間に Mg(%)<−5/9Si(%)+0.23exp{(T−673)/10 0}+0.25 ・・・・・・・・・・・・・・・・・・・・ および、 Mg(%)<−3Si(%)+0.78exp{(T−673)/100}+ 0.42 ・・・・・・・・・・・・・・・・・・・・ の二式を満足するような関係が成り立つ時に、Mgおよ
びSiがAl中に完全に固溶することを見い出した。従
って、合金の製造工程において、上記およびの二式
を満足する温度T(K)で溶体化処理を行うか、あるい
はそれに相当する熱履歴を合金に与える必要がある。
In order to obtain excellent intergranular corrosion resistance even with a high-strength aluminum alloy having the above-mentioned composition, M
It is necessary to limit the relationship between the amounts of g and Si and the manufacturing conditions of the alloy. In order to suppress the formation of intergranular precipitates, which lower the intergranular corrosion resistance, at the time of solution treatment or extrusion molding, the solute elements Mg and Si are completely dissolved in Al and then cooled. What is necessary is just to cool at a sufficiently high rate so that these do not reprecipitate in the process. The present inventors first examined in detail the relationship between the amounts of Mg and Si and the solution treatment temperature, and found that the Mg (%) <− between the content of Mg and Si and the solution treatment temperature of the alloy. 5 / 9Si (%) + 0.23exp {(T-673) / 10 100} +0.25 ... and Mg (%) <- 3Si (%) + 0.78exp {(T-673) / 100} +0.42 When this was true, it was found that Mg and Si completely dissolved in Al. Therefore, in the alloy manufacturing process, it is necessary to perform the solution treatment at the temperature T (K) satisfying the above two equations or to give the alloy a heat history corresponding thereto.

【0013】アルミニウム合金の製造方法としては、所
定の形状に成形後、溶体化処理を施してから時効処理す
る方法と、熱間押出成形等の高温成形後、そのまま時効
処理を行う方法の二種類の製造方法がとられる。所定の
形状に成形後溶体化処理を行う場合には、上記および
の二式を満足するような温度T(K)以上、843K
未満の温度で溶体化処理を行えばよい。上記二式のうち
のいずれか一式でも満足しないような温度で溶体化処理
を行った場合には、MgおよびSiはAl中に十分固溶
せず、粒界晶析出物を形成して耐粒界腐食性が低下す
る。この場合、溶体化処理時間が10秒未満では上記二
式を満足するような温度で溶体化処理を行っても、Mg
およびSiの固溶が十分に起こらず、2時間を越えると
結晶粒が粗大化するため、いずれの場合にも、耐粒界腐
食性が低下するばかりでなく延性の低下をもたらす。そ
のため、溶体化処理時間は10秒以上,2時間以内とし
た。
There are two methods for producing an aluminum alloy: a method of performing aging treatment after forming into a predetermined shape and then performing a solution treatment, and a method of performing aging treatment as it is after high-temperature forming such as hot extrusion molding. Is manufactured. When the solution treatment is performed after forming into a predetermined shape, the temperature T (K) or more that satisfies the above two formulas and 843K
The solution treatment may be performed at a temperature less than. When the solution treatment is performed at a temperature that does not satisfy either one of the above two formulas, Mg and Si do not form a solid solution in Al, and form grain boundary crystal precipitates to reduce the grain resistance. Interfacial corrosion is reduced. In this case, if the solution treatment time is less than 10 seconds, even if the solution treatment is performed at a temperature that satisfies the above two formulas,
In addition, since the solid solution of Si and Si does not sufficiently occur, and the crystal grains become coarse when the time exceeds 2 hours, in any case, not only the intergranular corrosion resistance but also the ductility is reduced. Therefore, the solution treatment time was set to 10 seconds or more and 2 hours or less.

【0014】一方、溶体化処理温度が843Kを越える
と部分溶解が生じる。そのため、溶体化処理温度の上限
は843Kとした。溶体化処理後は、373Kまでの温
度範囲を10K/秒以上の速度で冷却する。冷却速度を
10K/秒未満にすると、冷却中に第2相が析出して、
耐粒界腐食性を低下させるとともに、時効処理によって
析出するMgおよびSiの量が減少して強度が低下す
る。そのため、溶体化処理温度から373Kまでの冷却
速度は10K/秒以上とした。冷却後は一般的な方法で
自然あるいは人工時効処理して強度を確保する。なお、
上記アルミニウム合金を溶解、鋳造後、溶体化処理前ま
での製造工程、すなわち、所定の形状に成形するまでの
工程は、従来の一般的なアルミニウム合金製品の製造方
法で良い。例えば、DC鋳造法で鋳塊を製造した後、均
質化処理を施し、熱間押出等によって所定の形状とする
方法等が利用できる。
On the other hand, when the solution treatment temperature exceeds 843K, partial dissolution occurs. Therefore, the upper limit of the solution treatment temperature was set to 843K. After the solution treatment, the temperature range up to 373K is cooled at a rate of 10K / sec or more. If the cooling rate is less than 10 K / sec, the second phase precipitates during cooling,
In addition to reducing the intergranular corrosion resistance, the amount of Mg and Si precipitated by the aging treatment decreases, and the strength decreases. Therefore, the cooling rate from the solution treatment temperature to 373 K was set to 10 K / sec or more. After cooling, natural or artificial aging treatment is performed by a general method to secure the strength. In addition,
The manufacturing process from melting and casting the aluminum alloy to before the solution treatment, that is, the process until the aluminum alloy is formed into a predetermined shape, may be a conventional general aluminum alloy product manufacturing method. For example, a method of producing an ingot by a DC casting method, performing a homogenizing treatment, and forming a predetermined shape by hot extrusion or the like can be used.

【0015】一方、押出成形後、溶体化処理を施さず、
そのまま時効処理する場合には、鋳塊の予備加熱が溶体
化処理を兼ねるものでなくてはならない。一般的に熱間
押出成形のような高温成形時には、加工発熱のため合金
の温度は予備加熱温度よりも50〜100K上昇する。
従って、予備加熱温度は上記およびの二式で規定さ
れる温度T(K)よりも50K以上低い温度で十分であ
る。すなわち、MgおよびSi量と合金の予備加熱温度
T′(K)の間に、 Mg(%)<−5/9Si(%)+0.23exp{(T′−623)/10 0}+0.25 ・・・・・・・・・・・・・・・ および、 Mg(%)<−3Si(%)+0.78exp{(T′−623)/100} +0.42 ・・・・・・・・・・・・・・・ なる関係式が成り立つようにすれば良い。上記および
の二式のうちのいずれか一式でも満足しないような温
度で予備加熱した場合には、MgおよびSiはAl中に
十分固溶せず、粒界晶析出物を形成して耐粒界腐食性が
低下する。
On the other hand, after extrusion molding, no solution treatment is performed,
When the aging treatment is performed as it is, the preheating of the ingot must also serve as the solution treatment. Generally, at the time of high-temperature molding such as hot extrusion molding, the temperature of the alloy rises by 50 to 100 K from the preheating temperature due to the heat generated during processing.
Therefore, it is sufficient that the preheating temperature is lower than the temperature T (K) defined by the above two equations by 50K or more. That is, between the amounts of Mg and Si and the preheating temperature T ′ (K) of the alloy, Mg (%) <− 5 / 9Si (%) + 0.23 exp {(T′-623) / 10 100} +0.25 ... and Mg (%) <-3Si (%) + 0.78exp {(T'-623) / 100} + 0.42 ··················· When preheating is performed at a temperature at which either one of the above two formulas is not satisfied, Mg and Si do not form a solid solution in Al, and form grain boundary crystal precipitates to prevent grain boundary resistance. Corrosion is reduced.

【0016】また、予備加熱温度が793Kを越える
と、加工発熱によって、合金の温度は843Kを越え、
部分溶解が生じる。そのため、予備加熱温度の上限は7
93Kとした。熱間押出は直接押出法、間接押出法等の
通常の押出方法が利用できる。熱間押出成形後には、1
00℃までの温度範囲を10K/秒以上の速度で冷却す
る。冷却速度を10K/秒未満にすると、冷却中に第2
相が析出して、耐粒界腐食性を低下させるとともに、時
効処理によって析出するMg,Siの量が減少して強度
が低下する。従って、押出成形後、373Kまでの温度
範囲の冷却速度は10K/秒以上とした。冷却後は一般
的な方法で自然あるいは人工時効処理して強度を確保す
る。
If the preheating temperature exceeds 793K, the temperature of the alloy exceeds 843K due to the heat generated during processing.
Partial dissolution occurs. Therefore, the upper limit of the preheating temperature is 7
93K. For the hot extrusion, a usual extrusion method such as a direct extrusion method or an indirect extrusion method can be used. After hot extrusion, 1
The temperature range up to 00 ° C. is cooled at a rate of 10 K / sec or more. If the cooling rate is less than 10 K / sec, the second
A phase is precipitated to lower the intergranular corrosion resistance, and the amount of Mg and Si precipitated by the aging treatment is reduced to lower the strength. Therefore, after extrusion molding, the cooling rate in a temperature range up to 373 K was set to 10 K / sec or more. After cooling, natural or artificial aging treatment is performed by a general method to secure the strength.

【0017】なお、押出用の鋳塊としては、上記アルミ
ニウム合金を一般的な方法、たとえばDC鋳造法等によ
って所定の寸法に鋳造した後、均質化処理したものを用
いればよい。以上のように、本発明では合金の成分組成
を適切に調整するとともに、合金中のMgおよびSi量
と合金の製造条件を規定することによって、粒界晶析出
物の形成を抑制することが可能となり、その結果、耐粒
界腐食性に優れ、かつ優れた押出性および高強度を有す
るアルミニウム合金が得られる。
As the ingot for extrusion, one obtained by casting the above aluminum alloy to a predetermined size by a general method, for example, a DC casting method, and then homogenizing the same is used. As described above, in the present invention, it is possible to suppress the formation of grain boundary crystal precipitates by appropriately adjusting the component composition of the alloy and defining the amounts of Mg and Si in the alloy and the manufacturing conditions of the alloy. As a result, an aluminum alloy having excellent intergranular corrosion resistance and excellent extrudability and high strength can be obtained.

【0018】[0018]

【実施例】次に、本発明を実施例で説明する。 (実施例1)表1に示す化学成分を有する各合金を常法
により、溶解、鋳造し、面削、均質化処理を行って熱間
押出用素材とした。これらの素材を773Kで5分間予
備加熱後、20m/分の速度で熱間押出成形を行い、押
出形材を製作した。形材の形状は板厚2mm、一辺40
mmのロ形である。押出後、50mm長さの試験片を切
り出し、823K×30分の溶体化処理を施し、その温
度から氷水中に焼入れた後、453K×8時間の時効処
理を行った。このようにして得られた各合金について、
機械的性質および耐粒界腐食性を評価した。機械的性質
は、JISに規定された試験方法に準拠して、引張試験
によって求めた。また、耐粒界腐食性は上記形材から3
0mm×50mmの試験片を切り出し、JISに規定さ
れた試験方法に準拠した塩水噴霧試験(960時間)を
実施して評価した。
Next, the present invention will be described with reference to examples. (Example 1) Each alloy having the chemical components shown in Table 1 was melted and cast by a conventional method, subjected to facing and homogenizing treatment to obtain a material for hot extrusion. After preheating these materials at 773K for 5 minutes, hot extrusion was performed at a speed of 20 m / min to produce extruded profiles. The shape of the profile is 2mm thick, 40mm on each side
It is a square shape of mm. After extrusion, a test piece having a length of 50 mm was cut out, subjected to a solution treatment of 823 K × 30 minutes, quenched in ice water from that temperature, and then subjected to an aging treatment of 453 K × 8 hours. For each alloy obtained in this way,
The mechanical properties and intergranular corrosion resistance were evaluated. The mechanical properties were determined by a tensile test according to a test method specified in JIS. In addition, the intergranular corrosion resistance is 3
A test piece of 0 mm × 50 mm was cut out and evaluated by performing a salt spray test (960 hours) in accordance with the test method specified in JIS.

【0019】耐粒界腐食性の評価は、 ◎:優(粒界腐食なし) 〇:良(粒界腐食深さ0.1mm以下) △:やや不良(粒界腐食深さ0.1〜0.5mm) ×:不良(粒界腐食深さ0.5mm以上)で表した。 また、押出成形時に、押出抵抗、表面性状および工具摩
耗の観点から、各合金の押出性を、比較材のA6063
合金を100として相対評価した数値(押出指数)で表
した。押出指数が80以上であれば押出性は良好である
と言える。それらの評価結果を表2に示す。表2から明
らかなように、本発明によるアルミニウム合金は、比較
材のアルミニウム合金に比較して、耐粒界腐食性および
押出性に優れ、かつ、引張強さで320MPa以上の高
強度を有していることがわかる。
Evaluation of the intergranular corrosion resistance was as follows: :: excellent (no intergranular corrosion) 〇: good (0.1 mm or less of intergranular corrosion depth) Δ: slightly poor (0.1 to 0 of intergranular corrosion depth) ×: poor (grain boundary corrosion depth 0.5 mm or more). At the time of extrusion molding, from the viewpoint of extrusion resistance, surface properties and tool wear, the extrudability of each alloy was compared with that of the comparative material A6063.
It was represented by a numerical value (extrusion index) relative to the alloy as 100. If the extrusion index is 80 or more, it can be said that the extrudability is good. Table 2 shows the evaluation results. As is clear from Table 2, the aluminum alloy according to the present invention is excellent in intergranular corrosion resistance and extrudability as compared with the aluminum alloy of the comparative material, and has a high tensile strength of 320 MPa or more. You can see that it is.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】(実施例2)表1に示す合金のうち合金N
o9を常法により、溶解、鋳造し、面削、均質化処理を
行って熱間押出用素材とした。これらの素材を773K
で5分間予備加熱後、20m/分の速度で熱間押出成形
を行い、押出形材を製作した。形材の形状は板厚2m
m、一辺40mmのロ形である。押出後、50mm長さ
の試験片を切り出し、793〜853Kの各温度で5秒
〜3時間の溶体化処理を施し、その温度から氷水中に焼
入れた後、453K×8時間の時効処理を行った。この
ようにして得られた各合金について、実施例1の場合と
同様にして、機械的性質および耐粒界腐食性を評価し
た。表3にその結果を示す。
Example 2 Alloy N among the alloys shown in Table 1
o9 was melted and cast by a conventional method, subjected to facing and homogenizing treatment to obtain a raw material for hot extrusion. 773K of these materials
After preheating for 5 minutes, hot extrusion was performed at a speed of 20 m / min to produce an extruded profile. The shape is 2m thick
m, 40 mm on each side. After the extrusion, a test piece having a length of 50 mm was cut out, subjected to a solution treatment for 5 seconds to 3 hours at each temperature of 793 to 853 K, quenched in ice water from that temperature, and then subjected to an aging treatment of 453 K × 8 hours. Was. The mechanical properties and intergranular corrosion resistance of each alloy thus obtained were evaluated in the same manner as in Example 1. Table 3 shows the results.

【0023】[0023]

【表3】 [Table 3]

【0024】表3から明らかなように、溶体化処理温度
が前記あるいは式を満たさないような温度で溶体化
処理された場合、および式を満たす温度であって
も、溶体化処理時間が10秒未満の場合の比較法では耐
粒界腐食性、引張強さともに本発明の条件であるおよ
び式を満たし、かつ、843K未満の温度で10秒以
上、2時間未満で溶体化処理された場合に比べて劣って
いることがわかる。また、溶体化処理温度が853Kの
比較材では部分溶解が起こって試験片が採取できず、8
23K×3時間の溶体化処理材では耐粒界腐食性が劣る
とともに延性も低下している。このように、本発明の範
囲である前記および式を満たし、かつ、843K以
下の温度で10秒〜2時間の溶体化処理において優れた
耐粒界腐食性と引張強さで320MPa以上の高強度が
両立されることがわかる。
As is evident from Table 3, when the solution treatment was performed at a temperature not satisfying the above formula or the formula, and even when the solution treatment was performed at a temperature satisfying the formula, the solution treatment time was 10 seconds. In the comparative method in which the temperature is less than 10% or more and the solution treatment is performed at a temperature of less than 843K for 10 seconds or more and less than 2 hours, both the intergranular corrosion resistance and the tensile strength satisfy the conditions of the present invention and the formula. It turns out that it is inferior compared. In the case of the comparative material having a solution heat treatment temperature of 853K, the test piece could not be collected due to partial dissolution, and 8
The solution-treated material of 23K × 3 hours has poor intergranular corrosion resistance and low ductility. Thus, the above-mentioned and the formulas within the range of the present invention are satisfied, and excellent intergranular corrosion resistance and high strength of 320 MPa or more in tensile strength in solution treatment for 10 seconds to 2 hours at a temperature of 843 K or less. It can be seen that both are compatible.

【0025】(実施例3)表1に示す合金のうち合金N
o9を常法により、溶解、鋳造し、面削、均質化処理を
行って熱間押出用素材とした。これらの素材を773K
で5分間予備加熱後、20m/分の速度で熱間押出成形
を行い、押出形材を製作した。形材の形状は板厚2m
m、一辺40mmのロ形である。押出後、50mm長さ
の試験片を切り出し、823K×30分の溶体化処理を
施し、その温度から373Kまでの温度範囲の平均冷却
速度を1K/秒から100K/秒の間で変化させて冷却
した後、453K×8時間の時効処理を行った。このよ
うにして得られた各合金について、実施例1の場合と同
様にして、機械的性質および耐粒界腐食性を評価した。
その結果を表4に示す。表4から明らかなように、溶体
化処理温度から373Kまでの温度範囲を本発明の条件
である10K/秒以上の冷却速度で冷却した場合には、
優れた耐粒界腐食性と引張強さ320MPa以上の高強
度が得られているが、比較法である10K/秒以下で冷
却した場合には、耐粒界腐食性が劣るとともに十分な強
度が得られないことがわかる。
(Embodiment 3) Of the alloys shown in Table 1, alloy N
o9 was melted and cast by a conventional method, subjected to facing and homogenizing treatment to obtain a raw material for hot extrusion. 773K of these materials
After preheating for 5 minutes, hot extrusion was performed at a speed of 20 m / min to produce an extruded profile. The shape is 2m thick
m, 40 mm on each side. After the extrusion, a test piece having a length of 50 mm was cut out, subjected to a solution treatment of 823 K × 30 minutes, and cooled by changing an average cooling rate from the temperature to 373 K from 1 K / sec to 100 K / sec. After that, aging treatment of 453K × 8 hours was performed. The mechanical properties and intergranular corrosion resistance of each alloy thus obtained were evaluated in the same manner as in Example 1.
Table 4 shows the results. As is clear from Table 4, when the temperature range from the solution treatment temperature to 373 K is cooled at a cooling rate of 10 K / sec or more, which is the condition of the present invention,
Although excellent intergranular corrosion resistance and high strength of tensile strength of 320 MPa or more are obtained, when cooled at 10 K / sec or less as a comparative method, intergranular corrosion resistance is inferior and sufficient strength is obtained. It turns out that it cannot be obtained.

【0026】[0026]

【表4】 [Table 4]

【0027】(実施例4)表1に示す合金のうち合金N
o9を常法により、溶解、鋳造し、面削、均質化処理を
行って熱間押出用素材とした。これらの素材を773〜
813Kの間の各温度で5分間予備加熱後、20m/分
の速度で熱間押出成形を行ってから、373Kまでの温
度範囲の平均冷却速度を1K/秒から100K/秒の間
で変化させて冷却して押出形材を製作した。形材の形状
は板厚2mm、一辺40mmのロ形である。押出後、5
0mm長さの試験片を切り出し、453K×8時間の時
効処理を行った。このようにして得られた各合金につい
て、実施例1の場合と同様にして、機械的性質および耐
粒界腐食性を評価した。また、押出成形時に、実施例1
と同様の方法で押出性を評価した。それらの結果を表5
に示す。
Example 4 Alloy N among the alloys shown in Table 1
o9 was melted and cast by a conventional method, subjected to facing and homogenizing treatment to obtain a raw material for hot extrusion. 773-
After preheating at each temperature between 813K for 5 minutes, hot extrusion was performed at a speed of 20m / min, and the average cooling rate in the temperature range up to 373K was changed from 1K / sec to 100K / sec. After cooling, an extruded profile was produced. The shape of the shape is a square shape having a thickness of 2 mm and a side of 40 mm. After extrusion, 5
A test piece having a length of 0 mm was cut out and subjected to an aging treatment of 453 K × 8 hours. The mechanical properties and intergranular corrosion resistance of each alloy thus obtained were evaluated in the same manner as in Example 1. In addition, at the time of extrusion molding,
The extrudability was evaluated in the same manner as described above. Table 5 shows the results.
Shown in

【0028】[0028]

【表5】 [Table 5]

【0029】表5から明らかなように、予備加熱温度を
本発明の条件である前記および式を満たす温度と
し、押出成形後、373Kまでの温度範囲における平均
冷却速度を本発明の条件である10K/秒以上とした場
合には、優れた耐粒界腐食性および押出性と引張強さで
320MPa以上の高強度が得られているが、予備加熱
温度が前記あるいはを満たさない場合には、押出性
が低下するばかりでなく、押出成形された合金の耐粒界
腐食性は劣り、十分な強度も得られていない。予備加熱
温度が前記および式を満たす温度範囲内にあって
も、押出成形後、373Kまでの温度範囲の平均冷却速
度が10K/秒未満の場合には、耐粒界腐食性が劣ると
ともに、十分な強度が得られていないことがわかる。ま
た、予備加熱温度が813Kの場合には、部分溶解が生
じて健全な押出形材が採取できなかった。
As is evident from Table 5, the preheating temperature is a temperature satisfying the above conditions and the formula of the present invention, and the average cooling rate in a temperature range up to 373K after extrusion molding is 10K which is a condition of the present invention. / Sec or more, excellent intergranular corrosion resistance and high strength of 320 MPa or more in extrudability and tensile strength are obtained. In addition to the reduction in the properties, the extruded alloy has poor intergranular corrosion resistance and does not have sufficient strength. Even if the preheating temperature is within the temperature range that satisfies the above formula and the formula, if the average cooling rate in the temperature range up to 373 K after extrusion molding is less than 10 K / sec, the intergranular corrosion resistance is poor and sufficient. It can be seen that a high strength was not obtained. When the preheating temperature was 813K, a partial extruded material was generated and a sound extruded material could not be collected.

【0030】[0030]

【発明の効果】以上の説明のように、本発明によるアル
ミニウム合金は耐粒界腐食性および押出性に優れるとと
もに、引張強さで320MPa以上の高強度を有するこ
とから、自動車をはじめ、車両,電気機器,建築用等の
構造部材用高強度アルミニウム合金として広く使用でき
るものである。
As described above, the aluminum alloy according to the present invention is excellent in intergranular corrosion resistance and extrudability, and has a high tensile strength of 320 MPa or more. It can be widely used as a high-strength aluminum alloy for structural members such as electrical equipment and buildings.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 640 C22F 1/00 640A 691 691C 691B 692 692A 692B ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI C22F 1/00 640 C22F 1/00 640A 691 691C 691B 692 692A 692B

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、Mg:0.5〜1.2%,S
i:0.5〜1.4%を含有し、残部がAlおよび不純
物からなるアルミニウム合金を鋳造し、所定の形状に熱
間押出成形した後、 Mg(%)<−5/9Si(%)+0.23exp
{(T−673)/100}+0.25 および、 Mg(%)<−3Si(%)+0.78exp{(T−
673)/100}+0.42 なる関係式を満足する温度T(K)以上、843K未満
の温度で10秒以上、2時間以内の溶体化処理を施し、
その温度から373Kまでの温度範囲を10K/秒以上
の速度で冷却し、さらに自然あるいは人工時効処理する
ことを特徴とする耐粒界腐食性に優れた高強度アルミニ
ウム合金の製造方法。ここでMg(%)およびSi
(%)はそれぞれ、MgおよびSiの重量%を示す。
(1) Mg: 0.5-1.2% by weight, S
i: An aluminum alloy containing 0.5 to 1.4%, the balance being Al and impurities, was cast and hot-extruded into a predetermined shape, and then Mg (%) <-5 / 9Si (%) + 0.23exp
{(T-673) / 100} +0.25 and Mg (%) <-3Si (%) + 0.78exp} (T−
673) /100°+0.42. Solution treatment is performed at a temperature not less than T (K) satisfying the relational expression of not more than 843K and not less than 10 seconds and not more than 2 hours,
A method for producing a high-strength aluminum alloy excellent in intergranular corrosion resistance, characterized by cooling a temperature range from that temperature to 373K at a rate of 10K / sec or more and further performing natural or artificial aging treatment. Here, Mg (%) and Si
(%) Indicates the weight percentage of Mg and Si, respectively.
【請求項2】 請求項1記載のアルミニウム合金の製造
方法において、この合金に、さらに、重量%で、 Cu:0.05〜1.0%,Zn:0.05〜0.6
%,Mn:0.03〜0.5%,Cr:0.03〜0.
5%,V :0.03〜0.3%,Fe:0.05〜
0.5%,Zr:0.03〜0.3%,Ti:0.00
5〜0.3%のうちの1種以上を含有する耐粒界腐食性
に優れた高強度アルミニウム合金の製造方法。
2. The method for producing an aluminum alloy according to claim 1, wherein the alloy further contains, by weight%, Cu: 0.05 to 1.0% and Zn: 0.05 to 0.6.
%, Mn: 0.03 to 0.5%, Cr: 0.03 to 0.
5%, V: 0.03 to 0.3%, Fe: 0.05 to
0.5%, Zr: 0.03-0.3%, Ti: 0.00
A method for producing a high-strength aluminum alloy excellent in intergranular corrosion resistance containing at least one of 5 to 0.3%.
【請求項3】 請求項1または2記載のアルミニウム合
金を溶解し、所定の形状のビレットに鋳造し、均質化処
理を施した後、 Mg(%)<−5/9Si(%)+0.23exp
{(T′−623)/100}+0.25 および、 Mg(%)<−3Si(%)+0.78exp{(T′
−623)/100}+0.42 なる関係式を満足する温度T′(K)以上、793K未
満の温度で予備加熱して熱間押出成形を行ってから、3
73Kまでの温度範囲を10K/秒以上の速度で冷却
し、さらに、自然あるいは人工時効処理することを特徴
とする耐粒界腐食性に優れた高強度アルミニウム合金の
製造方法。
3. The aluminum alloy according to claim 1 or 2 is melted, cast into a billet having a predetermined shape, homogenized, and then Mg (%) <− 5 / 9Si (%) + 0.23exp.
{(T'-623) / 100} +0.25 and Mg (%) <-3Si (%) + 0.78exp} (T '
−623) /100°+0.42 After preheating at a temperature T ′ (K) or more and less than 793K which satisfies the relational expression, hot extrusion is performed,
A method for producing a high-strength aluminum alloy having excellent intergranular corrosion resistance, characterized by cooling a temperature range up to 73K at a rate of 10K / sec or more and further performing natural or artificial aging treatment.
JP9028130A 1997-02-12 1997-02-12 Production of high strength aluminum alloy excellent in intergranular corrosion resistance Withdrawn JPH10219413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9028130A JPH10219413A (en) 1997-02-12 1997-02-12 Production of high strength aluminum alloy excellent in intergranular corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9028130A JPH10219413A (en) 1997-02-12 1997-02-12 Production of high strength aluminum alloy excellent in intergranular corrosion resistance

Publications (1)

Publication Number Publication Date
JPH10219413A true JPH10219413A (en) 1998-08-18

Family

ID=12240207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9028130A Withdrawn JPH10219413A (en) 1997-02-12 1997-02-12 Production of high strength aluminum alloy excellent in intergranular corrosion resistance

Country Status (1)

Country Link
JP (1) JPH10219413A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001020052A3 (en) * 1999-09-16 2001-09-27 Honsel Profilprodukte Gmbh Method and device for heat treatment of extruded sections
EP1380661A1 (en) * 2002-07-05 2004-01-14 Alcan Technology &amp; Management Ltd. Article made of AlMgSi alloy with a decorative anodic oxide layer
CN101935784A (en) * 2010-08-30 2011-01-05 佛山市鸿金源铝业制品有限公司 Aluminium material for contact nets on rapid transit railway and manufacturing method thereof
CN102864399A (en) * 2012-06-01 2013-01-09 西南铝业(集团)有限责任公司 Production method of marine checkered plates
CN104152758A (en) * 2014-08-12 2014-11-19 山东裕航特种合金装备有限公司 Production process of high-strength aluminum alloy hollow profile for automobile shock absorber
CN104789830A (en) * 2014-05-30 2015-07-22 安徽鑫发铝业有限公司 Acid-resistant aluminum alloy section
CN109722574A (en) * 2017-09-18 2019-05-07 山东友升铝业有限公司 Improve extrudate coarse-grain wrought aluminium alloy
CN111801433A (en) * 2018-03-05 2020-10-20 昭和电工株式会社 Hollow extrusion material of Al-Mg-Si series aluminum alloy and method for producing the same
CN111979459A (en) * 2020-09-25 2020-11-24 山东创新精密科技有限公司 6063 aluminum alloy high-performance extrusion product and production method thereof
CN115449730A (en) * 2022-09-06 2022-12-09 合肥通用机械研究院有限公司 Method for effectively reducing corrosion rate of low-silicon cast aluminum alloy

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001020052A3 (en) * 1999-09-16 2001-09-27 Honsel Profilprodukte Gmbh Method and device for heat treatment of extruded sections
EP1380661A1 (en) * 2002-07-05 2004-01-14 Alcan Technology &amp; Management Ltd. Article made of AlMgSi alloy with a decorative anodic oxide layer
CN101935784A (en) * 2010-08-30 2011-01-05 佛山市鸿金源铝业制品有限公司 Aluminium material for contact nets on rapid transit railway and manufacturing method thereof
CN102864399A (en) * 2012-06-01 2013-01-09 西南铝业(集团)有限责任公司 Production method of marine checkered plates
CN104789830A (en) * 2014-05-30 2015-07-22 安徽鑫发铝业有限公司 Acid-resistant aluminum alloy section
CN104152758A (en) * 2014-08-12 2014-11-19 山东裕航特种合金装备有限公司 Production process of high-strength aluminum alloy hollow profile for automobile shock absorber
CN109722574A (en) * 2017-09-18 2019-05-07 山东友升铝业有限公司 Improve extrudate coarse-grain wrought aluminium alloy
CN111801433A (en) * 2018-03-05 2020-10-20 昭和电工株式会社 Hollow extrusion material of Al-Mg-Si series aluminum alloy and method for producing the same
CN111979459A (en) * 2020-09-25 2020-11-24 山东创新精密科技有限公司 6063 aluminum alloy high-performance extrusion product and production method thereof
CN115449730A (en) * 2022-09-06 2022-12-09 合肥通用机械研究院有限公司 Method for effectively reducing corrosion rate of low-silicon cast aluminum alloy

Similar Documents

Publication Publication Date Title
KR101340181B1 (en) Free-cutting aluminum alloy extrudate with excellent brittle resistance at high temperature
JP2013525608A (en) Damage-resistant aluminum material with hierarchical microstructure
JP3540812B2 (en) Low density and high strength aluminum-lithium alloy with high toughness at high temperature
JP2015519475A5 (en) Improved free-cutting wrought aluminum alloy product and manufacturing method thereof
JPH10219381A (en) High strength aluminum alloy excellent in intergranular corrosion resistance, and its production
EP1848835A2 (en) Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same
JP2011058047A (en) Method for producing aluminum alloy thick plate having excellent strength and ductility
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP2011144396A (en) High strength aluminum alloy extruded material having excellent stress corrosion cracking resistance
JP7123254B2 (en) Method for producing Al-Mg-Mn alloy plate product with improved corrosion resistance
JPH10219413A (en) Production of high strength aluminum alloy excellent in intergranular corrosion resistance
JPH11310841A (en) Aluminum alloy extruded shape excellent in fatigue strength, and its production
JP2002235158A (en) Method for producing high strength aluminum alloy extrusion shape material having excellent bending workability
JP6638192B2 (en) Aluminum alloy processing material and method of manufacturing the same
JP2009203516A (en) Aluminum alloy
JPH086161B2 (en) Manufacturing method of high strength A1-Mg-Si alloy member
JPH08269652A (en) Production of aluminum alloy extruded shape having excellent bendability and high strength
JP5499610B2 (en) Aluminum alloy member and manufacturing method thereof
KR101499096B1 (en) Aluminum alloy and manufacturing method thereof
JPH11286758A (en) Production of forged product using aluminum casting material
JPH04341546A (en) Production of high strength aluminum alloy-extruded shape material
JP5166702B2 (en) 6000 series aluminum extrudate excellent in paint bake hardenability and method for producing the same
JPH11286759A (en) Production of forged product using aluminum extruded material
JPH08232035A (en) High strength aluminum alloy material for bumper, excellent in bendability, and its production
JPH05247574A (en) Production of aluminum alloy for forging and forged product of aluminum alloy

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040511